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Abstract— Many engineering, economic, and social scenarios
are modeled as neighboring agents in a network interacting
with each other. In the setup we consider, neighboring agents (i)
bargain over the possibility of matching with at most one other
agent and (ii) agree on how to allocate a common good between
them. In particular, we examine stable and fair outcomes called
Nash bargaining solutions. Our main contribution is the design
of continuous-time distributed dynamics that converge to these
Nash solutions. The technical approach leads us to develop dis-
tributed dynamics for linear programming, the results of which
are of independent interest. We invoke Lyapunov techniques to
prove convergence and draw results from nonsmooth and set-
valued analysis of dynamical systems. In the literature pertinent
to bargaining problems of the form we consider, this control
perspective is unique.

I. INTRODUCTION

In an exchange network, neighboring agents have a common
good they can split between each other. We consider a type
of coalitional game on an exchange network where agents
are interested in stabilizing coalitions of size two (called a
match). A stable outcome arises when none of the agents
benefit by unilaterally deviating from their match. We also
impose a notion of fairness (called balance) in the final
allocation to each player: paired agents should benefit equally
from their match. Such stable and balanced outcomes are
called Nash bargaining solutions. Our motivation for this
paper comes from many engineering applications that can
be modeled by games of this form. Examples include task
assignment [1], resource allocation [2], pairs of UAVs per-
forming point-to-point reconfiguration [3], large-scale data
processing [4], and wireless networks with multi-hop relay-
ing [5]. Several sociology [6] and economic applications,
such as matching in labor markets [7], also exist.
A challenging question we ask is whether players can au-
tonomously find such outcomes using only local interactions.
We interpret these interactions as bargaining among agents.
When posed formally, this problem amounts to distributedly
(i) solving a linear program and (ii) satisfying some nonlinear
constraints within the set of solutions to this linear program.
Accordingly, we devote part of this paper to studying dis-
tributed linear programming which is of independent interest
to the field of distributed optimization in multi-agent settings.
Literature review. Bargaining problems of the type we con-
sider are posed on dyadic-exchange networks, so called
because agents can match with at most one other agent [8].
Bipartite matching and many assignment problems [9] are
special cases of the dyadic-exchange network. Centralized
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methods for finding Nash bargaining solutions were de-
veloped in [10], [11]. In terms of discrete-time distributed
implementations, [12] provides dynamics that converge to
(balanced) allocations whereas [13] provides dynamics that
converge to stable and balanced (i.e., Nash) outcomes. In
contrast, our work develops continuous-time dynamics from
a distributed optimization viewpoint. Our dynamics are com-
pletely novel and do not correspond to a continuous-time
version of the dynamics in [12]. One of the main advantages
of considering continuous-time dynamics is that they allow
us to use powerful Lyapunov techniques to establish asymp-
totic convergence and, at the same time, they open the way
to the study of their robustness properties.
Another body of literature relevant to this work concerns
linear programming (as a general reference, see [14]). Dis-
tributed implementation has become a subject of interest.
This is motivated by the need to solve large scale prob-
lems [15] and systems where the data of the problem is nat-
urally dispersed over a graph [16], [17]. Some discrete-time
solutions exist such as projection methods [18], [19] and the
distributed simplex algorithm [20]. The method we propose
is implemented in continuous-time and applicable to a broad
class of multi-agent scenarios. In fact, a form of the algorithm
we present appears in [21] with the major difference that our
dynamics are smooth in some of the variables.
Statement of contributions. The contributions of this paper
are three-fold. First, with regards to distributed linear pro-
gramming, we present a saddle-point method for solving
constrained linear programs. To our knowledge, we are the
first to (i) prove convergence of these dynamics to the
set of solutions of a completely general linear program,
and (ii) study these dynamics in the context of distributed
implementation; in particular, the multi-agent setting.
Second, we setup the dyadic-exchange bargaining problem
and introduce three notions of a bargaining outcome (stable,
balanced, and Nash). For each case we develop continuous-
time distributed dynamics that converge to them. Our anal-
ysis combines nonsmooth and set-valued dynamical systems
theory, and results from linear and convex optimization.
Simulations validate our results.
Third, our presentation of the material is done from a control
and dynamical systems perspective. Thus, we provide new
insights into distributed linear programming and bargaining
in exchange networks. Moreover, we contribute a framework
that we believe is amenable for extensions to this work.
For reasons of space, all proofs will appear elsewhere.



