Distributed estimation of internal wave parameters via integde distances
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~ Abstract— This paper considers a group of drogues estimat- problem [12], [13]. Due to the periodic nature of the inter-
ing the physical parameters of the ocean’s linear internal waves. drogue distance trajectories, our problem has connections
While underwater, individual drogues do not have access to \yith least-squares spectral analysis problems [14], [I5].

position information and instead rely on inter-drogue distance I h he f h h
measurements. We introduce the RRAMETER ESTIMATION BY general, however, the fact that the wave parameters appear

ZERO-DERIVATIVE METHOD for determining the parameters nonlinearly makes determining them challenging.
of a horizontally propagating internal ocean wave and show
that, for noiseless measurements, our strategy determines the

parameters exactly. In the presence of additive Gaussian noise, T ocean surface
we characterize precisely the robustness of our strategy and . .
bound the error in the estimated parameters. Finally, we Zu X Pl

define two strategies for aggregating estimates obtained across internal wave

multiple time instants. Several simulations illustrate our results.

drogues

I. INTRODUCTION

l pycnocline

Internal waves are waves that propagate within a fluid, ocean floor

rather than on its surface. They correspond to moving si-
nusoidal oscillations in the boundary surface between twag. 1. Horizontally propagating ocean internal wave. Thet phows a
layers of a stratified fluid. In this paper, we consider inarn vertical CYS\SS-SectIO]pdof the Oftfean perpendlculazj to ;h?gvmopagatlﬁn

H H H ection. group or drogues oat at a constant ept ttecessarily
waves along gn ocean pycnoc!me, which is the S_urface ﬁ}lfa straight line) and do not have access to exact locatifmnnration. Our
constant density where the vertical rate of change in densigbjective is to provide drogues with mechanisms that rely amlyrelative
is largest. Because pycnoclines are typically deep bel@w tlgistances to determine the parameters that uniquely defirietéraal wave.
ocean surface, collecting data about internal waves fran th

ocean surface is difficult. Our aim is to design an algorith Statement of contributionsie design a provably correct
; i 9 9 nglgorithm for estimating the physical parameters that éefin
that runs on a group of drogues drifting underwater near the

. e . ) ._an internal wave. This algorithm ARAMETER ESTIMATION
internal wave's interface to determine the wave’s physm%

parameters. A drogue is a Lagrangian drifter capable " ZERO-DERIVATIVE METHOD, relies on wa?ting until an
actuating its depth by changing its buoyancy. Because exwer-drogue d|stance_ der|vat!ve_|s momentarily closeer_oz .
location information is unavailable below the surface, we. - " o e that for an interval in times near the Zero derieativ

. . € W e, each parameter's value can be precisely captured.
rely only on inter-drogue distance measurements. Figure

resents a pictorial illustration of our problem setu is also allows us to give a bound on the minimum
P P P P sampling rate needed for the algorithm to correctly idgntif

Literature review: Internal waves are capable ofdi:splacingthe parameters. Next, for the horizontal wavenumbewe

mass, such as plankion, as they travel, and this makﬁcciund the difference between the estimated and true value
studying them relevant to oceanographers [1], [2], [3]-Sc

) . - i I-SCyhen the inter-drogue distances are corrupted by additive
entists widely use drogues drifting passively as MONI®IIN 5 ssian noise. We also derive a second-order approximatio
platiorms to gather relevanF ocean datga [4]. [5], [6,]' ReCeN,t the 1 estimates that ARAMETER ESTIMATION BY ZERO-
work [7] explores the possibility of actively selecting did 'DERIVATIVE METHOD provides for noisy measurements.
currents so that drogues can autonomously reach a deaw& use this approximation to create aggregation strategies

destination. An increasing body of work in the controlsFlRST_ORDER and SSCOND-ORDER K FUSION that fuse
literature deals with cooperative networks of agents estf

