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Robust, distributed estimation of internal wave

parameters via inter-drogue measurements

Michael Ouimet Jorge Cazb

Abstract

Internal waves are important to oceanographers becaugbgwadravel, they are capable of dis-
placing mass, such as plankton and small fish. This papeid@asa group of drogues estimating the
physical parameters that determine the dynamics of an dasear internal wave. While underwater,
individual drogues do not have access to absolute positilormation and can only rely on inter-
drogue measurements. Building on this data and the knowleéithe drogue dynamics under the flow
induced by the internal wave, we propose Yfeni shi ng Di stance Derivative Detection
St r at egy to allow individual drogues to determine the wave paransetéfe analyze the correctness
and robustness of this strategy under noiseless and noayuraments, respectively. We also introduce a
general methodology, termed h- Or der Par anet er Fusi on, for combining parameter estimates

obtained at different times and characterize the resuétingr. Several simulations illustrate our results.

I. INTRODUCTION

Internal waves are waves that propagate within a fluid, rathan on its surface. They
correspond to moving sinusoidal oscillations in the boupdaurface between two layers of
a stratified fluid. Of particular relevance are internal vsatlgat move along ocean pycnoclines,
which are surfaces of constant density where the vertidal o& change in density is largest.
Such internal waves are biologically important as theydpant plankton and other organisms
and create dense phytoplankton blooms. Because pycnoeliadgpically deep below the ocean
surface, it is difficult to collect data about internal waves
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This paper tackles this problem using a group of droguesirdyiinderwater near the internal
wave’s interface to determine the physical parameters dieéihe its motion. A drogue is a
Lagrangian drifter capable of actuating its depth by chamggis buoyancy. While underwater,
drogues are subject to the flow induced by the motion of thermai wave and do not have
access to exact location information. Figure 1 presentsctonl illustration of the problem
setup. The basic premise of the paper is that drogues sheuéble to extract the information
contained in the evolution of the inter-drogue distance distance derivative measurements to
characterize the internal wave. To the authors’ knowledigere is no algorithmic procedure

available in the literature to solve this problem.
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(a) Schematic of drogues and internal wave  (b) Plankton patchiness induced by internal wave

Fig. 1. For a horizontally propagating ocean internal wave, (a) shovepdsal structure at a fixed instant of time whereas (b)
shows its temporal structure at a fixed horizontal location. In (a), anesee a vertical cross-section of the ocean perpendicular
to the wave propagation direction. A group of drogues float at a cand&pth (but not necessarily along a straight line) and
do not have access to exact location information. Our objective is tdd@alrogues with mechanisms that rely only on the
relative measurements between them to determine the parameters thegflyidigfine the internal wave. In (b), one can see data
at an anchor station off Mission Beach, CA, taken on April 19, 199% plankton’s chlorophyll fluorescence (color scale) is
depicted as a function of depth and time. Higher fluorescence condéspo denser patches of plankton in the troughs of a
horizontally propagating internal wave. Figure courtesy of Peter Bragde [1] for additional information.

Literature review: Internal waves are known to be associated with high conators of
various types of planktonic organisms and small fishes [&], &nd this makes studying them
relevant to oceanographers [4], [1], [5]. Scientists wydake drogues drifting passively as

monitoring platforms to gather relevant ocean data [6], [8]. Recent work [9] explores

April 24, 2013 DRAFT



the possibility of actively selecting tidal currents sottliiogues can autonomously reach a
desired destination. An increasing body of work in the aysteand control literature deals with
cooperative networks of agents estimating spatial naplrahomena, including ocean [10], [11],
[12], river [13], and hurricane sampling [14]. In these s@os, agents with limited actuation
capabilities are subject to strong flowfields. In the probtamsidered in this paper, drogues are
able to actuate their depth through buoyancy changes, but@npletely subject to the force
of the internal wave in the flow-wise direction. Because o§,thihe task of determining the
wave parameters can be seen as a data fitting problem [153],)1& to the periodic nature of
the inter-drogue distance trajectories, our problem hamections with least-squares spectral
analysis problems [17], [18]. In general, however, the fiett the wave parameters appear
nonlinearly makes the determination of the exact parameteallenging.

Statement of contributionstWe consider the problem of estimating the physical parammete
(propagation direction, horizontal wavenumber, freqyernd relative amplitude) of a linear
internal wave that is propagating horizontally. A group oflarwater drogues with no absolute
position information are subject to the flow induced by thiernal wave and can only measure
inter-drogue distances and distance derivatives. Becdgsdrogues only have access to these
relative measurements, they must rely on the presence ef dtlogues to achieve their task.
The benefit obtained here by ‘the power of many’ in the esimnadf the ocean flow field is an
original feature of our paper. Our first contribution is tletabdlishment of an analytic expression
for the dynamic evolution of the drogues. This expressiawshthat the motion of each drogue
corresponds to a sum of a linear function (which is commonlfoaamd a periodic function
in time. In particular, this result implies that the distarfanction between any two drogues is
periodic (with a different period than the internal waveisTanalysis sets the basis for our second
contribution, which is the design of théani shi ng Di st ance Derivative Detection
St r at egy. This algorithm builds on the expression for the drogue dyica and the fact that
inter-drogue distance derivatives become close to zerdiptaultimes across a wavelength to
estimate the physical parameters of the internal wave. T&oowledge, the proposed algorithm
is the first and only method capable of solving the problenmidation described above.
We establish the correctness of tMani shing Di stance Derivative Detection
St r at egy in the case where the inter-drogue measurements are resis8lgecifically, we make
precise the range of times along the period of the internaewehen our method can determine
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exactly all the parameters. This allows us to give a boundhenminimum required sampling
rate. As a third contribution, we characterize the robusstred our strategy by providing explicit
bounds of the errors in the parameter estimation as a funofithe errors in the acquisition of the
inter-drogue measurements. Finally, we develop a geneh&nse for aggregating the estimates
of the parameters provided by our algorithm at differenetimstants under noisy measurements.
Even though we assume the measurement noise to be Gaukgidnglly nonlinear nature of
the drogue motion induced by the internal wave makes theillisbns of parameters non-
Gaussian and therefore, challenging to aggregate. Ouegagtion scheme, termed h- Or der

Par anet er Fusi on, is based on determining gth-order approximation of a parameter’s
distribution. Individual estimates are then fused togetmsuming theth-order approximation
is exact. The aggregation scheme results in smaller emarsthe individual estimates. Several
simulations illustrate our correctness and robustnessagtees.

Organization: Section Il introduces some basic notation and preliminatyons on derivative
estimation. After introducing the internal wave and drogumlels, Section Il describes the prob-
lem statement. Section IV provides the design of\Wami shi ng Di st ance Derivative
Det ecti on Strategy and the analysis guaranteeing its correctness in the absémoise.
Section V establishes the robustness of the algorithm umalse and introduces th# h- Or der
Par anet er Fusi on to perform the aggregation of estimates. Section VI gatbarsconclu-
sions and ideas for future work. Finally, we gather in theeaqujix a brief exposition on derivative

estimation and the proofs of the main results.

I[I. PRELIMINARIES

Here we present some basic concepts used in the papengtaith some notational conven-
tions. LetR, R.,, Z, andZ>;, denote the sets of real, positive real, integer, and pesititeger
numbers, respectively. Far € R, let |x| € Z denote the largest integer satisfying| < x.
For a continuously differentiable functiof: R? — R, we letd, f denote the partial derivative
with respect to thé:-th component. We refer to real-analytic functions simpyanalytic’. For
a vectorv, we define thet-th component aspnt, (v).

A reference frame, in R* is composed of an origip, € R* and a set of orthonormal
vectors{e,,, e, ,e. } C R®. A point q and a vectow can be uniquely expressed with respect

to the frameX, and are denoted by’ andvY, respectively. Next, leE, = (py, {€s,.€y,, €2, })
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be a reference frame fixed to a moving body. The origipfs a pointp,, denoted ap; when
expressed with respect 86,. The orientation o, is characterized by the rotation matiGx/
whose columns are the vectofs,,,e,, . e., } expressed with respect t,. With this notation,
a change of reference frame is given &y= QJq" + p] andv? = QJv".