II. PRELIMINARIES

With regards to notation, the set of real numbers is denoted
R. The nonnegative part of a set X ⊂ Rn is given by X+.
If x ∈ Rn then we use x ≥ 0 (resp. x > 0) to mean that
all components of x are nonnegative (resp. positive). Given
two sets A and B we use A \ B to mean those elements
that are in A but not B. The set A is convex if it fully
contains the segment connecting any two points in A. We
use || · || to denote any norm. The set B(x, δ) ⊂ Rn is the
open ball centered at x ∈ Rn with radius δ > 0. Given a
matrix A, the `th row of A is denoted row`(A). A function
f : X → R defined on the convex set X ⊂ Rn is convex if
f(kx + (1 − k)y) ≤ kf(x) + (1 − k)f(y) for all x, y ∈ X
and k ∈ [0, 1]. f is concave if −f is convex. The function
L : X×Y → R defined on the convex set X×Y ⊂ Rn×Rm

is convex-concave if it is convex on X and concave on Y .
A point (x̄, ȳ) ∈ X × Y is a saddle point of L if L(x̄, y) ≥
L(x̄, ȳ) ≥ L(x, ȳ) for all (x, y) ∈ X × Y . Finally, a set-
valued map F : Rn ⇒ Rn maps elements in Rn to subsets
of Rn.

A. Nonsmooth analysis

The following exposition on nonsmooth analysis is taken
from [22]. A function f : Rn → R is locally Lipschitz
at x ∈ Rn if there exists an δx > 0 and Lx ≥ 0 such that
|f(x) − f(y)| ≤ Lx||x − y|| for all y ∈ B(x, δx). When f
is locally Lipschitz at all x ∈ Rn we simply call f locally
Lipschitz. If f is convex, then it is locally Lipschitz. Let
Ωf , S ⊂ Rn be the set of points where f is not differentiable
and a set of measure zero, respectively. Then, if f is locally
Lipschitz, the generalized gradient of f at x ∈ Rn is

∂f(x) = co
{

lim
i→∞

∇f(xi) : xi → x, xi /∈ S ∪ Ωf

}
,

where co{·} denotes the convex hull of a set of points. A
set-valued map F : X ⊂ Rn ⇒ Rn is upper semi-continuous
if for all x ∈ X and ε ∈ (0,∞) there exists a δx ∈ (0,∞)
such that F (y) ⊆ F (x) + B(0, ε) for all y ∈ B(x, δx).

Lemma II.1 (Properties of the generalized gradient).
If f : Rn → R is locally Lipschitz at x ∈ Rn, then ∂f(x)
is nonempty, convex, and compact. Moreover, x 7→ ∂f(x) is
locally bounded and upper semi-continuous.

If f : Rn × Rn → R and y ∈ Rn, then ∂xf(x, y) is used to
denote the generalized gradient of x 7→ f(x, y).

B. Set-valued dynamical systems

This section follows the exposition in [23] for a tutorial on
this subject. A time-invariant set-valued dynamical system is
given by the differential inclusion

ẋ(t) ∈ F (x(t)), (1)

where t ∈ R≥0 and F : X ⊂ Rn ⇒ Rn is a set valued
map. If F is locally bounded, upper semi-continuous and
takes nonempty, convex, and compact values then there exists
an absolutely continuous curve x : R≥0 → X (called a
trajectory or solution) satisfying (1) almost everywhere from
any initial condition x(0) ∈ X .

