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Abstract

This paper considers the problem of optimally allocating the leader task between pairs of selfish unmanned aerial vehicles
(UAVs) flying in formation. The UAV that follows the other achieves a fuel benefit. The noncooperative nature of the agents
makes it necessary to arbitrate leader-allocation mechanisms that induce collaboration so that the fuel consumption benefits
of flying in formation can be realized. Formulated as a nonlinear program, our problem poses two distinct challenges: on the
one hand, given a fixed number of leader switches, determine the optimal leader allocation and, on the other, find the optimal
number of leader switches. Even though the first problem is nonconvex, we identify a suitable restriction of its feasible set that
makes it convex while maintaining the same optimal value. Regarding the second problem, our analysis of the optimal value
of the problem as a function of the number of switches allows us to design a search algorithm which is guaranteed to find the
solution in logarithmic time. Several simulations illustrate our results.

Key words: point-to-point UAV reconfiguration, noncooperative agents, benefit-driven cooperation, cooperation-enforcing
protocols, convex restrictions

1 Introduction

This paper considers pairwise formations between un-
manned aerial vehicles (UAVs) where an agent gains
a fuel benefit by flying in the wake of another (i.e., a
reduction in aerodynamic drag). The objective of each
UAV is to travel from source to target locations while
consuming the least amount of fuel. UAVs are able to
reach their destination alone, however joining in forma-
tion can potentially improve their fuel economy. When
agents are noncooperative, the potential benefits of fly-
ing in formation bring up the issue of distributing fairly
the leader task. The goal of this paper is to find optimal
cooperation-inducing leader allocations that minimize
UAV fuel consumption and provide individual agents
with algorithms to compute them. Such benefit-driven
cooperation mechanisms are a necessary building block
to realize the potential benefits of collaboration in groups
of noncooperative agents bargaining over the possibility
of teaming up. The results of this paper can be applied
to scenarios involving bargaining and auctions, task al-
location in teams, and transferable utility games.

⋆ Parts of this paper were presented in preliminary form at
the 2012 American Control Conference and the 2012 IEEE
Conference on Decision and Control.

Email addresses: drichert@ucsd.edu (D. Richert),
cortes@ucsd.edu (J. Cortés).

Literature review. In the cooperative control litera-
ture, there are numerous instances of the performance
benefits obtained by a group of agents collaborating to-
wards the achievement of a common goal, see e.g. [Ren
and Beard, 2008, Bullo et al., 2009, Mesbahi and Egerst-
edt, 2010] and references therein. Several works [Mar-
den et al., 2009, Song et al., 2011, Zhu and Mart́ınez,
2013] have also considered situations where individual
agents have objective functions of their own that are
aligned with a global objective. Less attention has been
paid to scenarios where individual agents can carry out
their objectives satisfactorily by themselves, yet perfor-
mance can improve by collaborating with others. In these
cases, a critical issue is how to regulate the collaboration
among agents in order to enforce fairness when agents
are not altruistic. A particular family of such problems
is studied in wireless communications in the context of
interference, medium access control, and resource shar-
ing [Stirling and Nokleby, 2009, Nokleby and Aazhang,
2010, Nosratinia et al., 2004]. This paper introduces a
different family of such problems that involve a group of
UAVs flying in formation towards their goals. The en-
ergy savings of flying in formation are apparent in flocks
of birds [Weimerskirch et al., 2001, Hummel, 1983]. In
theory, the same benefits exist for formations among
UAVs [Giulietti et al., 2000, Borrelli et al., 2004]. More-
over, recent improvements in technologymake it possible
to realize these fuel savings [Vachon et al., 2002, Seanor
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et al., 2004]. Here, we take inspiration from Ribichini
and Frazzoli [2003], who study formation creation in
groups of UAVs, and we examine how collaboration can
be enforced among (not necessarily cooperative) agents
through appropriately designed protocols. In our model
for UAV behavior, agents are incentivized to remain in
formation, analogously to marginal cost pricing schemes
in game theory, see e.g. [Nisan et al., 2007]. Another
relevant body of work is that of nonlinear and noncon-
vex optimization, see e.g. [Floudas and Gounaris, 2009]
and references therein. A common approach to solving a
nonconvex problem is to convert it into a convex prob-
lem, for which efficient solution methods exist [Boyd and
Vandenberghe, 2004, Bertsekas et al., 2003], and then es-
tablishing the relationship between the solutions of both
problems. Such conversions can be performed by way of
relaxations of the constraints or restrictions of the feasi-
ble set [Açıkmeşe and Blackmore, 2011]. In this paper,
we employ the latter approach.

Statement of contributions. Our contributions per-
tain to the modeling, analysis, and design of UAV for-
mation pairs for optimal point-to-point reconfiguration.
Regarding modeling, we introduce the notion of a UAV
formation pair as a collection of distances (or leader al-
locations) in a line along which each one must lead. We
also define a cost-to-target function that measures the
total fuel consumed along the trajectory. We model the
compliance of a UAV to a leader allocation via a pa-
rameter, ǫ ≥ 0, which quantifies the cost gain that the
UAV will forgo before breaking a formation. With these
elements, we formulate the problem of finding an opti-
mal leader allocation among those that induce cooper-
ation. This problem is nonconvex in one variable (find-
ing the optimal leader allocation given a fixed number
of switches) and combinatorial in the other (finding the
optimal number of leader switches). The remaining con-
tributions of the paper concern the analysis of this op-
timization problem and the design of algorithms that
converge to a solution. Our first result builds on a care-
ful characterization of the properties of the objective
function and constraints to reformulate the optimization
problem as a standard nonlinear program.When switch-
ing the lead has no cost, we find the optimal value of
the program. This leads us to design the cost realiza-

tion algorithm to determine an optimal cooperation-
inducing leader allocation. When switching the lead is
costly, we restrict the feasible set of leader allocations to
mimic those of the solution provided by the cost real-

ization algorithm. Remarkably, the restriction con-
vexifies the feasible set of the original nonconvex problem
while maintaining its optimal value, and its solutions are
also feasible. Finally, we establish a quasiconvexity-like
property of the optimal value of the problem as a func-
tion of the number of leader switches. This property al-
lows us to design the binary searchalgorithm, which
finds the optimal number in logarithmic time. Several
simulations throughout the paper illustrate the results.

Organization. Section 2 formulates the optimal leader

allocation problem. Section 3 unveils some key proper-
ties of the cost-to-target functions and optimal leader
allocations. Sections 4 and 5 deal with the no-cost and
costly switching cases, respectively. Section 6 gathers our
conclusions and ideas for future work.

2 Problem setup

This section describes the problem setup. After intro-
ducing the notions of formation, lead distance, and cost-
to-target function, we present the optimization problem
we seek to solve. Consider a pair of UAVs with unique
identifiers (UIDs) i and j evolving in X ⊂ R

3. Both i
and j have synchronized clocks and can communicate
with each other. A superscript i (resp. j) denotes a quan-
tity associated with i (resp. j). Agent i has position
xi(t) ∈ X at time t ∈ R≥0, a target location x̄i ∈ X, and
the objective of flying from origin xi(0) to target loca-
tion while consuming the least amount of fuel. The same
is valid for agent j. For UAVs flying in close proxim-
ity, the inter-agent distance between them is negligible
compared to the total distance they must travel to their
target. Therefore we make the abstraction that i and j
are point masses that may have concurrent position.

