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Robust, distributed estimation of internal wave

parameters via inter-drogue measurements

Michael Ouimet Jorge Cortés

Abstract

Internal waves are important to oceanographers because, asthey travel, they are capable of dis-

placing mass, such as plankton and small fish. This paper considers a group of drogues estimating the

physical parameters that determine the dynamics of an oceanlinear internal wave. While underwater,

individual drogues do not have access to absolute position information and can only rely on inter-

drogue measurements. Building on this data and the knowledge of the drogue dynamics under the flow

induced by the internal wave, we propose theVanishing Distance Derivative Detection

Strategy to allow individual drogues to determine the wave parameters. We analyze the correctness

and robustness of this strategy under noiseless and noisy measurements, respectively. We also introduce a

general methodology, termedpth-Order Parameter Fusion, for combining parameter estimates

obtained at different times and characterize the resultingerror. Several simulations illustrate our results.

I. I NTRODUCTION

Internal waves are waves that propagate within a fluid, rather than on its surface. They

correspond to moving sinusoidal oscillations in the boundary surface between two layers of

a stratified fluid. Of particular relevance are internal waves that move along ocean pycnoclines,

which are surfaces of constant density where the vertical rate of change in density is largest.

Such internal waves are biologically important as they transport plankton and other organisms

and create dense phytoplankton blooms. Because pycnoclinesare typically deep below the ocean

surface, it is difficult to collect data about internal waves.
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This paper tackles this problem using a group of drogues drifting underwater near the internal

wave’s interface to determine the physical parameters thatdefine its motion. A drogue is a

Lagrangian drifter capable of actuating its depth by changing its buoyancy. While underwater,

drogues are subject to the flow induced by the motion of the internal wave and do not have

access to exact location information. Figure 1 presents a pictorial illustration of the problem

setup. The basic premise of the paper is that drogues should be able to extract the information

contained in the evolution of the inter-drogue distance anddistance derivative measurements to

characterize the internal wave. To the authors’ knowledge,there is no algorithmic procedure

available in the literature to solve this problem.

pycnocline
ocean floor

ocean surface

drogues
internal wave

zl

zu

λ =
2π

k

a

(a) Schematic of drogues and internal wave (b) Plankton patchiness induced by internal wave

Fig. 1. For a horizontally propagating ocean internal wave, (a) shows itsspatial structure at a fixed instant of time whereas (b)

shows its temporal structure at a fixed horizontal location. In (a), one can see a vertical cross-section of the ocean perpendicular

to the wave propagation direction. A group of drogues float at a constant depth (but not necessarily along a straight line) and

do not have access to exact location information. Our objective is to provide drogues with mechanisms that rely only on the

relative measurements between them to determine the parameters that uniquely define the internal wave. In (b), one can see data

at an anchor station off Mission Beach, CA, taken on April 19, 1997. The plankton’s chlorophyll fluorescence (color scale) is

depicted as a function of depth and time. Higher fluorescence corresponds to denser patches of plankton in the troughs of a

horizontally propagating internal wave. Figure courtesy of Peter Franks, see [1] for additional information.

Literature review: Internal waves are known to be associated with high concentrations of

various types of planktonic organisms and small fishes [2], [3], and this makes studying them

relevant to oceanographers [4], [1], [5]. Scientists widely use drogues drifting passively as

monitoring platforms to gather relevant ocean data [6], [7], [8]. Recent work [9] explores
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the possibility of actively selecting tidal currents so that drogues can autonomously reach a

desired destination. An increasing body of work in the systems and control literature deals with

cooperative networks of agents estimating spatial naturalphenomena, including ocean [10], [11],

[12], river [13], and hurricane sampling [14]. In these scenarios, agents with limited actuation

capabilities are subject to strong flowfields. In the problemconsidered in this paper, drogues are

able to actuate their depth through buoyancy changes, but are completely subject to the force

of the internal wave in the flow-wise direction. Because of this, the task of determining the

wave parameters can be seen as a data fitting problem [15], [16]. Due to the periodic nature of

the inter-drogue distance trajectories, our problem has connections with least-squares spectral

analysis problems [17], [18]. In general, however, the factthat the wave parameters appear

nonlinearly makes the determination of the exact parameters challenging.

Statement of contributions:We consider the problem of estimating the physical parameters

(propagation direction, horizontal wavenumber, frequency, and relative amplitude) of a linear

internal wave that is propagating horizontally. A group of underwater drogues with no absolute

position information are subject to the flow induced by the internal wave and can only measure

inter-drogue distances and distance derivatives. Because the drogues only have access to these

relative measurements, they must rely on the presence of other drogues to achieve their task.

The benefit obtained here by ‘the power of many’ in the estimation of the ocean flow field is an

original feature of our paper. Our first contribution is the establishment of an analytic expression

for the dynamic evolution of the drogues. This expression shows that the motion of each drogue

corresponds to a sum of a linear function (which is common to all) and a periodic function

in time. In particular, this result implies that the distance function between any two drogues is

periodic (with a different period than the internal wave). This analysis sets the basis for our second

contribution, which is the design of theVanishing Distance Derivative Detection

Strategy. This algorithm builds on the expression for the drogue dynamics and the fact that

inter-drogue distance derivatives become close to zero multiple times across a wavelength to

estimate the physical parameters of the internal wave. To our knowledge, the proposed algorithm

is the first and only method capable of solving the problem formulation described above.

We establish the correctness of theVanishing Distance Derivative Detection

Strategy in the case where the inter-drogue measurements are noiseless. Specifically, we make

precise the range of times along the period of the internal wave when our method can determine
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exactly all the parameters. This allows us to give a bound on the minimum required sampling

rate. As a third contribution, we characterize the robustness of our strategy by providing explicit

bounds of the errors in the parameter estimation as a function of the errors in the acquisition of the

inter-drogue measurements. Finally, we develop a general scheme for aggregating the estimates

of the parameters provided by our algorithm at different time instants under noisy measurements.

Even though we assume the measurement noise to be Gaussian, the highly nonlinear nature of

the drogue motion induced by the internal wave makes the distributions of parameters non-

Gaussian and therefore, challenging to aggregate. Our aggregation scheme, termedpth-Order

Parameter Fusion, is based on determining apth-order approximation of a parameter’s

distribution. Individual estimates are then fused together assuming thepth-order approximation

is exact. The aggregation scheme results in smaller errors than the individual estimates. Several

simulations illustrate our correctness and robustness guarantees.

Organization: Section II introduces some basic notation and preliminary notions on derivative

estimation. After introducing the internal wave and droguemodels, Section III describes the prob-

lem statement. Section IV provides the design of theVanishing Distance Derivative

Detection Strategy and the analysis guaranteeing its correctness in the absence of noise.

Section V establishes the robustness of the algorithm undernoise and introduces thepth-Order

Parameter Fusion to perform the aggregation of estimates. Section VI gathersour conclu-

sions and ideas for future work. Finally, we gather in the appendix a brief exposition on derivative

estimation and the proofs of the main results.

II. PRELIMINARIES

Here we present some basic concepts used in the paper, starting with some notational conven-

tions. LetR, R>0, Z, andZ≥1, denote the sets of real, positive real, integer, and positive integer

numbers, respectively. Forx ∈ R, let ⌊x⌋ ∈ Z denote the largest integer satisfying⌊x⌋ ≤ x.

For a continuously differentiable functionf : Rd → R, we let ∂kf denote the partial derivative

with respect to thek-th component. We refer to real-analytic functions simply as ‘analytic’. For

a vectorv, we define thek-th component ascpntk(v).

A reference frameΣg in R
3 is composed of an originpg ∈ R

3 and a set of orthonormal

vectors{exg , eyg , ezg} ⊂ R
3. A point q and a vectorv can be uniquely expressed with respect

to the frameΣg and are denoted byqg andvg, respectively. Next, letΣb = (pb, {exb , eyb , ezb})
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be a reference frame fixed to a moving body. The origin ofΣb is a pointpb, denoted aspgb when

expressed with respect toΣg. The orientation ofΣb is characterized by the rotation matrixQg
b

whose columns are the vectors{exb , eyb , ezb} expressed with respect toΣg. With this notation,

a change of reference frame is given byqg = Qg
bq

b + p
g
b andvg = Qg

bv
b.

III. PROBLEM STATEMENT

This section formulates the problem under study. We begin bypresenting the basic model for

the motion of a linear internal wave. Then, we describe the capabilities of the group of drogues

and discuss the effect that the internal wave has on their dynamics. With these ingredients in

place, we formalize the distributed parameter estimation problem.

A. Internal wave model

Let Σg = (pg, {exg , eyg , ezg}) be a global reference frame defined as follows: the originpg

corresponds to an arbitrary point at the surface of the water; the vectorexg corresponds to the

direction of wave propagation, which is parallel to the ocean bottom, andezg is perpendicular

to the ocean bottom, pointing from bottom to surface. For convenience, the coordinates induced

by Σg are denoted by{x, y, z}.

