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Abstract— This paper considers a group of drogues estimat-
ing the physical parameters of the ocean’s linear internal waves.
While underwater, individual drogues do not have access to
position information and instead rely on inter-drogue distance
measurements. We introduce the PARAMETER ESTIMATION BY
ZERO-DERIVATIVE METHOD for determining the parameters
of a horizontally propagating internal ocean wave and show
that, for noiseless measurements, our strategy determines the
parameters exactly. In the presence of additive Gaussian noise,
we characterize precisely the robustness of our strategy and
bound the error in the estimated parameters. Finally, we
define two strategies for aggregating estimates obtained across
multiple time instants. Several simulations illustrate our results.

I. I NTRODUCTION

Internal waves are waves that propagate within a fluid,
rather than on its surface. They correspond to moving si-
nusoidal oscillations in the boundary surface between two
layers of a stratified fluid. In this paper, we consider internal
waves along an ocean pycnocline, which is the surface of
constant density where the vertical rate of change in density
is largest. Because pycnoclines are typically deep below the
ocean surface, collecting data about internal waves from the
ocean surface is difficult. Our aim is to design an algorithm
that runs on a group of drogues drifting underwater near the
internal wave’s interface to determine the wave’s physical
parameters. A drogue is a Lagrangian drifter capable of
actuating its depth by changing its buoyancy. Because exact
location information is unavailable below the surface, we
rely only on inter-drogue distance measurements. Figure 1
presents a pictorial illustration of our problem setup.

Literature review:Internal waves are capable of displacing
mass, such as plankton, as they travel, and this makes
studying them relevant to oceanographers [1], [2], [3]. Sci-
entists widely use drogues drifting passively as monitoring
platforms to gather relevant ocean data [4], [5], [6]. Recent
work [7] explores the possibility of actively selecting tidal
currents so that drogues can autonomously reach a desired
destination. An increasing body of work in the controls
literature deals with cooperative networks of agents esti-
mating spatial natural phenomena, including ocean [8], [9],
river [10], and hurricane sampling [11]. In these scenarios,
agents with limited actuation capabilities are subject to strong
flowfields. In the problem considered in this paper, drogues
are able to actuate their depth through buoyancy changes,
but are completely subject to the force of the internal wave
in the flow-wise direction. Because of this, the task of
determining the wave parameters can be seen as a data fitting
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problem [12], [13]. Due to the periodic nature of the inter-
drogue distance trajectories, our problem has connections
with least-squares spectral analysis problems [14], [15].In
general, however, the fact that the wave parameters appear
nonlinearly makes determining them challenging.
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Fig. 1. Horizontally propagating ocean internal wave. The plot shows a
vertical cross-section of the ocean perpendicular to the wave propagation
direction. A group of drogues float at a constant depth (but not necessarily
in a straight line) and do not have access to exact location information. Our
objective is to provide drogues with mechanisms that rely onlyon relative
distances to determine the parameters that uniquely define theinternal wave.

Statement of contributions:We design a provably correct
algorithm for estimating the physical parameters that define
an internal wave. This algorithm, PARAMETER ESTIMATION

BY ZERO-DERIVATIVE METHOD, relies on waiting until an
inter-drogue distance derivative is momentarily close to zero.
We prove that for an interval in times near the zero derivative
time, each parameter’s value can be precisely captured.
This also allows us to give a bound on the minimum
sampling rate needed for the algorithm to correctly identify
the parameters. Next, for the horizontal wavenumberk, we
bound the difference between the estimated and true value
when the inter-drogue distances are corrupted by additive
Gaussian noise. We also derive a second-order approximation
of thek estimates that PARAMETER ESTIMATION BY ZERO-
DERIVATIVE METHOD provides for noisy measurements.
We use this approximation to create aggregation strategies,
FIRST-ORDER and SECOND-ORDER K FUSION, that fuse
estimates obtained across multiple time instants. Finally,
simulations illustrate the evolution of these two schemes.