. al | oh cludi sl 19 stimates obtained across multiple time instants. Finally
ma“”g spatia natu_ra phenomena, Including ocean [8], _[ imulations illustrate the evolution of these two schemes.
river [10], and hurricane sampling [11]. In these scenarios
agents with limited actuation capabilities are subjectrorgy Il. PRELIMINARIES

flowfields. In the problem considered in this paper, drogues Here we present some basic concepts, starting with nota-

are able to actuate their depth through buoyancy changgs, .| «onventions. LeR andZ denote the sets of real and
but are completely subject to the force of the internal wav teger numbers, respectively. Fore R, let || ¢ Z denote
in the flow-wise direction. Because of this, the task Othe largest integér that satisfi@sj <1’, For f: RY - R
determining the wave parameters can be seen as a data f|tt||5196kf denote the partial derivativgg‘fwith respect to the

kth component. We leEsixed = (psi €aveds Cviveds Ci
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Yiixed are denoted by™ed and v™ed = (yTied y¥ixes y2ed) A Internal wave model

respectively. Nex_t, we lek, = (pz,,{ewb,.eyme_zg}) be a We define the global reference frame as follois; =
reference fra_me fixed to a moving body W|t_h origin When (p. {€a; €y, €}). The originp corresponds to any point at the
expressed with respect Bieq, We denote this point by, g iface of the water. The basis vectar corresponds to the
The orientation ot is defined by the rotation matriRi**",  girection of wave propagation, which is parallel to the acea
whose columns arge,.,, e, e, } expressed with respect to potom and:, is perpendicular to the ocean bottom, pointing
Yiiea- Finally, a change of reference frame is given by from gcean bottom to surface. As depicted in Figure 1, we
consider an internal wave with frequency, propagating
horizontally in thee,-direction with horizontal wavenumber
k, with amplitudea, and with the pycnocline at mean depth
—z,. The depth of the wave as a function ofandt is

qfixed _ Rgxedqb _'_pgxed7 Ufixed _ Rzixedvb.
A. Derivative estimation from noisy data

We estimate an analytic functiofi and / from evenly

sampled measurements corrupted by additive Gaussian noise ) _
where the phase of the wavedefines the wave relative to

yi = f(t;) +eti), €~N(0,02). the referencgx,t) = (0,0). From [1], [2], the horizontal
and vertical velocitiegu, w) of the upper layer are
We choose a polynomial smoothing filter approach [16]. This
allows us to justify that the derivative estimates are usdiba

zw(t, ) = —z, — asin(kx — wt + ¢),

Uy (t, ) = « sin(kx — wt + ¢),
z

u

and Gau.ssia'\n. For<me Z>,, we const.ruct a-th order wolt,z,2) = _zaw cos(kz — wt + &),
polynomial filter fromm evenly spaced noisy measurements 2y
over the sampling windoW’, {(7=5T’ i) }ieqo,....m—-1}- wherec is the phase speed given by= £ . Additionally, we
denote the total phase as= kz —wt+ ¢. This model comes
1 0 ... 0 £(0) 7 from the assumption that vertical velocity varies lineariyh
Yo 1t ...t £(0) depth, coupled with the conservation of mass law for an
: = . ) ) : . incompressible fluid. Likewise, the lower-layer velocitiare
Ym—1 1 tpor ... 8, &'(0) w(t,x) = —Cz—a sin(kx — wt + @),
p: - l
0 Gy - wi(t,z,z) = waw cos(kz — wt + ¢).
Zoc: o f A’(O) tal €0 2
+ =P 7 + : Remark 3.1 (Assumptions on wave parameterd)e lin-
:(j) ‘ em._1 ear .ir_lternal wave mpdel is only meanjngful fof-| < 1.
Z;’;pﬂ f j!(o) t - Additionally, the spatial wavelengths of internal wavesga
from hundreds of meters to tens of kilometers [3]. Sikds
More compactly, this can be written as inversely proportional to the spatial wavelength, we assum
that there exist$kmin, kmax] containingk. °