C. Graph theory

A weighted undirected graph is a triplet G = (V, E ,W )
where V = {1, . . . , n} are vertices, E ⊆ V × V are edges,
and W ∈ R|E|>0 is a vector of edge weights indexed by edges
in G. The neighbors of a vertex i are denoted Ni = {j ∈ V :
(i, j) ∈ E}. A matrix A ∈ Rm×n is called compatible with
G if a`,i, a`,j 6= 0 ⇒ (i, j) ∈ E for every ` = 1, . . . ,m and
i, j ∈ V (the reverse implication need not be true).

III. DISTRIBUTED LINEAR PROGRAMMING

In this section we introduce continuous-time dynamics for
linear programming and present them in the context of a
multi-agent system. We use these dynamics in the network
bargaining scenario introduced in Section IV. Nevertheless,
the results presented here are of independent interest.

A. Saddle-point dynamics for linear programming

Consider the linear program in standard form,

min cT x (2a)
s.t. Ax = b, x ≥ 0, (2b)

where x, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. In this paper,
we only consider feasible linear programs. Accordingly, a
solution of (2) is denoted x∗. At times we make reference
to the dual formulation of (2)

max − bT z (3a)

s.t. AT z − λ + c = 0, λ ≥ 0, (3b)

where z∗ denotes a solution of (3). The following result
relates the solutions of (2) to the saddle points of a modified
Lagrangian function.

Proposition III.1 (Solutions of linear program as saddle
points). Define L : Rn × Rm → R as

L(x, y) = cT x +
1
2
(Ax− b)T (Ax− b) + yT (Ax− b)

+ γ

n∑
i=1

max{0,−xi},

where γ > 0. Then L is convex in x and concave (in fact,
linear) in y. Moreover, for γ sufficiently large,

(i) if x∗ ∈ Rn is a solution of (2) then there exists y ∈ Rm

such that (x∗, y) is a saddle point of L,
(ii) if (x∗, y) is a saddle point of L, then x∗ ∈ Rn is a

solution of (2).

A lower bound can be characterized for γ. However, for
the main results of this paper, it will be seen that only the
existence of γ is essential.

Remark III.2 (Modified Lagrangian). Note that L is sim-
ply the standard Lagrangian function augmented with two
terms. The nonsmooth max term is an exact penalty function
enforcing x ≥ 0. The term (Ax − b)T (Ax − b) appears for
technical reasons and is used to prove convergence results
for the dynamics we propose next. •



The power of the above result is two-fold. First, we are
justified in studying the saddle points of L rather than
trying to directly solve the constrained optimization problem.
Second, since L is convex-concave, we are inspired to
consider saddle-point dynamics. Typically, differentiability
of the Lagrangian function is a desirable property when
designing saddle-point dynamics. For example, in [24], the
inequality constraints are enforced by means of an inexact
log-barrier function. The tools of nonsmooth analysis in
systems theory allow us to deal with the non-differentiable
nature of L. As a result, we are able to design dynamics that
converge exactly to desired solutions.
Let us consider the saddle-point dynamics based on the
generalized gradients of L defined by:

ẋ + c + AT (y + Ax− b) ∈ γ∂ max{0,−x}, (4a)
ẏ = Ax− b, (4b)

where max{0,−x} = (max{0,−xi}, . . . ,max{0,−xn}) ∈
Rn
≥0. Since the dynamics (4) are derived from the gradients

of a locally Lipschitz function, it satisfies the sufficient
conditions for the existence of solutions (cf. Lemma II.1
and Section II-B). The following result states the asymptotic
convergence of the above dynamics to solutions of (2).

Proposition III.3 (Asymptotic convergence of saddle-
point dynamics). For γ > 0 sufficiently large, the projec-
tion onto the first (resp. second) component of any trajec-
tory of (4) asymptotically converges to a solution of (2)
(resp. (3)).