II. PRELIMINARIES

Here we present some basic concepts, starting with nota-
tional conventions. LetR andZ denote the sets of real and
integer numbers, respectively. Forx ∈ R, let ⌊x⌋ ∈ Z denote
the largest integer that satisfies⌊x⌋ ≤ x. For f : Rd → R,
let ∂kf denote the partial derivative off with respect to the
kth component. We letΣfixed = (pfixed, {exfixed, eyfixed, ezfixed})
be a reference frame inR3 fixed at point pfixed. A point
q and a vectorv expressed with respect to the frame



Σfixed are denoted byqfixed and vfixed = (vxfixed, vyfixed, vzfixed),
respectively. Next, we letΣb = (pb, {exb

, eyb
, ezb}) be a

reference frame fixed to a moving body with originpb. When
expressed with respect toΣfixed, we denote this point bypfixed

b .
The orientation ofΣb is defined by the rotation matrixRfixed

b ,
whose columns are{exb

, eyb
, ezb} expressed with respect to

Σfixed. Finally, a change of reference frame is given by

qfixed = Rfixed
b qb + pfixed

b , vfixed = Rfixed
b vb.

A. Derivative estimation from noisy data

We estimate an analytic functionf and ḟ from evenly
sampled measurements corrupted by additive Gaussian noise

yi = f(ti) + ǫ(ti), ǫ ∼ N (0, σ2).

We choose a polynomial smoothing filter approach [16]. This
allows us to justify that the derivative estimates are unbiased
and Gaussian. Forp≪ m ∈ Z≥1, we construct ap-th order
polynomial filter fromm evenly spaced noisy measurements
over the sampling windowT , {( −i

m−1T, yi)}i∈{0,...,m−1}.
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More compactly, this can be written as

Y = V F + ǫbias+ ǫrandom.

Thus, the least-squares estimate forḟ(0) is the second
component of the vectorF :

ḟ ′(0) = ((V TV )−1V T (Y + ǫbias+ ǫrandom))2

= ḟ(0) + (V TV )−1V T (ǫbias+ ǫrandom)2.

Remark 2.1 (Bias):We ignore the bias which arises from
considering only thep-th order expansion off because for
a fixed p, the bias can be made arbitrarily close to zero by
choosing the sampling windowT small enough. •

After accounting for the bias, the estimate oḟf ′(0)
is an unbiased Gaussian variable with varianceσ2

ḟ
=

||((V TV )−1V T )i=2,j=1:p||2σ2.

III. PROBLEM STATEMENT

In this section we describe the basics of linear internal
waves, our model for drogues’ capabilities and their dynam-
ics when their motion is governed by internal waves, and the
description of the problem we seek to solve.

A. Internal wave model

We define the global reference frame as follows:Σg =
(p, {ex, ey, ez}). The originp corresponds to any point at the
surface of the water. The basis vectorex corresponds to the
direction of wave propagation, which is parallel to the ocean
bottom, andez is perpendicular to the ocean bottom, pointing
from ocean bottom to surface. As depicted in Figure 1, we
consider an internal wave with frequencyω, propagating
horizontally in theex-direction with horizontal wavenumber
k, with amplitudea, and with the pycnocline at mean depth
−zu. The depth of the wave as a function ofx and t is

zw(t, x) = −zu − a sin(kx− ωt+ φ),

where the phase of the waveφ defines the wave relative to
the reference(x, t) = (0, 0). From [1], [2], the horizontal
and vertical velocities(u,w) of the upper layer are

uu(t, x) =
ca

zu
sin(kx− ωt+ φ),

wu(t, x, z) = −
zaω

zu
cos(kx− ωt+ φ),

wherec is the phase speed given byc = ω
k

. Additionally, we
denote the total phase asv = kx−ωt+φ. This model comes
from the assumption that vertical velocity varies linearlywith
depth, coupled with the conservation of mass law for an
incompressible fluid. Likewise, the lower-layer velocities are

ul(t, x) = −
ca

zl
sin(kx− ωt+ φ),

wl(t, x, z) =
z + zu + zl

zl
aω cos(kx− ωt+ φ).

Remark 3.1 (Assumptions on wave parameters):The lin-
ear internal wave model is only meaningful for| a

zu
| < 1.