2.1 Formations and lead distances

To move from origin to destination efficiently, agents
i and j might decide to travel in formation. Here, we
formally introduce this notion and examine the associ-
ated costs. Without loss of generality (via an appropri-
ate change of coordinate frame), suppose that i and j
have rendezvoused at the origin, xr = 0, at time t = 0
and are flying in the direction u = (1, 0, 0). Agents i and
j are in formation at a time t if

(i) xi(0) = xj(0) = xr,
(ii) [xi(0), xi(t)] = [xj(0), xj(t)] ∈ ray(xr, u),
(iii) d(xi(τ), xj(τ)) = 0 for all τ ∈ [0, t],

where ray(xr, u) is the ray originating at xr in the di-
rection of u and d : R3 × R

3 → R≥0 is the Euclidean
distance between two points. The execution of a forma-
tion is completely described by a vector of lead distances
(VOLD) and the UID of the agent which leads first.
Without loss of generality, let i lead the formation first.
A VOLD ℓ ∈ R

N
≥0 is a finite-dimensional vector prescrib-

ing which UAV leads the formation when and for how
long. For instance, i will initially lead the formation for
distance ℓ1 at which point i and j will switch the lead.
Upon completion of the leader switch, j will lead the for-
mation for distance ℓ2. As such, for n odd (resp. even),
ℓn is the nth distance led by i (resp. j). We use N to
denote the cardinality of a VOLD.

A leader switch is a maneuver which takes a distance s
to complete, see Figure 1. During a leader switch, the
fuel consumption per unit distance is Γ > 1, and hence,
the fuel consumed by both UAVs is sΓ. We have scaled
the quantity Γ relative to the fuel consumption per unit
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distance of leading the formation (which, by assump-
tion, is 1). Conversely, flying in the wake of another UAV
reduces the aerodynamic drag on the following UAV.
Thus, the relative fuel cost per unit distance of a UAV
following is γ < 1. Flying solo or leading the formation
incur the same fuel consumption per unit distance. Upon
completion (or breaking) of the formation, UAVs fly di-
rectly to their respective targets. For reasons of presen-
tation, we assume that UAVs are identical in the sense
that γ, Γ, and the cost per unit distance of flying solo are
the same for all agents. However, the remaining analysis
could easily be adapted for agents that are not identical.

2.2 Cost-to-target functions

Here we define an agent’s cost-to-target. To begin we
introduce some auxiliary functions. Given a VOLD ℓ ∈
R

N
≥0, the distance of the nth switch from the origin is

Dn(ℓ) =

{

0, n = 0,
∑n

k=1 ℓk + (n− 1)s, 1 ≤ n ≤ N.

The total distance of the formation prescribed by ℓ is
DN (ℓ). Likewise, given a VOLD ℓ, the number of leader
switches that have been initiated when the UAVs have
been in formation for distance D ≥ 0 is

#sw(ℓ,D) = max{n ∈ {0, 1, . . . , N} : Dn(ℓ) ≤ D},

and the distance from the last switch is DLS(ℓ,D) =
D − D#sw(ℓ,D)(ℓ). Given a VOLD and a distance D,
a UAV is able to compute the relative fuel consumed
on its flight from xr to its target if it were to break
the formation at Du. We refer to it as the UAV’s cost-
to-target function. Formally, for agent i, we have ct

i :
R

N
≥0 × R≥0 → R>0 given by

ct
i(ℓ,D) =

#sw(ℓ,D)
∑

k∈N∩O

ℓk + sΓ(#sw(ℓ,D)− 1)+

+ γ

#sw(ℓ,D)
∑

k∈N∩E

ℓk +Ri(ℓ,D) + d(Du, x̄i),

where N,O and E are the set of natural, odd, and even
numbers respectively and (·)+ := max{0, ·}. The first
term is the fuel consumed by leading, the second term
is the fuel consumed due to switching the lead, and the
third term is the fuel consumed while following. The
fourth term is a residual term accounting for the fuel
consumed since the last switch. For #sw(ℓ,D) odd

Ri(ℓ,D) = γ(DLS(ℓ,D)− s)+ + Γmin{DLS(ℓ,D), s},

and for #sw(ℓ,D) even

Ri(ℓ,D) = (DLS(ℓ,D)− s)+ + Γmin{DLS(ℓ,D), s}.

Lastly, the d(Du, x̄i) is the fuel that i would consume by
breaking the formation at Du and flying to its target.
Slight variations of a UAV’s cost-to-target are the cost-
to-target-at-the-kth-switch functions. For k = 1, . . . , N ,
these are given by ct

i
k : Rk

≥0 → R>0 defined as

ct
i
k(ℓ1, . . . , ℓk) =

k
∑

n∈N∩O

ℓn + γ

k
∑

n∈N∩E

ℓn + sΓ(k − 1)

+ d

(( k
∑

n=1

ℓn + s(k − 1)

)

u, x̄i

)

.

By construction, cti(ℓ,Dk(ℓ)) ≡ ct
i
k(ℓ1, . . . , ℓk). Analo-

gous ctj and ct
j
k exist for j. In addition to an individual

UAV’s cost-to-target, it is possible to characterize the
combined cost-to-targets of i and j at the end of their
formation in terms of the formation breakaway location.
To do so, consider any ci, cj ∈ R>0 and suppose there ex-
ists an ℓ ∈ R

N
≥0 such that ci = ct

i
N (ℓ) and cj = ct

j
N (ℓ)

(i.e., the final cost-to-target at the end of the formation
for i and j are ci and cj respectively). The UAVs’ com-
bined cost-to-targets at the end of the formation is

cj + ci = ct
j
N (ℓ) + ct

i
N (ℓ).

Under a change of variables L =
∑N

k=1 ℓk this becomes

cj + ci = ct
i+j
N (L) := (1 + γ)L+ 2(N − 1)sΓ

+ d
(

(L+ s(N − 1))u, x̄j
)

+ d
(

(L+ s(N − 1))u, x̄i
)

.

We call cti+j
N : R≥0 → R>0 the combined cost-to-target

function of a formation with N − 1 switches. Note that
the formation breakaway distance is L+ s(N − 1).

2.3 Problem statement

Upon arrival at the rendezvous location xr, the agents
need to determine a VOLD to dictate how to execute
their formation. Suppose i declares an upper bound Ci

on its final cost-to-target. Then j would propose a VOLD
which solves the following two-stage optimization prob-
lem. First, among VOLDs with a fixed cardinality N ,
the minimum cost-to-target j can expect is

min
ℓ∈RN

≥0

ct
j
N (ℓ) (1a)

s.t. Ci ≥ ct
i
N (ℓ), (1b)

ct
i(ℓ,D) ≤ ct

i
N (ℓ) + ǫi, ∀D ∈ [0, DN (ℓ)], (1c)

ct
j(ℓ,D) ≤ ct

j
N (ℓ) + ǫj , ∀D ∈ [0, DN (ℓ)]. (1d)

The parameters ǫi, ǫj ≥ 0, intrinsic to each UAV, model
their degree of cooperation (see Remark 2.1). Con-
straint (1c) ensures that at no point in the formation will
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0

u = (1, 0, 0)

x1 x2

x̄i

x̄j

x1 = D1(ℓ)u = ℓ1u

x2 = D2(ℓ)u = (ℓ1 + s + ℓ2)u

(a) Red begins leading the formation

u = (1, 0, 0)

0
x1 x2

x̄
i

x̄
j

(b) A leader switch is initiated at x1

{

u = (1, 0, 0)

0
x1 x2

x̄i

x̄j

s

(c) Blue leads after the switch

Fig. 1. Example flight behavior of UAVs given a VOLD ℓ = (ℓ1, ℓ2). The dashed lines represent the proposed flight paths
of the UAVs. During a switch, the UAVs deviate slightly from the formation heading and red (resp. blue) decreases (resp.
increases) its speed. After maintaining the new speeds for distance s, the UAVs return to the original heading and speed of the
formation. Both UAVs consume sΓ amount of fuel in this maneuver. At x2, the UAVs fly directly to their respective targets.

i’s cost-to-target be ǫi less than its final cost-to-target.
The assumption is that i would break the formation
earlier if it could benefit (by more than ǫi) in doing so.
An analogous reason for j motivates (1d). The optimal
value of (1) is denoted Cj(N). Next, among all VOLDs
(of any number of leader switches), the minimum cost-
to-target that j could expect is

min
N∈N≥2

Cj(N). (2)

IfN∗ is minimizes (2) and ℓ∗ minimizes (1) for fixedN∗,
then j would propose ℓ∗ to i. For reasons of notation, let
F(N) be the feasible set of (1). In general, F(N) is non-
convex and (2) is combinatorial. We devote much of this
paper to transforming (1) into a convex problem (i.e., a
convex objective function minimized over a convex set)
and developing tools to efficiently solve (2).