Y = VE + ébias + €random B. Drogue model and dynamics

Thus, the least-squares estimate fC(IO) is the second A drogue is an untethered, submersible buoy which drifts

component of the vectaF: freely in the ocean. The drogues we consider can change
their depth by controlling their buoyancy. A drogue mea-
F(0) = (VIV) VT (Y + epias+ €random))2 sures the relative distance and orientation to other dmgue

using acoustics and an onboard compass. However, it cannot
measure absolute position because GPS is unavailable-under
water. For drogue, we define the local coordinate system
Y = (pi,{€a;, €y, €2, }. The originp; corresponds to the
location of theith drogue. Like the global coordinate frame,
¥Zi = e.. However, the vectors,, ande,, are parallel to

the ocean floor, but neither is necessarily oriented in the
direction ofe,, the wave propagation direction. Thus, each
droguei must determing;, the angle between,, ande,.

= f(O) + (VTV)ilvT(Ebias'*‘ 6random)2~

Remark 2.1 (Bias)We ignore the bias which arises from
considering only the»-th order expansion of because for
a fixed p, the bias can be made arbitrarily close to zero b
choosing the sampling windo® small enough. °

After accounting for the bias, the estimate ¢f(0)
is an unbiased Gaussian variable with varianr% =

((VEV) TV ima jm1p| [P0, We assume each drogue can measure inter-drogue distances
at a sampling rate of;. At time ¢ droguei has measurements
I1l. PROBLEM STATEMENT of {(di;(f—“s),d?jé(i))}me{ow“@} and z € {j,l,m,n}

. . . _ . _ where drogueg, I, m, andn are the ones closest o
In this section we describe the basics of linear internal Gjyen distancel, we letd’ denote the measurement &f

waves, our model for drOgueS’ CapabilitieS and their dynanb'y an drogue, with the fo”owing Gaussian error model
ics when their motion is governed by internal waves, and the

2
description of the problem we seek to solve. d'=d+eq, ea~N(0,07).



Consider the scenario where drogues move in the upper AN

layer of the internal wave at a constant depth. There is no troughm“ N
loss of generality here, since drogues can control theittdep / J N
through buoyancy changes. We also assume that the drogue
dynamics under the linear internal wave is Lagrangian. In N dZ]j
other words, the dynamics of the drogue positipn= e A e
(p®,p¥,p?) in the global reference frame is given by e;\/ael \z\ e

p = (pvayvpz) = (uu(tva)7010)' (1)

. . . . . Fig. 3. lllustration of drogue and wave orientations on treéaframe.
The lack of motion in the:-direction is due to the drogue’s 9 g

buoyancy control, which we assume is capable of countg or drogues undergoing motion purely caused by an internal
acting the vertical forcing of the internal wave. Figure 9 going purely y

) ) ! wave, inter-drogue distances in their local reference éram
illustrates the evolution of the-component of inter-drogue .
. . S can be projected onto the global reference fraaa§§ =
distances as a function of the initial phase of the wave. g . . g ’
R{d, ; via the transformation matriR?,

1 7,]

Inter—drogue dist. vs. time, initially 40 m between drogues .
‘ : : ‘ ‘ ‘ costl; —sinf; O
. ) N "’:_OZH/S RY = |sinf; cosf; O
E° T o g amie 0 0 !
(4] v N \4
S v . v x @=6rn/5 . . .
.§45' A Vvv |+ e=sus]| The global coordinate frame is useful because the inter-
4 v . . . . . . . M
S Tt 083 '~%o drogue distance in the, direction is constant, |.ed§’j =
. V. : . . . . o
gwo%’é. o, O T o 0. Since #; is constant, it can easily be found using the
= X Vo X .
? 5% T+ Maae measurements available,
) ++::ﬂ§:+++* di{j = dj’sin0; + di’] cosf; =0,
0 200 400 600 800 1000 —d};
Time (s) 0; = arctan —.
i,
Fig. 2.  Inter-drogue distance evolution for drogues ifiitiad0 meters . ) . ) .
apart, with different phases relative to the wave. B. Fundamental period of inter-drogue distance time-serie

) In this section, we analytically determine the fundamental
Problem Statement 1A team of N drogues is deployed nerjnq of the inter-drogue distance time-series.