Additionally, the spatial wavelengths of internal waves range
from hundreds of meters to tens of kilometers [3]. Sincek is
inversely proportional to the spatial wavelength, we assume
that there exists[kmin, kmax] containingk. •

B. Drogue model and dynamics

A drogue is an untethered, submersible buoy which drifts
freely in the ocean. The drogues we consider can change
their depth by controlling their buoyancy. A drogue mea-
sures the relative distance and orientation to other drogues
using acoustics and an onboard compass. However, it cannot
measure absolute position because GPS is unavailable under-
water. For droguei, we define the local coordinate system
Σi = (pi, {exi

, eyi
, ezi}. The origin pi corresponds to the

location of theith drogue. Like the global coordinate frame,
ezi = ez. However, the vectorsexi

and eyi
are parallel to

the ocean floor, but neither is necessarily oriented in the
direction of ex, the wave propagation direction. Thus, each
droguei must determineθi, the angle betweenexi

and ex.
We assume each drogue can measure inter-drogue distances
at a sampling rate offs. At time t droguei has measurements
of {(dxi

i,z(
κ
fs
), dyi

i,z(
κ
fs
))}κ∈{0,...,⌊fst⌋} and z ∈ {j, l,m, n}

where droguesj, l, m, andn are the ones closest toi.
Given distanced, we let d′ denote the measurement ofd

by an drogue, with the following Gaussian error model

d′ = d+ ǫd, ǫd ∼ N (0, σ2).



Consider the scenario where drogues move in the upper
layer of the internal wave at a constant depth. There is no
loss of generality here, since drogues can control their depth
through buoyancy changes. We also assume that the drogue
dynamics under the linear internal wave is Lagrangian. In
other words, the dynamics of the drogue positionp =
(px, py, pz) in the global reference frame is given by

ṗ = (ṗx, ṗy, ṗz) = (uu(t, p
x), 0, 0). (1)

The lack of motion in thez-direction is due to the drogue’s
buoyancy control, which we assume is capable of counter-
acting the vertical forcing of the internal wave. Figure 2
illustrates the evolution of thex-component of inter-drogue
distances as a function of the initial phase of the wave.
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Fig. 2. Inter-drogue distance evolution for drogues initially 40 meters
apart, with different phases relative to the wave.

Problem Statement 1:A team ofN drogues is deployed
in the ocean and their motion is governed by an internal
wave. Since the drogues may control their depth, assume all
are located at the same depth and each one can measure the
relative distance and orientation to the closestM drogues
in their own coordinate frame. The objective is to design an
algorithm that allows the drogues to collectively determine
the parametersa

zu
, k, ω, andθi defining the internal wave.

IV. N OISE-FREE PARAMETER ESTIMATION

Now we describe a method for determining all the internal
wave parameters in the absence of measurement noise,
beginning the wave propagation direction. Next, we show
that inter-drogue distances are periodic in time and explicitly
determine the fundamental period. After that, we devise a
method for determiningk. Givenk, the other two parameters
are determined simultaneous. Finally, we gather the methods
into one algorithm.

A. Determination of wave propagation direction

We consider the case where the drogues are at the same
depth but arbitrarily located. Figure 3 depicts droguei’s
local coordinates, inter-drogue distance measurements, and
the direction of wave propagation.

Consider the inter-drogue distance to thejth drogue as
measured byi, i 6= j ∈ {1, . . . , N}, in its local coordinates

di,j = pj − pi = (dxi

i,j , d
yi

i,j , 0).
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Fig. 3. Illustration of drogue and wave orientations on relative frame.

For drogues undergoing motion purely caused by an internal
wave, inter-drogue distances in their local reference frame
can be projected onto the global reference framedgi,j =
Rg

i di,j via the transformation matrixRg
i ,

Rg
i =





cos θi − sin θi 0
sin θi cos θi 0
0 0 1



 .

The global coordinate frame is useful because the inter-
drogue distance in theey direction is constant, i.e.,̇dyi,j =
0. Since θi is constant, it can easily be found using the
measurements available,

ḋyi,j = ḋxi

i,j sin θi + ḋyi

i,j cos θi = 0,

θi = arctan
−ḋyi

i,j

ḋxi

i,j

.

