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Abstract— We study the leader allocation problem in UAV
formation pairs when switching the lead incurs a fuel cost.
While in formation, UAVs are assumed to adhere to a notion
of ε-cooperativeness. The problem is formulated as the combi-
nation of a non-convex and a discrete optimization problem
where the leader allocations are constrained to those that
induce cooperation between UAVs. A equivalent formulation
of the problem allows us to express the constraint set as a
family of equality and inequality constraints. By restricting
our search to solutions of a specific form, we replace the
non-convex problem with a convex one while preserving the
optimal value of the original problem. A necessary and sufficient
condition is obtained which is used to verify a solution to
the discrete problem. The results are combined to design
the OPTIMAL COST ALGORITHM, which efficiently solves the
original problem. Our results are verified in simulation.

I. INTRODUCTION

This paper considers formation pairs between unmanned
aerial vehicles (UAVs). Following another UAV in formation
benefits a UAV by, among other reasons, reducing aerody-
namic drag which improves fuel economy. However, when
the agents are selfish neither UAV is willing to lead the for-
mation without assurance that it will be able to follow some
time later. To this end, agents must agree on a allocation of
lead/follow distances such that both UAVs can be sure that
the other will cooperate. If one agent cannot trust that another
agent will cooperate, it may be better for that agent to not
join in formation at all. A behavioral model for UAVs called
ε-cooperative ensures the existence of such cooperation-
inducing allocations [1]. Roughly speaking, in a network of
ε-cooperative UAVs each agent is willing to forfeit a little
bit of fuel to ensure that the formation occurs. The amount
of fuel forfeited is assumed to be small compared to the
total benefit of the formation. This paper’s aim is to find
optimal leader allocations that induce cooperation between
ε-cooperative agents. By optimal, we mean that there does
not exist another leader allocation that further reduces the
fuel cost incurred to an agent in the formation.
Motivation. In the case that switching the lead has no cost to
UAVs, the problem of finding optimal cooperation-inducing
lead/follow distances has been solved [1]. Nonetheless, un-
der no-cost switching, UAVs may switch from leading to
following arbitrarily frequently in optimal leader allocations.
Clearly, solutions of this type cause the model to break down
and the solution may lose its validity. A more appropriate
model is to consider a cost associated with switching the
lead. However, optimally allocating the leader role in this
case has remained unsolved.
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Literature review. The literature most relevant to this work
include formation flight, multi-agent cooperation, and opti-
mization. With regards to the former, the self-organization
of bird flocks in nature is testament to the energy-saving
advantages of flight formation [2], [3]. Indeed, this benefit
translates analogously to formations of UAVs [4], [5]. Addi-
tional motivations for formation flight of UAVs are discussed
in [6]. Moreover, close proximity flight has become a reality
due to advances in technology [7],[8].
Recently, some research has been conducted which studies
formation creation in networks of UAVs [9]. However, little
attention has been paid to the allocation of lead/follow
distances in the formation. The aforementioned work [1]
is one exception, which assumes a UAV behavioral model
analogous to marginal cost pricing [10] in cooperative game
theory. The works [11], [12] study a similar model but
with the interpretation of trust between agents in a network
setting. The contributions of this work are related to [13]
which also designs cooperation-inducing mechanisms.
Concerning optimization, a large body of work exists for
non-convex problems [14]. Many specific classes of non-
convex problems can be solved using a multitude of ap-
proaches [15], [16], [17], [18]. A popular strategy in the
literature is to construct a convex counterpart to the non-
convex problem. This approach is favored because many
efficient solvers exist for convex problems, which are better
understood in general [19].
Statement of contributions. We model formations of UAV
pairs in terms of the distances spent by each UAV while
leading, following, and switching between the two. Based on
this model, a non-convex optimization problem is provided
whose solutions correspond to optimal leader allocations. By
understanding important properties of optimal lead alloca-
tions, we reformulate the problem in standard optimization
form. A restriction on the solution set is proposed which
enables us to consider instead a convex problem embedded
in a discrete problem. Solutions to the convex problem
are optimal leader allocations when the number of leader
switches is fixed whereas the discrete problem finds an
optimal number of leader switches. Additionally, we develop
a necessary and sufficient condition for a number of leader
switches to be optimal. Combining all of our results, the
OPTIMAL COST ALGORITHM is provided to solve the original
optimization problem.
For reasons of space, the proofs of most results are omitted
and will appear elsewhere.
Notation. For a, b ∈ Rn, let d(a, b) = ‖a − b‖ denote the
Euclidean distance between a and b. The closed segment
between a, b ∈ Rn is [a, b] and the ray starting at a in the



direction of b − a is ray(a, b). The sets of even, odd, and
natural numbers are E,O, and N respectively. The positive
part of x ∈ R is given by x+ = max{0, x}.