[11. PROBLEM STATEMENT

This section formulates the problem under study. We begiprbgenting the basic model for
the motion of a linear internal wave. Then, we describe thgabgities of the group of drogues
and discuss the effect that the internal wave has on theiardigs. With these ingredients in
place, we formalize the distributed parameter estimatiablpm.

A. Internal wave model

Let X, = (py. {es,.€,,,€:,}) be a global reference frame defined as follows: the orjgin
corresponds to an arbitrary point at the surface of the wétervectore,, corresponds to the
direction of wave propagation, which is parallel to the acéattom, ande., is perpendicular
to the ocean bottom, pointing from bottom to surface. Fowearence, the coordinates induced
by ¥, are denoted by{z,y, z}.

As in Figure 1, an internal wave is a wave which travels bdnéla¢ surface of the ocean,
along a surface of constant water density called pycnacMie consider an internal wave
with amplitude a, frequencyw, propagating horizontally in the-direction with horizontal

wavenumbelk, and at the mean depthz,. The wave depth,, as a function ofr andt is
zw(t,x) = —zy — asin(kz — wt + ¢).

The parameter, termed initial phase of the wave, effectively shifts thevevaielative to the
reference(x,t) = (0,0). Because of our choice of reference frame, there is no moticihe

y-direction. The standard model [4], [1], [19] assumes thetival velocity varies linearly with
depth. This, coupled with the conservation of mass law foim@ompressible fluid, gives rise

to the following expressions for the horizontal and verticaho, velocities of the upper layer,

uy(t, x) = % sin(kx — wt + @), (1a)
u
wy(t,x, z) = —ij cos(kx — wt + ). (1b)
u
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Likewise, the horizontal; and verticalw, velocities of the lower layer are

w(t,r) = —:—Z sin(kz — wt + ¢),
z+zy+ 2
2

Assumption 3.1 (Bounds on wave paramete@)e linear internal wave model is only accu-

wi(t,z,z) = aw cos(kr — wt + ¢).

rate for0 < a/zy < (a/zy)max = 0.1. Additionally, the spatial wavelengths of internal waves
range from hundreds of meters to tens of kilometers [5]. &ints inversely proportional to the
spatial wavelength, we assume that there exists a bountidah kmin, kmay thatk is guaranteed

to be in. Finally, since the rati¢ corresponds to the wave’s speed, which physically must be

bounded, we assume that there exists, such thatv < wmax. °

B. Drogue model

A drogue is a submersible buoy which can drift in the oceamttached to the ocean floor
or a boat, and is able to change its depth in the water by dongrats buoyancy. A drogue
can measure the relative distance, the distance deriyatng the orientation to other drogues,
as well as depth through sensing (e.g., via acoustic orapensors and an onboard compass).
However, it does not have access to absolute position bedaB$ is unavailable underwater.

We consider a group oV drogues. For eache {1,..., N}, lety; = (pi, {es,, ey, €., }) be a
reference frame fixed to drogdeThe originp; corresponds to the location of the drogue. As in
the global coordinate framg,, e, is perpendicular to the ocean bottom, pointing from bottom
to surface. The vectors,, and e, are parallel to the ocean floor, but neither is necessarily
oriented in the direction of wave propagation. Thus, eadygue: must determine the angle
betweene,, ande,, which we denote by),.

Drogues are able to measure inter-drogue distances amohckstlerivatives. In our treatment,
we deal separately with the case of noiseless and noisy megasats. We assume drogues take
measurements at a sampling rate fof Thus, at timet € R.,, drogue: has measurements
{(d;;(ts), d};(t)) Yuego,... 5y @t timest, = - and for drogues € {ji,...,ju}, where these
are theM drogues closest ta

Consider the scenario where drogues move in the upper laybe afiternal wave at a constant
depth. There is no loss of generality in dealing with thisiaiton, since drogues can control

their depth through buoyancy changes. We make the simmdjfissumption that the drogue
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dynamics under the linear internal wave is Lagrangian. meowords, the dynamics of the

drogue positiorp = (p*, p¥, p*) in the global reference frame is given by

p' = (" 0", p") = (u(t,p"),0,0). (2)
The absence of motion in thedirection in this equation is due to the drogue’s buoyarayiol,
which we assume is capable of counteracting the verticalrfgrof the internal wave. Since
the drogues can measure their depth, we assume there existsdarlying controller which
uses these measurements to regulate the drogue at a despted [igure 2 illustrates the time

evolution of thez-component of inter-drogue distances as a function of thmlinvave phase.

Inter—drogue distance v.s. time, initially 40m ap
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Fig. 2. Inter-drogue distance evolution for drogues initially meters apart, with different initial wave phases.

Remark 3.2 (Kinematic versus dynamical modédijte Lagrangian model for motion under
the internal wave, cf. (2), is a simplification of the secawder dynamic model, see e.g. [20],

mp//;{: = —¢y ’p’x _ uu(t’p‘r)’(p/x — Uu(tapx))a (3a)
=0, (3b)
mp,,z = —¢y |p/z o wu(t,px’pz)up/z o wu(t’px7pz)) + f7 (3C)

where m denotes the combined drogue mass and inertial added makscj2ls the drag

parameter, and is the buoyancy control input. From this equation, one caivee

z q: muy cquy _ 4
[y (t, 0" (1)) — P (t)] < c—dmxtanh(\/ %‘t#—tamh I p— Umax) )5

max
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whereumax = 5 andup,,, = 2= (k% +w) are bounds on the maximum velocity and acceleration
according to the model (1). Following [4], [8], reasonabédues for these quantities anig.x =
027, Upay = 000143, m = 1.5kg, andcy = 210';‘%3. For these values, the errors in the drogues’
velocities will asymptotically be at mo$t% of umay leading us to favor the kinematic model
over the dynamical one. Furthermore, we can see that in thet wase, withp’”(0) = 0 when the
drogues are dropped in the water and0, p*(0)) = umax after about0 seconds, the drogues’
velocities will be within99% of their asymptotic behavior. Thus, after the drogues haenhn

the water for this long, the drogues’ motion can be reasgnaiell modeled by the kinematic

model. This analysis is illustrated in Figure 3. °

Comparison of a drogue velocity and the ocean velocity over time
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Fig. 3. Comparison of the drogue’s velocity as it moves according togbersl-order dynamic model (3a) versus according to

the kinematic model (2) corresponding to the ocean velocity. Within a stmoount of time, the drogue’s velocity is very close

to the ocean velocity. The wave and drogue parameter arexr &, w = 205 1, 2 =.1,m=15kg, andcg = 210?‘7522.

With our models now introduced, we are ready to state thelpnolof interest in this paper.

Problem statemen® team of N drogues is deployed in the ocean and their motion is governed
by an internal wave. Since the drogues may control theirlgg®sume all are located at the same
depth and each one can measure the relative distance, taaadisderivative, and orientation
to the closestV/ drogues in their own coordinate frame. The objective is tsigiea provably
correct strategy that allows each drogu® determine the parametefs k, w, and®;, defining

the motion of the internal wave with the limited informatidrpossesses.
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V. NOISE-FREE PARAMETER ESTIMATION

We begin by noting that the dynamic evolution of a drogue urile linear internal wave
can be explicitly described in the global reference frameweler, drogues cannot rely on this
information as they do not have access to their global coatds. This motivates our design
of methods to determine the wave propagation direction hadriternal wave parameters using
the distance measurements available to the drogues.

The following result shows that, remarkably, the droguemaimic evolution (2) can be
described in an analytical way. Its proof is given in the apje.