B. Fundamental period of inter-drogue distance time-series

In this section, we analytically determine the fundamental
period of the inter-drogue distance time-series.

Lemma 4.1 (Drogue trajectories):The solution of (1)
starting fromp(0) is

px(t) = c(1− β)t+ ψ(t),

ψ(t) =
2

k
arctan

(

a

zu
− β tan

(

β

2
(ωt+ γ0)

))

−
2π

k

⌊

t

T
+

γ0
ωT

+
1

2

⌋

+ cβt−
φ

k
,

where the period isT = 2π
ωβ

, β =

√

1−
(

a
zu

)2

, and

γ0 =
2

β
arctan

(

1

β

(

a

zu
− tan

(

kpx(0) + φ

2

)))

.

From Lemma 4.1, the solution of (1) is the sum of a linear
function in t and a periodic functionψ with fundamental
period T . Since the linear function does not depend on
the initial condition, the inter-drogue distance evolution is
periodic with periodT ,

di,j(t) =
2

k
arctan

(

a

zu
− β tan

(

β

2
(ωt+ γ0,j)

))

−
2

k
arctan

(

a

zu
− β tan

(

β

2
(ωt+ γ0,i)

))

−
2π

k

⌊

t

T
+
γ0,j
ωT

+
1

2

⌋

+
2π

k

⌊

t

T
+
γ0,i
ωT

+
1

2

⌋

.



C. Zero-derivative method and algorithm description

Now we detail a method for determining the wave parame-
tersk, ω, and a

zu
, beginning withk. After deriving situations

when k can be determined, we leverage this knowledge to
determine the other two parametersω and a

zu
simultaneously.

1) Inter-drogue motion:Once the wave propagation di-
rection is known, the drogues can write their motion in
the global coordinate frame. Since the only motion is in
the wave propagation direction, we can drop the superindex
on distances and positions, considering only distances in
the x-direction. According to (1), forN drogues, for any
i ∈ {1, . . . , N}, the following dynamics completely describe
the drogues’ motion in theex direction:

ḋi,j = 2
ωa

kzu
sin(

kdi,j
2

) cos(
kdi,j
2

+ vi), ∀i 6= j (2a)

v̇i = ω(
a

zu
sin(vi)− 1), (2b)

with vi = kpxi − ωt+ φ.
2) Determination ofk: We note that each inter-drogue

distance equation in (2a) contains3 unknowns:vi, ωa
kzu

, and
k. Sincek is one of the parameters of interest, our aim in this
section is to first create an equation which is only a function
of measurement data andk, and then solve for the value of
k that fits the measurement data. We first begin by noting
that the ratio of two of these (2a) equations eliminatesωa

kzu
.

Secondly, we can writevi explicitly at any time instance
in terms of any two inter-drogue distances, saydi,j anddi,l,
their derivativesḋi,j and ḋi,l, andk:

vi(k, di,j , di,l, ḋi,j , ḋi,l) =

atan
( ḋi,j sin(

kdi,l

2
) cos(

kdi,l

2
)− ḋi,l sin(

kdi,j

2
) cos(

kdi,j

2
)

ḋi,j sin
2(

kd
i,l

2
)− ḋi,l sin

2(
kd

i,j

2
)

)

. (3)

Thus, by substituting this expression forvi into a ratio of
inter-drogue distance equations other thani, j or i, l, sayi,m
andi, n, we’ve created an equation with only one unknown:
k. We call this function the distance rate quotient:

drq(k,X) =
sin(

kdi,m

2 ) cos(
kdi,m

2 + vi(k, di,j , di,l, ḋi,j , ḋi,l))

sin(
kd

i,n

2 ) cos(
kd

i,n

2 + vi(k, di,j , di,l, ḋi,j , ḋi,l))

whereX = (di,j , di,l, di,m, di,n, ḋi,j , ḋi,l, ḋi,m, ḋi,n) is the
collection of all4 inter-drogue distances and their derivatives.