II. PROBLEM FORMULATION

Consider a pair of UAVs, each with unique identifiers (UIDs)
i and j evolving in X ⊂ R3. We assume that i and j have
synchronized clocks and can communicate with each other.
The subscript i denotes a quantity associated with agent i.
Thus, the position of UAV i at time t is denoted by xi(t).
Each agent has an origin, a target location, and an objective
which is to arrive at its target location while consuming the
least amount of fuel. We use x̄i (resp. x̄j) to denote the
target location of i (resp. j). A UAV’s fuel consumption can
be reduced by flying in formation in the wake of another
UAV. The fuel consumption per unit distance of following
in formation is γ ∈ R>0, whereas flying solo or leading in
a formation incurs a fuel consumption of Γ ∈ R>0 per unit
distance. By assumption, Γ > γ.

A. Formations and lead distances

A formation is a tuple ({i, j}, xr, uh) ∈ N2 ×X2, where i
and j are the UIDs of the UAVs involved in the formation,
xr is a rendezvous location and the vector uh is the heading
direction of the formation. The remainder of this paper
assumes that xr = 0 and uh = e1, where (e1, e2, e3) are the
standard basis in R3 (this is done without loss of generality,
because a simple transformation of the coordinate frame
ensures that it is satisfied). When we say that i and j have
been in formation for distance D, we mean that there exist
T2 > T1 > 0 such that (i) xi(T1) = xj(T1) = xr, (ii)
[xi(T1), xi(T2)] = [xj(T1), xj(T2)] = [xr, xr + Duh], and
(iii) d(xi(t), xj(t)) < c for t ∈ [T1, T2]. Here c > 0 is
assumed small compared to the total flight distances. Thus,
we use the abstraction that d(xi(t), xj(t)) = 0 while i and
j are in formation.
The execution of a formation is completely described by a
vector of lead distances (VOLD) and the UID of the UAV
which leads the formation first. Without loss of generality,
UAV i always leads the formation first. A VOLD is a finite-
dimensional vector ∆ = (δ1, . . . , δN ) ∈ RN>0. For n odd,
δn denotes the nth distance led by i before i and j swap
the lead. For n even, δn denotes the nth distance led by j
before i and j swap the lead. The distance required for i
and j to switch from leading to following (resp. following
to leading) is given by s ≥ 0. During a switch, both UAVs
consume Γs ≥ Γ fuel per unit distance. As such, the cost
of switching the lead is sΓs to both i and j. Note that for
∆ ∈ RN>0 there are N − 1 leader switches prescribed by ∆.
The distance from xr of the nth switch is represented by,

Dn(∆) =

{
0, n = 0,∑n
k=1 δk + (n− 1)s, 1 ≤ n ≤ N.

The total distance of the formation is DN (∆). Figure 1
shows the execution of a formation given a VOLD as well as
the process of UAVs transitioning from following to leading
(resp. leading to following).

We conclude this section with the definition of two functions
that will be used subsequently. Given a VOLD ∆ ∈ RN>0 and
D ≥ 0, let #s : RN>0 × R≥0 → N[0,N ] return the number
of leader switches that have been initiated when the UAVs
have been in formation for D distance. Precisely,

#s(∆, D) = max{n ∈ N[0,N ] : Dn(∆) ≤ D}.

Consequently, the distance that i and j have been in forma-
tion since the initiation of the last switch is given by,

DLS(∆, D) = D −D#s(∆,D)(∆).

B. Objective function

Given a VOLD and a distance D, a UAV can compute the
fuel consumed in the flight from the rendezvous location to
its target if the UAV were to leave (or break) the formation at
De1. We represent this cost-to-go as Ji : RN>0×R≥0 → R>0.
An analogous function Jj exists for j. The function Ji can
be expressed as,

Ji(∆, D) = Γ

#s(∆,D)∑
n=1
n odd

δn + γ

#s(∆,D)∑
n=2
n even

δn (1)

+ sΓs(#s(∆, D)− 1)+ +Ri(∆, D) + Γd(De1, x̄i),

where the first term is the fuel consumed while i leads the
formation, the second term is the fuel consumed while i
follows in the formation, and the third term is the fuel
consumed while i has been switching from leader to follower
(and vice versa). In addition Ri is a residual term that
accounts for any fuel consumed between the initiation of
the last switch and De1. For #s(∆, D) odd, we have,

Ri(∆, D) = γ(DLS(∆, D)− s)+ + min{DLS(∆, D), s}Γs,

and for #s(∆, D) even,

Ri(∆, D) = Γ(DLS(∆, D)− s)+ + min{DLS(∆, D), s}Γs.

Finally, the last term is the fuel required to fly directly to
the target x̄i should i decide to break the formation at De1.