. ; . . . €

in the ocean and their motion is governed by an mternzgl Lemma 4.1 (Drogue trajectories)The solution of (1)
wave. Since the drogues may control their depth, assume Q{t%lrting frorﬁp(O) is

are located at the same depth and each one can measure the

relative distance and orientation to the clos&stdrogues P (t) = (1 — B)t + (1),
in their own coordinate frame. The objective is to design an 9 a 8
algorithm that allows the drogues to collectively deterenin P(t) = — arctan [ — — SBtan | = (wt + o)
> : k 2y 2
the parameters*, k, w, andd; defining the internal wave.
Fu 2r |t yo 1 ; o
V. NOISE-FREE PARAMETER ESTIMATION T r T T T + 2 +eft - L’
Now we describe a method for determining all the internal 5
wave parameters in the absence of measurement noigghere the period i’ = 0277[; B=4/1-— (Zi) , and
beginning the wave propagation direction. Next, we show
that inter-drogue distances are periodic in time and eitiylic 2 1/a kp®(0) + ¢
determine the fundamental period. After that, we devise a 70 = 7 arctan ( — — tan —s

z
method for detel’minin@. GiVenk, the other two parameters From Lemma 41’ the S,L(L)|uti0n of (1) is the sum of a linear

are determined Simultaneous. Fina”y, we gather the methoﬂjnction in t and a periodic function/) W|th fundamenta'
into one algorithm. period 7. Since the linear function does not depend on
the initial condition, the inter-drogue distance evolutis
periodic with periodT’,

We consider the case where the drogues are at the same
depth but arbitrarily located. Figure 3 depicts drogt 2 a B
IocF;I coordinates, i)r/1ter—drogue d%stance mgasurem%, a @i;(t) =7 arctan (Zu —Btan <2 (wt + 704)))

A. Determination of wave propagation direction

the direction of wave propagation. 9 a 8
Consider the inter-drogue distance to tftb drogue as % arctan (z — Btan (2 (wt + ’Yo,i)»
measured by, ¢ # j € {1,..., N}, in its local coordinates v
2r |t vy, 1 2r |t y0, 1
d; ;= pj —pi = (¥, d”",0). 2 {T tor T 2J T {T tor Tt 2J :



C. Zero-derivative method and algorithm description determine a time whem; has a simpler form; it is when

Now we detail a method for determining the wave paramedi,j = 0. From the interpretation of Lemma 4.1, we note
tersk, w, and -2, beginning withk. After deriving situations thatd, ; is bounded and periodic. We also know that for any

when k can bé determined, we leverage this knowledge th < K>0, 0i(t) < —w(1 — =) < 0 because it is physically
impossible for~ > 1. Given these facts it is clear from (2a)

determine the other two parameterand - simultaneously. 2 Vel g SRR
1) Inter-drogue motion:Once the wave propagation di- that there exist times within one peridd one of which is

rection is known, the drogues can write their motion ifcit Whend; ;(tei) N 0. We assume thal < [kd, ;| < 2,

the global coordinate frame. Since the only motion is i§0 Vi(feit) = +5 — 5d; ;(terit)-

the wave propagation direction, we can drop the superindex NOw, using this fact about;, we are almost ready to state

on distances and positions, considering only distances {he next lemma which establishes when the thues the

the z-direction. According to (1), forN' drogues, for any Unique value that satisfies (5) and can be found. This is

i €{1,..., N}, the following dynamics completely describeestablished for a neighborhood %H around0. However,
the drogues’ motion in the, direction: before doing so, we introduce some useful notation,
. d; . kd. .
dij =2 wa sin( 2Z’j ) cos( 2” +uv), Vi#j (2a) émax(z, C1,Cs) = (6)
’ ZU.
0; = w(-L sin(v;) — 1), (2b) C max (@70L0) §>wma>0,
Fu VE(O.T (@) | 2 2T > x—y > 7,

with v; = kp? — wt + ¢.
2) Determination ofk: We note that each inter-drogue
distance equation in (2a) contaiBsinknowns:v;, 2%, and parcsin(2(z — 7)) —x 5

kzy ! . i . 5
k. Sincek is one of the parameters of interest, our aim in this R(z,7v, C1, C2) = min{2 R