Proposition 4.1 (Drogue trajectory)The solution of (2) starting fronp(0) is

p) = 2 (1= 1~ (a/2)?) e+ 200) - &,
E@):%atar(z% — \/T;U)Qtan (%t—FAO))—Q% {%Jr % B Vpx(@);czﬁﬂrJ N %Jﬂ%t’

with

T = 2n , Ay =atan S (ﬁ — tan <—k:p ((;) + ¢)>
wy/1 = (a)z)? 1—(a/z)? V™
From Proposition 4.1, we see that the solution of (2) is tha sfi a linear function it and

a periodic function= with fundamental period’. Since the linear function does not depend

on the initial condition, we deduce that the time evolutidrthe distanced;; between any two
droguesi andj is given by (withv = /1 — (a/z,)? for brevity)

2 a vwt 2 |t Ay kp%(0) + ¢+ 1
* (1) —~atan{ -~ _ ot oa ) =20 (L Bog | B -
45 (1) kaar<zu ”tan( > " ‘“)) k {TﬁL T { o T3

2 a vwt 2 |t Ay, kp?(0) + ¢+ m 1
_z = L Ag ki A _ i -
kata 2y vtan ( 2 + O’l)) + k {T + T { 2w * 2

and is periodic with period’ (as was numerically observed in Figure 2). However, from a

drogue’s viewpoint, two facts make this expression impecacttfirst, drogues do not have access
to distances in the global reference frame and, secondg sibsolute position is not available,
they are also unaware of their phase with respect to thenaitevave. Even without these two
hurdles, the highly nonlinear dependence of this exprassiothe parameters makes the results
for standard least-squares data fitting methods [17], [D8]directly applicable.

These observations motivate the ensuing discussion desgra method to determine the

internal wave parameters in the absence of measuremer. 1@is treatment is presented for
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a generic drogué € {1,..., N} which requires inter-drogue distance and distance derévat
measurements from its nearelsheighbors, denoted byji, j», js, j1}. Before getting into the

details, we provide a brief overview of the algorithm design

[Informal description]: Section IV-A describes a method to determine the wave propa-
gation direction. With this information available, drogugan project their inter-drogue
measurements along the wave propagation direction. $ebfi® uses knowledge of
the drogue’s dynamics to find the unmeasurable relativegobesveen the drogue and
the wave as a function of the unknown horizontal wavenuminer the measurable
inter-drogue data. Using this function, the algorithm catednine the true value of the
horizontal wavenumber employing the data. After this, Bediv-C finds the amplitude
ratio and frequency by solving equations derived from thegde dynamics.

A. Wave propagation direction

Here we describe the method that drogues use to determirveaties propagation direction in
their own body coordinates. Recall that the drogues are atahee depth but may be arbitrarily
located in ther —y plane. Consider the inter-drogue distance tojttedrogue, € {ji,..., 4},

as measured byin its own body coordinates,

d; =p; —pi = (d},d},0).

17 130
Figure 4 depicts the drogué&s own body coordinates, inter-drogue distance measuremnand

the direction of wave propagation. For drogues undergointjan purely caused by an internal

o o
'/ \\
e di

Fig. 4. lllustration of drogue and wave orientations on the drogue’'serfe frame.

wave, inter-drogue distances in their own body referenamé can be projected onto the global

April 24, 2013 DRAFT



11

PR . : g
reference framel}, = ()/d,; via the transformation matrig);/,

cosf; —sinf; 0
Q¢ = |sinf;, cosf; 0
0 0 1

The global coordinate frame is useful because the integwdradistance in the-direction is

constant, i.e.dfjf = df;" sin 0; + dﬁ’;” cosf; = 0. Sinced; is constant, it can easily be found using

. —dv’

the measurements availablg:= atar( i )
is

Since bothd; and 6; + = fit this relation, we assume the drogues can differentiagetihe

0;. One way to accomplish this is to surface after at least oneevieriod and use GPS to

determine which way the drogue has drifted.

B. Horizontal wavenumber via vanishing derivative

Here we describe a method to determine the horizontal wawbau of the internal wave.
Since the only dynamics are in thedirection and each droguehas determined; as described
in Section IV-A, from now on, we simply denot&; by d;;. Thus, for each € {1,..., N}, the
following dynamics describe the drogues’ motion in thelirection,

d;j = 2]:)—2 sin (k;l”> COS (k;l” + @Di), Vie{j,. -, Jats (4a)
Pl = w(;u sin(v);) — 1), (4b)

wherey; = kp? —wt+¢ is the phase of the wave relative to drogue/hich is unmeasurable to it.
We note that each inter-drogue distance equation (4a) iosntiae unknowns);, -, w, andk.
Our strategy proceeds by deriving an equation which is onfyretion of measurement data
and the horizontal wavenumber, and then determining conditunder which the correct value
can be obtained. We later use this knowledge to determineetin@ining parameters. In what
follows, we make a notational distinction betwegr(the horizontal wavenumber interpreted as
a variable) and: (the correct horizontal wavenumber that we seek to det&min

First, we show a basic result about the evolution of integde distances. This helps us
formulate assumptions on the initial drogue locations t&enthe ensuing strategy applicable.

Lemma 4.2 (Inter-drogue distance boundf:at time ¢, the inter-drogue distance betweén

andj is bounded by < |£d;;(t0)| < 5, then this bound holds for ail > .
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Proof: We reason by contradiction. Assume there exists ¢, such thatsd,;(t.)| € {0, T}.
From (4a), we deduce thdf,(t) = 0 for all ¢ > t,, i.e., the inter-drogue distance stays constant.
However, this contradicts the fact that the inter-drogistattices are periodic with peridd m

We present the assumptions on ordering of inter-droguartists as well as lower- and upper-
bounds on initial inter-drogue distances.

Assumption 4.3 (Inter-drogue distance assumptioNgjthout loss of generality, we assume
0 <dj <di, <di, <dj,.

leasta away from all other drogues in thedirection, i.e.,

By Lemma 4.2, there exists an> 0 such that each drogue is at

dlxj(t) >« Vi € {17 s 7N}7 v] € {j17j27j37j4}7 Vi > tO

We assume that initially drogueand its4 nearest neighbors are within one spatial wavelength
of the internal wave, encapsulated %(to) < ;TZX wherek will be in [kmin, kmay DY Assump-
tion 3.1. Furthermore, by Lemma 4.2, this holds> ¢,. Similarly, we assume that initially

1 10 )
— -«
kmax 99k/’min
By using the dynamics of (4a) and Assumption 3.1, this comwlignsures that drogueand its

di;, (to) < m(

two closest neighbors are always within half a spatial wawvgih minuse of each other. e
1) Unmeasurable relative phas&Ve begin by showing that the unmeasurable relative phase
1; can be explicitly expressed in terms of any two inter-drodigtances, which we choose as

d;;, andd,;,, the distance derivativeg, andd;;, andk, as the sum of two functions:

Gilkod d dd ) = vk, d dbd )+ Ry ds dld ). (5)

v Wiy Yiger Yigio Yija » Wiy Yigao Yigro Yiga 0 Wi Wiy Yigro Yiga

The functionv captures the basic structure of; it is derived by taking the quotient of two
equations in the form of (4a) and solving fgr. One loses information of the sign df; and
d'

ij2
two solutions totan(y;) = C'is the physically meaningful one. Specifically,
iy, sin(“72) cos(“2) — iy, sin(“3) COS(M%))

d; sin?(Lz) — @ sin?()

when one takes the ratio of them. Th{i8, —r}-valued functionu determines which of the

V(kJ d’L]l ) dijg? dijl ’ d/zj2) = atar(

0, F(K,dy;,. dis,v) >0V F(K,dy,,di; ,v) >0,
p(kyd do d d) = (K, digys gy, V) (K, dijy» iy V)

» g ige g ige

> Piger g
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where
d

1j2
cos(%Jrv(K d. . d. . d. . d.))

> Pig1o Pigar ijre Pije

Next, we present a result on the propertiesvpivhich are needed to determite

F(k,dy,,,d. V)=

) g2 Tige)

Lemma 4.4 (Smoothness properties of the relative phdde§ter Assumption 4.3, the func-
tionsv and ;v are Lipschitz continuous with respect géi
19

Proof: One can show that and 9, v are differentiable with respect t%f—l if

ij2

kd, kd,, 7

0< % % 5 (6)

By Assumption 4.3, the drogues will be in a compact subset pfwhich shows the resultm
We refer to the Lipschitz constants ferando; v as L, («) and Ly («), respectively. In general,
1; iIs a complex trigonometric function &f. However, there are specific time instants for which

its expression simplifies considerably, as the followinguieshows.