In order to implement (4), it seems that γ must be known.
However, (as we mentioned earlier) it turns out that we can
implement (4) based only on the knowledge of γ’s existence.
To achieve this, consider the following nominal flow function

F nom(x, y) = −c−AT (y + Ax− b).

Note in particular that F nom(x, y) ≡ −∂xL(x, y) on the
domain Rn

>0×Rm. Then, we propose the alternative discon-
tinuous dynamics for convergence to solutions of (2),

ẋi =

{
F nom

i (x, y), xi > 0,

max{0, F nom
i }, xi = 0,

∀i ∈ {1, . . . , n}, (5a)

ẏ = Ax− b. (5b)

The following states the convergence properties of (5).

Proposition III.4 (Asymptotic convergence of (5)). For
any initial condition (x0, y0) ∈ Rn

≥0 × Rm, the projec-
tion onto the first (resp. second) component of any trajec-
tory of (5) asymptotically converges to a solution of (2)
(resp. (3)).

B. Multi-agent setting

Let us now study the distributed implementation of (5) in a
multi-agent setting. For clarity, it is helpful to express the

nominal flow function component-wise,

F nom
i (x, y) = −ci −

m∑
`=1

a`,i

[
y` +

n∑
k=1

a`,kxk − b`

]
, (6)

= −ci −
∑

{` : a`,i 6=0}

a`,i

[
y` +

∑
{k : a`,k 6=0}

a`,kxk − b`

]
.

Suppose the interconnections between agents are modeled by
a graph G = (V, E ,W ). Then we say that the dynamics (5)
are distributed over G if

(i) for each i ∈ V = {1, . . . , n}, agent i knows
a) ci ∈ R,
b) every b` ∈ R for which a`,i 6= 0,
c) the non-zero elements of every row`(A) ∈ Rn

for which a`,i 6= 0,
(ii) agent i has control over the variable xi ∈ R, and

(iii) agents can observe or measure the variables controlled
by neighboring agents (i.e., A is compatible with G).

Remark III.5 (Implementation of (5b)). Component-wise,
the dynamics (5b) are

ẏ` =
∑

{i : a`,i 6=0}

a`,ixi − b`. (7)

Since A is compatible with G and agent i knows the non-
zero elements of every row`(A) for which a`,i 6= 0, the
dynamics (7) are implementable by an agent i who requires
y` in its computation of (6). These dynamics are shared
among i ∈ V for which a`,i 6= 0 (i.e., neighbors of i). •

In solving (2), agents are only interested in computing their
local component of the solution, not the entire solution itself.
Our dynamics are consistent with this fact. This is in contrast
to the dynamics proposed in [18], [19], which would not be
truly distributed for the class of problems we consider. Prob-
lems for which (5) is distributed over a network of agents
include (among others) bipartite matching, task assignment,
resource allocation, and bargaining on exchange networks.

IV. BARGAINING IN EXCHANGE NETWORKS

In this section, we introduce the bargaining problem on an
exchange network. The problem setup is as follows. Let G =
(V, E ,W ) be an undirected weighted graph. In a bargaining
network, vertices correspond to agents (or players) and edges
connect agents who have the ability to negotiate with each
other. Should they come to an agreement, the edge weight
wi,j is divided between i and j accordingly. On one hand,
agents are selfish and seek to maximize the amount they
receive. However if two agents cannot come to an agreement
they forfeit the entire amount wi,j . In this paper, we consider
bargaining outcomes of the following form.

Definition IV.1 (Outcomes). An outcome is a pair (M,α),
where M ⊂ E is a matching (i.e., a set of edges without
common vertices) and α ∈ Rn is an allocation to each agent.
An outcome has the additional property that αi + αj = wi,j

if (i, j) ∈ M and αk = 0 if agent k is not part of any edge
in M . We consider three classes of outcomes.



Stable: An outcome (M,αs) such that αs ≥ 0 and

αs
i + αs

j ≥ wi,j , ∀(i, j) ∈ E .