As in Figure 1, an internal wave is a wave which travels beneath the surface of the ocean,

along a surface of constant water density called pycnocline. We consider an internal wave

with amplitude a, frequencyω, propagating horizontally in thex-direction with horizontal

wavenumberk, and at the mean depth−zu. The wave depthzw as a function ofx and t is

zw(t, x) = −zu − a sin(kx− ωt+ φ).

The parameterφ, termed initial phase of the wave, effectively shifts the wave relative to the

reference(x, t) = (0, 0). Because of our choice of reference frame, there is no motion in the

y-direction. The standard model [4], [1], [19] assumes that vertical velocity varies linearly with

depth. This, coupled with the conservation of mass law for anincompressible fluid, gives rise

to the following expressions for the horizontaluu and verticalwu velocities of the upper layer,

uu(t, x) =
ωa

kzu
sin(kx− ωt+ φ), (1a)

wu(t, x, z) = −zaω
zu

cos(kx− ωt+ φ). (1b)
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Likewise, the horizontalul and verticalwl velocities of the lower layer are

ul(t, x) = −ωa
kzl

sin(kx− ωt+ φ),

wl(t, x, z) =
z + zu + zl

zl
aω cos(kx− ωt+ φ).

Assumption 3.1 (Bounds on wave parameters):The linear internal wave model is only accu-

rate for 0 < a/zu ≤ (a/zu)max = 0.1. Additionally, the spatial wavelengths of internal waves

range from hundreds of meters to tens of kilometers [5]. Since k is inversely proportional to the

spatial wavelength, we assume that there exists a bounded interval [kmin, kmax] thatk is guaranteed

to be in. Finally, since the ratioω
k

corresponds to the wave’s speed, which physically must be

bounded, we assume that there existsωmax such thatω ≤ ωmax. •

B. Drogue model

A drogue is a submersible buoy which can drift in the ocean, unattached to the ocean floor

or a boat, and is able to change its depth in the water by controlling its buoyancy. A drogue

can measure the relative distance, the distance derivative, and the orientation to other drogues,

as well as depth through sensing (e.g., via acoustic or optical sensors and an onboard compass).

However, it does not have access to absolute position because GPS is unavailable underwater.

We consider a group ofN drogues. For eachi ∈ {1, . . . , N}, let Σi = (pi, {exi , eyi , ezi}) be a

reference frame fixed to droguei. The originpi corresponds to the location of the drogue. As in

the global coordinate frameΣg, ezi is perpendicular to the ocean bottom, pointing from bottom

to surface. The vectorsexi and eyi are parallel to the ocean floor, but neither is necessarily

oriented in the direction of wave propagation. Thus, each drogue i must determine the angle

betweenexi andex, which we denote byθi.

Drogues are able to measure inter-drogue distances and distance derivatives. In our treatment,

we deal separately with the case of noiseless and noisy measurements. We assume drogues take

measurements at a sampling rate offs. Thus, at timet ∈ R>0, droguei has measurements

{(dij(tκ),d′
ij(tκ))}κ∈{0,...,⌊fst⌋} at timestκ = κ

fs
and for droguesj ∈ {j1, . . . , jM}, where these

are theM drogues closest toi.

Consider the scenario where drogues move in the upper layer ofthe internal wave at a constant

depth. There is no loss of generality in dealing with this situation, since drogues can control

their depth through buoyancy changes. We make the simplifying assumption that the drogue
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dynamics under the linear internal wave is Lagrangian. In other words, the dynamics of the

drogue positionp = (px, py, pz) in the global reference frame is given by

p′ = (p′x, p′y, p′z) = (uu(t, p
x), 0, 0). (2)

The absence of motion in thez-direction in this equation is due to the drogue’s buoyancy control,

which we assume is capable of counteracting the vertical forcing of the internal wave. Since

the drogues can measure their depth, we assume there exists an underlying controller which

uses these measurements to regulate the drogue at a desired depth. Figure 2 illustrates the time

evolution of thex-component of inter-drogue distances as a function of the initial wave phase.
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Fig. 2. Inter-drogue distance evolution for drogues initially40 meters apart, with different initial wave phases.

Remark 3.2 (Kinematic versus dynamical model):The Lagrangian model for motion under

the internal wave, cf. (2), is a simplification of the second-order dynamic model, see e.g. [20],

mp′′x = −cd |p′x − uu(t, p
x)|(p′x − uu(t, p

x)), (3a)

p′y = 0, (3b)

mp′′z = −cd |p′z − wu(t, p
x, pz)|(p′z − wu(t, p

x, pz)) + f, (3c)

where m denotes the combined drogue mass and inertial added mass [21], cd is the drag

parameter, andf is the buoyancy control input. From this equation, one can derive

|uu(t, px(t))− p′x(t)| ≤
√
mu′max

cd
tanh(

√
cdu′max

m
t+ tanh−1(

√
cd

mu′max

umax)),
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whereumax =
ωa
kzu

andu′max =
ωa
kzu

(k ωa
kzu

+ω) are bounds on the maximum velocity and acceleration

according to the model (1). Following [4], [8], reasonable values for these quantities areumax =

.02m
s , u′max = .00014m

s2 , m = 1.5kg, andcd = 210Ns2

m2 . For these values, the errors in the drogues’

velocities will asymptotically be at most5% of umax, leading us to favor the kinematic model

over the dynamical one. Furthermore, we can see that in the worst case, withp′x(0) = 0 when the

drogues are dropped in the water anduu(0, px(0)) = umax, after about20 seconds, the drogues’

velocities will be within99% of their asymptotic behavior. Thus, after the drogues have been in

the water for this long, the drogues’ motion can be reasonably well modeled by the kinematic

model. This analysis is illustrated in Figure 3. •
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1000
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With our models now introduced, we are ready to state the problem of interest in this paper.

Problem statement:A team ofN drogues is deployed in the ocean and their motion is governed

by an internal wave. Since the drogues may control their depth, assume all are located at the same

depth and each one can measure the relative distance, the distance derivative, and orientation

to the closestM drogues in their own coordinate frame. The objective is to design a provably

correct strategy that allows each droguei to determine the parametersa
zu

, k, ω, andθi, defining

the motion of the internal wave with the limited informationit possesses.
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IV. N OISE-FREE PARAMETER ESTIMATION

We begin by noting that the dynamic evolution of a drogue under the linear internal wave

can be explicitly described in the global reference frame. However, drogues cannot rely on this

information as they do not have access to their global coordinates. This motivates our design

of methods to determine the wave propagation direction and the internal wave parameters using

the distance measurements available to the drogues.

The following result shows that, remarkably, the drogue’s dynamic evolution (2) can be

described in an analytical way. Its proof is given in the appendix.

Proposition 4.1 (Drogue trajectory):The solution of (2) starting fromp(0) is

px(t) =
ω

k

(
1−

√
1− (a/zu)

2
)
t+ Ξ(t)− φ

k
,

Ξ(t)=
2

k
atan

( a
zu

−
√
1−

( a
zu

)2
tan
(πt
T

+ Λ0

))
− 2π

k

⌊
t

T
+

Λ0

π
−
⌊
kpx(0) + φ+ π

2π

⌋
+

1

2

⌋
+

2π

kT
t,

with

T =
2π

ω
√
1− (a/zu)

2
, Λ0 = atan


 1√

1− (a/zu)
2

(
a

zu
− tan

(
kpx(0) + φ

2

))
 .

From Proposition 4.1, we see that the solution of (2) is the sum of a linear function int and

a periodic functionΞ with fundamental periodT . Since the linear function does not depend

on the initial condition, we deduce that the time evolution of the distancedxij between any two

droguesi and j is given by (withν =
√
1− (a/zu)2 for brevity)

dxij(t) =
2

k
atan

(
a

zu
− ν tan

(
νωt

2
+ Λ0,j

))
− 2π

k

⌊
t

T
+

Λ0,j

π
−
⌊
kpxj (0) + φ+ π

2π

⌋
+

1

2

⌋

−2

k
atan

(
a

zu
− ν tan

(
νωt

2
+ Λ0,i

))
+

2π

k

⌊
t

T
+

Λ0,i

π
−
⌊
kpxi (0) + φ+ π

2π

⌋
+

1

2

⌋

and is periodic with periodT (as was numerically observed in Figure 2). However, from a

drogue’s viewpoint, two facts make this expression impractical: first, drogues do not have access

to distances in the global reference frame and, second, since absolute position is not available,

they are also unaware of their phase with respect to the internal wave. Even without these two

hurdles, the highly nonlinear dependence of this expression on the parameters makes the results

for standard least-squares data fitting methods [17], [18] not directly applicable.