From this point on, we assume that the formation head-
ing is not in the same direction as either agents’ target,

x̄i /∈ ray(xr, u) and/or x̄j /∈ ray(xr, u). (3)

Without this assumption, inducing cooperation between
i and j is trivial: if a UAV cannot “breakaway” from the
formation, the other UAV will just follow in the forma-
tion until it no longer benefits from doing so.

Remark 2.1 (Selfish vs. fully cooperative UAVs).
If ǫi = ǫj = 0, constraints (1c)-(1d) imply that i and j
only abide by VOLDs for which their cost-to-target at
any time in formation is never better than their cost-to-
target at the end of the formation. We call such UAVs
selfish. For selfish UAVs, the solution to problem (1) is
trivially ℓ∗ = 0 ∈ R

N for any N (agents never fly in for-
mation). This is because neither UAV is willing to be the
last to lead the formation compared to flying straight to
its target. On the other hand, removing (1c)-(1d) (equiv-
alently, setting ǫi = ǫj = ∞) implies that UAVs will
abide by any VOLD ℓ ∈ R

N
≥0. We call such UAVs fully

cooperative. However, these UAVs could potentially save
fuel by breaking the formation earlier. This discussion
motivates our problem formulation, which accounts for
agents who are selfishly motivated yet willing to forfeit

a small amount of fuel to ensure the formation occurs.
Figure 2 shows the dependency of Cj

∗ on ǫi, ǫj . •

Cooperation parameter (ǫ = ǫ
i = ǫ

j)
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Fig. 2. Optimal value of (2) with respect to ǫ = ǫi = ǫj .

As ǫ increases, j’s optimal cost-to-target, Cj
∗ decreases. The

nonsmoothness at ǫ ≈ 0.41 and ǫ ≈ 0.58 is due to decreases
in the optimal number of leader switches in the solution
to (2). The simulation data are: Ci = 82, s = 0.2, Γ = 1.7,
γ = 0.5, x̄i = (100, 10), x̄j = (90,−20).

3 Unveiling the structure of optimal VOLDs

This section describes properties of the cost-to-target
functions and of the solutions to (1). Using them, we
provide a more explicit description of the feasible set,
allowing us to express (1) in standard form.Without loss
of generality, many of the results only refer to i.

3.1 Properties of the cost-to-target functions

A cost-to-target function is continuous and piecewise dif-
ferentiable with respect to distanceD. In particular, cti

is not differentiable at distances where leader switches
are initiated or completed. That is, ∂Dct

i exists at (ℓ,D)
iff DLS(ℓ,D) /∈ {0, s}. The following reveals a useful
convexity-like property of the cost-to-target functions.

Lemma 3.1 (Leading, following, and switching
becomemore costly as the formation progresses).
Let ℓ be a VOLD and D1 < D2. Suppose that, under ℓ,
UAV i is leading (or following, or switching) at bothD1u
andD2u. Then ∂Dct

i(ℓ,D1) < ∂Dct
i(ℓ,D2). Moreover,

if i is leading or switching atD1u, then ∂Dct
i(ℓ,D1) > 0.
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Proof. The derivative of cti with respect to D is

∂Dct
i(ℓ,D) = ∂Dd(Du, x̄i) +







γ, if i follows at Du,

1, if i leads at Du,

Γ, otherwise.

The functionD 7→ d(Du, x̄i) is strictly convex under (3).
Thus, ∂Dd(Du, x̄i) is strictly increasing. Suppose that i
is leading at both D1u and D2u. Then

∂Dct
i(ℓ,D1) = ∂Dd(D1u, x̄

i) + 1,

< ∂Dd(D2u, x̄
i) + 1 = ∂Dct

i(ℓ,D2).

Similar analysis holds for when i is following (or switch-
ing) at bothD1u andD2u. To show that ∂Dct

i(ℓ,D1) >
0 when i is leading atD1u, let a > 0 be sufficiently small
such that i is also leading at (D1 − a)u. Then

ct
i(ℓ,D1) = ct

i(ℓ,D1 − a)− d((D1 − a)u, x̄i)

+ a+ d(D1u, x̄
i) > ct

i(ℓ,D1 − a),

where we have used the triangle inequality. Since a can
be taken arbitrarily small, ∂Dct

i(ℓ,D1) > 0 follows. If i
is switching atD1u, the above argument with Γa instead
of a, together with Γ > 1, yields the same conclusion. ✷

Roughly speaking, Lemma 3.1 states that it is more
costly to lead (or follow or switch) in the formation as
it progresses. The last statement in Lemma 3.1 simply
states that leading or switching is always costly. This
is to be distinguished from following which, as we show
later, decreases the cost-to-target function in an opti-
mal VOLD. Using a similar argument as in the proof of
Lemma 3.1, the following states some properties of the
cost-to-target-at-the-kth-switch functions.

Lemma 3.2 (Properties of the cost-to-target-at-
the-kth-switch functions). For ℓ ∈ R

N
≥0

(P1) ∂ℓ1ct
i
k(ℓ1, . . . , ℓk) > 0, for k ≥ 1,

(P2) ∂ℓ2ct
j
k(ℓ1, . . . , ℓk) > 0, for k ≥ 2,

(P3) ∂ℓnct
m
k (ℓ1, . . . , ℓk) = ∂ℓn+2

ct
m
k (ℓ1, . . . , ℓk), for k ≥

n+ 2 and m = i, j,
(P4) ∂ℓnct

m
k (ℓ1, . . . , ℓk) < ∂ℓnct

m
k+2(ℓ1, . . . , ℓk), for k ≥

n and m = i, j.

3.2 Properties of the optimal VOLDs

This section explores an important property of the
breakaway distance prescribed by a solution to (1). For

some ℓ ∈ R≥0 let cj = ct
j
N (ℓ) and ci = ct

i
N (ℓ). Recall-

ing the discussion on the combined cost-to-target func-
tion (cf. Section 2.2), the possible breakaway locations
of the formation can be described by all L satisfying

cj + ci = ct
i+j
N (L).

Since ct
i+j
N is strictly convex, there exist two solutions

L1, L2 to this equation (note that L1, L2 may not be

distinct). Letting L∗
N = argminL ct

i+j
N (L), we assume

without loss of generality that L1 ≤ L∗
N ≤ L2. The

following result states that L1 + s(N − 1), and not L2 +
s(N −1), is the breakaway location for a solution to (1).

Proposition 3.3 (UAVsbreakaway as soon as pos-
sible). For N ∈ N, let ℓ∗ be a solution to (1). Then,

ℓ∗ ∈ LN :=

{

ℓ ∈ R
N
≥0 :

N
∑

k=1

ℓk ≤ L∗
N

}

.