Lemma 4.5 (Simplifying expression of the relative phasey. timetq, let d;j(tcrit) = 0. As-
sume that droguesand; are placed so that < |5d,; (teit)| < 5. Theny;(teir) = £5 —5d;; (teri)-

Proof: The only thing that we need to justify is the existencet@f. Once this has been

established, the explicit expression¥f(t.;) readily follows from (4a). From Proposition 4.1,
recall thatd,; is bounded and periodic. From (4b), we know that for @ng R.,, ¢j(t) <
—w(l— Ziu) < 0, where we have used the fact that< .1. Therefore, looking at (4a), one can
conclude the existence of;; within one periodl” when d;j(tcrit) =0. [ |
Recall that Lemma 4.2 guarantees that the assumptions of befrirare not difficult to ensure.

2) Distance rate quotientNext, we note that the ratio of inter-drogue distance equatiof
the form (4a), sayl;,,/d;;,, eliminatesw and a/z,. These observations lead us to define the
distance rate quotienfiunction as follows. Let

kd,;

dr(k, i, d,;) = sin (%) Cos (T + %)
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Then, define

kd, .. Kdzgd +wz(k. d. d. d. )

g1 g g zJ2

d/

ij3

drq(k,D) =

» g g g ij
d.

”3 + ‘V(k‘ d d d/ 1]3

g1 g g 112)
N b

ija

in(—5*) cos(— )
m(fﬁ%(m+MMd d. . d. . d.)) o dy,

in(“92) cos( )

in (% (“ )

S vk, dy,, d

» g g g l]z

dr(k, vk, d,; d,, dd ) d ) d

1710 120 i1 iga/ ) igs Z]d (7)

T akvK d o ddd ) d. ) d

» g Tiger igr e/ Tiga 1]4

74 cos

whereD = (d,;,, d;;,, dis., dij,, iy, iy, iy iy, ) IS the collection of all inter-drogue distances

and distance derivatives. The second equality comes framgithatdrq takes the same value

for either value that the function takes. By definitionk = £ satisfies
drq(k,D) = 0. (8)

In principle, there could be additional roots to this eqouatiThis is what we investigate next.
3) Determining the horizontal wavenumbe@ur goal now is to determine conditions that
guarantee that only is a solution to (8). The following result precisely chagaates how small
the ratiod;; /d;;, should be in order to guarantee tfais the unique value that satisfies (8). Its
proof is given in the appendix.
Proposition 4.6: (Range of suitable derivative ratios fagterminingk) Assuming internal
wave parameters are within the bounds in Assumption 3.1sidennoiseless inter-drogue dis-

&4<5akm

where 6 (e, kmin) = min { sin’ <’“m%a>,emax(kmma, Li(a), Ly(a))} > 0 and the functionemay is

tance and distance derivative measuremé&htsatisfying Assumption 4.3 an

defined in Lemma A.1. Then, only satisfies (8).

Note that the conditions of Proposition 4.6 are satisfied ata dbtained at time.; with
dgjl(tcm) =0, as in Lemma 4.5. The question now is to determine in whatvatearoundt.
the measured inter-drogue distance and distance degvdéta still satisfies the conditions of
Proposition 4.6. Among other things, this issue is impdrianorder to determine acceptable
sampling rates for the drogues. The next result answergjthastion.

Corollary 4.7 (Range of suitable times for determiniklg Assuming internal wave param-
eters are within the bounds in Assumption 3.1, considerefess inter-drogue distance and

distance derivative measurements @t such thatd; (te) = 0 and initial conditions satisfying
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Assumption 4.3. Therk uniquely satisfies (8) with dafi@(¢), for all t € (t¢rit—A, teric+A), where
A(0, Ls, Ly) = #4125, § is given in Proposition 4.6; > 22 (<2 +w), and0 < Ly < |dj;, (fer)|-

Proof: The magnitude of the second time derivative of any integdeodistance is bounded
by 222 (%% +w). Thus,

kzy

|di;, (1) — di, (terit)| < Lt — teri, |di, (1) — di, (terit)| < Lt — teri|-

ij1 ij2 ij2

From the analysis in Proposition 4.6, for a set of inter-dgieasurements there exists an open

. . dl - . . . : .
interval (—4,9) in -2+ containing0 wheredrq is strictly increasing. Thus, by the assumption

d’ .
’Lj2
thatt € (terit — A, teit + A), we have the following,
[
dij, (t + terit) Ls|t — teitl % _5
iy, (t+teie) | ~ Lo — Lalt —tem] ~ La(1—25)
which proves the result. [ |

Using Corollary 4.7 and the assumptions in Assumptions 3d 48, the following result
gives a sufficient sampling rate to satisfy the condition&ofollary 4.7.

Lemma 4.8 (Minimum sampling ratelf internal wave parameters satisfy Assumption 3.1 and
givena > 0 from Assumption 4.3, a bound on the minimum sampling rateCforollary 4.7 is
(14 (£)max)omax

- 9
sin?(B252) i {sin? (252, e 2 ©)

2 2 2ina7L1<a)7L2<a))}

fs,min >

C. Amplitude ratio and frequency via data fitting

In this section, we discuss how once the true horizontal waweerk is known, the param-
eters andw can also be found as described in the following result.

Lemma 4.9 (Determination of andw): Assumek is known. Forte, < tg, <tg, With tg, —
te, < T, compute noiseless measurements/pfand ¢; at these times by evaluating (5) and

using the method described in Appendix A. Thenand ;- can be found from

-1
Bu| _ [sin(vilt=)) 1 | ¥ilt=) | g, P (10)
B [sin(@i(te) 1] |wilty) b
wherew, X € {&;, &, &} such thatsin(y;(t,)) # sin(¥;(tx)).
Proof: First, given thaty, < 0 and;(t +T') = v;(t) — 27, sin(¢;(tw)) # sin(y;(tx)) for
somet,,, ty € {tg, te,, te, . Using the values ofy; and+); at these two timesteps, one can solve

for o andw using (4b) as described in the statement. [ |
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Remark 4.10 (Minimum sampling rateffor Lemma 4.9 to hold, one neeg@syi, > % Com-
paring this to Lemma 4.8, one can see that if (9) is enforceen the assumptions of both

Corollary 4.7 and Lemma 4.9 hold. °

D. Vani shing Di stance Derivative Detection Strategy

We gather the discussion above into Algorithm 1.

Algorithm 1: Vani shi ng Di stance Derivative Detection Strategy

Assumption: f; > f, min, initial distances satisfy Assumption 4.3 for some> 0, internal
wave parameters within bounds in Assumption 3.1
run at timet,, = fi for somex € Z>,
1 calculate wave propagation directiah,= atar(—d!: (¢.)/d;!!(t,))
2 if Zégg:; < min { sin® <km%a>,€max(kmina,L1(a),L2(a))} then
3 find £ by solvingdrq(k, D(t,)) =0
4 computey;(te) (via (5)) andyi(te) (via Appendix A), foré € {x — 2,k — 1, K}
5 choosew, X € {k — 2,k — 1, k} such thatsin(;(w)) # sin(¢;(X)) and solve

-1

& _ sin(yi(w)) 1
B sin(¢;(N)) 1

6 | setw=—f and< = ‘5—‘;1
7 end

Note that for Ste@3, any root finder method can be used to fihduiniquely; one suitable
method, for instance, is gradient descent. The followirsylteestablishes the correctness of this
strategy, which follows from Corollary 4.7, Lemma 4.9, and Rek.10.

Proposition 4.11 (Conditions for determining all paramejerAssuming thatf, > f min, In-
ternal wave parameters are within bounds in Assumptiona®d that the initial drogue locations
satisfy Assumption 4.3, then drogdecan determine the parametets W, and & uniquely
by using theVani shi ng Di stance Derivative Detection Strategy.
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V. ROBUSTNESS OF PARAMETER ESTIMATION UNDER ERROR

Here, we consider the effect of error in measurements ongpkcation of theVani shi ng
D stance Derivative Detection Strategy. Section V-A describes some of the sources
of error which occur during an ocean implementation of theppsed algorithm. Section V-B
shows that thé/ani shi ng Di stance Derivative Detection Strategy is able to
get a parameter estimates when the data has sufficiently esmais. This motivates our results
in Section V-C, which bound the errors in estimatesipf!, andw as a function of the errors
in the measured quantities. Finally, in Section V-D, we dev@ method for aggregating noisy

parameter estimates from different timesteps.

