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Abstract

This paper presents a distributed algorithmic solution, termed Coalition formation and deployment algorithm, to
achieve network configurations where agents cluster into coincident groups that are distributed optimally over the environment.
Themotivation for this problem comes from spatial estimation tasks executed with unreliable sensors.We propose a probabilistic
strategy that combines a repeated game governing the formation of coalitions with a spatial motion component governing
their location. For a class of probabilistic coalition switching laws, we establish the convergence of the agents to coincident
groups of a desired size in finite time and the asymptotic convergence of the overall network to the optimal deployment, both
with probability 1. We also investigate the algorithm’s time and communication complexity. Specifically, we upper bound the
expected completion time of executions that use the proportional-to-number-of-unmatched-agents coalition switching
law under arbitrary and complete communication topologies. We also upper bound the number of messages required per
timestep to execute our strategy. The proposed algorithm is robust to agent addition and subtraction. From a coalitional game
perspective, the algorithm is novel in that the players’ information is limited to neighboring clusters. From amotion coordination
perspective, the algorithm is novel because it brings together the basic tasks of rendezvous (individual agents into clusters)
and deployment (clusters in the environment). Simulations illustrate the correctness, robustness, and complexity results.
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1 Introduction

This paper is motivated by optimal spatial sampling
problems under possibly failing communications. Con-
sider a group of mobile robotic sensors that take point
measurements of a random field over an environment
and relay them back to a data fusion center. Assume that
because of the features of the medium and the limited
agent communication capabilities, it is known that only
a fraction of these packets will arrive at the center, but
it is not a priori known which ones will. Given that some
sensors are not working and their identity is unknown, a
reasonable strategy consists of grouping sensors together
into clusters so that the likelihood of obtaining a mea-
surement from the position of each cluster is higher. In
this paper, our aim is to design a distributed algorithm
that makes the network autonomously create groups of
a desired size such that (i) members of each individual
group become coincident, and (ii) the groups deploy op-
timally with regards to the spatial estimation objective.

Literature review: There is an increasing body of re-
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search that deals with spatial estimation problems with
possibly failing communications where packets are either
received without corruption or not received at all, see
e.g., [Smith and Seiler, 2003, Schenato et al., 2007, Gupta
et al., 2009, Cortés, 2012]. In particular, Cortés [2012]
shows that, for the problem motivating our algorithm
design, the clustering strategy outlined above is opti-
mal in some cases: the configurations that maximize the
expected information content of the measurements re-
trieved at the center correspond to agents grouping into
clusters, and the resulting clusters being deployed op-
timally. Achieving such desirable configurations is chal-
lenging because of the spatially distributed nature of the
problem and the agent mobility. In this regard, the no-
tions of spatial coverage and agent clustering (the latter
understood as physical co-location), as well as our pro-
posed algorithmic solution, are different from those in
typical hierarchical clustering problems, see e.g. [You-
nis and Fahmy, 2004, Bandyopadhyay and Coyle, 2003],
where sensors are static and the objective is to mini-
mize the cost incurred when relaying messages to a data
fusion center. Closer to our setup, Heo and Varshney
[2003] define clusters as groups of mobile sensors in lo-
cations such that their density is above the expected
average density. Using a control law based on whether
sensors are in a cluster or not, the network minimizes
the distance traveled by the sensors to deploy. Our tech-
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nical approach combines elements of spatial facility lo-
cation [Okabe et al., 2000], rendezvous and deployment
of multi-agent systems [Bullo et al., 2009], and coali-
tion formation games [Bogomolnaia and Jackson, 2002,
Banerjee et al., 2001]. From a game-theoretic perspec-
tive, our analysis of the coalition formation dynamics
is novel because of the consideration of evolving and
partial interaction topologies. From a motion coordi-
nation perspective, the novelty relies on the coupled
dynamics between the coalition formation, the cluster-
ing, and the network deployment. Other works in co-
operative control employ game-theoretic ideas to solve
tasks such as formation control, target assignment, self-
organization for efficient communication, consensus, and
sensor coverage, see e.g. [Gu, 2008, Marden et al., 2009a,
Arslan et al., 2007, Saad et al., 2011]. Given the algo-
rithmic design choice of the agents’ utility function, our
work has connections to weakly acyclic games [Marden
et al., 2009b, 2007]. Specifically, under a fixed, com-
plete communication graph where all agents can join any
coalition they wish, our game can be cast as a weakly
acyclic game. However, in general, the limited informa-
tion available to agents, the dynamic interaction topol-
ogy, and the dependence of the individual action sets
on this topology makes the framework of weakly acyclic
games not directly applicable. We build on the well-
established notions of time and communication complex-
ity in distributed algorithms [Peleg, 2000, Lynch, 1997,
Bullo et al., 2009] to characterize the performance of our.
Since in the repeated coalition formation game agents
take probabilistic actions, we consider the expected time
complexity. In principle, our algorithm can be described
as a Markov chain, where the coalition formation time
can be exactly defined as the first hitting time for the set
of goal states [Meyn and Tweedie, 2009, Lawler, 2006].
However, defining the probabilistic transition function
becomes difficult as the number of total agents grows.
Thus, we adopt a drift analysis approach [Hajek, 1982]
to provide an upper bound on the time complexity.

Statement of contributions: Themain contribution of the
paper is the design and analysis of the Coalition for-

mation and deployment algorithm. The aim of this
synchronous and distributed strategy is to allow robotic
agents to autonomously form groups of a given desired
size while clustering together and deploying optimally in
the environment. The deployment objective is encoded
through a locational optimization function whose opti-
mizers correspond to circumcenter Voronoi configura-
tions. The algorithm design combines a repeated game
component that governs the dynamics of coalition forma-
tion with a spatial motion component that determines
how agents’ positions evolve. In the coalitional game,
agents take probabilistic actions and seek to join a neigh-
boring coalition that most closely resembles one with
the desired size. According to the motion coordination
law, agents not yet in a well-formed coalition cluster to-
gether, while agents in a coalition of the desired size also
move towards the circumcenter of their Voronoi cell. Our

main result, cf. Theorem 5.1, establishes that, for a large
class of probabilistic coalition switching laws, the execu-
tions of the Coalition formation and deployment

algorithm converge in finite time to a configuration
where agents are coincident with their own coalition and
all coalitions are the desired size, and asymptotically
converge to an optimal deployment configuration, each
with probability 1. For a specific probabilistic coalition
switching law, termed proportional-to-number-of-

unmatched-agents, we provide upper bounds on the
expected coalition formation time under arbitrary and
complete communication topologies. For any switching
law, we also upper bound the total number of messages
sent per timestep during an execution on an arbitrary
communication topology. The algorithm does not re-
quire the agents to have a common reference frame, and
is robust to agent addition and deletion. Finally, we il-
lustrate the correctness, robustness, and time and com-
munication complexity results in simulation.

Organization: Section 2 presents basic notions from com-
putational geometry, probability, and hedonic coalition
games. Section 3 states the problem setup, and Section 4
contains the description of our algorithm. Section 5 ana-
lyzes its correctness and Section 6 characterizes its com-
plexity. Section 7 illustrates our results. Finally, Sec-
tion 8 contains conclusions and ideas for future work.

2 Preliminaries

We present facts from computational geometry, proba-
bility, and coalition games that are key in the discussion.