Introducing the functionkfind as

kfind(k,X) =

drq(k, vi(k, di,j , di,l, ḋi,j , ḋi,l), di,m, di,n)−
ḋi,m

ḋi,n
(4)

we can see that by definition fork′ = k,

kfind(k′, X) = 0. (5)

The goal is now to determine a condition for when only the
truek satisfies (5). To aid in this, we investigate the structure
of vi. We note thatdrq is a complicated trigonometric
function of k due to the structure ofvi, so we wish to

determine a time whenvi has a simpler form; it is when
ḋi,j = 0. From the interpretation of Lemma 4.1, we note
thatdi,j is bounded and periodic. We also know that for any
t ∈ R>0, v̇i(t) < −ω(1 − a

zu
) < 0 because it is physically

impossible for a
zu

≥ 1. Given these facts it is clear from (2a)
that there exist times within one periodT , one of which is
tcrit when ḋi,j(tcrit) = 0. We assume that0 < |kdi,j | < 2π,
so vi(tcrit) = ±π

2 − k
2di,j(tcrit).

Now, using this fact aboutvi, we are almost ready to state
the next lemma which establishes when the truek is the
unique value that satisfies (5) and can be found. This is

established for a neighborhood in
ḋi,j

ḋ
i,l

around0. However,

before doing so, we introduce some useful notation,

ǫmax(x,C1, C2) = (6)

= max
γ∈(0,Γ(x))

{

R(x, γ, C1, C2)
π
4 > x− γ > 0,

x− 1
2

C2
2π > x− γ > π

4 ,

whereΓ(x) = x− sin(x) cos(x) and

R(x, γ, C1, C2) = min{
1
2 arcsin(2(x− γ))− x

C1
,
γ

C2
}.

Lemma 4.2 (Neighborhood around zero-derivative):For
noiseless distance and its derivative measurements, where

k ∈ [0,
2π

di,n
), 0 < di,j < di,l < di,m < di,n, |ḋi,j/ḋi,l| < δ,

δ = min
{ sin(

kdi,j

2 ) sin(k2 (di,n − di,j))

sin(
kd

i,l

2 ) sin(k2 (di,n − di,l))
,

ǫmax(
k(di,m−di,j)

2 , L1, L2)
}

,

andL1 andL2 are Lipschitz constants with respect to
ḋi,j

ḋ
i,l

for

v and∂kv, respectively, the true value ofk can be uniquely
determined.

We generalize this result to determine an open interval
aroundtcrit such that the truek can be uniquely determined.

Corollary 4.3 (Neighborhood aroundtcrit): Given noise-
less distance and derivative measurementsX at tcrit with

k ∈ [0,
2π

di,n
), 0 < di,j < di,l < di,m < di,n, ḋi,j(tcrit) = 0.

Then, the true value ofk can be uniquely determined using
measurementsX(t), for any t ∈ (tcrit − ∆max, tcrit + ∆max)
where∆max = L4

L3

δ
1+δ

, δ is defined in Lemma 4.2,L3 =

4( ωa
kzu

)2k + 2 ωa
kzu

ω(1 + a
zu
), and0 < L4 ≤ |ḋi,l(tcrit)|.

The following remark describes the minimum sampling rate
for drogues to findk.

Remark 4.4: (Minimum sampling rate)Using Corol-
lary 4.3 and a lowerbound on inter-drogue distances, one
can find a sampling ratefs,min guaranteeing that the drogues
are able to determinek. •

3) Method for findinga
zu

andω: With k known, a
zu

andω
can be found with the following method. We can calculate
vi from (3) now. From these measurements ofvi, we can
constructv̇i using the method outlined in Section II-A.



Lemma 4.5 (Determination ofa
zu

andω): For anyt1 and
t2 such thatt2 − t1 < T andsin(vi(t1)) 6= sin(vi(t2)), then
ω and a

zu
can be determined from

ω = −β2,
a

zu
=

−β1
β2

,

[

β1
β2

]

=

[

sin(vi(t1)) 1
sin(vi(t2)) 1

]−1 [
v̇i(t1)
v̇i(t2)

]

4) Algorithm and its correctness:Finally, we gather the
methods above into Algorithm 1.