A. Sources of error from algorithm implementation

Here, we describe some of the sources of error which occineimlgorithm’s implementation.

Noise in measurements. In practice one can expect noise in measurements collected f
sensors. We assume the sensor noise is unbiased, Gaussiathaa noise at different
time instances and for different measurements are unetecel

Model uncertainty: The problem setup described in Section IlI-B assumes thagudis are
Lagrangian. In practice, as seen in Remark 3.2, drogues hdusite mass and drag
coefficient making them not perfectly Lagrangian, leadmg@ difference between the actual
drogue’s velocity and the ocean velocity. One can treatrfi@match as an unknown but
nonrandom error in the measurements of inter-drogue distaand distance derivatives.

Drogues not maintaining depth: We assume that the drogues have a controller that uses feed-
back on depth measurements to maintain a desired depth.oDwesy depth measurements
and a desire to minimize actuation cost, instead we assuateéhé drogues will be within
an interval around the desired depth. Although depth is mectly used by the proposed
algorithm, this inaccuracy affects inter-drogue distanwasurements. As above, one can
treat this as an unknown but nonrandom error in the integukeadistance measurements.

B. Existence of parameter estimates for measurements with er

Here we show that th@ani shi ng Di st ance Derivative Detection Strategy

is able to estimate the parameters from measurements wfibiesotly small error. We begin
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our study with the horizontal wavenumbkrbecause an estimate of it is needed for estimates
of the other parameters. The next result establishes thgtianeharacter of the functionirq.

The proof follows from the known fact, see e.g., [22], thamsy products, and compositions
of analytic functions are analytic, and quotients of analfiinctions are analytic, provided the
denominator does not vanish.

Lemma 5.1drq is analytic): For anyk € [kmin, kmay, drq is analytic on the seDy(k):

5 kd,j, , kd;; kd m
Dac(k) = {D | dj;, sin (T> d;. sin ( LY £ 0, sin(—2) # 0,

172

/{:d--
COS(% + ik, i, , iy, dij, dig,)) # 0, dy, # 0.

> g1 g0 g g
We now introduce two sets which help define the set of distacel distance derivativd3
where estimates df can be found in a neighborhood aroubd Let

2
Drea(®) = {D | 0 < d;j, <dy, < dyy, < d, < %,

wa . kd; kd, , ‘ ‘
d;‘j = Qk_Zu Sin < 2]> COS <7 + ¢l(k7dl]17d2]27d;]17d;]2)>7 J € {]17 s 7]4}}-

be the set of all inter-drogue measuremebtghat can come from one instantiation & =
(& w, k). Let Dy (k) = {D | O drq(k,D) # 0}. Combining Lemma 5.1 with the Analytic
Implicit Function Theorem [22] yields the existence of theplicit function for estimates of.
Lemma 5.2 (Existence of estimates of horizontal wavenumBenanyD &€ Dyea( ®)N Dy (k)N
Darc(k), there is a neighborhood @, NVp(®) C R® for which there exists an analytic function

kp : R® — R which satisfies
drq(kp (D), D) = 0,for D € Np(®).

The existence of the functiokp guarantees that can be estimated from inter-drogue
measurements containing errors, when the errors are sutficismall.

Remark 5.3: (Frequency and amplitude ratio estimates fraasarements with error§rom (5),
given an estimate of and measurements with errors, one can get an estimate Btirthermore,
using the method outlined in Appendix A, one can also eseémat Thus, using (10), estimates

for w and £ exist as long asin(¢;(t.)) # sin(i(ty)). .
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C. Robustness to error

In this section we bound the error in estimates of the hotaowavenumbert, amplitude
ratio -+, and frequencyv as a function of the error in the measurements.

1) Horizontal wavenumberfrom the analysis in Section V-B, for a fixed set of noiseless
measurement® € Diea(P) N Dyirr (k) N Danc(k), the corresponding noisy estimate fbfin a
neighborhood aroun®, Np(®), is given by the functiorkp. We wish to now restrict ourselves

to a set where changes in the functikp are bounded. Specifically, |éf,nq.qrv > 0 and define

Daeriv,Ungan P) = {D € Dreal(®) N Dyt (k) N Danc(k) | max , |Ocpnt, (D) kD (D)| < Upnd-arv} -

re{l,...,8
For eachD € Dyeriv.u,40,(P), Dy the analyticity ofkp, one can construct a neighborhood

.....

The set of measurements with small enough errofate, , (®) = Upen ND Uong.an( P)-

The next result provides bounds on the error in estimatibg the error in the measurements.

deriv,Upnd-drv

The proof is a combination of the Mean Value Theorem and thel@aGchwartz inequality [23].
Lemma 5.4 (Bounds for errors ik as function of errors in measurements}iven noisy mea-

surements of inter-drogue distances and distance devedd ﬁUbnd_dN(@) for someUpng-dry >

0, then the error between the estimathnroduced by th&ani shi ng Di stance Derivative

Det ection Strategy andk can be bounded by

[k — k| = [kp(D) — k| < v8Upnaan|| D — D][.

2) Amplitude ratio and frequencyAs seen in Lemma 4.9, with noiseless measurements, two
measurements of; and; are sufficient to exactly determing andw. However, with noisy
measurements, the question that naturally arises is whiftbee is a benefit to using more than
2 measurements. This is what we explore next.

Givenn noisy measurements of,,

Dilts,) = Uilte,) + ey(te,)s Vg€ {1,...,n},

we will construct estimates df andw using least-squares techniques onghelynamics in (4b),

Yilts,) sin(¢i(ty, ) 1

= 61 3 /81 — %; 52 = _w7
) B “u
Vi(tx,) sin(¢(ts,)) 1 ~——

N ~ J B

g
v w
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mimicking the technique in (10). The least-squares es@mate

B=WIw)= ' why = (WIW) W (¢! + e;) = Brue+ (W)W ey
Bewor

Explicitly, Seror IS given by
cpnty (Berror) = = Z'Zzl €D Siil(?ﬁz'.(tnq)) - Sin(wi‘(t/@))) 7
D g Sin(i(te, ) Q20— sin(¥i(ts,)) — sin(vi(ts,)))
ity (o) = 2z o 2orm Sl )) Ginili,)) = sinilt,))))
D a1 SI(i(te, ) (D= sin(¥i(ts, ) — sin(¢i(ty,)))

The errorferor is @ complex function of the distribution of. as well as the sampling pattern

(both spacing and the number of samples). Because the dtstribof )} is non-Gaussian and
unknown, we consider the case that all errorg/jrare at most. Furthermore, we assume that

the sampling pattern is uniform, meaning that
Sin@pi(t/{q)) = Z: 1(Sin<wi(tnn)) - Sin(z/}i(tnl))) + Sin(dji(tm))? VQ S {27 n-— 1} (11)
Let WLS be theWorst-case Least Squaresror (for estimatingv), defined by,
D g1 | Qg sin(@i(te, ) (sin(vy(ty, ) — sin(ti(ty,))))]
D g Sin(i(te,)) (32— sin(vi(ty,)) — sin(¥i(te,)))

In the right-hand side, we use (11) to exprds(¢;(t,,))}r—; in terms ofsin(v;(t,,)) and

WLS(TL, Sin(¢i<tﬁ1))v Sin(¢i (tﬁn))7 6) =€

sin(v;(t.,)). Note thatWLS is an upper bound oépnt,(Seror). Even though the asymptotic
dependence otWLS on n is difficult to characterize, the next result provides bautioat are
sufficient to answer the question that motivates this sectis proof is given in the appendix.
Lemma 5.5 (Worst-case estimation error grows with number @somrements):.Consider any
maximum errore > 0, wave parameter$, w € R, number of measurementse Z;, and range
of measurementsin(t;(t,,)) < sin(¢;(t.,)) € [—1,1). If the set of measurements of are

distributed according to (11) and the errorsyifhare bounded by, i.e.,

[0(tn,) — Vilte,)| <& Vg e{l,....n},
then WLS can be bounded between two increasing functions ab