2.1 Basic geometric notions

We denote by R, R>0, R≥0, Z, and Z≥1 the sets of real,
positive real, nonnegative real, integer, and positive inte-
ger numbers, respectively. Let ‖ · ‖ be the Euclidean dis-
tance. Given a set S ⊂ X, let F(S) denote the collection
of finite subsets of S, Sc = X \S its complement, and |S|
its cardinality. Let vr : Rd → R

d be defined by vr(u) =
u/‖u‖ for u ∈ R

d \ {0}, and vr(0) = 0. We let B(x, r) =
{p ∈ R

d | ‖x − p‖ ≤ r}. The circumcenter of a set of
points P , denoted CC(P ), is the center of the ball of min-
imum radius, denoted CR(P ), which encloses all points
in P . Next, we define the get-together-toward-goal
function gttg : S × F(S)× S → S that will help us later
to get a set of points P closer to each other while mov-
ing towards a goal q. Define gttg(p, P, q) = p+w1 +w2,
where we use the shorthand notation P0 = P ∪ {p},

w1 = min{‖CC(P0)− p‖, d1(r)} vr(CC(P0)− p),

w2 = min{‖q − (p+ w1)‖, d2(r)} vr(q − (p+ w1)),

and r = CR(P0)
/

‖q − CC(P0)‖. Here, d1 : R≥0 → R≥0

is an increasing function, continuous on R>0, satisfying

d1(0) = 0, lim
s→∞

d1(s) = dmax, lim
s→0+

d1(s) = dmin,
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for dmax > dmin > 0, and d2 : R≥0 → R≥0 is defined by
d2(s) = dmax − d1(s). Figure 1 illustrates the definition
of gttg. Appendix A gathers some its relevant properties.

p

p + w1

gttg(p, P, q)CC(P0)

q

Fig. 1. Illustration of the action of the function gttg.

2.2 Voronoi partitions and deployment objective

Here, we introduce some computational geometric no-
tions that play an important role in the formalization of
the deployment problem. Given Q ⊂ R

d and a finite set
of points P = {p1, . . . , pN} ⊂ Q, the Voronoi partition
V (P ) = {V1(P ), . . . , VN (P )} of Q is defined by

Vi(P ) = {q ∈ Q | ‖ q − pi‖ ≤ ‖ q − pj‖, ∀ pj ∈ P}.

Note that Vi(P ), the Voronoi cell of pi, is the set of
points in Q closer to pi than to any of the other points
in P . The points pi and pj are (Voronoi) neighbors if
the boundaries of their cells intersect. To compute the
Voronoi cell of pi, all that is required is the location of its
neighbors in P . Cortés et al. [2004] introduces a proce-
dure, that we term the Adjust radius strategy, which
does the following: starting from r = 0, it repeatedly
grows r until all Voronoi neighbors of pi are guaranteed
to be contained in B(pi, r).

Given a partition {W1, . . . ,WN} of Q, the disk-covering
function HDC,N is defined by

HDC,N (p1, . . . , pN ,W1, . . . ,WN ) = max
i∈{i,...,N}

max
q∈Wi

‖q − pi‖2.

The value of HDC,N solves the following problem: cover
the whole environment with balls centered at the points
in P = {p1, . . . , pN}with minimum common radius such
that Wi ⊂ B(pi, r), for i ∈ {1, . . . , N}. For convenience,
we setHDC,N (p1, . . . , pN ) = HDC,N (p1, . . . , pN , V1, . . . , VN ).
Two properties are worth noting [Bullo et al., 2009]: for
a fixed configuration, the Voronoi partition is optimal
among all partitions,

HDC,N (p1, . . . , pN , V1(P ), . . . , VN (P )) ≤
HDC,N (p1, . . . , pN ,W1, . . . ,WN ).

For a fixed partition the cells’ circumcenters are optimal:

HDC,N (CC(W1), . . . ,CC(WN ),W1, . . . ,WN ) ≤
HDC,N (p1, . . . , pN ,W1, . . . ,WN ).

Under certain technical conditions, see [Graham and
Cortés, 2009], optimizing HDC,N corresponds to mini-
mizing the maximum error variance in the estimation

of a random spatial field. Similarly, in the situation of
discrete events happening with equal likelihood every-
where in an environment, placing sensors at an opti-
mizer of HDC,N yields a configuration which minimizes
the worst-case distance (error) between an event and the
nearest sensor. The deployment objective function that
motivates our algorithm is given by

HN,g(p1, . . . , pN ) =

1
(

N
g

)

∑

{s1,...,sg}∈C(N,g)

HDC,g(ps1 , . . . , psg ), (1)

where C(N, g) denotes the set of unique g-sized com-
binations of elements in {1, . . . , N}. This function cor-
responds to the expected disk-covering performance of
a network of N agents where only g of them are work-
ing and their identity is unknown. Optimizers of HN,g

correspond to grouping agents into coincident clusters
of a specific size, say κ, that themselves are optimally
deployed according to HDC,⌈N

κ
⌉, see [Cortés, 2012]. The

cluster size κ is a function of N , g, and Q. For instance,
for the case where Q is an interval, if only 1 agent is ex-
pected to be working correctly, all agents should form
one coalition of size N . If 2 agents are expected to func-
tion, the optimal coalition size is N/2. Finally, if N − 1
are expected to function, the optimal coalition size is 2.
In this paper, we assume that the optimal cluster size
κ is known, and so forming coincident clusters of size κ
and deploying these groups appropriately optimizes (1).

2.3 Probability notions

Here we gather some probability notions from Rosen-
thal [2000], Billingsley [1995]. Let X be a random vari-
able that has outcomes {x1, x2, . . . } with probabilities
{p1, p2, . . . } ⊂ R≥0. An event E is a set of outcomes of
X. For brevity, we use P

(

E
)

= P
(

X ∈ E
)

. Given a
sequence of events {En}∞n=1, let

lim sup
n

En = {En i.o.} =

∞
⋂

n=1

∞
⋃

k=n

Ek,

lim inf
n

En = {En a.a.} =
∞
⋃

n=1

∞
⋂

k=n

Ek.

Here ‘i.o.’ stands for infinitely often, and ‘a.a.’ stands for
almost always. Note that {En i.o.}c = {Ec

n a.a.}.

Lemma 2.1 (Borel-Cantelli Lemma) Given a se-
quence of events {En}∞n=1 satisfying

∑∞
n=1 P

(

En

)

< ∞.

Then P
(

lim supn En

)

= 0.

2.4 Hedonic coalition games

Hedonic coalition formation games [Bogomolnaia and
Jackson, 2002] are N -player noncooperative games [Fu-
denberg and Tirole, 1991, Başar and Oldser, 1982] where
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players attempt to join/stay in preferable coalitions.
Each player is hedonic because the utility it assigns to
a given network coalition partitioning is only a function
of its own coalition. Each player’s action set is finite: it
can stay in the current coalition or join another coali-
tion. For a finite set of players A = {1, . . . , N}, a finite
coalition partition is a set Π = {Sk}Kk=1, K ∈ Z≥1, that
partitions A. The subsets Sk are called coalitions. For
player i and partition Π, let SΠ(i) be the set Sk ∈ Π such
that i ∈ Sk. Agent i’s preference is defined by an order-
ing �i over the set Si = {S ∈ F(A) | i ∈ S}. A coalition
partition Π is called Nash stable if, for each i ∈ A,

SΠ(i) �i Sk ∪ {i}, ∀Sk ∈ Π ∪ {∅}. (2)

In coalition formation games, a player has full informa-
tion about which coalitions all other players are in and
may join any of them. This is in contrast to our scenario,
where coalition information is only partial due to the
limited capabilities of individual agents. Let us introduce
definitions which help capture the spatially-limited na-
ture of coalition information. We say that (S1, . . . , SN )
is a consistent coalition state if i ∈ Si and Sj = Si, for
each j ∈ Si, for each i ∈ A. Note that for a consistent
coalition state, {S1, . . . , SN} reduces to a finite coalition
partition ofA. Let τi ⊆ A denote the set of agents whose
coalition information i has access. Letting S0 = ∅, the
function best-set defines the players whose coalitions i
most prefers to be a member of,

best-set(�i, {(k, Sk)}k∈τi) =

{j ∈ τi ∪ {0} | Sj ∪ {i} �i Sk ∪ {i}, ∀ k ∈ τi ∪ {0}}.