These observations motivate the ensuing discussion describing a method to determine the

internal wave parameters in the absence of measurement noise. Our treatment is presented for
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a generic droguei ∈ {1, . . . , N} which requires inter-drogue distance and distance derivative

measurements from its nearest4 neighbors, denoted by{j1, j2, j3, j4}. Before getting into the

details, we provide a brief overview of the algorithm design.

[Informal description]:Section IV-A describes a method to determine the wave propa-

gation direction. With this information available, drogues can project their inter-drogue

measurements along the wave propagation direction. Section IV-B uses knowledge of

the drogue’s dynamics to find the unmeasurable relative phase between the drogue and

the wave as a function of the unknown horizontal wavenumber and the measurable

inter-drogue data. Using this function, the algorithm can determine the true value of the

horizontal wavenumber employing the data. After this, Section IV-C finds the amplitude

ratio and frequency by solving equations derived from the drogue dynamics.

A. Wave propagation direction

Here we describe the method that drogues use to determine thewave propagation direction in

their own body coordinates. Recall that the drogues are at thesame depth but may be arbitrarily

located in thex−y plane. Consider the inter-drogue distance to thejth drogue,j ∈ {j1, . . . , j4},

as measured byi in its own body coordinates,

dij = pj − pi = (dxiij , d
yi
ij , 0).

Figure 4 depicts the droguei’s own body coordinates, inter-drogue distance measurements, and

the direction of wave propagation. For drogues undergoing motion purely caused by an internal

ex

ey
θi i exi

eyi j
dij

crest
trough

Fig. 4. Illustration of drogue and wave orientations on the drogue’s reference frame.

wave, inter-drogue distances in their own body reference frame can be projected onto the global
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reference framedgij = Qg
idij via the transformation matrixQg

i ,

Qg
i =




cos θi − sin θi 0

sin θi cos θi 0

0 0 1


 .

The global coordinate frame is useful because the inter-drogue distance in they-direction is

constant, i.e.,dy′ij = dxi′ij sin θi + dyi′ij cos θi = 0. Sinceθi is constant, it can easily be found using

the measurements available:θi = atan
(

−d
yi′

ij

d
xi′

ij

)
.

Since bothθi and θi + π fit this relation, we assume the drogues can differentiate the true

θi. One way to accomplish this is to surface after at least one wave period and use GPS to

determine which way the drogue has drifted.

B. Horizontal wavenumber via vanishing derivative

Here we describe a method to determine the horizontal wavenumber of the internal wave.

Since the only dynamics are in thex-direction and each droguei has determinedθi as described

in Section IV-A, from now on, we simply denotedxij by dij. Thus, for eachi ∈ {1, . . . , N}, the

following dynamics describe the drogues’ motion in thex-direction,

d′ij = 2
ωa

kzu
sin
(kdij

2

)
cos
(kdij

2
+ ψi

)
, ∀j ∈ {j1, . . . , j4}, (4a)

ψ′
i = ω

( a
zu

sin(ψi)− 1
)
, (4b)

whereψi = kpxi −ωt+φ is the phase of the wave relative to droguei, which is unmeasurable to it.

We note that each inter-drogue distance equation (4a) contains the unknownsψi, a
zu

, ω, andk.

Our strategy proceeds by deriving an equation which is only afunction of measurement data

and the horizontal wavenumber, and then determining conditions under which the correct value

can be obtained. We later use this knowledge to determine theremaining parameters. In what

follows, we make a notational distinction betweenk (the horizontal wavenumber interpreted as

a variable) andk (the correct horizontal wavenumber that we seek to determine).

First, we show a basic result about the evolution of inter-drogue distances. This helps us

formulate assumptions on the initial drogue locations to make the ensuing strategy applicable.

Lemma 4.2 (Inter-drogue distance bound):If at time t0 the inter-drogue distance betweeni

and j is bounded by0 < |k
2
dij(t0)| < π

2
, then this bound holds for allt ≥ t0.
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Proof: We reason by contradiction. Assume there existst∗ > t0 such that|k
2
dij(t∗)| ∈ {0, π

k
}.

From (4a), we deduce thatd′ij(t) = 0 for all t > t∗, i.e., the inter-drogue distance stays constant.

However, this contradicts the fact that the inter-drogue distances are periodic with periodT .

We present the assumptions on ordering of inter-drogue distances as well as lower- and upper-

bounds on initial inter-drogue distances.

Assumption 4.3 (Inter-drogue distance assumptions):Without loss of generality, we assume

0 < dxij1 < dxij2 < dxij3 < dxij4. By Lemma 4.2, there exists anα > 0 such that each drogue is at

leastα away from all other drogues in thex-direction, i.e.,

dxij(t) > α, ∀i ∈ {1, . . . , N}, ∀j ∈ {j1, j2, j3, j4}, ∀t ≥ t0

We assume that initially droguei and its4 nearest neighbors are within one spatial wavelength

of the internal wave, encapsulated bydxij4(t0) <
2π
kmax

, wherek will be in [kmin, kmax] by Assump-

tion 3.1. Furthermore, by Lemma 4.2, this holds∀t ≥ t0. Similarly, we assume that initially

dxij2(t0) < π(
1

kmax
− 10

99kmin
)− α.

By using the dynamics of (4a) and Assumption 3.1, this condition ensures that droguei and its

two closest neighbors are always within half a spatial wavelength minusα of each other. •
1) Unmeasurable relative phase:We begin by showing that the unmeasurable relative phase

ψi can be explicitly expressed in terms of any two inter-droguedistances, which we choose as

dij1 anddij2 , the distance derivativesd′ij1 andd′ij2, andk , as the sum of two functions:

ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2) = ν(k , dij1 , dij2 , d

′
ij1
, d′ij2) + µ(k , dij1 , dij2 , d

′
ij1
, d′ij2). (5)

The functionν captures the basic structure ofψi; it is derived by taking the quotient of two

equations in the form of (4a) and solving forψi. One loses information of the sign ofd′ij1 and

d′ij2 when one takes the ratio of them. Thus,{0,−π}-valued functionµ determines which of the

two solutions totan(ψi) = C is the physically meaningful one. Specifically,

ν(k , dij1 , dij2 , d
′
ij1
, d′ij2) = atan

(
d′ij1 sin(

k dij2
2

) cos(
k dij2
2

)− d′ij2 sin(
k dij1
2

) cos(
k dij1
2

)

d′ij1 sin
2(

k dij2
2

)− d′ij2 sin
2(

k dij1
2

)

)
,

µ(k , dij1 , dij2 , d
′
ij1
, d′ij2) =




0, F(k , dij2 , d

′
ij2
,ν) > 0 ∨ F(k , dij1 , d

′
ij1
,ν) > 0,

−π, F(k , dij2 , d
′
ij2
,ν) < 0 ∨ F(k , dij1 , d

′
ij1
,ν) < 0,
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where

F(k , dij2 , d
′
ij2
,ν) =

d′ij2

cos(
k dij2
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

.

Next, we present a result on the properties ofν, which are needed to determinek.

Lemma 4.4 (Smoothness properties of the relative phase):Under Assumption 4.3, the func-

tions ν and∂k ν are Lipschitz continuous with respect to
d′ij1
d′ij2

.

Proof: One can show thatν and∂k ν are differentiable with respect to
d′ij1
d′ij2

if

0 <
kdij1
2

<
kdij2
2

<
π

2
. (6)

By Assumption 4.3, the drogues will be in a compact subset of (6), which shows the result.

We refer to the Lipschitz constants forν and∂k ν asL1(α) andL2(α), respectively. In general,

ψi is a complex trigonometric function ofk . However, there are specific time instants for which

its expression simplifies considerably, as the following result shows.

Lemma 4.5 (Simplifying expression of the relative phase):For timetcrit, let d′ij(tcrit) = 0. As-

sume that droguesi andj are placed so that0 < |k
2
dij(tcrit)| < π

2
. Thenψi(tcrit) = ±π

2
− k

2
dij(tcrit).

Proof: The only thing that we need to justify is the existence oftcrit. Once this has been

established, the explicit expression ofψi(tcrit) readily follows from (4a). From Proposition 4.1,

recall thatdij is bounded and periodic. From (4b), we know that for anyt ∈ R>0, ψ′
i(t) ≤

−ω(1− a
zu
) < 0, where we have used the fact thata

zu
≤ .1. Therefore, looking at (4a), one can

conclude the existence oftcrit within one periodT whend′ij(tcrit) = 0.

Recall that Lemma 4.2 guarantees that the assumptions of Lemma 4.5 are not difficult to ensure.