Algorithm 1: PARAMETER ESTIMATION BY ZERO-
DERIVATIVE METHOD.

1 Calculate wave propagation direction,θi = arctan
−ḋ

yi
i,j

ḋ
xi
i,j

2 if
∣

∣

∣

ḋi,j(tκ)

ḋ
i,j2

(tκ)

∣

∣

∣
< δ then

3 Solvekfind(k,X) = 0
4 For anyt1,t2 with t2 − t1 < T and

sin(vi(t1)) 6= sin(vi(t2)), calculate

5

[

β1
β2

]

=

[

sin(vi(t1)) 1
sin(vi(t2)) 1

]−1 [
v̇i(t1)
v̇i(t2)

]

6 ω = −β2,
a
zu

= −β1

β2

7 end

The next result establishes the correctness of the PARAM -
ETER ESTIMATION BY ZERO-DERIVATIVE METHOD. It is a
straightforward application of Corollary 4.3 and Lemma 4.5.

Proposition 4.6 (Algorithm correctness):Using noiseless
distance and distance derivative measurements, droguei can
exactly determine the parametersθi, a

zu
, ω, andk using the

PARAMETER ESTIMATION BY ZERO-DERIVATIVE METHOD.

V. ROBUSTNESS ANALYSIS

In this section we bound the error in our algorithm’sk
estimation in terms of the errors in the measurements needed
and then define methods of aggregatingk estimates.

A. Error bound

With noiseless measurementsX, one finds the uniquek
satisfying (5). As described in Section III, we assume an
additive Gaussian error model for the measured inter-drogue
distances.Using trigonometric identities, we can describe the
noisy drq in terms of the noiselessdrq.

Lemma 5.1 (Relating noisydrq to noiselessdrq): The
function drq evaluated at noisy measurements can be
explicitly described asdrq evaluated at the true values times
a function ofk, the true values, and the noise:

drq(k, y′, z′, v′) = drq(k, y, z, v)G(k, y, z, v, ǫy, ǫz, ǫv)

where

G(k, y, z, v, ǫy, ǫz, ǫv) =
cos(ǫy) + cot(ky2 ) sin(ǫy)

cos(ǫz) + cot(kz2 ) sin(ǫz)

·
cos(ǫy + ǫv) + tan(ky2 ) sin(ǫy + ǫv)

cos(ǫz + ǫv) + tan(kz2 ) sin(ǫz + ǫv)
We use the previous lemma to construct a bound on the

difference between the truek and our estimated one.

Lemma 5.2 (Bound on error ink): The error between the
estimatedk and the truek can be bounded by the following
function of the noise:

|k′ − k| ≤
ǫ ẏ

ż
+ ẏ

ż
(1−G(k, y, z, v, ǫy, ǫz, ǫv))

Lmin

andLmin = mink ∂k drq(k, y
′, z′, v′).

B. Estimate aggregation

Given that measurements of inter-drogue distances and
their derivatives are corrupted by additive Gaussian noise,
we first verify that PARAMETER ESTIMATION BY ZERO-
DERIVATIVE METHOD is able to find ak estimate from noisy
measurements. We do this by showing that there exists an
analytic implicit functionk which solves (5). Given thatk is
implicitly defined and the nonlinearity of (4), we construct
approximations fork. Finally, we use these approximations
to define methods for aggregating estimates ofk. However,
for interests of space, we jump right to the result which
determines the approximations fork. Proving the existence
of the analytic implicit function simply amounts to finding
the domain where bothkfind is analytic and its partial
derivative with respect tok is non-zero.

Lemma 5.3 (Approximations ofk): The 1-st and2-nd or-
der approximation ofk are

kfrst(X ′, X) = k + JX(X ′ −X),

ksecond(X ′, X) = k+JX(X ′−X)+
1

2
(X ′−X)HX(X ′−X),

respectively, where

JX =
−DX

BX

, HX =
EX

BX

−
DXC

T
X + CXD

T
X

B2
X

+
AXDXD

T
X

B3
X

and AX = ∂2k kfind(k,X), BX = ∂k kfind(k,X), CX =
∂k∂X kfind(k,X), DX = ∂X kfind(k,X), and EX =
∂X∂X kfind(k,X).