3 Problem statement

A group of robotic sensors with unique identifiers A =
{1, . . . , N} moves in a convex polygon Q ⊂ R

2. Let pi
denote the location of agent i and P = (p1, . . . , pN )
denote the overall network configuration. We consider
arbitrary agent dynamics, assuming each agent canmove
up to a distance dmax ∈ R>0 within one timestep,

pi(ℓ+ 1) ∈ B(pi(ℓ), dmax), ℓ ∈ Z.

Through either sensing or communication, we assume
each agent i can get the relative position and identity
of agents within distance ri ∈ R>0. During the coalition
formation process, agents can interact with other agents
within this radius. Agent i can adjust ri but the cost
of acquiring information is an increasing function of it.
Inter-agent communication occurs instantaneously.

Given the problem scenario described in Section 1, the
network’s objective is dual. On the one hand, agents
want to cluster into groups of a predefined size κ. Equiva-
lently, the network wants to self-assemble into ⌊N

κ ⌋ clus-
ters of size κ, with possibly one additional cluster of size
z, 0 ≤ z < κ, with N = ⌊N

κ ⌋κ + z. On the other hand,

the resulting clusters should be positioned in the envi-
ronment so as to minimize HDC,⌈N

κ
⌉. As discussed in

Section 2.2, such deployments correspond to optimizers
of (1) for a class of spatial estimation problems with un-
reliable sensors. For convenience, we define a partition
to be a goal coalition partition if the cardinality of m of
its coalitions is κ, with the cardinality of the remaining
one equal to z, if it exists.

A trivial solution to this problem would be to first elect
⌈N
κ ⌉ leaders and have each leader recruit κ−1 followers.

Then each group could rendezvous, and afterwards, the
overall network would deploy. However, this method is
neither distributed nor robust to agent failures. Our aim
is to create a distributed algorithm that accomplishes
the dual network objective in a robust and efficient way.

4 Coalition formation and deployment

Here, we solve the problem posed in Section 3 with
the Coalition formation and deployment algo-

rithm. This distributed, synchronous strategy specifies
for each agent the dynamics of coalition formation and
spatial motion. Section 4.1 outlines the logic used by
agents to determine which coalition to join as well as the
supporting inter-agent communication and Section 4.2
discusses how agents decide to move depending on their
coalition size and the deployment objective.

Before specifying the dynamics, we describe the required
memory of each agent and appropriate initializations.
The memory Mi of agent i is composed of

• the coalition set Ci. Elements of this set are of the
form (j, pj), i.e., identity and position of the member.
For convenience, we set (i, pi) ∈ Ci and C0 = ∅;

• the communication radius ri at which the agent inter-
acts with other agents not necessarily in its coalition;

• the neighboring set Ni corresponding to agents within
distance ri, i.e., (j, pj) ∈ Ni iff pj ∈ B(pi, ri);

• the farthest-away radius ri, corresponding to the max-
imum distance to members of its coalition set.

• the flag last, which indicates if an agent belongs to
the single final coalition not of size κ when ⌈N

κ ⌉ 6= N
κ .

The operators id(·) and pos(·) extract identities and po-
sitions, respectively, from sets with elements of the form
(i, pi). Initialization requires a consistent coalition state
(id(C1), . . . , id(CN )), ri ∈ R≥0, and last = False.

The vocabulary all agents can recognize are

• an agent sends the word query to ask for the identities
of another agent’s current coalition;

• an agent sends a packet with the word leave/join along
with an agent identity to indicate that the agent is
leaving/joining the recipient’s coalition.

Remark 4.1 (Communication protocol) The com-
munication radius ri should be thought of as the distance
at which agent imust interact with other agents not nec-
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essarily in its coalition. We do not enter into the specifics
of how this interaction is actually implemented. This
might be through direct, one-hop communication or, if
the radius is large, through indirect, multi-hop routing
involving other network agents. Lemma 4.3 below en-
sures the radius is kept, at each timestep, at the smallest
value that guarantees successful coalition formation. •

4.1 Coalition formation game

The formation of coalitions evolves according to a
simultaneous-action hedonic coalition game with partial
information. Let us start with an informal description.

[Informal description]: The agents’ objective is to be
in a κ-sized coalition. There are two rounds of com-
munication per timestep. In the first one, each agent
acquires information to determine if any neighboring
coalition is more attractive than its current one. In the
second one, the agents involved in a coalition change
(either because they have decided to switch or because
someone else decided to join their coalition) exchange
information to update the coalition membership.

Next, we formally describe the hedonic coalition forma-
tion game. The agent i’s preference ordering�i overSi is

{S ∈ Si | |S| = κ} ≻ {S ∈ Si | |S| = κ− 1} ≻ . . .

≻ {S ∈ Si | |S| = 1} ≻ {S ∈ Si | |S| = κ+ 1} ≻ . . .

≻ {S ∈ Si | |S| = N}. (3)

According to (3), agents most prefer to be in κ-sized
coalitions. They also prefer to be in a coalition of size 1
over any coalition of size larger than κ.

Algorithm 1 Best neighbor coalition detection

Executed by: agents i if |Ci| 6= κ

1: Acquire Ni (get location of neighbors)
2: Send (query, ri) at ri to id(Ni \ Ci)
3: Receive id(Cj) from all j ∈ id(Ni \ Ci)

(request/receive coalition sizes)
4: if i 6∈ best-set(�i, {k, id(Ck)}k∈id(Ni)) then
5: with probability p do
6: Set j∗ from best-set(�i, {k, id(Ck)}k∈id(Ni))

(identify best coalition to join)
7: if j∗ 6= 0 then
8: ri := ‖pj∗ − pi‖
9: end if

10: end
11: end if

Next, we specify the two rounds of communication that
take place per timestep. Agents who already are in a
coalition of size κ do not actively take part in this pro-
cess; they only respond to other agents’ messages. First,
agents execute the Best neighbor coalition detec-

tion strategy described as Algorithm 1. According to
this strategy (cf. step 5), an agent that finds a neigh-
boring coalition better than its own will decide to join

it with some probability of the form

p =

{

f(|C1|, . . . , |CN |, N, κ), if |Ci| 6= κ,

0, if |Ci| = κ,
(4)

where the function f takes values in the interval (0, 1)
for all finite N . The form of f affects the convergence
rate of the algorithm, which we will investigate later.

Remark 4.2 (Justification and tradeoffs for prob-
abilistic actions) The probabilistic model for actions
described in (4) helps avoid deadlock situations that may
result from the decentralized nature of the game. As an
example, in a situation with two groups of size κ− 1, all
agents will desire to join the other group. In such case,
a group of size κ would never form. Instead, under (4),
there is a positive probability that agents in only one of
the groups act, breaking the deadlock. In contrast with
a one-agent-acting-per-timestep policy, (4) allows mul-
tiple agents to switch coalitions at the same timestep.
One tradeoff of probabilistic actions is that the identities
of the agents in each coalition cannot be known a priori.
Another tradeoff is that, at times, agents do not make
the most beneficial action to achieve the ultimate ob-
jective given a specific configuration. However, as stated
above, it is precisely this occasional sub-optimality that
helps eliminate deadlock situations. •

Next, all agents run theCoalition switching strategy
found in Algorithm 2. This strategy builds on the input
j∗ provided to i by the Best neighbor coalition de-

tection strategy. Agents with j∗ 6= i switch coalitions.
If j∗ = 0, i forms its own coalition. Otherwise, i inter-
acts with agent j∗ to join its coalition. After switching,
agents update coalition memberships and the communi-
cation radii required to determine the position of other
members so that the coalition state remains consistent.