2) Distance rate quotient:Next, we note that the ratio of inter-drogue distance equations of

the form (4a), sayd′ij3/d
′
ij4

, eliminatesω and a/zu. These observations lead us to define the

distance rate quotientfunction as follows. Let

dr(k , ψi, dij) = sin
(k dij

2

)
cos
(k dij

2
+ ψi

)
.
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Then, define

drq(k ,D) =
sin(

k dij3
2

) cos(
k dij3
2

+ ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2))

sin(
k dij4
2

) cos(
k dij4
2

+ ψi(k , dij1 , dij2 , d
′
ij1
, d′ij2))

− d′ij3
d′ij4

=
sin(

k dij3
2

) cos(
k dij3
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

sin(
k dij4
2

) cos(
k dij4
2

+ ν(k , dij1 , dij2 , d
′
ij1
, d′ij2))

− d′ij3
d′ij4

=
dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij4)

− d′ij3
d′ij4

, (7)

whereD = (dij1 , dij2 , dij3 , dij4 , d
′
ij1
, d′ij2 , d

′
ij3
, d′ij4) is the collection of all4 inter-drogue distances

and distance derivatives. The second equality comes from noting thatdrq takes the same value

for either value that the functionµ takes. By definition,k = k satisfies

drq(k,D) = 0. (8)

In principle, there could be additional roots to this equation. This is what we investigate next.

3) Determining the horizontal wavenumber:Our goal now is to determine conditions that

guarantee that onlyk is a solution to (8). The following result precisely characterizes how small

the ratiod′ij1/d
′
ij2

should be in order to guarantee thatk is the unique value that satisfies (8). Its

proof is given in the appendix.

Proposition 4.6: (Range of suitable derivative ratios for determiningk) Assuming internal

wave parameters are within the bounds in Assumption 3.1, consider noiseless inter-drogue dis-

tance and distance derivative measurementsD satisfying Assumption 4.3 and
∣∣d′ij1
d′ij2

∣∣ < δ(α, kmin)

whereδ(α, kmin) = min
{
sin2

(
kminα
2

)
, ǫmax(kminα, L1(α), L2(α))

}
> 0 and the functionǫmax is

defined in Lemma A.1. Then, onlyk satisfies (8).

Note that the conditions of Proposition 4.6 are satisfied by data obtained at timetcrit with

d′ij1(tcrit) = 0, as in Lemma 4.5. The question now is to determine in what interval aroundtcrit

the measured inter-drogue distance and distance derivative data still satisfies the conditions of

Proposition 4.6. Among other things, this issue is important in order to determine acceptable

sampling rates for the drogues. The next result answers thisquestion.

Corollary 4.7 (Range of suitable times for determiningk): Assuming internal wave param-

eters are within the bounds in Assumption 3.1, consider noiseless inter-drogue distance and

distance derivative measurements attcrit such thatd′ij1(tcrit) = 0 and initial conditions satisfying
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Assumption 4.3. Then,k uniquely satisfies (8) with dataD(t), for all t ∈ (tcrit−∆, tcrit+∆), where

∆(δ, L3, L4) =
L4

L3

δ
1+δ

, δ is given in Proposition 4.6,L3 ≥ 2 ωa
kzu

(ωa
zu
+ω), and0 < L4 ≤ |d′ij2(tcrit)|.

Proof: The magnitude of the second time derivative of any inter-drogue distance is bounded

by 2 ωa
kzu

(ωa
zu

+ ω). Thus,

|d′ij1(t)− d′ij1(tcrit)| ≤ L3|t− tcrit|, |d′ij2(t)− d′ij2(tcrit)| ≤ L3|t− tcrit|.

From the analysis in Proposition 4.6, for a set of inter-drogue measurements there exists an open

interval (−δ, δ) in
d′ij1
d′ij2

containing0 wheredrq is strictly increasing. Thus, by the assumption

that t ∈ (tcrit −∆, tcrit +∆), we have the following,
∣∣∣∣
d′ij1(t+ tcrit)

d′ij2(t+ tcrit)

∣∣∣∣ ≤
L3|t− tcrit|

L4 − L3|t− tcrit|
<

L4δ
1+δ

L4(1− δ
1+δ

)
= δ,

which proves the result.

Using Corollary 4.7 and the assumptions in Assumptions 3.1 and 4.3, the following result

gives a sufficient sampling rate to satisfy the conditions ofCorollary 4.7.

Lemma 4.8 (Minimum sampling rate):If internal wave parameters satisfy Assumption 3.1 and

givenα > 0 from Assumption 4.3, a bound on the minimum sampling rate forCorollary 4.7 is

fs,min >
(1 + ( a

zu
)max)ωmax

sin2(kminα
2

)min{sin2(kminα
2

), ǫmax(
kminα
2
, L1(α), L2(α))}

. (9)

C. Amplitude ratio and frequency via data fitting

In this section, we discuss how once the true horizontal wavenumberk is known, the param-

eters a
zu

andω can also be found as described in the following result.

Lemma 4.9 (Determination ofa
zu

andω): Assumek is known. Fortξ1 < tξ2 < tξ3 with tξ3 −
tξ1 < T , compute noiseless measurements ofψi and ψ′

i at these times by evaluating (5) and

using the method described in Appendix A. Then,ω and a
zu

can be found from

β1
β2


 =


sin(ψi(t̟)) 1

sin(ψi(tℵ)) 1



−1 
ψ

′
i(t̟)

ψ′
i(tℵ)


 ω = −β2,

a

zu
=

−β1
β2

, (10)

where̟,ℵ ∈ {ξ1, ξ2, ξ3} such thatsin(ψi(t̟)) 6= sin(ψi(tℵ)).

Proof: First, given thatψ′
i < 0 andψi(t + T ) = ψi(t) − 2π, sin(ψi(t̟)) 6= sin(ψi(tℵ)) for

somet̟, tℵ ∈ {tξ1 , tξ2 , tξ3}. Using the values ofψi andψ′
i at these two timesteps, one can solve

for a
zu

andω using (4b) as described in the statement.
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Remark 4.10 (Minimum sampling rate):For Lemma 4.9 to hold, one needsfs,min >
3
T

. Com-

paring this to Lemma 4.8, one can see that if (9) is enforced, then the assumptions of both

Corollary 4.7 and Lemma 4.9 hold. •

D. Vanishing Distance Derivative Detection Strategy

We gather the discussion above into Algorithm 1.

Algorithm 1: Vanishing Distance Derivative Detection Strategy

Assumption: fs ≥ fs,min, initial distances satisfy Assumption 4.3 for someα > 0, internal

wave parameters within bounds in Assumption 3.1

run at timetκ = κ
fs

, for someκ ∈ Z≥1

1 calculate wave propagation direction,θi = atan(−dyi′ij1(tκ)/d
xi′
ij1
(tκ))

2 if
∣∣∣d

′

ij1
(tκ)

d′ij2
(tκ)

∣∣∣ < min
{
sin2

(
kminα

2

)
, ǫmax(kminα, L1(α), L2(α))

}
then

3 find k by solvingdrq(k ,D(tκ)) = 0

4 computeψi(tξ) (via (5)) andψ′
i(tξ) (via Appendix A), forξ ∈ {κ− 2, κ− 1, κ}

5 choose̟ ,ℵ ∈ {κ− 2, κ− 1, κ} such thatsin(ψi(̟)) 6= sin(ψi(ℵ)) and solve


β1
β2


 =


sin(ψi(̟)) 1

sin(ψi(ℵ)) 1



−1 
ψ

′
i(̟)

ψ′
i(ℵ)




6 setω = −β2 and a
zu
= −β1

β2

7 end

Note that for Step3, any root finder method can be used to findk uniquely; one suitable

method, for instance, is gradient descent. The following result establishes the correctness of this

strategy, which follows from Corollary 4.7, Lemma 4.9, and Remark 4.10.

Proposition 4.11 (Conditions for determining all parameters): Assuming thatfs ≥ fs,min, in-

ternal wave parameters are within bounds in Assumption 3.1,and that the initial drogue locations

satisfy Assumption 4.3, then droguei can determine the parametersθi, a
zu

, ω, andk uniquely

by using theVanishing Distance Derivative Detection Strategy.
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V. ROBUSTNESS OF PARAMETER ESTIMATION UNDER ERROR

Here, we consider the effect of error in measurements on the application of theVanishing

Distance Derivative Detection Strategy. Section V-A describes some of the sources

of error which occur during an ocean implementation of the proposed algorithm. Section V-B

shows that theVanishing Distance Derivative Detection Strategy is able to

get a parameter estimates when the data has sufficiently small errors. This motivates our results

in Section V-C, which bound the errors in estimates ofk, a
zu

, andω as a function of the errors

in the measured quantities. Finally, in Section V-D, we devise a method for aggregating noisy

parameter estimates from different timesteps.

A. Sources of error from algorithm implementation

Here, we describe some of the sources of error which occur in the algorithm’s implementation.