. ) . o . 4 Cy
section is to first create an equation which is only a function
of measurement data ard and then solve for the value of Lemma 4.2 (Neighborhood around zero-derivativEnr
k that fits the measurement data. We first begin by notingoiseless distance and its derivative measurements, where
that the ratio of two of these (2a) equations eliminas.

wherel'(z) = z — sin(x) cos(x) and

M 2 . .

~ Secondly, we can write; explicitly at any time instance k € [0, d—), 0<d;; <di; <d;,, <d;,, |d;;/d;| <6,
in terms of any two inter-drogue distances, sy and d; 1 g
their derivativesd; ; andd, ;, and: 5= min{sm( 24)sin(5(d; , — d; ;)

. sin(254) sin(5(d, ,, — d, )

vi(k7di,j7di,ladi,j7di,l) = k(d ’ —d, )
d; ; sin( bR ) cos( kdi’l) —d, sin(kdi'j ) cos(—kdi’j) emax( =5, L1, L2)}’

atar( ——— 2 7). @)

. - kd_
di’jsin2( ;‘l)—di’lsinz( o)

andL, andL- are Lipschitz constants with respect%'ei for

il

Thus, by substituting this expression farinto a ratio of v anddyv, respectively, the true value &fcan be uniquely
inter-drogue distance equations other thaor i, [, sayi,m  determined.
andi, n, we've created an equation with only one unknown: We generalize this result to determine an open interval
k. We call this function the distance rate quotient: aroundtcrit such that the trué can be uniquely determined.

v k. ) ) Corollary 4.3 (Neighborhood arountl;i): Given noise-
— —" +vi(k,d; ;,d; ;. d; ;.d,; ;) less distance and derivative measurementat tcit with
kd kd

bln( 2 )COb( 9 +’Ul(k"dz,j’dz,l7dz,]7dz,l)) = [0,i), 0< di,j < di,l < di,m < di,n? diyj(tcrit) =0.

. kd
drq(k, X) = sin( ) cos(

where X = (d, ;,d;;,d; . d; 0, d; 5, d; 0 d; 0 d; ) is the o
collection of all4 inter-drogue distances and their derivativesThen, the true value of can be uniquely determined using
Introducing the functiorkfind as measurementX (¢), for any ¢t € (terit — Amax; terit + Amax)
where Amax = %% 5 is defined in Lemma 4.2[; =
kfind(k, X) = _ A(££9)2k + 225 (1 + ), and0 < Ly < |d; ,(teri)|.
. d; The following remark describes the minimum sampling rate
drq(k, vi(k, di,ja di,ladi,jv di,l)a di,mvdi,n) - d (4) for drogues to findk.
b Remark 4.4: (Minimum sampling rate)Jsing Corol-
we can see that by definition far = k, lary 4.3 and a lowerbound on inter-drogue distances, one
can find a sampling ratg, min guaranteeing that the drogues
kfind (K, X) = 0. ) are able to detgrm?ne. . ’ ’ g.

The goal is now to determine a condition for when only the 3) Method for finding- andw: With k£ known, - andw
true k satisfies (5). To aid in this, we investigate the structuréan be found with the following method. We can calculate
of v;. We note thatdrq is a complicated trigonometric vi from (3) now. From these measurementsuvpf we can
function of & due to the structure of;, so we wish to constructy; USing the method outlined in Section IlI-A.