Proof. Consider the case whenN is even so that j leads
the last segment. Proving the result by contradiction,

suppose ℓ solves (1) but
∑N

k=1 ℓk = L̂ > L∗
N . Since cti+j

N

is strictly convex, we know ∂Lct
i+j
N (L̂) > 0. That is

γ + ∂Ld((L̂+ s(N − 1))u, x̄i) >

− 1− ∂Ld((L̂+ s(N − 1))u, x̄j). (4)

In other words, ∂ℓNct
i
N (ℓ) > −∂ℓNct

j
N (ℓ). A rearrange-

ment of (4) reveals that ∂ℓN−1
ct

j
N (ℓ) > −∂ℓN−1

ct
i
N (ℓ)

also. Consider the alternative VOLD ℓ′ ∈ R
N
≥0 where,

for some a, b ≥ 0 to be designed, ℓ′N−1 = ℓN−1−a, ℓ′N =
ℓN − b, and ℓ′k = ℓk otherwise. To reach a contradiction
of ℓ being a solution of (1), we want to design a, b such

that ctiN (ℓ′) ≤ ct
i
N (ℓ), ctjN (ℓ′) < ct

j
N (ℓ) and ℓ′ satis-

fies (1c)-(1d). First, let a, b be sufficiently small such that
the following linear approximations are valid. We desire

a∂ℓN−1
ct

j
N (ℓ) + b∂ℓNct

j
N (ℓ) > 0, (5a)

a∂ℓN−1
ct

i
N (ℓ) + b∂ℓNct

i
N (ℓ) ≥ 0. (5b)

There are four cases: (i) ∂ℓNct
i
N (ℓ), ∂ℓN−1

ct
j
N (ℓ) > 0

(ii) ∂ℓNct
i
N (ℓ) < 0 < ∂ℓN−1

ct
j
N (ℓ) (iii) ∂ℓN−1

ct
j
N (ℓ) <

0 < ∂ℓNct
i
N (ℓ) (iv) ∂ℓNct

i
N (ℓ), ∂ℓN−1

ct
j
N (ℓ) < 0. For

the sake of space, consider only case (iv) which we claim
is the most complex. Combining (5) yields

−a
∂ℓN−1

ct
i
N (ℓ)

∂ℓNct
i
N (ℓ)

< b < −a
∂ℓN−1

ct
j
N (ℓ)

∂ℓNct
j
N (ℓ)

.

Given a > 0, ∃b > 0 since ∂ℓN−1
ct

j
N (ℓ) > −∂ℓN−1

ct
i
N (ℓ)

and ∂ℓNct
i
N (ℓ) > −∂ℓNct

j
N (ℓ). It remains to show that

ℓ′ satisfies (1c)-(1d). Consider first the interval D ∈
[0, DN−1(ℓ

′)] where, by construction of ℓ′, cti(ℓ′, D) =
ct

i(ℓ,D). Since ℓ satisfies (1c)-(1d) on this interval

ct
i(ℓ′, D) ≥ ct

i
N (ℓ)− ǫi > ct

i
N (ℓ′)− ǫi.

5



Similar analysis holds for j (i.e., cooperation is induced
up until DN−1(ℓ

′)u). Beyond DN−1(ℓ
′)u, UAV j is

switching and leading. So, ∀D ∈ (DN−1(ℓ
′), DN (ℓ′)]

ct
j(ℓ′, D) > ct

j
N−1(ℓ

′) > ct
j
N (ℓ′)− ǫj ,

due to Lemma 3.1. Thus, j will cooperate under ℓ′.
Still under case (iv), note that ∂ℓNct

i
N (ℓ) < 0 ⇒

∂−
Dct

i(ℓ,DN (ℓ)) < 0 ⇒ ∂−
Dct

i(ℓ′, DN (ℓ′)) < 0 which,
due to Lemma 3.1, further implies that following always
decreases i’s cost-to-target function in the formation.
Agent i only switches and follows beyond DN−1(ℓ

′)u.
So, ∀D ∈ (DN−1(ℓ

′), DN−1(ℓ
′) + s]

ct
i(ℓ′, D) > ct

i(ℓ′, DN−1(ℓ
′)) > ct

i(ℓ′, DN (ℓ′))− ǫi,

and ∀D ∈ [DN−1(ℓ
′) + s,DN (ℓ′))

ct
i(ℓ′, D) > ct

i(ℓ′, DN (ℓ′)) > ct
i(ℓ′, DN (ℓ′))− ǫi.

Thus, i will also cooperate (i.e., ℓ′ satisfies (1c)-(1d)).
Similar arguments hold for cases (i)-(iii). In summary, ℓ′

decreases (1a) while satisfying (1d) which contradicts ℓ
solving (1). N odd is dealt with analogously. ✷

Proposition 3.3 gives an upper bound on the breakaway
distance of an optimal VOLD. Thus, we can restrict the
feasible set of (1) to ℓ ∈ F(N) ∩ LN . Following this
result, for ℓ ∈ LN , one has the additional property that a
UAV’s cost-to-target strictly decreases while following.

Corollary 3.4 (Following is beneficial). If ℓ ∈ LN

has i following at D̂u, ∂Dct
i(ℓ, D̂) < −∂Dct

j(ℓ, D̂) < 0.

Proof. Following the proof of Proposition 3.3, if ℓ ∈
LN then we arrive at (4) with the inequality reversed.

However, the LHS of (4) is ∂Dct
i(ℓ, D̂) where D̂ = L̂.

The result follows from applying Lemma 3.1 ✷

Corollary 3.4 also allows us to identify additional prop-
erties of the cost-to-target-at-the-kth-switch functions.

Lemma 3.5 (Properties of the cost-to-target-at-
the-kth-switch functions - continued). For ℓ ∈ LN ,

(P5) ∂ℓ1ct
j
k(ℓ1, . . . , ℓk)≤−∂ℓ1ct

i
k(ℓ1, . . . , ℓk) < 0, k ≥ 2,

(P6) ∂ℓ2ct
i
k(ℓ1, . . . , ℓk)≤−∂ℓ2ct

j
k(ℓ1, . . . , ℓk) < 0, k ≥ 2.

The results thus far are now used to state a fact about
the final cost-to-target for UAV i given a solution to (1).

Lemma 3.6 (i receives its bound on final cost-to-
target). If ℓ is a solution to (1) then Ci = ct

i
N (ℓ).

Proof. The proof is by contradiction, so let ℓ solve (1)
and assume Ci < ct

i
N (ℓ). Decrease ℓ2 by some amount

a > 0, thus increasing i’s cost-to-target and decreasing
j’s cost-to-target (cf. Lemma 3.5(P6)). For a sufficiently
small, (1b) is still satisfied and (1a) decreases. Also (1c)-
(1d) are satisfied, as shown by repeated application of
Lemma 3.2(P4). Thus, we have reached a contradiction
(i.e., if Ci < ct

i
N (ℓ) then ℓ does not solve (1)). ✷

3.3 Equivalent formulation

Here, we combine the results established above to reduce
the feasibility set of (1) to only those VOLDs exhibiting
properties of optimal VOLDs. In particular, Lemma 3.1
and Corollary 3.4 reveal that, for ℓ ∈ LN , the local min-
ima of cti and ct

j occur at the distances where an agent
initiates a switch from following to leading. So, if coop-
eration is induced at those points, then cooperation is
induced for the entire formation. Additionally, we can
now fix i’s final cost-to-target at Ci. To summarize, we
reformulate (1) in terms of the cost-to-target-at-the-kth-
switch functions as follows. For fixed N ∈ N

min
ℓ∈LN

ct
j
N (ℓ) (6a)

s.t. cj = ct
j
N (ℓ), Ci = ct

i
N (ℓ), (6b)

cj ≤ ct
j
k(ℓ1, . . . , ℓk) + ǫj , k ∈ O[1,N−1], (6c)

Ci ≤ ct
i
k(ℓ1, . . . , ℓk) + ǫi, k ∈ E[2,N−1]. (6d)

Given the above discussion, the set of solutions to (6) is
the set of solutions to (1). The equality constraints in (6)
are not affine and substituting them into the inequality
constraints yields nonconvex inequality constraints.