Noise in measurements: In practice one can expect noise in measurements collected from

sensors. We assume the sensor noise is unbiased, Gaussian, and that noise at different

time instances and for different measurements are uncorrelated.

Model uncertainty: The problem setup described in Section III-B assumes that drogues are

Lagrangian. In practice, as seen in Remark 3.2, drogues have afinite mass and drag

coefficient making them not perfectly Lagrangian, leading to a difference between the actual

drogue’s velocity and the ocean velocity. One can treat thismismatch as an unknown but

nonrandom error in the measurements of inter-drogue distances and distance derivatives.

Drogues not maintaining depth: We assume that the drogues have a controller that uses feed-

back on depth measurements to maintain a desired depth. Due to noisy depth measurements

and a desire to minimize actuation cost, instead we assume that the drogues will be within

an interval around the desired depth. Although depth is not directly used by the proposed

algorithm, this inaccuracy affects inter-drogue distancemeasurements. As above, one can

treat this as an unknown but nonrandom error in the inter-drogue distance measurements.

B. Existence of parameter estimates for measurements with error

Here we show that theVanishing Distance Derivative Detection Strategy

is able to estimate the parameters from measurements with sufficiently small error. We begin
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our study with the horizontal wavenumberk because an estimate of it is needed for estimates

of the other parameters. The next result establishes the analytic character of the functiondrq.

The proof follows from the known fact, see e.g., [22], that sums, products, and compositions

of analytic functions are analytic, and quotients of analytic functions are analytic, provided the

denominator does not vanish.

Lemma 5.1 (drq is analytic): For anyk ∈ [kmin, kmax], drq is analytic on the setDaltc(k):

Daltc(k) = {D | d′ij1 sin2(
kdij2
2

)− d′ij2 sin
2(
kdij1
2

) 6= 0, sin(
kdij4
2

) 6= 0,

cos(
kdij4
2

+ ψi(k, dij1 , dij2 , d
′
ij1
, d′ij2)) 6= 0, d′ij4 6= 0}.

We now introduce two sets which help define the set of distances and distance derivativesD

where estimates ofk can be found in a neighborhood aroundD. Let

Dreal(Φ) =
{
D | 0 < dij1 < dij2 < dij3 < dij4 <

2π

k
,

d′ij = 2
ωa

kzu
sin
(kdij

2

)
cos
(kdij

2
+ ψi(k, dij1 , dij2 , d

′
ij1
, d′ij2)

)
, j ∈ {j1, . . . , j4}

}
.

be the set of all inter-drogue measurementsD that can come from one instantiation ofΦ =

( a
zu
, ω, k). Let Ddiff (k) = {D | ∂k drq(k,D) 6= 0}. Combining Lemma 5.1 with the Analytic

Implicit Function Theorem [22] yields the existence of the implicit function for estimates ofk.

Lemma 5.2 (Existence of estimates of horizontal wavenumber): For anyD ∈ Dreal(Φ)∩Ddiff (k)∩
Daltc(k), there is a neighborhood ofD, ND(Φ) ⊂ R

8 for which there exists an analytic function

kD : R8 → R which satisfies

drq(kD(D̃), D̃) = 0, for D̃ ∈ ND(Φ).

The existence of the functionkD guarantees thatk can be estimated from inter-drogue

measurements containing errors, when the errors are sufficiently small.

Remark 5.3: (Frequency and amplitude ratio estimates from measurements with errors)From (5),

given an estimate ofk and measurements with errors, one can get an estimate ofψi. Furthermore,

using the method outlined in Appendix A, one can also estimate ψ′
i. Thus, using (10), estimates

for ω and a
zu

exist as long assin(ψ̃i(t̟)) 6= sin(ψ̃i(tℵ)). •
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C. Robustness to error

In this section we bound the error in estimates of the horizontal wavenumberk, amplitude

ratio a
zu

, and frequencyω as a function of the error in the measurements.

1) Horizontal wavenumber:From the analysis in Section V-B, for a fixed set of noiseless

measurementsD ∈ Dreal(Φ) ∩ Ddiff (k) ∩ Daltc(k), the corresponding noisy estimate ofk in a

neighborhood aroundD, ND(Φ), is given by the functionkD. We wish to now restrict ourselves

to a set where changes in the functionkD are bounded. Specifically, letUbnd-drv> 0 and define

Dderiv,Ubnd-drv(Φ) = {D ∈ Dreal(Φ) ∩ Ddiff (k) ∩ Daltc(k) | max
r∈{1,...,8}

|∂cpntr(D)kD(D)| < Ubnd-drv}.

For eachD ∈ Dderiv,Ubnd-drv(Φ), by the analyticity ofkD, one can construct a neighborhood

ND,Ubnd-drv(Φ) such that formaxr∈{1,...,8} |∂cpntr(D)kD(D̃)| < Ubnd-drv for any D̃ ∈ ND,Ubnd-drv(Φ).

The set of measurements with small enough error areD̃Ubnd-drv(Φ) =
⋃

D∈Dderiv,Ubnd-drv
ND,Ubnd-drv(Φ).

The next result provides bounds on the error in estimatingk by the error in the measurements.

The proof is a combination of the Mean Value Theorem and the Cauchy-Schwartz inequality [23].

Lemma 5.4 (Bounds for errors ink as function of errors in measurements):Given noisy mea-

surements of inter-drogue distances and distance derivativesD̃ ∈ D̃Ubnd-drv(Φ) for someUbnd-drv>

0, then the error between the estimatedk̂ produced by theVanishing Distance Derivative

Detection Strategy andk can be bounded by

|k̂ − k| = |kD(D̃)− k| ≤
√
8Ubnd-drv||D̃−D||.

2) Amplitude ratio and frequency:As seen in Lemma 4.9, with noiseless measurements, two

measurements ofψi andψ′
i are sufficient to exactly determinea

zu
andω. However, with noisy

measurements, the question that naturally arises is whether there is a benefit to using more than

2 measurements. This is what we explore next.

Given n noisy measurements ofψ′
i,

ψ̃′
i(tκq) = ψ′

i(tκq) + ǫψ′

i
(tκq), ∀q ∈ {1, . . . , n},

we will construct estimates ofa
zu

andω using least-squares techniques on theψi dynamics in (4b),



ψ′
i(tκ1)

...

ψ′
i(tκn)




︸ ︷︷ ︸
ψ′

i

=




sin(ψi(tκ1)) 1
...

sin(ψi(tκn)) 1




︸ ︷︷ ︸
W


β1
β2




︸ ︷︷ ︸
β

, β1 =
ωa

zu
, β2 = −ω,
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mimicking the technique in (10). The least-squares estimates are

β̂ = (W TW )−1W T ψ̃′
i = (W TW )−1W T (ψ′

i + ǫψ′

i
) = βtrue+ (W TW )−1W T ǫψ′

i︸ ︷︷ ︸
βerror

.

Explicitly, βerror is given by

cpnt1(βerror) =

∑n
q=1 ǫq(

∑n
r=1 sin(ψi(tκq))− sin(ψi(tκr)))∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
,

cpnt2(βerror) =

∑n
q=1 ǫq(

∑n
r=1 sin(ψi(tκr))(sin(ψi(tκr))− sin(ψi(tκq))))∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
.

The errorβerror is a complex function of the distribution ofψ′
i as well as the sampling pattern

(both spacing and the number of samples). Because the distribution of ψ′
i is non-Gaussian and

unknown, we consider the case that all errors inψ′
i are at mostǫ. Furthermore, we assume that

the sampling pattern is uniform, meaning that

sin(ψi(tκq)) =
q − 1

n− 1
(sin(ψi(tκn))− sin(ψi(tκ1))) + sin(ψi(tκ1)), ∀q ∈ {2, n− 1}. (11)

Let WLS be theWorst-case Least Squareserror (for estimatingω), defined by,

WLS(n, sin(ψi(tκ1)), sin(ψi(tκn)), ǫ) = ǫ

∑n
q=1 |(

∑n
r=1 sin(ψi(tκr))(sin(ψi(tκr))− sin(ψi(tκq))))|∑n

q=1 sin(ψi(tκq))(
∑n

r=1 sin(ψi(tκq))− sin(ψi(tκr)))
.

In the right-hand side, we use (11) to express{sin(ψi(tκq))}n−1
q=2 in terms of sin(ψi(tκ1)) and

sin(ψi(tκn)). Note thatWLS is an upper bound ofcpnt2(βerror). Even though the asymptotic

dependence ofWLS on n is difficult to characterize, the next result provides bounds that are

sufficient to answer the question that motivates this section. Its proof is given in the appendix.