4.2 Motion control law

Here, we describe how agents move at each timestep,
beginning with an informal description:

[Informal description]: At each timestep, agents ad-
just their communication radius and move. Both ac-
tions depend on the size of their coalition. Agents not
yet in a coalition of size κ increase their radius to
improve the chances of finding a better coalition and
move towards their coalition members. Agents in a
coalition of size κ adjust their radius to ensure they
can calculate their Voronoi cell andmove towards both
their coalition members and the cell circumcenter.

The radius adjustment and motion strategy is for-
mally described in Algorithm 3. Its interaction with the
coalition formation dynamics is described in steps 10-16,
which governs the set of agents that a robot not yet in a
κ-sized coalition interacts with. The next result ensures
that agents’ communication radius are kept at the small-
est values that guarantee successful coalition formation.
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Algorithm 2 Coalition switching

Executed by: all agents i

1: if j∗ 6= i then
2: Send (leave, i) at ri to id(Ci)

(alert old coalition)
3: if j∗ 6= 0 then
4: Send (join, i, ri) at ri to j∗

(alert new coalition)
5: end if
6: end if
7: M := {k ∈ A | i received join from k}

(agents relying on i to aid switching)
8: foreach m ∈ M , send (join,m, rm) to id(Ci)

(alert coalition members of m via ri)
9: L := {k ∈ A | i received leave from k}

(agents leaving coalition)
10: J := {k ∈ A | an m ∈ id(Ci) got join from k}

(agents leaving/joining i’s coalition)
11: id(Ci) := (id(Ci)∪J)\L and ri := ri+max{rj}j∈J

(update current coalition and radius)
12: foreach m ∈ M , send (ri, id(Ci)) at rm to m

(update agents joining i’s coalition)
13: if j∗ 6= i then
14: if j∗ = 0 then
15: Ci = {(i, pi)} (form a new coalition)
16: else
17: id(Ci) := id(Cj∗) and ri := ‖pj∗ − pi‖+ rj∗

(update coalition and radius)
18: end if
19: end if
20: if J 6= ∅ ∨ j∗ 6= i then
21: Acquire Ni, pos(Ci)
22: j∗ := i (reset switching variable)
23: end if

Lemma 4.3 (Optimality property for commu-
nication radius law) For each i ∈ A such that
|Ci| 6= κ, let ki be the closest agent which is in a coali-
tion different from i’s with size different from κ. Let
ri(P, (C1, . . . , CN )) = ‖pi − pki

‖. For consistent coali-
tion states not corresponding to a goal coalition parti-
tion, such radii guarantee that at least one agent has an
incentive to switch coalitions. Moreover, if the radii of
these agents were set according to any other function r′i
with r′i(P, (C1, . . . , CN )) < ri(P, (C1, . . . , CN )) for some
i and P , then this property is no longer guaranteed.

PROOF. If there is at least one coalition of size greater
than κ, all agents in this coalition have an incentive
to start their own coalition. Consider instead, the case
where all coalitions are of size at most κ. An agent
i in the smallest coalition has an incentive to join its
neighbor ki and the claimed property follows. Next, we
show the minimality property. It is enough to show that
there is one non-goal consistent coalition state for which
a smaller radius assignment would not work. Consider
a consistent coalition state at configuration P where
all coalitions but one have been formed, and the re-

Algorithm 3 radius adjustment and motion

Executed by: all agents i

1: if |Ci| = κ ∨ last = True then
2: Update ri with Adjust radius strategy
3: Acquire Ni

4: Ai := ({CC(pos(Ci))} ∪ pos(Ni)) \ pos(Ci)
5: Vi := V1(Ai) (compute Voronoi cell)
6: goal = CC(Vi)
7: else
8: goal = CC(pos(Ci))
9: Ci := {j ∈ id(Ni) | | id(Ci)| = κ}

10: if id(Ni\Ci)\Ci 6= ∅ then
11: ri := mink∈id(Ni\Ci)\Ci

‖pk − pi‖+ 2dmax

(guarantees a neighbor after motion)
12: else if id(Ni) = A then
13: last := True (one non-κ coalition)
14: else
15: ri := ri + δ (increase radius)
16: end if
17: end if
18: foreach j ∈ id(Ci), set pj := gttg(pj , pos(Ci), goal)

(compute next position)
19: pos(Ci) := {pj}j∈id(Ci) (update positions)
20: ri := maxpj∈pos(Ci) ‖pj − pi‖ (recompute radius)

maining agents are in two coalitions, one with the sin-
gle agent, i, and the other one, C, with the rest. Since
r′i(P, (C1, . . . , CN )) < ri(P, (C1, . . . , CN )) = ‖pi − pki

‖,
agent i has no agents in Ni that it has incentive to join.
Furthermore, given the coalition state, agent i is the only
one who could have an incentive to switch coalitions,
concluding the proof. ✷

Steps 10-16 in Algorithm 3 implement the result of
Lemma 4.3. If agent i is not within ri of a non-coalition
agent that is not in a κ-sized coalition, increase ri. If
agent i is within ri of such an agent, change ri to the dis-
tance between the two agents plus a constant ensuring
they remain within communication range after moving.

Remark 4.4 (Voronoi cell computation) In the
Voronoi cell computation of step 5 in Algorithm 3, the
coalition’s circumcenter replaces all the locations of the
individual agents which ensures that all coalition mem-
bers compute the same cell. However, this also implies
that the collection of cells computed by the coalition
is not a partition of the environment. This issue gets
resolved when the members within each coalition are
coincident and is treated in the proof of Theorem 5.1. •

Remark 4.5 (Choice of parameter δ) In step 15 of
Algorithm 3, δ describes the amount that ri increases if i
does not have any neighboring candidate agents to join.
Several choices are possible. For instance, when agents

are roughly uniformly distributed, δ ∝ diam (Q)√
N

makes it

likely that the agent discovers at least one new agent. •
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The Coalition formation and deployment algo-

rithm is composed of Algorithms 1-3. This strategy does
not require agents to share a common reference frame.

Remark 4.6 (Robustness to addition and sub-
traction) The Coalition formation and deploy-

ment algorithm is robust to agents joining or leaving
the network under the following assumptions: (i) new
agents alert the network of their presence by sending
a query message, (ii) when an agent fails, the other
members of its coalition detect this fact, and (iii) when
agents receive a querymessage they set last := False. •

5 Correctness analysis

This section analyzes the convergence properties of the
strategy designed in Section 4. Our main objective is to
establish the following result.

Theorem 5.1 (Algorithm correctness) Consider a
network of N agents executing the Coalition forma-

tion and deployment algorithm. Then,

(i) there exists a finite time after which the agents are
in a goal coalition partition and each is coincident
with its coalition members, with probability 1;

(ii) the agents’ positions and the induced Voronoi parti-
tion asymptotically converges toward the set of min-
imizers of HDC,⌈N

κ
⌉, with probability 1.

The proof of this result requires us to establish several
intermediate results. Theorem 5.1 states that, with prob-
ability 1, the network will not converge to a coalition
partition other than the desired one. Agents may stay
for some time in a different partition but in finite time
they will reach the desired partition with probability 1.
This can be traced back to the fact that, in the simplified
coalition formation game where agents have both full in-
formation and action sets, only the goal coalition parti-
tion is Nash stable (see Lemma 5.2 below). Theorem 5.1
implies that, even in the absence of global information,
the Nash stable partitions are the desired ones.

Lemma 5.2 (Nash stable partitions of preference
ordering) In the N -agent simultaneous-action game
where agents have preference orderings satisfying (3),
complete knowledge of all other coalition memberships,
and their action set is to stay or join any other coalition,
only the goal coalition partition is Nash stable.