Remark 3.7 (Total lead distance functions). For
ℓ ∈ LN satisfying (6b)-(6d), one can show that, without
knowing the specific elements of ℓ, there exists a unique
distance that i must lead the formation. This is

tl
i
N (cj) :=

[

L+ d((L+ (N − 1)s)u, x̄j)

+ (N − 1)sΓ− cj
]

/(1− γ) ≡
∑N

k∈N∩O
ℓk,

where L satisfies cj+Ci = ct
i+j
N (L) (tliN is well-defined

since L is unique). Also, tljN (cj) := L− tl
i
N (cj). •

4 Optimal VOLDs under no-cost switching

This section solves problem (2) when switching the lead
does not incur a cost to UAVs (i.e., s = sΓ = 0).We start

by characterizing the optimal value Cj
∗ and then design

the cost realization algorithm to generate a VOLD
that realizes the optimal fuel consumption of UAV j in
the formation. Note that, under no-cost switching

ct
i+j
N ′ (L) = ct

i+j
N ′′ (L), ∀N ′, N ′′ ∈ N.
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This can be interpreted as follows. Given a fixed break-
away location (in this case,L because s = 0) and i’s cost-
to-target, the final cost-to-target for j is independent of
the number of leader switches in the VOLD. Based on
this observation, we are able to prove the following.

Theorem 4.1 (Optimal value under no-cost
switching). For s = 0, max{ǫi, ǫj} > 0, and any

N ≥ 2, Cj
∗ is the optimal value of the convex problem

min
L

{cti+j
N (L)− Ci}. (7)

Proof. The proof is constructive. For s = 0, let cj =
minL ct

i+j
N (L) − Ci for any N ≥ 2 and for brevity,

let ℓiL = tl
i
N (cj) and ℓjL = tl

j
N (cj) (cf. Remark 3.7).

Begin with the VOLD ℓ = (ℓiL, ℓ
j
L). If ℓ is not feasi-

ble then it must be that ct
j
1(ℓ

i
L) < cj − ǫj . By as-

sumption, ctj1(0) > cj − ǫj . Therefore, by the inter-
mediate value theorem, there exists a ℓ1 ∈ (0, ℓiL) such

that ct
j
1(ℓ1) = cj − ǫj . With a slight abuse of nota-

tion, let ℓ = (ℓ1, ℓ
j
L, ℓ

i
L − ℓ1). Then, because the break-

away distance has been preserved, i and j still real-
ize their costs of Ci and cj , respectively. Again, if ℓ is
not feasible, then it must be that cti2(ℓ1, ℓ

j
L) < Ci − ǫi

and, by the intermediate value theorem, there exists a
ℓ2 ∈ (0, ℓjL) such that cti2(ℓ1, ℓ2) = Ci − ǫi. Then, up-

date ℓ = (ℓ1, ℓ2, ℓ
i
L−ℓ1, ℓ

j
L−ℓ2). This process may be re-

peated as long as ℓ is not feasible. If it never happens that
ℓ is feasible, this implies that ℓk → 0 (we view {ℓk} as
a sequence which is bounded and monotonic). This fur-
ther implies that there exists a L :=

∑∞

k=1 ℓk such that

cj−ǫj+Ci−ǫi = ct
i+j
N (L). However, if max{ǫi, ǫj} > 0,

this contradicts cj being the optimal value of (7). There-
fore, it must be that for some finite number of steps, ℓ
becomes feasible under the proposed procedure. ✷

The above result establishes that the optimal value of (2)
under no-cost switching can be found as the optimal
value of a simple convex problem. This result is useful
for j as it is able to know a priori what final cost-to-
target it can expect from a formation with i. However,
i and j still do not know how to realize these cost-to-
targets. The cost realization algorithm provided
in Figure 3 resolves this issue. Its design is inspired by
the constructive proof of Theorem 4.1. Agents i and j
implement this algorithm on-the-fly while in formation
and only require knowledge of the optimal value to (2).

Corollary 4.2 (Inducing optimal solutions: no-

cost switching). For sΓ = 0 and input Cj
∗, the cost

realization algorithm induces aVOLD that solves (2).

Figure 4 reports the cost-to-targets in a simulation of two
UAVs flying from origin to target locations while imple-

Begin formation (set n = 1)

At current time t, is i’s
cost-to-target Ci

−ǫi or is j’s
cost-to-target cj

−ǫj?

No

Yes

Initiate leader switch (n 7→n + 1)

At current time t, has i led the
formation for tl

i
n+1(c

j) or has j
led the formation for tl

j

n+1(c
j)?No

Yes

Initiate leader switch

Continue until j’s cost-to-target is cj

Break formation

C
on

ti
n
u
e

in
fo

rm
at

io
n

Fig. 3. The cost realization algorithm, with input cj ,
over ǫ-cooperative agents i and j. Upon breaking the forma-
tion, UAVs fly directly to their respective targets. UAVs have
knowledge of the following parameters when implementing
the algorithm: Ci, s, Γ, γ, ǫi, ǫj , x̄i, x̄j .

menting the cost realization algorithm. A leader
switch is indicated when an agents’ cost-to-target tran-
sitions from increasing to decreasing (or vice versa). As
one can see, the cost realization algorithm sched-
ules a leader switch whenever one of the agents’ cost-to-
target reaches ǫ below the projected final cost-to-target.

Remark 4.3 (Robustness of the cost realization

algorithm). Small measurement, modeling (i.e., un-
modeled wind effects), and computational uncertainties
result in small perturbations to an agent’s final cost-
to-target resulting from the cost realization algo-

rithm. Thus, for ǫi (resp. ǫj) sufficiently large, i (resp.
j) is willing to remain in formation despite these pertur-
bations to its expected final cost-to-target. In this sense,
the parameters ǫi and ǫj ensure that the cost realiza-

tion algorithm is robust to small uncertainties. •

5 Optimal VOLDs under costly switching

This section solves problem (2) when switching is costly.
The key difference with respect to Section 4 is that, un-
der no-cost switching, whenever an inequality constraint
in (6) becomes active, agents can initiate a leader switch
to ensure cooperation is maintained without affecting
their final cost-to-targets. However, under costly switch-
ing, the same logic does not hold because adding a leader
switch increases the final cost-to-target of both agents.
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(a) Cost-to-targets under no-cost switching
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(b) Switch locations under no-cost switching.

Fig. 4. The cost realization algorithm implemented un-
der no-cost switching with input C

j
∗ = 84. (a) shows the

cost-to-targets for i (red) and j (blue) resulting from the in-
duced VOLD. Horizontal lines are final cost-to-targets and
dash-dot lines are ǫi = ǫj below that. (b) shows the actual
flight paths: a red (resp. blue) dotted line is a segment on
which i (resp. j) leads. Simulation data are Ci = 80,γ = 0.5,
ǫi = ǫj = 0.05, x̄i = (100, 10), x̄j = (90,−20). The cost-ben-
efits of the formation are d(xr, x̄

i) − Ci = 20 (20%) and

d(xr, x̄
j)− C

j
∗ = 8 (8.7%) for i and j, resp.

5.1 Convex restriction

We start by restricting the feasible set of (6) to VOLDs
that exhibit the same structure as in the no-cost case
(i.e., equality constraints for k = 1, . . . , N −2). That is,

min
cj

cj (8a)

s.t. cj = ct
j
k(ℓ1, . . . , ℓk) + ǫj , k ∈ O[1,N−2], (8b)

Ci = ct
i
k(ℓ1, . . . , ℓk) + ǫi, k ∈ E[2,N−2], (8c)

cj = ct
j
N (ℓ1, . . . , ℓN ), (8d)

Ci = ct
i
N (ℓ1, . . . , ℓN ), (8e)

ℓ ∈ LN , (8f)

cj ≤ ct
j
N−1(ℓ1, . . . , ℓN−1) + ǫj , N ∈ E, (8g)

Ci ≤ ct
i
N−1(ℓ1, . . . , ℓN−1) + ǫi, N ∈ O. (8h)

Given cj , (8b)-(8e) define a unique ℓ. Thus, the variable
of optimization is now cj . Constraints (8g)-(8h) ensure
that the entire VOLD induces cooperation. Denote the
set of feasible cj in the above problem by Fr(N) and the
optimal value by Cj

r (N). In general, for any givenN ∈ N

and optimal value Cj(N), one has Cj
r (N) ≥ Cj(N).