Lemma 4.5 (Determination ozﬁ andw): For anyt; and Lemma 5.2 (Bound on error ih): The error between the
to such thatty —¢; < T andsin(v;(¢1)) # sin(v;(t2)), then  estimatedk and the truek can be bounded by the following

w and Zi can be determined from function of the noise:
o g, & B[] _ [sin@it) 17 [ii(h) Wog < AT EIZ B e Q)
TP T Ba B2 [sin(ui(t) 1 0;i(t2) - Lmin

4) Algorithm and its correctnessFinally, we gather the

and Lmin = minyg 9y drq(k,y’, 2/, v").
methods above into Algorithm 1. i Ok dra(k, y )

B. Estimate aggregation

Algorithm 1. PARAMETER ESTIMATION BY ZERO- Given that measurements of inter-drogue distances and
DERIVATIVE METHOD. their derivatives are corrupted by additive Gaussian noise
i we first verify that RRAMETER ESTIMATION BY ZERO-

—.d b

i DERIVATIVE METHOD is able to find & estimate from noisy

1 Calculate wave propagation directiof),= arctan
| d () v measurements. We do this by showing that there exists an

2 if d‘i.;ﬁz(tm) <4 then analytic implicit functionk which solves (5). Given thdt is

3 Solvekfind(k, X) =0 implicitly defined and the nonlinearity of (4), we construct
For anyty,ts with to —t; < T and approximations foik. Finally, we use these approximations
sin(v;(t1)) # sin(v;(t2)), calculate to define methods for aggregating estimates.oHowever,

61 sin(vi(t1)) 1 -t 0;(t1) for interests of space, we jump right to the result which

s [52} - |:Sin(vi(t2)) 1] L’;i(tz)] determines the approximations flr Proving the existence

6 w=—Py, L= —Tﬁl of the analytic implicit function simply amounts to finding

7 end e 2 the domain where botlkfind is analytic and its partial

derivative with respect té& is non-zero.
Lemma 5.3 (Approximations &f): The 1-st and2-nd or-
The next result establishes the correctness of graR -  der approximation ok are
ETER ESTIMATION BY ZERO-DERIVATIVE METHOD. It is a frst ( v/ /
. S KX X)) =k + Jx (X' — X)),
straightforward application of Corollary 4.3 and Lemma.4.5 ( ) +Ix( ) 1
Proposition 4.6 (Algorithm correctness)Jsing noiseless k*°°"d(X’ X) = k+Jx (X' = X)+ = (X' = X)Hx (X' - X),
distance and distance derivative measurements, drogae ) 2
exactly determine the parametes -, w, andk using the respectively, where
PARAMETER ESTIMATION BY ZERO-DERIVATIVE METHOD. —Dx He Ex DxC¥ +CxD%¥ AxDxD%
——X Hy _

~ Bx ~ By BZ BY

v =
and Ax = 0?kfind(k, X), Bx = O, kfind(k, X), Cx =

In this section we bound the error in our algorithni's Odx ﬁ%nd(ka)n l()x i 8); kﬁndk(k ;1()( anc% EXX _
estimation in terms of the errors in the measurements needggaX kﬁnd(k, X)’ o

and then define methods of aggregatingstimates.

V. ROBUSTNESS ANALYSIS

Next, we introduce an aggregation scheme that we employ

A Error bound for .aggregatingc meas'urements. Given independent random
variablesz; and a2 with meanE[z;] = E[zs] = p and

With noiseless measurement§, one finds the uniqué  variancesVar[z,] = o2, Var[zs] = o2, define the optimal
satisfying (5). As described in Section Ill, we assume aaggregating functiof)ptAgg by
additive Gaussian error model for the measured inter-drogu
distances.Using trigonometric identities, we can descitile OptAgg(zy, 0%, 29,03) = (
noisy drq in terms of the noiselessérq.