Next, we introduce an aggregation scheme that we employ
for aggregatingk measurements. Given independent random
variablesx1 and x2 with meanE[x1] = E[x2] = µ and
variancesVar[x1] = σ2

1 , Var[x2] = σ2
2 , define the optimal

aggregating functionOptAgg by

OptAgg(x1, σ
2
1 , x2, σ

2
2) =

(

σ2
2x1 + σ2

1x2
σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)

.

Note that σ
2
2x1+σ2

1x2

σ2
1+σ2

2
is the convex combination ofx1 and

x2 with smallest variance.{(k̂i, X̂i), i ∈ N} is a sequence
of random variables witĥki as thek estimate of our algo-
rithm for the noisy dataX̂i. We call the following iterative
aggregation process FIRST-ORDER K FUSION:

(kfirstagg i+1
,Var[kfirstagg i+1

]) =

OptAgg(kfirstagg i
,Var[kfirstagg i

], k̂i+1,Var[k
frst(X̂i+1)])

and this one SECOND-ORDER K FUSION:

(kscndagg i+1
,Var[kscndagg i+1

]) =

OptAgg(kscndagg i
,Var[kscndagg i

],

k̂i+1 − E[ksecond(Xi+1)],Var[k
second(X̂i+1)]).
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Fig. 4. (a) shows how both FIRST-ORDER and SECOND-ORDER K FUSION, each usingk estimates from PARAMETER ESTIMATION BY ZERO-DERIVATIVE
METHOD, converge to an error smaller than that of the individual measurements. (b) shows that SECOND-ORDER K FUSIONconverges to a smaller error
than FIRST-ORDER K FUSION. (c) shows the absolute error of FIRST-ORDER K FUSION and SECOND-ORDER K FUSION as a function of the standard
deviations in inter-drogue distances and their derivatives, highlighting how SECOND-ORDER K FUSIONoutperforms FIRST-ORDER K FUSION.

Now we illustrate the performance of the aggregation
schemes through simulation. Figure 4(a) and (b) shows
the evolution of the FIRST-ORDER and SECOND-ORDER K

FUSION methods, which aggregatek estimates from PARAM -
ETER ESTIMATION BY ZERO-DERIVATIVE METHOD. Both
evolutions converge very quickly to errors smaller than indi-
vidual estimates, but the second-order method has a smaller
error. Figure 4(c) shows that absolute error of FIRST-ORDER

and SECOND-ORDER K FUSIONas a function of the standard
deviation in inter-drogue distance measurements and in their
derivatives. SECOND-ORDER K FUSIONhas smaller errors.

VI. CONCLUSIONS

We have considered the task of estimating the physical
parameters which capture the dynamics of the ocean’s linear
internal waves. We have designed the PARAMETER ESTIMA-
TION BY ZERO-DERIVATIVE METHOD to be run on a group
of drogues using only inter-drogue distance measurements.
With noiseless measurements, we have determined tight con-
ditions on the minimal sampling rate under which our algo-
rithm precisely estimates the internal wave parameters. When
measurements are corrupted by additive Gaussian noise, we
have precisely bounded the error in the horizontal wavenum-
ber estimate and derived a second-order approximation for
it. We built on this model to create two aggregating schemes
that fuse information from different time instants: FIRST-
ORDER and SECOND-ORDER K FUSION. We have shown
in simulations that these schemes converge to values with
smaller errors than the individualk estimates. Future work
will be devoted to formalizing the performance guarantees
of the FIRST-ORDERand SECOND-ORDER K FUSIONas well
as extending our analysis to scenarios with multiple linear
internal waves, as well as more general models of internal
waves, such as weakly nonlinear internal waves.
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APPENDIX

Lemma A.1:For anyx ∈ (0, 2π), for anyC1, C2 ∈ R>0,
for all ǫ ∈ (−ǫmax(x,C1, C2), ǫmax(x,C1, C2)),

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ < 0, (7)

whereǫmax(x,C1, C2) is defined by (6).