However, for some N , we have Cj
r (N) = Cj

∗ .

Theorem 5.1 (Restriction is exact). Let Cj
∗ < ∞ be

the optimal value of (2). Then there exists an N ≥ 2

such that Cj
r (N) = Cj

∗.

Proof. Let N be a minimizer of (2) and suppose ℓ is a
solution of (6) for fixedN . Our method is to build a new
VOLD, ℓ′ satisfying (8b)-(8e), from ℓ. Initially, set ℓ′ = ℓ
and let k0 ∈ [1, N − 2] be the smallest k such that one
of the constraints (6c)-(6d) is not active when evaluated

at ℓ′. Assume k0 is odd, so Cj
∗ − ǫj < ct

j
k0
(ℓ′1, . . . , ℓ

′
k0
).

Increase ℓ′k0
and decrease ℓ′k0+2 at the same rate until

Cj
∗−ǫj = ct

j
k0
(ℓ′1, . . . , ℓ

′
k0
) (this is possible due to (P5)).

After performing this procedure, the k0 constraint is ac-
tive, the RHS of the k0 + 1 constraint has increased in
value (see (P1) and (P3)), and all other constraint func-
tions have maintained their original value (thus, the fi-

nal cost-to-go for i and j have also remained at Cj
∗ and

Ci respectively). Thus, ℓ′ still solves (6). Next, we fo-
cus on the k0+1 constraint whose RHS has increased in
value and thus Ci − ǫi < ct

i
k0+1(ℓ

′
1, . . . , ℓ

′
k0+1). Again,

increase ℓ′k0+1 and decrease ℓ′k0+3 at the same rate until
the k0 + 1 constraint becomes active. We are able to re-
peat this procedure until theN−1 constraint is reached.
It is not possible to make this constraint active using the
same procedure because there is no ℓ′N+1 component to
decrease. Therefore, once theN−1 constraint is reached,
ℓ′ satisfies (8b)-(8e). One point of concern in the pro-
posed procedure occurs if when decreasing (say) ℓ′k0+2 it
happens that ℓ′k0+2 ≤ 0. However, in this event, one can
show thatN is not a minimizer of (2): a new VOLD with
one less leader switch can be constructed that decreases
the objective function and satisfies the constraints. ✷

Recall that, given input Cj
∗ , the cost realization al-

gorithm generates a VOLD satisfying (8b)-(8h) for
some N . Thus, the following is a result of Theorem 5.1.

Corollary 5.2 (Constructing an optimal solu-
tion: costly switching). Under costly switching, the

cost realization algorithm with input Cj
∗ induces

a VOLD which solves (2).

Corollary 5.2 generalizes Corollary 4.2. Next, we state
an analogous result to Theorem 4.1, allowing us to find
the optimal value of (2) under costly switching.

Theorem 5.3 (Restriction is convex). The prob-
lem (8) is convex.

Proof. It suffices to show that Fr(N) is convex. Sup-
pose that N is even, begin with cj ∈ int(Fr(N)), and
let a > 0 and b ∈ R

N be sufficiently small such that the
following analysis holds. Let ℓ + b satisfy (8b)-(8e) for
cj+a. Towards characterizing b, notice that cj+a−ǫj =
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ct
j
1(ℓ1 + b1). Hence, a = b1∂ℓ1ct

j
1(ℓ1), implying b1 < 0.

Next, note that Ci−ǫi = ct
i
2(ℓ1+b1, ℓ2+b2). Therefore

0 = b1∂ℓ1ct
i
2(ℓ1, ℓ2) + b2∂ℓ2ct

i
2(ℓ1, ℓ2),

from which we see that b2 < 0. Repeating this argument
while invoking Lemmas 3.2 and 3.5, we see that bk < 0
for k = 1, . . . , N − 2 and bN−1, bN need to satisfy

bN−1∂ℓ2ct
j
N (ℓ) + bN∂ℓ1ct

j
N (ℓ) > 0,

bN−1∂ℓ2ct
i
N (ℓ) + bN∂ℓ1ct

i
N (ℓ) > 0.

Evoking (P5)-(P6), we deduce bN−1, bN < 0 as well,
and hence b < 0. Next, we study how (8g) changes as
we increase slightly cj . In particular, b < 0 satisfies the
equation cj + a = ct

j
N (ℓ+ b). Or, in other words

a = ∂ℓ1ct
j
N (ℓ)

∑N−1
k∈N∩O

bk + ∂ℓ2ct
j
N (ℓ)

∑N

k∈N∩E
bk,

a < ∂ℓ1ct
j
N−1(ℓ1, . . . , ℓN−1)

∑N−1
k∈N∩O

bk

+ ∂ℓ2ct
j
N−1(ℓ1, . . . , ℓN−1)

∑N−2
k∈N∩E

bk, (9)

where (P4) has been used. The LHS (resp. RHS) of (9)
represents the increase in the LHS (resp. RHS) of (8g).
Thus, (8g) remains satisfied by increasing cj . Therefore,
by increasing cj the only constraint one may violate is
ℓ ∈ R

N
≥0 ⊃ LN . However, increasing cj more further

decreases each ℓi. Thus, Fr(N) must be convex. ✷

By Theorem 5.3, given N ∈ N, the optimal value of (8)
can be efficiently found under costly switching. Note that
the restriction to the feasible set does not limit the type
of real-world scenarios that we can solve. Moreover, the
solution of (8) maximizes the distance between switches.
From an implementation point of view, this is a desirable
and robust switching protocol because UAVs are not re-
quired to perform switching maneuvers arbitrarily fast.
To find the optimal value of (2), we next study how to
determine the optimal number of leader switches.

5.2 Optimal number of leader switches

Here, we identify a criterion that allows us to determine
an optimal N and helps us search for it. The following
result provides such a criterion via a quasiconvexity-like
property of Cj

r (N). Figure 5 illustrates Theorem 5.4.

Theorem 5.4 (Certificate for optimal number of
switches). For N ∈ N, the following statements hold

(i) if adding two switches increases (8)

Cj
r (N) < Cj

r (N + 2),

then adding any more multiple of two switches also
increases it

Cj
r (N + 2k) ≤ Cj

r (N + 2(k + 1)), ∀k ∈ N.

The inequality is strict iff (8) is feasible for N +2k.
(ii) if removing two switches increases (8)

Cj
r (N) < Cj

r (N − 2),

then removing any more multiple of two switches
also increases it

Cj
r (N − 2k) ≤ Cj

r (N − 2(k + 1)), ∀k ≤ N/2− 2.

The inequality is strict iff (8) is feasible for N −2k.

Proof. The result follows from the combination of:

(S1) If Cj
r (N) < Cj

r (N + 2) for some N ∈ N, then
Cj

r (N) ≤ Cj
r (N + 2k) for all k ∈ N. The inequality

is strict iff (8) is feasible for N + 2.
(S2) If Cj

r (N) < Cj
r (N − 2) for some N ∈ N, then

Cj
r (N) ≤ Cj

r (N − 2k) for all k ∈ N such that
k ≤ N/2 − 2. The inequality is strict iff (8) is fea-
sible for N − 2.

Suppose N is even. Consider first (S1). If Cj
r (N) <

Cj
r (N + 2) then Cj

r (N) /∈ Fr(N + 2). That is, for N + 2
and cj = Cj

r (N), either (S1.1) constraints (8b)-(8f) are
violated or (S1.2) the constraint (8g) is violated.