PROOF. First, let us show that the goal coalition par-
tition is Nash stable. All the agents in coalitions of size κ
receive maximal utility, so they satisfy (2). Nash stabil-
ity follows by noting that the agents in the coalition of
size z do not prefer to join either a coalition with size κ
or start a new coalition. To show the uniqueness result,
we reason with a different arbitrary partition and show
it is not Nash stable. This arbitrary partition must have

either at least one coalition with more than κ agents or
at least two coalitions with less than κ agents. In the first
case, the agents in a coalition with more than κ agents
would benefit by joining any coalition with size less than
κ (if any exists), and if not, by forming a new coalition.
In the second case, the agents in the smallest coalition
with less than κ agents would benefit from joining the
other. The same argument holds if coalitions are tied for
smallest. These two cases show the goal coalition parti-
tion is the only Nash stable partition. ✷

5.1 Analysis of coalition formation dynamics

We define the collection of actions of all agents at a
given timestep as a timestep-event. Our first result finds
a strictly positive lower bound on the probability of any
possible timestep-event happening. The result follows by
noting that all agents’ probabilistic actions are indepen-
dent and the switching probabilities are given by (4).

Lemma 5.3 (Bound on switching probabil-
ity) Let E be a timestep-event with P

(

E
)

> 0.

Then P
(

E
)

≥ min{f(|C1|, . . . , |CN |, N, κ), (1 −
f(|C1|, . . . , |CN |, N, κ))}N .

For ǫ > 0, define

Ξǫ(C1, . . . , CN )=
∑

i∈A≤κ

(1 + ǫ)|Ci|

|Ci|
=

κ
∑

j=1

aj(1 + ǫ)j , (5)

where aj are the number of coalitions of size j. Note
that coalitions with size strictly larger than κ do not
contribute to Ξǫ. Additionally, Ξǫ is upper bounded
by⌈N/κ⌉(1 + ǫ)κ. The next result establishes that one
agent joining a coalition of at least its own current
coalition’s size has positive effect on the overall network
reaching a goal coalition partition.

Lemma 5.4 (Ξǫ increase for one switcher) For any
ǫ > 0, when exactly one agent joins a new coalition of
at least its current coalition’s size, this action strictly
increases the function Ξǫ by at least min{1 + ǫ, ǫ2}.

PROOF. Let i be the size of the coalition being left
and j the size of the coalition being joined. We must con-
sider the cases of i < κ and i > κ separately, starting
with the former. Now, by the coalition preference order-
ing in (3), i ≤ j < κ. After switching, Ξǫ has changed by

(1 + ǫ)i−1 − (1 + ǫ)i + (1 + ǫ)j+1 − (1 + ǫ)j

= ǫ((1 + ǫ)j − (1 + ǫ)i−1)

≥ ǫ((1 + ǫ)i − (1 + ǫ)i−1) ≥ ǫ2.

Now, considering the case where i > κ, one can see that
in the worst case, the agent forms its own coalition of size
1, increasing Ξǫ by 1+ǫ, which completes the result. ✷
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The next result shows that from any consistent coali-
tion state, there is a finite sequence of timestep-events,
each with positive probability of occurring, that leads
to a goal coalition partition. Also, there exists an up-
per bound, independent of the coalition state, on this
sequence’s length.

Proposition 5.5 (A sequence of switching events
leading to the goal coalition partition) From any
consistent coalition state, there exists a finite sequence
of timestep-events, each having a positive probability of
occurring under the Coalition formation and de-

ployment algorithm, leading to a goal coalition par-
tition. Furthermore, for any ǫ > 0, the length of this se-
quence is bounded by

L =
⌈N/κ+ 1⌉(1 + ǫ)κ

ǫ2
(
diam(Q)

δ
+ 1) + ⌊N

κ
⌋. (6)

PROOF. Initially, if any coalitions are larger than
size κ, let the first timestep-event E1 be one where the
correct number of agents leave one of these large coali-
tions and all other agents do not switch, creating a coali-
tion of size κ. From Lemma 5.3, P

(

E1

)

is bounded away

from zero. There can be at most ⌊N
κ ⌋ − 1 more coali-

tions larger than size κ, and so E2, . . . , E⌊N
κ
⌋ are defined

similarly. From step 15 in Algorithm 3, within at most
diam(Q)

δ timesteps, each agent i will have a radius ri sat-
isfying Lemma 4.3, so at least one agent has an incentive
to change coalitions. In the timesteps in which no agents
wish to change coalitions, the corresponding timestep-

events, E⌊N
κ
⌋+1, . . . , E⌊N

κ
⌋+α, α ≤ diam(Q)

δ , occur with

probability 1. Define E⌊N
κ
⌋+α+1 to be a timestep-event

where exactly one agent joins a coalition it has an in-
centive to and all others do not switch. By Lemma 5.3,
the probability of this event is bounded away from zero.
Additionally, because all coalitions are at most size κ,
the function Ξǫ increases by at least ǫ2 (c.f. Lemma 5.4).
If the configuration is not in a goal coalition partition,

within at most diam(Q)
δ timesteps, at least one agent

will have an incentive to switch coalitions. Because the
upper-bounded function Ξǫ monotonically increases
each time this sequence of timestep-events occurs, the

number of times this can occur is at most ⌈N/κ+1⌉(1+ǫ)κ

ǫ2 .
Therefore, within L timesteps (cf. (6)), the agents will
be in a goal coalition partition. ✷

The next result uses the sequence constructed in Propo-
sition 5.5 to show that in finite time all agents are in a
goal coalition partition, with probability 1.

Theorem 5.6 (Finite-time convergence to goal
coalition partition) There exists a finite time after
which N agents using the Coalition formation and

deployment algorithm are in a goal coalition parti-
tion with probability 1.

PROOF. Lemma 5.3 asserts that the probability of
a timestep-event occurring is lower bounded by ρ =
min{f(|C1|, . . . , |CN |, N, κ), (1−f(|C1|, . . . , |CN |, N, κ))}N .
Given an initial consistent coalition state,

Proposition 5.5 guarantees that there exists a finite
sequence of timestep-events, whose length is upper
bounded by L (cf. (6)), leading to the goal coalition
partition. If the length of this sequence is smaller than
L, this sequence can be extended to one of exactly
length L by considering additional timestep-events
where no agents wish to change coalitions. The latter
occur with probability 1. Therefore, the sequence of
timestep-events leading to a goal coalition partition has
a probability of occurring of at least ρL, independent of
the initial coalition state.

Define a sequence of events {A1, A2, . . . }, where An

is the event that the coalitions do not exist after nL
timesteps. The probability of An occurring is at most
(1− ρL)n. Now,

∞
∑

n=1

An ≤
∞
∑

n=1

(1− ρL)n < ∞,

since it corresponds to a convergent geometric series.
Thus, by the Borel-Cantelli Lemma, cf. Lemma 2.1,
P
(

{An i.o.}
)

= 0. This means P
(

{An i.o.}c
)

= 1 or,

equivalently, P
(

{Ac
n a.a.}

)

= 1. The result follows by
noting that Ac

n is the event that the coalitions occur at
some point in nL timesteps and {Ac

n a.a.} is the event
that all but a finite number of events Ac

n occur. ✷

5.2 Proof of the main result

We are now ready to prove Theorem 5.1.