Lemma 5.5 (Worst-case estimation error grows with number of measurements):Consider any

maximum errorǫ > 0, wave parametersa
zu
, ω ∈ R, number of measurementsn ∈ Z≥1, and range

of measurementssin(ψi(tκ1)) < sin(ψi(tκn)) ∈ [−1, 1). If the set of measurements ofψi are

distributed according to (11) and the errors inψ′
i are bounded byǫ, i.e.,

|ψ̃′
i(tκq)− ψ′

i(tκq)| < ǫ, ∀q ∈ {1, . . . , n},

thenWLS can be bounded between two increasing functions ofn as

ǫ
3max{| sin(ψi(tκ1))|, | sin(ψi(tκn))|}(n− 1)

(sin(ψi(tκn))− sin(ψi(tκ1)))n
≥ WLS(n, sin(ψi(tκ1)), sin(ψi(tκn)), ǫ)

≥




ǫ −1 < sin(ψi(tκ1)) ≤ 0,

ǫmax
( 3 sin(ψi(tκ1 ))(n+3)(n−2)

2(sin(ψi(tκn ))−sin(ψi(tκ1 )))n(n+1)
, 1
)

0 < sin(ψi(tκ1)) < 1.
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Fig. 5. In the uniformly distributed measurements case, the worst case error factor (amount multiplyingǫ) is an increasing

function ofn.

Lemma 5.5 is validated by Figure 5 which shows thatWLS is an increasing function ofn

under uniformly distributed measurements. Given that the drogues’ measurements are roughly

uniformly distributed, that the distribution of errors inψ′
i is non-Gaussian and not necessarily

unbiased, and Lemma 5.5, we use two as the number of measurements to estimateω and a
zu

.

D. Parameter estimate aggregation

In this section we consider the task of aggregating parameter estimates. Before we can tackle

this, we must define the distributions for measurements. Here, we assume that the the non-random

errors stemming from the dynamical assumptions are small relative to the random sensor noise.

As seen in Remark 3.2, the mismatch in dynamical models rapidly becomes small. The error

associated with the depth mismatch can be made small by choosing a tighter depth-keeping

interval. Thus, given an inter-drogue distanced and distance derivatived′, we let d̃, d̃′, denote

the measurements ofd andd′ by a drogue, with the following Gaussian error model

d̃ = d+ ǫd, ǫd ∼ N (0, σ2
d), (12a)

d̃′ = d′ + ǫd′ , ǫd′ ∼ N (0, σ2
d′). (12b)

We assume that the variances are a function of the specific sensors used and are known.

Within one period of the wave, theVanishing Distance Derivative Detection

Strategy generates many estimates of the parameters (an estimate is generated every time that

the condition in Step2 of Algorithm 1 is satisfied). Furthermore, drogues may be sampling over
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the course of several periods. Therefore, it makes sense to improve the estimation by fusing

together estimates obtained at different timesteps. However, the synthesis of the appropriate

fusion mechanism is challenging because the distribution of estimates of the parameters is non-

Gaussian due to the nonlinearity of the dynamics and the operations within the algorithm. This

is the problem that we tackle next, beginning with an informal description.

[Informal description]: Because the parameters’ distributions are only implicitly de-

fined and non-Gaussian, we create an approximation up to a desired orderp ∈ Z≥1.

Using on the fact that measurements are Gaussian, we computethe expectation and

variance of this approximate distribution and them to properly fuse parameter estimates.

Given the fact thatkD is analytic onND(Φ), we use Taylor series to generate approximations

of arbitrary order. Formally, given an arbitrary analytic functionprD : R8 → R with prD(D) =

pr, the pth-order Taylor series expression aroundD is given by

prD(D̃) = pr+T pD(D̃) +Rp
D(D̃), (13)

where

T pD(D̃) =

p∑

q=1

1

q!
pr

(q)
D (D; D̃−D), Rp

D(D̃) = pr
(p+1)
D (D∗; D̃−D),

for someD∗ ∈ [D̃,D] and parameter valuepr, where

pr
(q)
D (D; D̃−D) =

8∑

r1=1

· · ·
8∑

rq=1

∂qprD(D̃)

∂cpntr1 (D) . . . ∂cpntrq (D)

·

(cpntr1(D̃)− cpntr1(D)) . . . (cpntrq(D̃)− cpntrq(D)).

For prD = kD, equation (13) represents the noisy parameter calculated from a set of noisy

measurements̃D. Since Taylor’s Theorem provides existence of the truncation term but no

constructive way to determine it, we seek to investigate howaccurate thepth order approximation

T pD(D̃) is. Specifically, the form of the function, along with knowing the Gaussian distribution

of the measurements, allows one to calculate the expectation and variance of this (approximate)

distribution of the parameter. In practice, one cannot quite calculate these quantities, because

they require partial derivatives which must be evaluated atthe noiseless measurementsD, which

are not available. However, by using̃D one may approximately determine these quantities.
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Determining the expectation and variance of individual parameter estimates with the method

described above allows us to devise a strategy to fuse them toget a more accurate approximation.

Formally, given independent random variablesx1 and x2 with meanE[x1] = E[x2] = µ and

variancesVar[x1] = σ2
1, Var[x2] = σ2

2, consider the optimal aggregating functionOptAgg by

OptAgg(x1, σ
2
1, x2, σ

2
2) =

( x1
σ2
1

+ x2
σ2
2

1
σ2
1

+ 1
σ2
2

,
1

1
σ2
1

+ 1
σ2
2

)
.

Here,cpnt1(OptAgg) is the new random variable andcpnt2(OptAgg) is its variance. This is the

convex combination ofx1 andx2 that results in the random variable with the smallest variance.

We are now ready to define thepth-Order Parameter Fusion procedure. Given a

sequence of noisy parameter estimates{(p̂rℓ, D̃ℓ) | ℓ ∈ Z≥1} determined from noisy measure-

ments,p̂rℓ = prDℓ
(D̃ℓ), this procedure generates a sequence of estimates{p̂rpℓ | ℓ ∈ Z≥1} by

means of the following iterative aggregation process

(p̂rpℓ+1,Var[p̂r
p
ℓ+1]) = OptAgg(p̂rpℓ ,Var[p̂r

p
ℓ ], p̂rℓ+1 − E[T pDℓ+1

(D̃ℓ+1)],Var[T
p
Dℓ+1

(D̃ℓ+1)]), (14)

wherep̂rp1 = p̂r1 − E[T pD1
(D̃1)] andVar[p̂rp1] = Var[T pD1

(D̃1)]. According to this procedure, the

pth-order estimatêprp is sequentially updated by optimally combining the previous aggregated

value with the next parameter estimate (after the expected bias has been removed). The next

result, whose proof is given in the appendix, establishes its convergence under suitable conditions

on thepth-order approximation ofpr.

Proposition 5.6 (pth-order aggregation):For noisy inter-drogue measurements{D̃ℓ | ℓ ∈
Z≥1} containing additive Gaussian noise according to (12), assume there existǫE ≥ 0 and

ǫV ≥ 0 such that the following bounds hold uniformly for allℓ ∈ Z≥1,

|E[prDℓ
(D̃ℓ)− T pDℓ

(D̃ℓ)]− pr | ≤ ǫE, Var[prDℓ
(D̃ℓ)] ≤ ǫV .

Then, the iterates (14) generated bypth-Order Parameter Fusion satisfy

lim
ℓ→∞

Pr[|p̂rpℓ − pr | ≤ ǫE + ǫ] = 1, ∀ǫ > 0.

Note that forp = 1, one is estimating the distribution of the parameter as a sumof Gaussian

distributions because there are only first-order terms in the functionT 1 in (13). Similarly for

p = 2, the distribution is the sum of Gaussian distributions plussecond-order Chi-squared

distributions. Chi-squared distributions have non-zero expectation, and so, theSecond-Order

April 24, 2013 DRAFT



24

k Fusion outperforms theFirst-Order k Fusion because it estimates what the distri-

bution’s bias is and subtracts this from individual parameter estimates before fusing them.

Figure 6(a) shows the evolution ofpth-Order Parameter Fusion for p = 1 andp = 2

for estimates ofk generated by theVanishing Distance Derivative Detection

Strategy. The x-axis corresponds to the number of estimates ofk fused together. Eachk

estimate is obtained at a different instant of time. Note that both evolutions, after only a small

number of fusions, have a smaller error than the individual measurements, and that the evolution

corresponding top = 2 has a smaller asymptotic error. Note that Proposition 5.6 isnot directly

applicable to make guarantees on convergence because the implicit functions that give estimates

of k (cf. Lemma 5.2) andω and a
zu

(cf. Remark 5.3) have domains that are not allR
8. This

implies that the Gaussian noise may occasionally be too large to produce estimates. However,

as the standard deviation of the measurement noise get smaller, the fraction of acceptable noisy

measurements increases and so the execution of thepth-Order Parameter Fusion more

closely mirrors Proposition 5.6. One can see that the simulations are in line with the result.