Consider (S1.1). Let cjmin(N) be the minimum cj such
that (8b)-(8f) are satisfied for N . As per the analysis in

the proof of Theorem 5.3, cjmin(N) ≡ minL ct
i+j
N (L) −

Ci. By the properties of cti+j
N , it follows that cjmin(N) <

cjmin(N + 2k) for any k ∈ N. Therefore, if (S1.1) is true,
this means that Cj

r (N) /∈ Fr(N + 2k) ⇒ Cj
r (N) <

Cj
r (N + 2k) and this would prove (S1).

Consider (S1.2). Let ℓN (resp. ℓN+2) (resp. ℓN+4) sat-
isfy (8g) for Cj

r (N) and N (resp. N + 2) (resp. N + 4).

We know ℓN+2
k = ℓNk for k = 1, . . . , N − 1. Denote

ℓN+2
N = ℓNN + a. Note that

ct
i
N (ℓN ) = ct

i
N (ℓN1 , . . . , ℓNN + a) + ǫi, (10)

so a > 0. Also, because (8g) is violated

Cj
r (N)>ct

j
N+1(ℓ

N
1 , . . . , ℓNN−1, ℓ

N
N+a, ℓN+2

N+1) + ǫj . (11)

For now let ℓN+4
k = ℓN+2

k for k = 1, . . . , N+1 and denote

ℓN+4
N+2 = ℓN+2

N+2 + b. Define ℓN+4
N+3, ℓ

N+4
N+4 implicitly by

Ci = ct
i
N+2(ℓ

N+2
1 , . . . , ℓN+2

N+2 + b) + ǫi,

cj = ct
j
N+4(ℓ

N+4
1 , . . . , ℓN+4

N+4),

Ci = ct
i
N+4(ℓ

N+4
1 , . . . , ℓN+4

N+4).

Likewise, b > 0 since

ct
i
N+2(ℓ

N+2) = ct
i
N+2(ℓ

N+2
1 , . . . , ℓN+2

N+2 + b) + ǫi.
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Comparing the above and (10), we see that a < b.

Thus ctjN (ℓN1 , . . . , ℓNN+a) < ct
j
N+2(ℓ

N+2
1 , . . . , ℓN+2

N+2+b).
Therefore, the conditions of Lemma A.1 are satisfied
and ℓN+4

N+4 > ℓN+2
N+2. Since j leads last, this means that

ct
j
N+3(ℓ

N+4
1 , . . . , ℓN+4

N+3) < ct
j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1). Re-
calling (11), the above means that (8d) is violated. As
a final step to creating ℓN+4, employ the strategy as in
the proof of Theorem 5.1: decrease ℓN+4

N+1 and increase

ℓN+4
N+3 by the same amount until (8b) is satisfied. How-

ever, increasing ℓN+4
N+3 further violates (8d). Therefore,

Cj
r (N) < Cj

r (N+4).We can repeat this process forN+6
and so on to attain the desired result. So long as (8b)-
(8f) are satisfied for Cj

r (N) and N + 2k, the above con-
struction is valid. However, if Cj

r (N + 2) = ∞, recall
(S1.1). Then Cj

r (N + 2k) = ∞ for all k. This completes
the proof of (S1).

Next, we prove (S2). Let ℓN (resp. ℓN−2) (resp. ℓN−4)
satisfy (8g) for Cj

r (N) andN (resp.N−2) (resp.N−4).
To reach a contradiction, suppose

Cj
r (N − 4) ≤ Cj

r (N) < Cj
r (N − 2). (12)

First, let a > b > 0 be such that

Ci = ct
i
N−2(ℓ

N
1 , . . . , ℓNN−3, ℓ

N
N−2 − a),

= ct
i
N−4(ℓ

N
1 , . . . , ℓNN−5, ℓ

N
N−4 − b).

Let L =
∑N−2

k=1 ℓNN−2 − a. If cj ≥ ct
j
N−2(ℓ

N
1 , . . . , ℓNN−2 −

a) then cj + Ci > ct
i+j
N−2(L) (i.e., the formation

length is too long). Since we know ℓNk = ℓN−2
k for

k = 1, . . . , N − 4, decreasing the formation distance
must be accomplished by decreasing ℓNN−3 + ℓNN−2 − a.

Since i’s cost-to-target must be maintained at Ci, both
ℓNN−3 and ℓNN−2 − a must decrease (i.e., ℓN−2

N−3 ≤ ℓNN−3).

But since (8g) is violated for ℓN−2, it must be that

ℓN−2
N−3 > ℓNN−3 which is a contradiction. Thus, it must be

that cj < ct
j
N−2(ℓ

N
1 , . . . , ℓNN−2 − a). Under the assump-

tion of (12), a similar argument can be made to show

that cj ≥ ct
j
N−4(ℓ

N
1 , . . . , ℓNN−4 − b) . Let us now reverse

the change of a (resp. b) in ℓN−2 (resp. ℓN−4). Then we

see that ctjN−4(ℓ
N
1 , . . . , ℓNN−4) < ct

j
N−2(ℓ

N
1 , . . . , ℓNN−2).

But, by Corollary A.2, this wouldmean thatCj
r (N−2) <

Cj
r (N), contradicting (12). The claim can be extended

analogously for cases where more switches are removed.
Thus, Cj

r (N) < Cj
r (N − 4). So long as (8b)-(8f) are

satisfied for Cj
r (N) and N − 2k, the above construction

is valid. Thus, Cj
r (N − 2) = ∞ ⇒ Cj

r (N − 4) = ∞, and
so on. This proves (S2). ✷

Next, we design a method to find the optimal N . Define

∆N := Cj
r (N)− Cj

r (N + 2).

N

2 6 10 14 18 22

C
j r
(N

)

∞

...

90

88

86

84

10 14 18 22

84.48

84.52

84.56

l l

Fig. 5. An example of the optimal value of (6) with respect
to N . The magenta (resp. dark green) dots represent Cj

r (N)
for odd (resp. even) N .

If N∗ ∈ E is optimal, then Theorem 5.4 implies ∆N > 0
for allN ∈ N[2,N∗)∩E and∆N < 0 for allN ∈ N(N∗,∞)∩
E (so long as ∆N is finite). Also, 0 ∈ [∆N∗ ,∆N∗−2].
Thus, the problem of finding an optimal N is well-suited
for a binary search (see [Cormen et al., 2009]), which is
presented in Algorithm 1 adapted to our problem.

Algorithm 1 The binary search algorithm

Input: N with ∆N or ∆N+2 finite
1: if ∆N ≥ 0 then
2: Nl := N and Nu := N + 2
3: while ∆Nu

≥ 0 do
4: Nl := Nu

5: Nu 7→2Nu

6: end while
7: else Nl := 2 + (N mod 2) and Nu := N
8: end if
9: while Nu −Nl ≥ 4 and ∆N 6= 0 do

10: N := (Nu −Nl)/2
11: if ∆N ≥ 0
12: Nl := N
13: else Nu := N end if
14: end while
15: return N if ∆N ≤ 0, N + 1 otherwise

The method is implemented for odd and even inputs, the
optimal N being the lesser of the two outputs. The com-
putational intensity of the binary search algorithm

stems from the evaluation of ∆N , which solves (8).

Corollary 5.5 (Correctness and complexity). Sup-
pose (2) is feasible and N∗ is its minimizer. Let No

0 ∈ O

(resp. N e
0 ∈ E) be a valid input to the binary search

algorithm with output No (resp. N e). Then N∗ ∈
{No, N e}. Moreover, to determine N∗ the problem (8)
is solved at most 4⌈log2 N

∗⌉ times.