Balanced: An outcome (M,αb) where for all (i, j) ∈ M ,

αb
i − max

k∈Ni\j
{wi,k − αb

k}+ = αb
j − max

`∈Nj\i
{wj,` − αb

`}+.

Nash: An outcome (M,αN ) that is stable and balanced. •

Outcomes of these type are appropriate in the context of
dyadic-exchange networks, so called because each player
is allowed to pair with at most one other player. A stable
outcome ensures that no agent can strictly increase its
allocation by unilaterally trading with an alternative player.
On the other hand, in a balanced outcome, matched agents
benefit equally from the matching (with respect to their next-
best-alternative). The above definition of a Nash outcome is
an extension of the classical two player Nash bargaining so-
lution [25] to multi-player bargaining networks. See Figure 1
for specific examples that motivate these outcomes.
The problem we solve is to develop distributed dynamics
that converge to stable, balanced, and Nash outcomes.
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Fig. 1. For each outcome, edge weights are in grey boxes, matches are
thicker edges, and allocations are in the vertex circle. In the stable outcome,
the 0.0 allocation hardly seems fair to that node. In the balanced outcome,
agents can receive a higher allocation by deviating from their matches. Nash
outcomes do not exhibit either of these shortcomings.

A. Distributed convergence to stable outcomes

It has been established [10] that when a stable outcome
(M,αs) exists, the matching M is a maximum weight
matching on G. A maximum weight matching is one in which
the sum of the edge weights in the matching is maximal.
Mathematically, they are constructed from solutions to

max
X

(i,j)∈E
wi,jmi,j

s.t.
X

j∈Ni
mi,j ≤ 1, ∀i ∈ V,

mi,j ∈ {0, 1}, ∀(i, j) ∈ E ,

where the matching induced by (i, j) ∈ M ⇔ mi,j = 1 is
well-defined. The linear programming relaxation is

max
X

(i,j)∈E
wi,jmi,j

s.t.
X

j∈Ni
mi,j ≤ 1, ∀i ∈ V, (8)

mi,j ≥ 0, ∀(i, j) ∈ E ,

with the associated dual

min
X

i∈V
αs

i

s.t. αs
i + αs

j ≥ wi,j , ∀(i, j) ∈ E , (9)
αs

i ≥ 0, ∀i ∈ V.

An interesting fact relating stable outcomes and solutions
to (8) appears in [10], [12], [13].

Lemma IV.2 (Existence of stable outcomes). A stable
outcome exists if and only if (8) yields an integral solution.

A systematic method for determining whether (8) yields an
integral solution remains an open problem. From here on, we
assume that a stable outcome exists and the maximum weight
matching is unique (a standard assumption in exchange
network bargaining, see e.g. [13]). Besides technical impli-
cations, requiring uniqueness has a practical motivation. For
example, if an agent will receive the same allocation regard-
less of the matching, it is unclear with whom it will choose
to match with. Consequently, when a stable outcome exists,
finding one is a matter of solving the relaxed maximum
weight matching problem, where the matching is induced
from the solution of (8) and the allocation is any solution
to (9). Moreover, the results of Section III allow agents to
distributedly compute this outcome. To put (9) in standard
form, introduce slack variables si,j for each (i, j) ∈ E ,

min
X

i∈V
αs

i

s.t. αs
i + αs

j − si,j = wi,j , ∀(i, j) ∈ E ,

αs
i ≥ 0 ∀i ∈ V, and si,j ≥ 0 ∀(i, j) ∈ E .

Directly substituting into (6), we obtain the following dis-
tributed nominal flow functions for each agent i ∈ V ,

Snom
i (αs, s, µ) = −1−

∑
j∈Ni

[
µi,j + αs

i + αs
j − si,j − wi,j

]
,

and for each (i, j) ∈ E

Snom
i,j (αs, s, µ) = −µi,j − αs

i − αs
j + si,j + wi,j .