 Smaxt|sin(y(ts, )], [ sin(@i(tn, )} n —
(sin(¢i(ts, ) — sin(Yi(ts,)))n

€ —1 < sin(¢;(ty,)) <0,

) > WLS(n, sin(v;(ty, ), sin(w;(t.,)), €)

>

3sin(¢;(tr, ))(n+3)(n—2) .
€max (2(sin(wi(tnn))flsin(wi(tnl)))n(n+1)’ 1) 0 <sin(di(ts)) < 1.
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Worst—case error factor v.s. number of measurements us Worst—case error factor v.s. number of measurements u¢
1,004 _ ] . . . . . . ————
. —— Measurements in [-.23,.5] _ 13t /ﬂ/" J
g 100351 |- — — Measurements in [-.35,5] 1 2
< & 12.5r
= 1.003r 1 u—
IS 5 12r
= 1.0025f 1 =
$ O 115¢
1.002 Q
@ &1t
P 1.0015} Q ,
J2 1.001 B loer |
5 1.001f 4
= g o |
1.0005 , -
9.51 / l —— Measurements in [.4,.#5]*
1t
L 9t L L L L L L L L L d
50 5 10, 1! 20 25 30 35 40 45 50
Numsber of measurements used

10 20 30 40
Number of measurements used

Fig. 5. In the uniformly distributed measurements case, the worst cesefactor (amount multiplying:) is an increasing

function of n.

Lemma 5.5 is validated by Figure 5 which shows tRN&LS is an increasing function of
under uniformly distributed measurements. Given that tegges’ measurements are roughly
uniformly distributed, that the distribution of errors iff is non-Gaussian and not necessarily

unbiased, and Lemma 5.5, we use two as the number of measusetoeestimates and Zlu.

D. Parameter estimate aggregation

In this section we consider the task of aggregating paranestenates. Before we can tackle
this, we must define the distributions for measurementse Heg assume that the the non-random
errors stemming from the dynamical assumptions are smalive to the random sensor noise.
As seen in Remark 3.2, the mismatch in dynamical models nafpdtomes small. The error
associated with the depth mismatch can be made small by iclgoastighter depth-keeping
interval. Thus, given an inter-drogue distantand distance derivativé, we letd, d’, denote

the measurements afandd’ by a drogue, with the following Gaussian error model

d=d+eq, €eq~N(0,07), (12a)

d, = d/ + €q, Eq ~ N(O, U?I’)‘ (12b)

We assume that the variances are a function of the specifsbsensed and are known.
Within one period of the wave, théani shi ng Di stance Derivative Detection
St r at egy generates many estimates of the parameters (an estimatedsated every time that

the condition in Stej2 of Algorithm 1 is satisfied). Furthermore, drogues may bearg over
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the course of several periods. Therefore, it makes sensefoove the estimation by fusing
together estimates obtained at different timesteps. Hewethe synthesis of the appropriate
fusion mechanism is challenging because the distributioestmates of the parameters is non-
Gaussian due to the nonlinearity of the dynamics and theatipas within the algorithm. This
is the problem that we tackle next, beginning with an infdref@scription.

[Informal description]: Because the parameters’ distributions are only implicigy d
fined and non-Gaussian, we create an approximation up toieedewderp € Z-;.
Using on the fact that measurements are Gaussian, we cortipugxpectation and
variance of this approximate distribution and them to prlypieise parameter estimates.
Given the fact thakp is analytic onVp (@), we use Taylor series to generate approximations
of arbitrary order. Formally, given an arbitrary analytimétionprp, : R®* — R with prp(D) =

pr, the pth-order Taylor series expression aroudds given by

prp(D) = pr+73(D) + Rp (D), (13)
where
pr(D:D D), Rp(D) =pry™ (DD - D),

for someD* € [D, D] and parameter valugr, where

8 8

. J%prp(D
prif(D:D-D) =) - pD)

cpnt,. (D) - - cpnt (D)

ri=1 rq=1

(cpnt,, (]5) —cpnt,, (D)) ... (cpnt, (f)) — cpnt, (D)).

For prp, = kp, equation (13) represents the noisy parameter calculated & set of noisy
measurement®. Since Taylor's Theorem provides existence of the trunsaterm but no
constructive way to determine it, we seek to investigate hogurate theth order approximation
TE (D) is. Specifically, the form of the function, along with knowithe Gaussian distribution
of the measurements, allows one to calculate the expettatid variance of this (approximate)
distribution of the parameter. In practice, one cannotegodlculate these quantities, because
they require partial derivatives which must be evaluateth@noiseless measuremehiswhich

are not available. However, by usifig one may approximately determine these quantities.
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Determining the expectation and variance of individualapagter estimates with the method
described above allows us to devise a strategy to fuse thget @ more accurate approximation.
Formally, given independent random variablesand z, with meanE[z,] = E[z,] = © and
variancesVar|z,| = 0%, Var|z,] = o3, consider the optimal aggregating functiOptAgg by
Z1 2
2tz 1 >

1 10 1 1
7" T

2 2
g3 01

OptAgg(z1, 07, 2,03) = (

Here,cpnt, (OptAgg) is the new random variable argnt,(OptAgg) is its variance. This is the
convex combination of; andz, that results in the random variable with the smallest vagan
We are now ready to define the h- Order Par amet er Fusi on procedure. Given a
sequence of noisy parameter estimafgs,, D,) | ¢ € Z>,} determined from noisy measure-
ments,pr, = pI‘D£<f)g>, this procedure generates a sequence of estin{gié's| ¢ € Z>,} by

means of the following iterative aggregation process

(ﬁ\r}g—l-la Var[pArZ_l]) = OptAgg(pArf, Var[pArﬁ], Is\re_u - E[Tp

Dyys

(D), Var[Th,,, (Desa)]), (14)

wherept} = pr; — E[T} (D1)] and Var[pt}] = Var[T} (D;)]. According to this procedure, the
pth-order estimater” is sequentially updated by optimally combining the presi@ggregated
value with the next parameter estimate (after the expeci®sl ltas been removed). The next
result, whose proof is given in the appendix, establislsesahvergence under suitable conditions
on thepth-order approximation opr.

Proposition 5.6 pth-order aggregation):For noisy inter-drogue measuremer{tﬁ)g | ¢ €
Z>1} containing additive Gaussian noise according to (12), rassthere existr > 0 and
ey > 0 such that the following bounds hold uniformly for &lic Z-,

|Elprp,(Ds) = T, (D)) — pr| < es, Var[prp, (Do)} < ev.
Then, the iterates (14) generated jiiyh- Or der Par anet er Fusi on satisfy

elim Pr(|pt) —pr| <ep+e =1, Ve>D0.
—00

Note that forp = 1, one is estimating the distribution of the parameter as a su@aussian
distributions because there are only first-order terms @nftinction7" in (13). Similarly for
p = 2, the distribution is the sum of Gaussian distributions psesond-order Chi-squared

distributions. Chi-squared distributions have non-zenpeesation, and so, théecond- Or der
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k Fusi on outperforms the~i r st - Or der k& Fusi on because it estimates what the distri-
bution’s bias is and subtracts this from individual paraneistimates before fusing them.

Figure 6(a) shows the evolution pf h- Or der Par anet er Fusi on forp=1andp =2
for estimates oft generated by th&/ani shi ng Di stance Derivative Detection
Strat egy. The z-axis corresponds to the number of estimates: dfised together. Each
estimate is obtained at a different instant of time. Noté tHath evolutions, after only a small
number of fusions, have a smaller error than the individuahsarements, and that the evolution
corresponding t@ = 2 has a smaller asymptotic error. Note that Proposition 5réotsdirectly
applicable to make guarantees on convergence becausegheitifanctions that give estimates
of k£ (cf. Lemma 5.2) andv and o (cf. Remark 5.3) have domains that are notRfl This
implies that the Gaussian noise may occasionally be toe lesgporoduce estimates. However,
as the standard deviation of the measurement noise getesjria fraction of acceptable noisy
measurements increases and so the execution oft theOr der Par anmet er Fusi on more
closely mirrors Proposition 5.6. One can see that the simounla are in line with the result.