Figure 6(b) shows the absolute error ofpth-Order Parameter Fusion for p = 1

andp = 2, usingk estimates from theVanishing Distance Derivative Detection

Strategy, as a function of the standard deviation in inter-drogue distance and distance deriva-

tives measurements, which depicts thatp = 2 outperformsp = 1.

Finally, Figure 7 compares an inter-drogue trajectory generated from true wave parameters with

the trajectory that would have occurred from estimated parameters. Specifically, theVanishing

Distance Derivative Detection Strategy and theSecond-Order k Fusion

method are used to generate and fuse estimates ofk after which the other parameters are

estimated. One can see that the trajectory closely tracks the true trajectory.

VI. CONCLUSIONS

This paper has considered the task of estimating the physical parameters of a horizontally

propagating ocean linear internal wave using a group of drogues. We have established an explicit

analytic description of the evolution of a drogue under the flow induced by the linear internal

wave. This result implies that inter-drogue distances evolve in a purely periodic way. We have

built on this knowledge to design theVanishing Distance Derivative Detection

Strategy. This strategy relies on the fact that inter-drogue distance derivatives become close
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Fig. 6. (a) showspth-Order Parameter Fusion applied to estimates ofk from Vanishing Distance

Derivative Detection Strategy, for p = 1 andp = 2. After only a few estimates are fused, the error is already much

smaller than the individual estimates. Also,p = 2 converges to a smaller error thanp = 1. (b) shows the absolute error of

pth-Order Parameter Fusion applied to estimates ofk from Vanishing Distance Derivative Detection

Strategy as a function of the standard deviations in measurement noise, highlightinghow p = 2 outperformsp = 1. In both

figures the parameter values, taken from [1], arek =
2π
190

1

m
, a

zu
=

1

7
, andω =

2π
960

1

s
. The drogues are in a line, initially10m

apart from the closest drogues on either side. In (a), the standard deviations in distances and distance derivatives are.01m and

.0005m
s

, respectively. In (b) for each set of standard deviations,10, 000 estimates were fused.

to zero multiple times during one period. Under noiseless measurements, we have established

that the algorithm exactly computes the internal wave parameters and derived conditions on the

minimal sampling rate for this to happen. Next, we have characterized the robustness of our

strategy. Under measurements with error, we have bounded the error in the parameter estimates

as a function of the errors in the measured quantities. For the case of measurements corrupted

by additive Gaussian noise, we have also developed a generalscheme termedpth-Order

Parameter Fusion for aggregating parameter estimates based on determining the pth-order

approximation of their distribution. The method results insmaller errors than the individual esti-

mates generated by theVanishing Distance Derivative Detection Strategy.

Future work will be devoted to the extension of our algorithmin several directions: to include

information from the control actuation employed to maintain the depth of the drogue, to consider

general drogue dynamics not necessarily Lagrangian, and tostudy scenarios with multiple internal

waves present, including the possibility of weakly nonlinear waves. We are currently exploring

the practical implementation of our approach in a network ofdrogues under development at the
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Fig. 7. Comparison between inter-drogue trajectories generated from aset of true wave parameters and from the parameters

estimated by theVanishing Distance Derivative Detection Strategy and theSecond-Order k Fusion

method. Here, the standard deviations in distances and distance derivatives are.01m and .0001m
s

, respectively. The estimated

trajectory closely matches the true trajectory.

UCSD Scripps Institute of Oceanography [24]. Finally, we wish to determine general conditions

that allow us to employ the proposed algorithm in a broader class of dynamical systems.
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APPENDIX

The appendix contains some basic results used in the paper and the proofs of the main results.

A. Derivative estimation from noisy data

Here, we consider estimating an analytic functionf : R → R and its first (time) derivativef ′ :

R → R from n evenly sampled measurements in the sampling windowT , when the measurements
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are corrupted by additive Gaussian noise. So that our methodis causal, at any given time we only

use then most recent measurements. Additionally, for computational reasons, at every timestep,

we relabel the current timestep ast = 0 and the times of all other measurements accordingly,

i.e., we have measurements for times{tζ = −ζ
n−1

T}ζ∈{0,...,n−1}. The noisy measurement attζ is

f̃(tζ) = f(tζ) + ǫ(tζ), ǫ ∼ N (0, σ2).

The method we use is a polynomial smoothing filter approach [25] because this allows us to

justify that the derivative estimates are unbiased Gaussian random variables. Forp≪ n ∈ Z≥1,

we construct apth-order polynomial filter fromn evenly spaced noisy measurements over the

sampling windowT using the data{(tζ , f̃(tζ))}ζ∈{0,...,n−1}. Consider the Taylor series expansion,



f̃(t0)

f̃(t1)
...

f̃(tn−1)




︸ ︷︷ ︸
F̃

=




1 0 . . . 0

1 t1 . . . tp1
...

...
...

...

1 tn−1 . . . tpn−1




︸ ︷︷ ︸
V




f(t0)

f ′(t0)
...

1
p!
f (p)(t0)




︸ ︷︷ ︸
G

+




0
∑∞

j=p+1 f
(j)(t0)

tj
1

j!
...

∑∞
j=p+1 f

(j)(t0)
tjn−1

j!




︸ ︷︷ ︸
ǫbias

+




ǫ0

ǫ1
...

ǫn−1




︸ ︷︷ ︸
ǫrandom

.

More compactly, this can be written as̃F = VG+ ǫbias+ ǫrandom. The least-squares estimate for

f(t0) andf ′(t0) are the first,cpnt1(G), and second,cpnt2(G), components of the vectorG,

f̂(t0) = cpnt1(G) = cpnt1((V
TV )−1V T (F̃− ǫbias− ǫrandom)),

f̂ ′(t0) = cpnt2(G) = cpnt2((V
TV )−1V T (F̃− ǫbias− ǫrandom)).

We ignore the bias which arises from considering only thepth-order expansion off because,

for a fixedp, it can be made arbitrarily close to zero by choosing the sampling window T small

enough. With this observation in mind, the estimate off ′(t0) is an (unbiased) Gaussian random

variable with varianceσ2
f ′ = cpnt2,2((V

TV )−1)σ2.

B. Proofs of results from Sections IV and V

Proof of Proposition 4.1: Let ψ(t) = kpx(t) − ωt + φ be the relative phase between the

wave and drogue. Then (2) can be written asψ′ = ω
(
a
zu
sinψ − 1

)
. Integrating, one gets

∫ ψ

ψ0

dς
a
zu
sin ς − 1

= ω

∫ t

0

dτ,

2√
1− (a/zu)

2
atan

(
a/zu − tan(ζ/2)√

1− (a/zu)
2

)∣∣∣
ψ

ψ0

= ωt,
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whereψ0 = ψ(0) = kpx(0) + φ. Manipulating the last expression, we arrive at

ψ(t) = 2atan

(
a

zu
−
√

1−
(
a

zu

)2

tan

(√
1− (a/zu)

2ωt

2
+ Λ0

))
, (15)

Λ0 = atan

(
1√

1− (a/zu)
2

(
a

zu
− tan

(
kpx(0) + φ

2

)))
.

Note, however, that this function is discontinuous or, in other words, the expression forψ(t)

above is only valid if the argument of the tangent function isin the interval[−π
2
, π
2
]. A general

expression forψ(t) can be obtained as follows. Since the period of the tangent function is π,

we deduce that the fundamental periodT of ψ is T = 2π

ω
√

1−(a/zu)
2
. Note that at

t =
nπ − 2Λ0

ω
√
1− (a/zu)

2
, (16)

with n ∈ Z odd, one has that
√

1−(a/zu)
2

2
ωt + Λ0 = nπ

2
, and hence (15) jumps from−π to π.

So, to obtain an expression ofψ(t) which is valid in general, we need to subtract2π from (15)

every timet crosses one of the critical times (16) or, in other words, subtract the quantity

2π

⌊t− 1

ω
√

1−(a/zu)
2
(π − 2Λ0)

T
+ 1

⌋
= 2π

⌊
t

T
+

Λ0

π
+

1

2

⌋
.

Finally, note that the initial conditionΛ0 jumps from−π
2

to π
2

at kpx(0) + φ = nπ for n ∈ Z

odd. Thus, in order to makeΛ0 change continuously with the initial conditions, we subtract

away fromΛ0 the quantityπ
⌊
kpx(0)+φ+π

2π

⌋
. The result now follows.

The following auxiliary result is needed before we present the proof of Proposition 4.6. We

begin by definingǫmax : R
3
>0 → R>0,

ǫmax(x, C1, C2) = max
γ∈[0,Γ(x)]

R(x, γ, C1, C2) > 0, (17)

with Γ(x) = x− sin(x) cos(x) and

R(x, γ, C1, C2) =




min

{ 1

2
arcsin(2(x−γ))−x

C1
, γ
C2

}
π
4
> x− γ > 0,

x−γ− 1

2

C2
2π > x− γ > π

4
.