PROOF. [Proof of Theorem 5.1] In statement (i), the
fact that there exists, with probability 1, a finite time
after which all agents are in a goal coalition partition
follows from Theorem 5.6. Proposition A.2 allows us
to upper bound the number of timesteps it takes for
the circumradius of one of these coalitions to vanish
by ⌈diam(Q)

dmin
⌉. This implies the fact that in finite time

agents become coincident with its coalition members.
Once coalitions form and all individual agents are coin-
cident with the members of their respective coalitions,
the collection of Voronoi cells that the agents compute
correspond to a correct Voronoi partition with ⌈N

κ ⌉ gen-
erators. Statement (ii) then follows from [Bullo et al.,
2009, Theorem 5.5]. ✷

6 Algorithm complexity analysis

This section investigates the time and communication
complexity per timestep of the Coalition formation

and deployment algorithm.
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6.1 Time complexity analysis

After having established in Section 5 the correctness of
the Coalition formation and deployment algo-

rithm, here we analyze the expected completion time
of the coalition formation dynamics. In general, this
time depends on the specific probability law chosen. In
this section, we bound the expected completion time
for a specific switching probability law that we term
proportional-to-number-of-unmatched-agents.
Before specifying this law, let us introduce some useful
notation. Given the network state at a certain time, let
Nleft ≤ N denote the number of agents not in a group
of size κ at that moment. We assume that each agent i
can estimate N i

left within a constant factor of Nleft, i.e.,

Nleft ≤ N i
left ≤ cNleft (7)

uniformly in time, for some c ∈ R≥1. The proportional-
to-number-of-unmatched-agents law is defined as
the switching probability given by

p =
( 1

N i
left

)1+γ

, if |Ci| 6= κ, (8)

where γ > 0 is a design parameter.

Remark 6.1 (Determination of Nleft) In the forth-
coming analysis, we do not consider a specific way of es-
timatingNleft. There are a number of ways to implement
this. One possibility is for all agents to initially have an
estimate ofN . If each time a coalition of size κ is formed,
one of the agents pays the one-time broadcast cost to
send a message of this to all agents in the environment,
all the agents can update Nleft to Nleft − κ. •

Our strategy to characterize the algorithm’s time com-
plexity relies in measuring the effect that agents switch-
ing coalitions has on the function Ξǫ, cf (5). When one
agent switches coalitions, this action increases Ξǫ. How-
ever, when multiple agents switch coalitions at the same
time, it is possible that their joint actions decrease Ξǫ.
One example of this is when multiple agents join the
same coalition, making it larger than size κ. The next re-
sult provides an upper bound on how much Ξǫ might de-
crease when more than one agent switches per timestep.
Its proof follows from over-approximating the decrease
by removing two coalitions of size κ−1 (one for the coali-
tion left and joined) for each agent that is switching.

Lemma 6.2 (Upper bound on decrease in Ξǫ due
to multiple switchers) In a non-goal coalition parti-
tion, if exactly φ > 1 switch coalitions, the function Ξǫ

does not decrease by more than 2φ(1 + ǫ)κ−1.

GivenNleft ≤ N agents not yet in a coalition of size κ, the
next result shows that the expected number of timesteps
until all agents are in coalitions of size κ can be upper
bounded by a function of Nleft.

Lemma 6.3 (Convergence time for Nleft ≤ N
agents) The expected number of timesteps it takes
Nleft ≤ N agents not yet in a coalition of size κ
to all be in κ-sized coalitions is upper bounded by
Lleft(cNleft)

Nleft(1+γ)Lleft , with

Lleft =
⌈Nleft/κ+ 1⌉(1 + ǫ)κ

ǫ2
(
√

cNleft + 1) + ⌊Nleft

κ
⌋,

under the bound (7), when agents switch using the
proportional-to-number-of-unmatched-agents

law, and each agent i’s communication parameter is

given by δi = diam(Q)/
√

N i
left.

PROOF. Following Lemma 5.3, Proposition 5.5, and
Theorem 5.6 for the proportional-to-number-of-

unmatched-agents switching law, one can define
ρleft = ( 1

cNleft
)Nleft(1+γ) and change (6) to Lleft to ac-

count for the estimate N i
left and δi’s dependence on it.

Then, the probability that all agents are in the goal
coalition after Lleft timesteps is at least ρLleft

left , indepen-
dent of the network’s state. Thus, the expected value
of the first time the network is in the goal coalition is
upper bounded by Lleft

ρ
Lleft
left

, completing the result. ✷

The upper bound in Lemma 6.3 implies that for Nleft =
O(1), the time complexity is alsoO(1).We are now ready
to upper bound the expected number of timesteps for all
coalitions to form under Coalition formation and

deployment algorithm, executed over an arbitrary
graph, when the switching probability is defined by (8).

Proposition 6.4 (Time complexity on a generic
graph) Under Coalition formation and de-

ployment algorithm, the expected number of
timesteps for the network to enter the goal coalition
partition is O(N

5
2
+γ) when agents switch using the

proportional-to-number-of-unmatched-agents

law, and each agent i’s communication parameter is

given by δi = diam(Q)/
√

N i
left.

PROOF. Let S be the number of agents who wish to
switch at a given timestep and s be the number of agents
who actually do. Note that

P
(

s = φ |S = ϕ
)

=

(

ϕ

φ

)

pφ(1− p)ϕ−φ.

Then, using (8), one can bound

P
(

s = 1 |S = ϕ
)

≥ j

(cNleft)1+γ
(1− 1

21+γ
)2, (9a)

P
(

s = φ |S = ϕ
)

≤ 1

φ!
(

ϕ

N1+γ
left

)φ, ∀1 < φ ≤ N. (9b)
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For ǫ > 0, using Lemmas 5.4 and 6.2, one can bound
the expected change in Ξǫ as a function of the number
of agents that wish to switch by

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = j] ≥
min{ǫ2, 1 + ǫ}P

(

s = 1 |S = ϕ
)

−
ϕ
∑

φ=2

P
(

s = φ |S = ϕ
)

2φ(1 + ǫ)κ−1.

Combining this with (9), we get

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = ϕ] ≥

min{ǫ2, 1 + ǫ}(1− 1

21+γ
)2

ϕ

(cNleft)1+γ

− 2(1 + ǫ)κ−1

ϕ
∑

φ=2

1

(φ− 1)!
(

ϕ

N1+γ
left

)φ.

Using
∑∞

φ=2
1

(φ−1)!p
φ = p(ep−1), for all |p| < 1, one gets

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) = ϕ] ≥
ϕ

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ
−2(1+ǫ)κ−1(e

j

N
1+γ

left −1)
)

.

One can bound the expected change in Ξǫ if S > 0 by

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥
1

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ
−2(1+ǫ)κ−1(e

1

N
γ

left −1)
)

.

From this expression, one can see that, givenA satisfying

0 < A <
min{ǫ2, 1 + ǫ}(1− 1

21+γ )
2

c1+γ
,

one can find Ncrit(ǫ, γ, c, A) such that for all Nleft ≥
Ncrit(ǫ, γ, c, A), the following holds

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥ A

N1+γ
left

.

From (5), note that the largest that Ξǫ can be with
Nleft ≥ Ncrit is

Ξǫ,crit =
N −Ncrit

κ
(1 + ǫ)κ +

Ncrit

κ− 1
(1 + ǫ)κ−1.

Furthermore, once Nleft ≤ Ncrit, it will be for all time
after. From (8) and our choice of δi, there are at most√
cNleft timesteps between each time when at least one

agent desires to switch. Therefore, one can say that

E[Nleft(ℓ)] ≤ Ncrit, ∀ℓ ≥ ℓcrit = ⌈Ξǫ,crit

√

cNleft
N1+γ

left

A
⌉.

By the definition of the expected value for a non-negative
random variable, P

(

Nleft(ℓ) ≤ Ncrit

)

≥ 1
2 , for all ℓ ≥

ℓcrit. Defining Tcrit as the first time that Nleft ≤ Ncrit, it
is clear that E[Tcrit] ≤ ℓcrit + 1.

Finally, define T to be the first time that all agents are
in a goal coalition partition. By Lemma 6.3, E[|T |] is
finite, for all finite N . With this condition satisfied, one
can apply the law of total expectation [Billingsley, 1995]
as well as Lemma 6.3 again and see that

E[T ]=E[E[T |Tcrit]]≤E[Lleft(cNcrit)
Ncrit(1+γ)Lleft+Tcrit]

≤ Lleft(cNcrit)
Ncrit(1+γ)Lleft + ℓcrit + 1.