Then, the dynamics (5) for each agent i ∈ V are

α̇s
i =

{
Snom

i (αs, s, µ), αs
i > 0,

max{0,Snom
i (αs, s, µ)}, αs

i = 0,
(10a)

and for each edge (i, j) ∈ E agents i and j share

ṡi,j =

{
Snom

i,j (αs, s, µ), si,j > 0,

max{0,Snom
i,j (αs, s, µ)}, si,j = 0,

(10b)

µ̇i,j = αs
i + αs

j − si,j − wi,j . (10c)

We use the notation s to represent the vector of slacks
indexed by edges in G (likewise for µ).

Proposition IV.3 (Convergence to stable outcomes). For
any initial condition (αs

0, s0, µ0) ∈ Rn
≥0 × R|E|≥0 × R|E|,

(i) the projection onto the first component of any tra-
jectory of (10) asymptotically converges to the set of
solutions of (9) (denote this set by As),

(ii) if (8) yields a unique integral solution then the pro-
jection onto the second component of any trajectory
of (10) asymptotically converges to a point s. In this
case, the matching induced by the implication

(i, j) ∈ M ⇔ si,j = 0,



is well-defined and is a maximum weight matching.
Thus, (M,αs) is a stable outcome for any αs ∈ As.

Moreover, the dynamics (10) are distributed over G.

B. Distributed convergence to balanced outcomes

Here, we propose distributed dynamics that converge to
balanced outcomes. We assume that a matching M has been
given and that only allocations are being negotiated. This
assumption is dropped when we consider Nash outcomes.
The following concepts will be used in our discussion.
Suppose (i, j) ∈ M . The best allocation that i could expect
to receive by matching with a neighbor other than j is

bai\j(αb) = max
k∈Ni\j

{wi,k − αb
k}+.

Moreover, the argument of the above function is the set of
best neighbors (possibly empty)

bni\j = argmaxk∈Ni\j{wi,k − αb
k}+.

Since αb
i + αb

j = wi,j for (i, j) ∈ M in an outcome, the
balance condition for two matched agents can be restated as

αb
i =

1
2
(wi,j + bai\j(αb)− baj\i(αb)),

αb
j =

1
2
(wi,j − bai\j(αb) + baj\i(αb)).

The above formulation inspires the following distributed
dynamics, whose equilibria are by construction allocations
in a balanced outcome,

α̇b
i =


1
2 (wi,j + bai\j(αb)− baj\i(αb))− αb

i ,

if (i, j) ∈ M ,
−αb

i , otherwise.
(11)

At any time t and for j ∈ Ni, the quantity wi,j − αb
i (t)

has the interpretation of “i’s offer to j”. Note that (11) are
continuous and require 2-hop information because i updates
its offer to j based on baj\i. The design of (11) is motivated
(yet distinctly different) from the dynamics proposed in [12].

Proposition IV.4 (Asymptotic convergence to balanced
outcomes). Given a matching M , the dynamics (11) glob-
ally asymptotically converge to an allocation αb such that
(M,αb) is a balanced outcome. Moreover, the dynamics (11)
are distributed with respect to 2-hop neighborhoods over G.

C. Distributed convergence to Nash outcomes

In this section, we propose distributed dynamics that con-
verge to Nash outcomes. The design of these dynamics is
inspired from the following result, adapted slightly from [12].

Proposition IV.5 (Balanced implies stable). Assume there
exists a stable outcome and M is a maximum weight match-
ing. Then any balanced outcome (M,αb) is also stable and
thus Nash.

In a nutshell, the dynamics we propose next combine the fact
that (i) the distributed dynamics of Section IV-A converge to

a maximum weight matching and (ii) given such a maximum
weight matching, the distributed dynamics of Section IV-B
converge to a balanced (and therefore Nash) outcome. We
further exploit the fact that agents are able to execute the
balancing dynamics (11) before (10) have converged. To do
so, agents predict with whom (if any) they will be matched
in a final Nash outcome. An agent makes this prediction
based on the current value of the slack variables s(t) ∈ R|E|
in (10). In other words, agent i predicts its partner by

Pi(s) = {j ∈ Ni : si,j < si,k, ∀k ∈ Ni \ j}.