Lemma A.1:For anyx ∈ (0, 2π), C1, C2 ∈ R>0, ǫ ∈ (−ǫmax(x, C1, C2), ǫmax(x, C1, C2)),

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤ 0, (18)
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Proof: Note that for anyx > 0, γ ∈ (0,Γ(x)) andC1, C2 ∈ R>0, R(x, γ, C1, C2) > 0,

ensuring thatǫmax(x, C1, C2) > 0 as well. Forγ such thatx − γ > π
4
, we know that for any

ǫ ∈ [−R(x, γ, C1, C2),R(x, γ, C1, C2)],

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤

1

2
− x+

C2(x− γ − 1
2
)

C2

= −γ ≤ 0.

For γ such that0 < x− γ ≤ π
4
, note that for anyǫ ∈ [−R(x, γ, C1, C2),R(x, γ, C1, C2)],

1

2
sin(2(x+ C1ǫ))− x+ C2ǫ ≤

1

2
sin(2(x+ C1

1
2
arcsin(2(x− γ))− x

C1

))− x+ γ = 0,

which completes the result.

Proof of Proposition 4.6: The proof proceeds by establishing∂k drq(k ,D) > 0, for all

k ∈ [kmin, kmax]. Once this is shown, it is easy to see that onlyk satisfies (8) sincedrq is strictly

increasing as a function ofk . To prove this fact aboutdrq, it is enough to establish that

∂k dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

>
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij4)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij4)

,

as long as

sgn(dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)) = sgn(dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij4), (19)

which corresponds to

ν ∈
(−π

2
− k dij3

2
,
π

2
− k dij4

2

)⋃(π
2
− k dij3

2
,
3π

2
− k dij4

2

)
.

This set admits all
d′ij1
d′ij2

∈
(
− ∞,

sin(
k dij1

2
) sin( k

2
(dij4

−dij1
))

sin(
k d

ij2
2

) sin( k

2
(dij4

−dij2
))

)
. By hypothesis,

d′ij1
d′ij2

is in this range

and hence (19) holds. Sincedij3 < dij4, its sufficient to show that

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
< 0.

After some calculations, we obtain

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
= (20)

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

) − sin
( k dij3

2
+ ν

)
cos
( k dij3

2
+ ν

)
+ k

(dij3
2

+ ∂k ν

)

2 cos2
( k dij3

2
+ ν

) .
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From Lemma 4.5, when
d′ij1
d′ij2

= 0, thenν = π
2
− k dij1

2
and∂k ν = −dij1

2
, and so (20) becomes

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
=

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

) +

sin
( k (dij3

−dij1
)

2

)
cos
( k (dij3

−dij1
)

2

)
− k

(dij3
−dij1

)

2

2 sin2
( k (dij3

−dij1
)

2

) ,

where both summands of which are clearly negative ensuring the desired partial derivative is

negative. With this in mind, we write in general thatν = π
2
− k dij1

2
+ ǫ1 and∂k ν = −dij1

2
+ ǫ2.

Similarly, we rewrite (20) as

∂dij3

(
∂k dr(k ,ν(k , dij1 , dij2 , d

′
ij1
, d′ij2), dij3)

dr(k ,ν(k , dij1 , dij2 , d
′
ij1
, d′ij2), dij3)

)
=

sin
( k dij3

2

)
cos
( k dij3

2

)
− k dij3

2

2 sin2
( k dij3

2

) +

sin
( k (dij3

−dij1
)

2
+ ǫ1

)
cos
( k (dij3

−dij1
)

2
+ ǫ1

)
− k

(dij3
−dij1

)

2
− k ǫ2

2 sin2
( k (dij3

−dij1
)

2
+ ǫ1

) .

The unchanged, first summand is still negative. A sufficient condition for the whole expression

being negative is that the second summand is negative too. Using Lemma A.1, we can ensure

that (20) is negative when
∣∣∣d

′

ij1

d′ij2

∣∣∣ < ǫmax

(
k (dij3

−dij1
)

2
, L1, L2

)
, which completes the expression for

δ. The fact thatδ > 0 is seen from the definition ofǫmax and the assumption thatk ≤ 2π
dij4

.

Proof of Lemma 5.5:To reduce the length of expressions in the proof, we rewrite the data

with the following notation,

ỹq = β1xq + β2 + ǫq, xq =
q − 1

n− 1
(xn − x1) + x1, ∀q ∈ {1, . . . , n},

x1 = sin(ψi(tκ1)), xn = sin(ψi(tn)), xq = sin(ψi(tκq)),

ỹq = ψ̃′
i(tκq), ǫq = ψ̃′

i(tκq)− ψ′
i(tκq), β1 =

ωa

zu
, β2 = −ω.

Then,

WLS(n, x1, xn, ǫ) = ǫ

∑n
q=1

∣∣xn−x1
n−1

∑n
r=1(

r−1
n−1

(xn − x1) + x1)(q − r)
∣∣

∑n
q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

)

≤
ǫxn−x1
n−1

max{|x1|, |xn|}
∑n

q=1

∑n
r=1

∣∣q − r
∣∣

1
12

(xn−x1)2

n−1
n2(n+ 1)

= ǫ
3max{|x1|, |xn|}(n− 1)

(xn − x1)n
,
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which is clearly strictly increasing inn because
∑n

q=1

∑n
r=1 |r− q| = n(n+1)(n−1)

3
. WLS can be

bounded below by

WLS(n, x1, xn, ǫ) ≥
ǫ|∑n

q=1(
∑n

r=1 xr(xr − xq))|∑n
q=1 xq(

∑n
r=1 xq − xr)

= ǫ

for any x1 < xn ∈ [−1, 1). Additionally, for any0 < x1 < xn < 1,

WLS(n, x1, xn, ǫ) = ǫ
xn−x1
n−1∑n

q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

) ·

n∑

q=1

∣∣
q−1∑

r=1

(
r − 1

n− 1
(xn − x1) + x1)(q − r) +

n∑

r=q+1

(
r − 1

n− 1
(xn − x1) + x1)(q − r)

∣∣

≥ ǫ
xn−x1
n−1

∑n
2
−1

q=1

∣∣∑n
r=2q x1(q − r)

∣∣
∑n

q=1

(
( q−1
n−1

(xn − x1) + x1)(
xn−x1
n−1

∑n
r=1(q − r))

)

= ǫ
|x1|xn−x1n−1

n(n+3)(n−2)
8

1
12

(xn−x1)2

n−1
n2(n+ 1)

= ǫ
3|x1|(n+ 3)(n− 2)

2(xn − x1)n(n+ 1)
,

which completes the result.

Proof of Proposition 5.6: First, we note that̂prpℓ+1 can be written in the following non-

recursive way:

p̂rpℓ+1 =

∑ℓ+1
q=1

pr
Dq

(D̃q)−E[T p
Dq

(D̃q)]

Var[T p
Dq

(D̃q)]

∑ℓ+1
q=1

1
Var[T p

Dq
(D̃q)]

.

Thus, the variance of̂prpℓ+1 is

Var[p̂rpℓ+1] =

∑ℓ+1
q=1

Var [prDq
(D̃q)−E[T p

Dq
(D̃q)]]

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2

=

∑ℓ+1
q=1

Var [pr
Dq

(D̃q)]

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2

≤
ǫV
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]2

(
∑ℓ+1

q=1
1

Var[T p
Dq

(D̃q)]
)2
.

From there, we notice thatlimℓ→∞ Var[p̂rpℓ ] = 0. Now we bound the expected value ofp̂rp−pr:

|E[p̂rpℓ+1 − pr]| =
∣∣∣∣∣E
[
ℓ+1∑

q=1

prDℓ
(D̃q)−E(T p

Dq
(D̃q))

Var(T p
Dq

(D̃q))

∑ℓ+1
q=1

1
Var( ˜prDq

(D̃q))

− pr

]∣∣∣∣∣ ≤
ℓ+1∑

q=1

|E[prDℓ
(D̃q)−E(T p

Dq
(D̃q))−pr]|

Var[T p
Dq

(D̃q)]

∑ℓ+1
q=1

1
Var[ ˜prDq

(D̃q)]

≤ ǫE.

This implies that for allǫ > 0, limℓ→∞ Pr[|p̂rpℓ − E[p̂rpℓ ]| < ǫ] = 1. Also,

Pr[|p̂rpℓ − E[p̂rpℓ ]| < ǫ] ≤ Pr[|p̂rpℓ − E[p̂rpℓ |+ |E[p̂rpℓ − pr]|] < ǫ+ ǫE],

= Pr[|p̂rpℓ − E[p̂rpℓ |+ |E[p̂rpℓ ]− pr |] < ǫ+ ǫE],

≤ Pr[|p̂rpℓ − pr | < ǫ+ ǫE],

which shows the convergence result.
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