Finally, given that Nleft ≤ N , noting the order of ℓcrit
with respect to N finishes the result. ✷

Next, we show that the time complexity bound in Propo-
sition 6.4 can be improved for the complete graph.

Proposition 6.5 (Time complexity on the com-
plete graph) Under the Coalition formation

and deployment algorithm, the expected num-
ber of timesteps for the network to enter the goal
coalition partition is O(N1+γ) when agents switch us-
ing the proportional-to-number-of-unmatched-

agents law and each agent can communicate with all
other agents.

PROOF. The proof strategy is the same as for Propo-
sition 6.4, so we only provide a sketch here. There are
two differences between the generic case and the com-
plete graph case. The first difference is that in a timestep
where at least one agent wishes to switch coalitions, in
the complete graph case, we can show that almost all
agents wish to switch.More precisely, agents in coalitions
larger than size κ have an incentive to at least form their
own coalition. Of the coalitions less than size κ, agents
desire to join the largest one. If two coalitions have the
same cardinality and are both the largest coalition of
size less than κ, they mutually want to join each other.
This means that at least Nleft − κ + 1 agents have an
incentive to switch coalitions. This affects the expected
change in Ξǫ as follows,

E[Ξǫ(ℓ+ 1)− Ξǫ(ℓ)|S(ℓ) ≥ 1] ≥
Nleft − κ+ 1

N1+γ
left

(min{ǫ2, 1 + ǫ}(1− 1
21+γ )

2

c1+γ

− 2(1 + ǫ)κ−1(e
1

N
γ

left − 1)
)

.

The second difference is that agents wish to switch at
every timestep (instead of once every

√
cNleft timesteps,

as in Proposition 6.4, given the assumed δi and the
proportional-to-number-of-unmatched-agents

switching law). The result follows from propagating
these changes through the proof of Proposition 6.4. ✷
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6.2 Communication complexity per timestep

Here, we analyze the communication complexity per
timestep of the Coalition formation and deploy-

ment algorithm. We begin by stating our conventions
regarding how messages are counted along the algo-
rithm execution. First, we make the assumption that
an identical message sent at a given moment by an
agent to one or more other agents located within some
distance of it counts as one. For instance, an omnidirec-
tional communication model fits into this description.
Second, in several instances, the algorithm requires the
location and identity of the neighbors of an agent. This
information may be obtained via either communication
or sensing. We assume this service is efficiently carried
out by the network and do not count it toward the
communication required per timestep.

Before stating our communication complexity character-
ization, we introduce one slight modification to step 2
of the Best neighbor coalition detection that de-
creases the number of messages sent without affecting
the overall algorithm execution. According to this modi-
fication, an agent, instead of querying all neighbors that
are not in its coalition, will now query the closest neigh-
bor who is not in its current coalition and also not in a
coalition of size κ. This modification requires agents to
know what nearby agents have already formed a coali-
tion of the desired size. This can be addressed in at least
one of the following two ways. One way is for agents to
broadcast to the network that it and its coalition mem-
bers are in a complete group. The other way is that when
agents query the coalition size of other agents (as in
step 2 of the Best neighbor coalition detection),
if the queried agent is in a complete group, the querying
agent notes the identities of all agents already in that
complete group, and never needs to ask again.

We refer to the algorithm with this modification
as the Coalition formation and deployment

algorithm∗. The modification does not affect the al-
gorithm’s correctness or time complexity bounds. The
basic argument is that, even with the modification, in
any network configuration, one can still guarantee that
within diam(Q)/δ timesteps, at least one agent will have
an incentive to join a more desirable coalition. This ob-
servation allows to reproduce the technical proofs given
above to establish the same correctness and time com-
plexity results. The next result characterizes the com-
munication complexity per timestep of the algorithm.

Proposition 6.6 (Communication complexity per
timestep) Under the Coalition formation and de-

ployment algorithm∗, the network of agents sends at
most 6Nleft messages per timestep and, hence, the com-
munication complexity per timestep is O(N).

PROOF. We show the result by simply counting the
number of messages sent per timestep. In steps 2 and 3

of the modified version of the Best neighbor coali-

tion detection, an agent not in a coalition of size
κ sends one message to one neighbor and receives one
back. In steps 2 and 4 of the Coalition switching,
when an agent switches coalitions it sends one broad-
cast message alerting its former coalition it is leaving,
as well as one message to tell one member of its new
coalition it is joining. This one member in the new coali-
tion sends one broadcast message alerting the rest of its
coalition of the new member, as specified in step 8. Fi-
nally, that member sends one message back to the join-
ing member to alert it of any other agents who happened
to join/leave in the exact same timestep, as specified in
step 12. Thus, if an agent is joining another coalition,
4 messages are required and if the agent is forming its
own coalition of size 1, only 1 message is required. The
most messages would be sent if all agents switched at the
same timestep. Since agents in coalitions of size κ will
never switch, executing one timestep of the Coalition

formation and deployment algorithm∗ generates
at most 6Nleft messages, and the result follows. ✷

Note that the upper bound in Proposition 6.6 is a func-
tion of the agents not in a completed coalition and, thus,
monotonically decreasing as the algorithm evolves and
completed coalitions form.

7 Simulations

This section presents several simulations of the Coali-

tion formation and deployment algorithm. In
all simulations where they are relevant, δ = dmax =
.2√
2

diam(Q)√
N

. We use the function

φ(C1, . . . , CN ) =
1

N(κ− 1)

∑

i∈A
||Ci| − κ|, (10)

to illustrate the coalition formation dynamics. This func-
tionmeasures the normalized average absolute difference
between the agents’ coalition size and the desired size κ.

We begin by illustrating the correctness of the algorithm,
i.e., convergence to a desired goal coalition partition and
the achievement of the deployment task. Figure 2(a)-
(b) show an execution of the Coalition formation

and deployment algorithm on 21 agents forming
coalitions of size 2 with proportional-to-coalition-

size switching law defined by

p =

{

1− (1− b)
1

|Ci| , if |Ci| 6= κ,

0, if |Ci| = κ,
(11)

for some b ∈ (0, 1). Note that this switching law sat-
isfies (4). In this and other simulations where b is con-
stant, we chose b = 0.5. The appeal of this switching
law is that b is the probability that at least one agent in
a coalition will switch, given that all coalition members
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(c) Agent addition and deletion
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(d) New final configuration

Fig. 2. Execution of the Coalition formation and deployment algorithm with 21 agents and κ = 2 using the propor-

tional-to-coalition-size switching law (11). The network starts at (a) and converges to the configuration in (b) where all
agents are in correctly-sized coalitions and these coalitions are optimally deployed. After this, (c) shows an agent failing in
the coalition marked as ’o’ and two agents, marked as ’x’, joining the network. After the agent additions and subtractions,
coalitions adapt and the network re-converges to the optimal deployment configuration in (d).

wish to switch. This switching law makes it likely that
several agents (most likely from different coalitions) will
get the chance to switch coalitions at each timestep. One
can observe in Figure 2(b) that the network converges to
both correctly sized groups and coalitions optimally de-
ployed at their Voronoi cell’s circumcenters. From The-
orem 5.1, the final configuration optimizes HDC,11.
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Fig. 3. For the execution in Figure 2(a) and (b), (a) shows
the number of agents switching coalitions at each timestep,
and (b) shows the evolution of φ (solid line) as defined in (10)
and H21,20 (dashed line) as defined in (1).

Figure 3(a) shows the number of coalition switches at
each timestep for the same run. Many switches happen
early, but decrease in frequency as agents form κ-sized
coalitions. The evolution of φ depicted in Figure 3(b)
confirms this by showing how agents join more desirable
coalitions over time. It also shows the evolution of the
objective function HN,N−1 that, in the language of Sec-
tion 2.2, corresponds to the situation where N − 1 of
the sensors are working. This choice of function is mo-
tivated by the fact that, in one dimension, it is known
that in such a case, forming coalitions of size 2 is opti-
mal [Cortés, 2012]. The bumps in the evolution ofH21,20

occur when an agent with no nearby coalitions to join
must increase its radius to join a group far away. H21,20

temporarily increases while these agents get together.