Figure 6(b) shows the absolute error pifh- Or der Par aneter Fusion for p = 1
andp = 2, usingk estimates from th&ani shi ng Di stance Derivative Detection
St r at egy, as a function of the standard deviation in inter-droguéadice and distance deriva-
tives measurements, which depicts that 2 outperformsp = 1.

Finally, Figure 7 compares an inter-drogue trajectory gatieel from true wave parameters with
the trajectory that would have occurred from estimatedrpatars. Specifically, theani shi ng
Di stance Derivative Detection Strategy and theSecond- Order £ Fusion
method are used to generate and fuse estimatels after which the other parameters are

estimated. One can see that the trajectory closely tracksrtie trajectory.

VI. CONCLUSIONS

This paper has considered the task of estimating the pHysa&rameters of a horizontally
propagating ocean linear internal wave using a group ofuregWe have established an explicit
analytic description of the evolution of a drogue under tlevfinduced by the linear internal
wave. This result implies that inter-drogue distances\evah a purely periodic way. We have
built on this knowledge to design théani shi ng Di stance Derivative Detection

St r at egy. This strategy relies on the fact that inter-drogue distasherivatives become close
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Evolution of First-Order k Fusion and Second-Order k Fusiol Absolute error In k as a tfunction ot errors In measurements
-+ Individual estimates 5

g 0.025 = First-Order k Fusion | x 10
g o Second-Order k Fusion ’é\
x 0.02r = 14
[} ~
= X
1 0015 £
5 5 £ o5
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@ x =
20005 © 2

x e Q

Ok x X X X Xk s g 0.2

obc - 0°850055585085555x555555) 0 I 0L
0 50 100 150 stan. dev. in dist. derivatives (m/s) 5~ g stand. dev. in dist. (m)
Number of k measurements fused X 10"4
(@) (b)
Fig. 6. (&) showspt h-Order Paraneter Fusion applied to estimates of from Vani shing Di stance

Derivative Detection Strategy, forp=1andp = 2. After only a few estimates are fused, the error is already much
smaller than the individual estimates. Algo,= 2 converges to a smaller error than= 1. (b) shows the absolute error of
pt h-Order Paraneter Fusion applied to estimates df from Vani shi ng Di stance Derivative Detection

Strat egy as a function of the standard deviations in measurement noise, highligiting = 2 outperformsp = 1. In both

' 2 1 a4 _ 1 _oom1 . L
figures the parameter values, taken from [1], re {5 -, == andw = 555 = The drogues are in a line, initialljom

apart from the closest drogues on either side. In (a), the standeiatides in distances and distance derivatives.aten and

.00057, respectively. In (b) for each set of standard deviatidiis)00 estimates were fused.

to zero multiple times during one period. Under noiselesasuements, we have established
that the algorithm exactly computes the internal wave patars and derived conditions on the
minimal sampling rate for this to happen. Next, we have dattarzed the robustness of our
strategy. Under measurements with error, we have boundedrtbr in the parameter estimates
as a function of the errors in the measured quantities. Foicé#se of measurements corrupted
by additive Gaussian noise, we have also developed a gesehnaime termeght h- O der
Par anet er Fusi on for aggregating parameter estimates based on determimngh-order
approximation of their distribution. The method resultsmaller errors than the individual esti-
mates generated by théani shi ng Di stance Derivative Detection Strategy.
Future work will be devoted to the extension of our algorittmseveral directions: to include
information from the control actuation employed to maintdie depth of the drogue, to consider
general drogue dynamics not necessarily Lagrangian, astddy scenarios with multiple internal
waves present, including the possibility of weakly nondingvaves. We are currently exploring

the practical implementation of our approach in a networkiroigues under development at the
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Inter—drogue distance evolution from estimated parameters

—— True evolution
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Fig. 7. Comparison between inter-drogue trajectories generated freeh @f true wave parameters and from the parameters
estimated by thé&/ani shing Di stance Derivative Detection Strategy and theSecond- Order & Fusion
method. Here, the standard deviations in distances and distance gesvate.01m and.00017, respectively. The estimated

trajectory closely matches the true trajectory.

UCSD Scripps Institute of Oceanography [24]. Finally, wehwis determine general conditions

that allow us to employ the proposed algorithm in a broadasscbf dynamical systems.
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APPENDIX

The appendix contains some basic results used in the page¢hamproofs of the main results.

A. Derivative estimation from noisy data

Here, we consider estimating an analytic functionR — R and its first (time) derivativg’ :

R — R from n evenly sampled measurements in the sampling winfipwhen the measurements
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are corrupted by additive Gaussian noise. So that our meshealisal, at any given time we only
use then most recent measurements. Additionally, for computatioe@sons, at every timestep,

we relabel the current timestep as= 0 and the times of all other measurements accordingly,

.....

flte) = f(te) +e(te), e~ N(0,07).
The method we use is a polynomial smoothing filter approa&j f2cause this allows us to
justify that the derivative estimates are unbiased Gangsiadom variables. Fgr < n € Z>,,

we construct gth-order polynomial filter fromn evenly spaced noisy measurements over the

-----

~ 00 . J
fe)y | o 8 f(to) > F(t0)5 €l
. - . O O . . + . _|_ .
~ o0 y t]n,
_f(tnfl)_ _1 tnfl s t];—l_ _]%!f(p) (tO)_ _Zj:p+1 f(])<t0) 4! l_ | €n—1
~ 7N ~ ~ 7N ~ ~——
F Vv G €hias €random

More compactly, this can be written 2= VG + cpias+ €random ThE least-squares estimate for

f(to) and f'(to) are the firstepnt, (G), and secondgpnt,(G), components of the vectda,
f(to) = cpnty(G) = cpnty (VI'V) ™'V (F — €nias — €random),
J'(to) = cpnty(G) = cpnty(VIV) 'V (F — €vias — €random))-
We ignore the bias which arises from considering only gtieorder expansion of because,
for a fixedp, it can be made arbitrarily close to zero by choosing the sam@indow 7" small

enough. With this observation in mind, the estimatef@f,) is an (unbiased) Gaussian random

variable with variancer;, = cpnt, ,((V'V)")o>.

B. Proofs of results from Sections IV and V

Proof of Proposition 4.1: Let ¢ (t) = kp*(t) — wt + ¢ be the relative phase between the

wave and drogue. Then (2) can be writtenyas= w(zi siny — 1) . Integrating, one gets

P d t
S
/ a.—ZW/dT,
Oz—usmg—l 0

atan(a/zu — tan(C/Q))
1 (a/z)° 1 (a/z)’

P
Po

= wt,
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where, = (0 ) + ¢. Manipulating the last expression, we arrive at

) =
= 2atar< —4/1- Zu)ztan <\/ 1— (a/zu)QWt + Ao)) (15)
Ay = atan(m (Z% — tan (W)))

Note, however, that this function is discontinuous or, ihestwords, the expression fa¥(t)
above is only valid if the argument of the tangent functiomishe interval[—7, 7]. A general
expression for)(t) can be obtained as follows. Since the period of the tangemttifun is,

we deduce that the fundamental peribbf ¢ is T = ——22—. Note that at

wy/1-(a/z)*
—2A
b= nm 0 (16)

w\/l—(a/zu)27

with n € Z odd, one has th 1*(2“//2”)2@ + Ao = ¢, and hence (15) jumps fromn to .

So, to obtain an expression ¢ft) which is valid in general, we need to subtraet from (15)
every timet crosses one of the critical times (16) or, in other wordsjrsugh the quantity

F— L (r—2A)
27_‘_\‘ wy/1—(a/zu) I 1J - \‘t AO ]_J .

T T 7 32

Finally, note that the initial conditior\, jumps from—7 to 7 at kp“(0) + ¢ = n7 for n € Z

odd. Thus, in order to makd, change continuously with the initial conditions, we subtra

away fromA, the quantityr LWJ The result now follows. n
The following auxiliary result is needed before we preséwat proof of Proposition 4.6. We

begin by definingemax : R? ; — R,

Emax($7 Cl7 02) max R(.Tf v, Cl? CQ) 7 (17)
Y€E[0,I' ()]

with I'(z) = 2 — sin(z) cos(x) and

L arcsin(2(z—))—= Ba -
min ) T>x—v>0,
R(l’, v, C, CQ) = _’y_{ C1 Ca 4
0—22 2r > x — 1y > %

Lemma A.1:For anyz € (0,27), C1,Cy € Ry, € € (—emax(z, C1, C2), emax(z, C1, C2)),

1
5 sin(2(x 4+ Che)) — x 4+ Coe <0, (18)
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Proof: Note that for anyx > 0, v € (0,T'(x)) and C;,Cy € Ry, R(x,v,C1,C) > 0,
ensuring thakma(z, C1, C2) > 0 as well. Fory such thatr — v > 7, we know that for any
€€ [—R(ZE, Y5 Cla CQ)a R(IE, e Cla CZ)]!