The correctness result in Corollary 5.5 follows from The-
orem 5.4 and the complexity result is inherited from bi-
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nary search algorithms [Cormen et al., 2009]. Figure 6
presents simulation results verifying the correctness of
the binary search algorithm. The main differences
when compared to the simulations presented in Figure 4
pertain to the cost of switching (sΓ) being positive and
the degree of cooperation between agents (ǫi, ǫj). The
agents in Figure 4 are able to induce cooperation even
when ǫi, ǫj are small because adding a switch does not
increase their final cost-to-target. On the other hand,
when there is a cost associated with switching, the agents
are not able to switch arbitrarily fast without increasing
their final cost-to-targets. In fact, the problem (6) is in-
feasible for small ǫi, ǫj under costly switching. In terms of
real-world implementation, the binary search algo-

rithm is run prior to agents beginning their formation.
For this reason, the implementation time of the binary
search algorithm is not reflected in the simulation
of Figure 6. However, on-board processors must be able
to run the binary search algorithm within the time
required for UAVs to fly from their current location to
the formation rendezvous location. If executed online,
the complexity bound for the binary search (cf. Corol-
lary 5.5) provides guidance as to how fast a processor
should be with respect to UAV motion.

Distance in formation0 DN(ℓ)

C
os

t-
to

-t
ar

ge
t

C
j
∗

l

C
i

(a) Cost-to-targets under an optimal VOLD

x̄
i

x̄
j

0 20 40 60 80 100

−20

−10

0

10

−→
u

(b) Switch locations under the above VOLD

Fig. 6. N∗ is computed using the binary search algo-

rithm, Cj
r (N

∗) = 85 is fed to the cost realization algo-

rithm, and an optimal VOLD is attained. Note the effect
of costly switching on the cost-to-target function. The data
for the simulation are: Ci = 82, s = 0.2, Γ = 1.7, γ = 0.5,
ǫi = 0.2, ǫj = 0.3, x̄i = (100, 10), x̄j = (90,−20). The
cost-benefits of the formation are 18 (18%) and 7 (7.6%) for
i and j, resp. (slightly less for each UAV than the no-cost of
switching case).

6 Conclusions

We have considered the problem of optimally allocating
the leader task between pairs of selfish UAVs flying in
formation. Formulated as a nonlinear program, our prob-
lem poses two distinct challenges: given a fixed number of
leader switches, determining the optimal leader alloca-
tion and finding the optimal number of leader switches.
We showed that, when switching the lead has no cost,
the optimal value can be obtained via a convex pro-
gram and designed the cost realization algorithm

to determine an optimal cooperation-inducing leader al-
location. In the costly switching case, we restricted the
feasible set of allocations to mimic the structure of the
solutions provided by this policy. The resulting restric-
tion has the same optimal value and, for a fixed num-
ber of leader switches, is convex. We also unveiled a
quasiconvexity-like property of the optimal value as a
function of the number of switches and designed the bi-
nary search algorithm to find the optimal number in
logarithmic time. Future work will include extensions to
formations of more than twoUAVs, scenarios with obsta-
cle avoidance/no-fly zones, and problems where UAVs
bargain over the possibility of joining in formation.
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A Appendix

Here, we state two results used to prove Theorem 5.4.

Lemma A.1 (Property of the last two lead/follow
distances). For k ∈ N, let ℓN ∈ LN and ℓN+2k ∈ LN+2k

such that

(i)
∑N−2

k=1 ℓNk ≤
∑N+2(k−1)

k=1 ℓN+2k
k ,

(ii) ct
j
N−2(ℓ

N
1 , . . . , ℓNN−2)

≤ ct
j

N+2(k−1)(ℓ
N+2k
1 , . . . , ℓN+2k

N+2(k−1)),

(iii) ct
i
N−2(ℓ

N
1 , . . . , ℓNN−2)

= ct
i
N+2(k−1)(ℓ

N+2k
1 , . . . , ℓN+2k

N+2(k−1)),

(iv) ct
j
N (ℓN )=ct

j
N+2k(ℓ

N+2k),

ct
i
N (ℓN )=ct

i
N+2k(ℓ

N+2k).

Then, ℓNN−1 < ℓN+2k
N+2k−1 and ℓNN < ℓN+2k

N+2k.

Proof. Suppose that k = 1 and N is even. Recall (cf.

Section 3.2) that cti+j
N is strictly decreasing and convex

on LN . Also, cti+j
N has the convexity-like property

0 < ct
i+j
N (L)− ct

i+j
N−2(L) < ct

i+j
N+2(L)− ct

i+j
N (L).

Therefore, if for some L1 ≤ L2 and a, b > 0,

0 > ct
i+j
N (L1 + a)− ct

i+j
N−2(L1)

> ct
i+j
N+2(L2 + b)− ct

i+j
N (L2), (A.1)

then a < b. TakeL1 =
∑N−2

k=1 ℓNk ,L2 =
∑N+2k−2

k=1 ℓN+2k
k ,

a = ℓNN−1 + ℓNN , and b = ℓN+2
N+1 + ℓN+2

N+2. Now note that,
expressing (ii)− (iv) in terms of the combined fuel func-
tions, shows that the condition (A.1) is satisfied for this

choice of values. Thus a = ℓNN−1+ℓNN < b = ℓN+2
N+1+ℓN+2

N+2.

Next, we show by contradiction that ℓNN−1 < ℓN+2
N+1 and

ℓNN < ℓN+2
N+2. Suppose ℓ

N
N−1 ≥ ℓN+2

N+1. Thus

ct
j
N−2(ℓ

N
1 , . . . , ℓNN−2)− ct

j
N−1(ℓ

N
1 , . . . , ℓNN−1)

> ct
j
N (ℓN+2

1 , . . . , ℓN+2
N )− ct

j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1).

Since (ii) is true and following is more beneficial to
j earlier in the formation, the above implies that
ct

j
N−1(ℓ

N
1 , . . . , ℓNN−1) < ct

j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1). To
satisfy (iv), this would mean

ct
j
N (ℓN )− ct

j
N−1(ℓ

N
1 , . . . , ℓNN−1)

> ct
j
N+2(ℓ

N+2)− ct
j
N+1(ℓ

N+2
1 , . . . , ℓN+2

N+1).

Since leading is more costly further in the formation, the
above can only be satisfied if ℓNN > ℓN+2

N+2. However, this

would contradict ℓNN−1 + ℓNN < ℓN+2
N+1 + ℓN+2

N+2. Reasoning

instead with i’s cost-to-target and starting with ℓNN >

ℓN+2
N+2, a similar contradiction can be reached.N odd and
k ≥ 2 can be handled similarly. ✷

Corollary A.2 (Sufficient condition to benefit
from switch removal). Let ℓ solve (6) for N ∈ N. If

ct
j

N−2(k+1)(ℓ1, . . . , ℓN−2(k+1)) ≤ ct
j
N−2(ℓ1, . . . , ℓN−2),

for some k ≤ N/2− 2 then Cj
r (N − 2k) < Cj

r (N).

Proof. Suppose that N is even and let ℓN−2k sat-
isfy (8b)-(8f) for N − 2k and Cj

r (N). Since the assump-

tions of Lemma A.1 are satisfied, ℓN−2k
N−2k < ℓNN . Thus

ct
j
N−2k(ℓ

N−2k)− ct
j
N−2k−1(ℓ

N−2k
1 , . . . , ℓN−2k

N−2k−1)

< ct
j
N (ℓN )− ct

j
N−1(ℓ

N
1 , . . . , ℓNN−1),

⇒ ct
j
N−2k−1(ℓ

N−2k
1 , . . . , ℓN−2k

N−2k−1)

> ct
j
N−1(ℓ

N
1 , . . . , ℓNN−1) ≥ Cj

r (N)− ǫj .

In other words, (8g) is satisfied for ℓN−2k, and thus
Cj

r (N−2k) < Cj
r (N) (this relation is strict because (8g)

is not active and thus there exists a feasible cj < Cj
r (N)).

N odd can be dealt with analogously. ✷
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