Clearly, Pi(s) is at most a singleton and can be computed
by i using local information. Likewise, if ∅ 6= Pi(s) = j,
then Pj(s) can be computed by i with 2-hop information.
Using this notion of partner, Proposition IV.3(ii) and the
asymptotic convergence properties of (10) reveal the follow-
ing fact: If (8) yields a unique integral solution then ∃T > 0
such that the matching induced by the implication

(i, j) ∈ M ⇔ si,j(t) = 0,

⇔ [∅ 6= Pi(s(t)) = j] ∧ [Pj(s(t)) = i],

is well-defined and is a maximum weight matching for
all t ≥ T . Further, after time T , the following dynamics
implemented in conjunction with (10) converge to allocations
of a Nash outcome,

α̇b
i =


1
2 (wi,j + bai\j(αb)− baj\i(αb))− αb

i ,

if [∅ 6= Pi(s) = j] ∧ [Pj(s) = i],
−αb

i , otherwise.
(13)

In (13), agents begin balancing their allocations if they iden-
tify each other as partners. Since the s are fed to i by (10),
these dynamics are a cascade system. We retain asymptotic
convergence with this cascade structure as stated next.

Theorem IV.6 (Asymptotic convergence to Nash out-
come). Suppose that (8) yields a unique integral solution
and all agents implement (10) and (13), which are distributed
with respect to 2-hop neighborhoods over G. Then, for any
initial conditions (αs

0, s0, µ0)∈Rn
≥0×R|E|≥0×R|E|and αb

0 ∈ Rn,

(i) the projection onto the second component of any
trajectory of (10) converges asymptotically to a point
s and

(ii) any trajectory of (13) converges to a point αN .

Moreover, the matching induced by the implication

(i, j) ∈ M ⇔ si,j = 0.

is well-defined and is a maximum weight matching. Thus,
(M,αN ) is a Nash outcome.

We have validated the above result in simulation. Figure 2
displays some results for an 11 node random graph.

V. CONCLUSIONS AND FUTURE WORK

We have considered bargaining among agents in an exchange
network. In particular, we studied dyadic-exchanges where
agents pair with at most one other agent. Players had to



decide with whom (if any) to match and agree on an
allocation of a common good. We designed continuous-time
distributed dynamics to converge to Nash bargaining solu-
tions. In the final outcome, individual agents had no incentive
to unilaterally deviate from their match. Of independent
interest, we presented continuous-time distributed dynam-
ics for linear programming and stated convergence results.
Several simulations validated our results. Future work will
include exploring finite-time and event-triggered versions of
our dynamics, considering other solution concepts on dyadic-
exchange networks, as well as applying our techniques to
multi-exchange networks (i.e., coalitions of more than two).
In addition, we would like to study the rate of convergence
and robustness properties of the proposed dynamics; in
particular, the effects of time delays and adversarial agents.
Finally, we wish to study our dynamics in the context of
specific coordination tasks such as point-to-point reconfigu-
ration of UAV formation pairs [3].
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(a) Evolution of agents’ allocations (i.e., trajectories of (13))
resulting from distributed dynamics (10) and (13).
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(b) Graph topology and final outcome of the simu-
lation. Edge weights are in grey boxes, matches are
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Fig. 2. Simulation results for the 11 node randomly generated network
shown in (b). Agents bargain with their neighbors over how to split an
edge weight. An evolving allocation (see (a)) is interpreted as bargaining
between neighbors. Allocations at steady-state represent an agreement
between neighbors over how to split an edge weight. The final steady-state
allocations are presented in (b). As predicted by Theorem IV.6, a Nash
outcome is achieved.
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