1 1 Co(z — v —
—Sin(2($+016))—$+026§——$+LM:—7§0.
2 2 C

For v such that) < x —~ < %, note that for any € [-R(z,v, C1, Cy), R(xz, v, C1, Cy)],

N |#—=

sarcsin(2(z — 7)) —
b

which completes the result. [ |

1 1
isin(Q(quC’le)) — x4 Che < §sin(2(m—|—C’1 —x+v=0,

Proof of Proposition 4.6: The proof proceeds by establishing drq(k, D) > 0, for all
K. € [kmin, kmax- ONce this is shown, it is easy to see that ohlgatisfies (8) sincerq is strictly
increasing as a function d&f. To prove this fact aboutrq, it is enough to establish that
O dr(k, v(K, dijp dij2> d;jp d;‘jQ)a dijg) Og dr(k, v(K, dijp dijg? d;jp d;‘jQ)a dm)
dr(k,v(k,d,. d,. . d.  d.).d.) dr(k,v(k,d,. d.. . d. d.).d.) "

) g g ige Tige /)y igs » g gy Tigr Tige ) Tiga

as long as

sgn(dr(k, v(k,d;; . d.. . d.. . d.) d.))=sgn(dre(k, v(Kk,d; d.  d. d.)d.), (29)

» gy Miger igro Tige /) g3 ) g ige g ige ) iga
which corresponds to

—T Kdi]s s k,dij4 s k,dij:), 3T kdih
e(— - —=2,- - —= —— = — — — )
V(z 2 2 Q)U(Q 2 772 2)
’ sin Kdi];l o—d. .
This set admits alld',ﬂ e | — o0, ( - i %)Y By hypothesis
@iz sin(“552 ) sin(&(d,, —d, )
2 194 179

and hence (19) holds. Sinek;, < dm,Qits sufficient to show that
P O dr(K, v(K, dij1>dij2> d;jp d;jz)a dijg) <0
us \ dr(k,v(K,d;. ,d.. . d.. . di. ) d,. ) '

> Wi Wi i1 Yije

Ysin(£(d

!
2 iy

1/
3y

is in this range

R E!
After some calculations, we obtain
9 O dr(K, v(K, dyj, . dijy, dij,  dij, ), di,) _
us \ dr(k,v(K,d;; ,d.. . d.. . di. ),d,. )

110 ije Vig1r ige

(20)

» ig3
sin (552) cos (52) — 558 sin (F +v) cos (S52 ) + K +0)

2 sin? (&;3) 2 cos? (MT“ + v)
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From Lemma 4.5, whelg”—1 =0, thenv =7 — % andggv = ——*

32

: u de ZJ
) (9&(11'(&, (K’ dl]l’dlj2’d;]1’dgjz)’dij3) _ SN ( 3) CO8 ( 2 3) :
ij3 dr(&, ‘V(k‘ d...d.. . d. . d. ), dijg) 2 sin2 (kdzus )
sin (—K(d”?’;di“)) coS ( k(d i —dij))
2 Sin2 (K(d'ia 5 dzn)) ’
where both summands of which are clearly negative ensuhiegdesired partial derivative is

kd, d;.
2]1 + € andak'\/ = —% -+ €9.

> Figer g Tige g

ij1 ) K(dz]32d131)

negative. With this in mind, we write in general that= 7 —

Similarly, we rewrite (20) as

. okdy; kd,; ; kd;;
<8K dr(K V(K’ dljl’dljz’ dg]l’d;N)’ dij3)> __ sin (TS) COS ( 2 3) B TS +
v dr(k‘ V(K dl]l’ dl]z’ dé]l’ dgh)’ dijs) 2 sin? (&2”3)

2 sin? (—K(d”?’2 igy) + 61)

The unchanged, first summand is still negative. A sufficiemtdition for the whole expression

. K(dy,—dy k(d;;.,—d;
sm( ( 332 31) +€1) COS( ( 13 Jl)

being negative is that the second summand is negative taogUemma A.1, we can ensure
that (20) is negative Whebﬂ

4. The fact thaty > 0 is seen from the definition af,.x and the assumption that < - LU |

2]4

Proof of Lemma 5.5:To reduce the length of expressions in the proof, we rewniéedata

d . .
< emaX<K(”3—”1 Ly, L2> which completes the expression for

with the following notation,

- —1
yqzﬁlxq—i_ﬁQ—i_Eq? xq:z_l(xn_'rl)_'_xl? vq6{177n}7
r1 =sin(Y;(ty,)), @p =sin(¥itn)), z4=sin(¥;(ls,)),
B ~ ~ wa
Yq = %’-(tnq), €q = ¢;(tnq) - ¢£(tﬁq>7 61 = 2_7 BQ = —Ww.
u
Then,
22:1 o :—1(r l(ﬁn )"‘xl |

WLS(n, x1, 2, €) = e —
>t (g (g — @) + ) (B2=pt 200 (0 — )))
e max{|z1], [zl } 3 g 1Zr:1|q—7“’

- 112 (%:1 :611) n?(n +1)

_ Smax{|z], |z, |}(n — 1)

(xp — 21)n ’
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which is clearly strictly increasing in becauseZZ:1 S lr—q| = w WLS can be

bounded below by

WLS(n, 20, €) > Doz ol Z2))|

Z 2Dy Ty — )

for any z; < z,, € [-1,1). Additionally, for any0 < z; < z, < 1,

WLS(n, z1, T, €) = €= - n-l — .
Zq_1 (B (@ — 21) +20) (2P 307 (g = 1))
- " or—1
Z|Zn_1 wm o)t a)g =)+ D (g (=) ) (g = )]
r= r=q+1
> ¢ % 2 =1 | Zr 2q xl T’)‘
(= i(xn—mwl)(xz 2o (g =)
B 2R S| (n+ 3)(n — 2)
112(%;—3011) (” +1) 2(xn — x1)n(n + 1),
which completes the result. [ |

Proof of Proposition 5.6: First, we note thapiy,, can be written in the following non-

recursive way:
Z€+1 Pqu(ﬁq)*E[Tqu(ﬁq)]
q=1 Var[Tg, (Dy)]

Z£+1 1 _
q=1 var[T]gq (Dy)]

~p
PTy 1 =

Thus, the variance afiy, , is

/41 Var [prp (Dq)—E[TS (Dq)” ¢+1 Var [prp (Dq)] {+1
— Zq=1 er[T]gq(ﬁq)Pq Zq=1 Var[Tp, zﬁq)P v Zq 1 Var[Tp D,)]2
Var[pt), ] = S - = (3T 1) = (e L e
q=1 Var[Tf, (Dy)] q=1 Var[T§, (Dq)] q=1 Var[Tg, (Dq)]
From there, we notice thaim,_,, Var[pr}] = 0. Now we bound the expected value@f — pr:
. prp, (Dg)~E(Tg, (Dy)) o | Elprp, (Dg)~E(Tp, (Dg))—pr]|
. Var(T% (Dg)) Var[T5 (Dg)]
|Elpif,, — prl| = E[Z S — —pr” e < e,
¢=1 £=q=1 Var(prp, (D)) g=1 4=1 Var[prp, (Dg)]

This implies that for alle > 0, lim,_,, Pr[|pr} — E[pt}]| < €] = 1. Also,
Pr(|t} — B[5iY)| < ¢ < Pr{|pi} — B[if| + |5, — pi][] < e + ez,
= Pr[|t) — E[pt] + | B[] — pr ] < e + ez,
< Pr{|i¥ — pr| < e + e,

which shows the convergence result. [ ]

April 24, 2013 DRAFT