Lemma 5.1 (Relating noisyrq to noiselessirq): The Note that aér;ﬂrzmg is the convex combination of, and
function drq evaluated at noisy measurements can be O

explicitly described asrq evaluated at the true values times?2 With smallest variance{(k;, X;),i € N} is a sequence
a function ofk. the true values. and the noise: of random variables wittk; as thek estimate of our algo-

rithm for the noisy dataX;. We call the following iterative

o3ry + olry 0203 )
2, 2 . 32 2
oy toy 0ito;

drq(k,y', 2", v") = drq(k,y, 2,0)G(k,y, 2,0, €, €2, €) aggregation processi®ST-ORDER K FUSION
fi firs
where (Kagg 4,10 Varlkegy , 1) =
a i . st <
cos(e,) + cot(*2) sin(e,) OPtAgg(kaésgti7 Var[kigsgih ki1, Var[k™ (X;11)])
G(kvyvzavveyvezaev) = k2 3 ;
cos(e.) + cot(E2) sin(e.) and this one BCOND-ORDER K FUSION
. cos(ey + €,) + tan(%” sin(e, + €,) (kz‘é’é‘lﬁp Var[kzg;diﬂ]) =
cos(e, + €,) + tan(%Z) sin(e, + €,) OptAgg(kZCg’édi, Var[kzgédi],

We use the previous lemma to construct a bound on the . cecond second ;o
difference between the trueand our estimated one. kip1 — E[k (Xit1)], Varlk (Xit1)])-
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Fig. 4. (a) shows how bothiIRST-ORDERand SECOND-ORDER K FUSION each using: estimates from FRAMETER ESTIMATION BY ZERO-DERIVATIVE
METHOD, converge to an error smaller than that of the individual mesamants. (b) shows thatEBOND-ORDER K FUSIONconverges to a smaller error
than ARST-ORDER K FUSION (c) shows the absolute error ofFST-ORDER K FUSION and SECOND-ORDER K FUSIONas a function of the standard

deviations in inter-drogue distances and their derivativeghlighting how &COND-ORDER K FUSIONoutperforms FRST-ORDER K FUSION

Now we illustrate the performance of the aggregation|3]
schemes through simulation. Figure 4(a) and (b) show?‘l]
the evolution of the RST-ORDER and SECOND-ORDER K
FusiON methods, which aggregakeestimates from BRAM -
ETER ESTIMATION BY ZERO-DERIVATIVE METHOD. Both
evolutions converge very quickly to errors smaller thari-ind
vidual estimates, but the second-order method has a smallgs
error. Figure 4(c) shows that absolute error (RET-ORDER
and SECOND-ORDER K FUSIONas a function of the standard
deviation in inter-drogue distance measurements and in the[7]
derivatives. ECOND-ORDER K FUSIONhas smaller errors.

(5]

VI. CONCLUSIONS (8l

We have considered the task of estimating the physical
parameters which capture the dynamics of the ocean’s lineag
internal waves. We have designed theRRMETER ESTIMA-

TION BY ZERO-DERIVATIVE METHOD to be run on a group 10]
of drogues using only inter-drogue distance measuremen&s.
With noiseless measurements, we have determined tight con-
ditions on the minimal sampling rate under which our aIgoLll]
rithm precisely estimates the internal wave parametersiWhe
measurements are corrupted by additive Gaussian noise, W4
have precisely bounded the error in the horizontal wavenurh*!
ber estimate and derived a second-order approximation fgy;
it. We built on this model to create two aggregating schemes
that fuse information from different time instantsiIRBT- [15]
ORDER and S COND-ORDER K FUSION We have shown
in simulations that these schemes converge to values witt]
smaller errors than the individual estimates. Future work

will be devoted to formalizing the performance guarantees
of the HRST-ORDERand COND-ORDER K FUSIONas well
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APPENDIX

as extending our analysis to scenarios with multiple linear | orama A.1:For anyz € (0,27), for any Cy, Cs € Rog

internal waves, as well as more general models of interngl, 4 . <

waves, such as weakly nonlinear internal waves.
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