Figure 2(c) and (d) illustrate the robustness of the
Coalition formation and deployment algo-

rithm. After agents have achieved the final optimal

configuration seen in Figure 2(b), we let one agent fail
and two new agents come into the picture. The agents
adapt to the new network composition and optimally
deploy according to the available resources.

Next, Figure 4 shows the average number of timesteps
required for coalition formation for 4 different probabilis-
tic switching laws under a generic communication topol-
ogy, cf. (a), and the complete communication topology,
cf. (b). For all network sizes, the desired coalition size is
4. Each point is the average of 50 runs, where the agents
are initially randomly placed with uniform distribution
in a unit square. The time complexity upper bounds in
Section 6.1 are corroborated and the bound seems tight
for the complete communication case.

Figure 5 illustrates the communication complexity anal-
ysis of Section 6.2. (a) shows the number of messages sent
per timestep for one execution of 21 agents forming coali-
tions of size 3 with switching probability p = .9. As coali-
tions form, fewer messages are sent per timestep. (b) de-
picts the average number of messages sent per timestep
as a function of the total network size for switching prob-
ability p = .9 and desired coalition size of 4. The plot
validates the O(N)-characterization of the communica-
tion complexity per timestep stated in Proposition 6.6.

Finally, Figure 6 illustrates the dependency of the
average coalition formation time on κ and b for the
proportional-to-coalition-size switching law. We
focus on this law because it is the one that executes
the fastest out of the probability laws illustrated in
Figure 4. Each point is the average of 200 runs, where
agents are initially uniformly randomly placed in a unit
square. The error bars correspond to plus and minus
one standard deviation. Figure 6(a) shows the average
coalition formation convergence time for fixed N = 20
and varying κ. This time is roughly equal for all desired
coalition sizes, until nearly all agents are joining one
coalition, which takes less time on average. Figure 6(b)

12



10 20 30 40

50

50

100

150

200

p = 1
N

p = .9

p = 1
Nleft

p = 1− (.5)
1

|Ci|

T
im

es
te
p
s

Total number of agents N

(a)

10 20 30 40

50

50 60 70

100

150

200

250

300
p = 1

N

p = .9

p = 1
Nleft

p = 1− (.5)
1

|Ci|

T
im

es
te
p
s

Total number of agents N

(b)

Fig. 4. Average coalition formation time for 4 different probabilistic switching laws under (a) a generic communication topology
and (b) the complete communication topology. Each point is the average of 50 runs, where the agents were initially randomly
placed with uniform distribution in a unit square. The time complexity upper bounds in Section 6.1 are validated, and that
the bound seems tight for the complete communication case.

(a) (b)

Fig. 5. (a) depicts the number of messages sent per timestep
for a run of 21 agents forming coalitions of size 3. (b) il-
lustrates the average number of messages sent per timestep
as a function of the network size. Both of these plots val-
idate that the algorithm has an O(N) message complexity
per timestep result, as in Proposition 6.6.

shows the average coalition formation time for 20 agents
forming coalitions of size 4 as a function of b. For values
of b far from 0 and 1, this time is roughly constant.
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Fig. 6. Average coalition formation time for 20 agents with
the proportional-to-coalition-size switching law (11)
as a function of (a) the desired coalition size κ and (b) the
parameter b (with coalitions of size 4). Each point is the
average of 200 runs, where the agents were initially randomly
placed with uniform distribution in a unit square. The error
bars correspond to plus and minus one standard deviation.

8 Conclusions

Motivated by a spatial estimation problem, we have de-
signed a synchronous, distributed algorithm for a net-

work of robotic agents to autonomously deploy in groups
over a given region. Our strategy allows agents to au-
tonomously form coalitions of a desired size, cluster to-
gether within finite time, and asymptotically reach an
optimal deployment, each with probability 1. The algo-
rithm design is a combination of a hedonic coalition for-
mation game where agents only have partial information
about other coalition memberships with motion coordi-
nation strategies for group clustering and deployment.
The proposed algorithmic solution, termed Coalition

formation and deployment algorithm, is prov-
ably correct, does not rely on a common reference frame
and is robust to agents joining or leaving the environ-
ment. We have provided time complexity upper bounds
for algorithm executions with the proportional-to-

number-of-unmatched-agents switching law under
arbitrary and complete communication topologies. We
also have upper bounded the communication complex-
ity per timestep for algorithm executions with arbitrary
switching laws. Simulations illustrate the correctness,
robustness, and complexity results. Future work will be
devoted to characterizing the probabilistic switching law
that optimizes the speed of the coalition formation pro-
cess and further explore the use of noncooperative game-
theoretic ideas in other motion coordination problems.
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A Properties of gttg

This appendix contains useful properties of gttg.

Lemma A.1 For d > 0 and p1, p2, q ∈ R
n, let p+i =

min{‖q− pi‖, d} vr(q− pi) + pi, i ∈ {1, 2}. Then ‖p+1 −
p+2 ‖ ≤ ‖p1 − p2‖.

LemmaA.1 is used in determining howmuch the circum-
radius of a coalition decreases and how much they get
closer to the goal point q after moving according to gttg.

Proposition A.2 (Application of gttg decreases
circumradius) Given P = (p1, . . . , pk) and q ∈ Q,
let P+ = (p+1 , . . . , p

+
k ) be given by p+i = gttg(pi, P, q),

i ∈ {1, . . . , n}. Then CR(P+) ≤ CR(P )− δ1 and

P+ ⊂ B(q, ‖CC(P )− q‖+CR(P )− δ1 − δ2),

with δ1 = maxi∈{1,...,k} min{‖CC(P ) − pi‖, d1(r)} and
δ2 = min{‖q − CC(P )‖, d2(r)}.

PROOF. Our strategy is to look independently
at the effect of the two halves of the motion de-
fined in gttg. Define the intermediate positions P ∗

by p∗i = pi + w1,i, i ∈ {1, . . . , n}, where w1,i =
min{‖CC(P ) − pi‖, d1(r)} vr(CC(P ) − pi). We show
that the circumradius decreases a finite amount while
moving from P to P ∗ and does not increase while mov-
ing from P ∗ to P+. First, according to the motion pre-
scribed by gttg, we have P ∗ ⊂ B(CC(P ),CR(P ) − δ1),
which by definition of circumcenter, implies that
CR(P ∗) ≤ CR(P ) − δ1. Second, to show CR(P+) ≤
CR(P ∗), let us rewrite p+i as p+i = p∗i + w2,i, where
w2,i = min{‖q − p∗i ‖, d2(r)} vr(q − p∗i ). Let

NC+ = CC(P ) + δ2 vr(q − CC(P )). (A.1)

By Lemma A.1, for all i ∈ {1, . . . , n},

‖p+i −NC+‖ ≤ ‖p∗i − CC(P )‖ ≤ CR(P ∗),

where we have used the fact that CC(P ∗) = CC(P ).
Finally, CR(P+) ≤ maxi∈{1,...,k} ‖p+i − NC+‖ implies

that CR(P+) ≤ CR(P ∗) and the result follows. Next,
we study how much closer the points are to q after the
application of gttg. Initially, P ⊂ B(q, ‖q − CC(P )‖ +
CR(P )). After the application of w1, the configuration’s
circumcenter has not moved and the circumradius has
decreased by δ1, so P ∗ ⊂ B(q, ‖q −CC(P )‖+CR(P )−
δ1). Then, after the application of w2,

P+ ⊂ B(q, ‖q −NC+‖+CR(P )− δ1).

Combined with (A.1), the result follows. ✷
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