C. Behavior of UAVs in formation

We use the following model for the behavior of i and j while
in formation. Agent i is ε-cooperative if it will abide by any
VOLD ∆ ∈ RN>0 of any length N ∈ N iff ∆ satisfies,

Ji(∆, DN (∆)) ≤ Ji(∆, D) + ε, ∀D ∈ [0, DN (∆)],

for some ε ≥ 0. In other words, an ε-cooperative UAV will
abide by a VOLD so long as there is no point in the formation
where its cost-to-go is ε less than the final cost-to-go upon
completion of the formation. A thorough justification for this
model is found in [1]. Note in particular that selfish and
fully cooperative UAVs correspond to 0- and ∞-cooperative
UAVs, respectively.
We refer to the set of VOLDs that both UAVs will abide by
as cooperation-inducing. Formally, for N ∈ N,

DN
c (εi, εj) = {∆ ∈ RN>0 : Ji(∆, DN (∆)) ≤ Ji(∆, D) + εi

and Jj(∆, DN (∆)) ≤ Jj(∆, D) + εj

for all D ∈ [0, DN (∆)]}.
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(c) Blue leads the formation after the switch

Fig. 1. Example flight behavior of UAVs given a VOLD ∆ = (δ1, δ2, δ3). The dashed lines represent the proposed flight paths of the UAVs. During
a switch, the red UAV will decrease its speed while the blue UAV increases its speed. The new speeds are maintained for a distance s, after which the
UAVs return to the original heading and speed of the formation (the fuel consumed by both the red and blue UAV in this maneuver is sΓs). At x3, the
UAVs fly directly to their respective targets.

In words, if i (resp. j) is εi-cooperative (resp. εj-
cooperative), then both i and j will abide by ∆ ∈ DN

c (εi, εj).
When it is clear from the context, we use the shorthand
notation DN

c .

D. Problem statement

Suppose that at time t, UAVs i and j are about to join in
formation with each other (that is, xi(t) = xj(t) = xr) but
have not yet agreed upon a VOLD to determine the execution
of the formation. Also, i has provided to j an upper bound,
Ĉi ∈ R>0, on the amount of fuel it wishes to consume on
its flight to x̄i. Then, to determine an appropriate VOLD for
the formation, j would like to solve the following problem,

min
N∈N

min
∆∈DN

c

Jj(∆, DN (∆)) (2a)

subject to Ĉi ≥ Ji(∆, DN (∆)). (2b)

Denote the inner (resp. outer) problem by I (resp. O) with
solution set ω(N) (resp. Ω). A solution to I is an optimal
cooperation-inducing VOLD of fixed dimension N from the
perspective of j. A VOLD that j would propose to i is a
solution to O.
In previous work [1], we have solved the problem above for
the case when switching the lead is instantaneous with no
cost (i.e., s = sΓs = 0). Solving (2) with costs associated
with switching the lead is instead more complex. Without
stating it from now on, we make the assumption that x̄i, x̄j /∈
ray(xr, uh). That is, breaking away from a formation is
always an option. When this assumption does not hold, then
the optimal solution to (2) is trivial: the optimal VOLD for
j is to follow i as long as it is benefits from doing so, and
i has no choice but to “cooperate”.

III. EQUIVALENT FORMULATION OF THE INNER
OPTIMIZATION PROBLEM

In this section, we develop an equivalent formulation of
the inner optimization problem I. This result is a stepping
stone towards our ultimate goal of efficiently solving the
original optimization problem (2). Section III-A and III-B
characterize, respectively, properties of the objective function
and the optimal solutions of the inner optimization problem.
These results are the basis for the equivalent formulation
of the inner optimization problem in Section III-C. Without
loss of generality, we note that most of the results that follow
make reference only to UAV i.

A. Properties of the objective function

The objective functions Ji and Jj , as defined in (1), are
piecewise differentiable with respect to the distance D.
Specifically, Ji and Jj are not differentiable (but continuous)
at distances where leader switches are initiated or completed,
i.e., ∂DJi and ∂DJj exist at (∆, D) iff DLS(∆, D) /∈ {0, s}.
The next result states a useful property of these functions.

Lemma III.1 (Convexity-like property of the objective
function). Let D1 < D2. Suppose that i is leading (or
following, or switching) at both D1e1 and D2e1. Then
∂DJi(∆, D1) < ∂DJi(∆, D2). Moreover, if i is leading or
switching at D1e1 then ∂DJi(∆, D1) > 0.

Proof: The derivative of Ji with respect to D is,

∂DJi(∆, D) = Γ∂Dd(De1, x̄i) +


γ, if i follows at De1,
Γ, if i leads at De1,
Γs, otherwise.

The function D 7→ d(De1, x̄i) is strictly convex when
x̄i /∈ ray(0, e1). Thus, ∂Dd(De1, x̄i) is strictly increasing.
Suppose that i is leading at both D1e1 and D2e1. Then,

∂DJi(∆, D1) = Γ∂Dd(D1e1, x̄i) + Γ,

< Γ∂Dd(D2e1, x̄i) + Γ = ∂DJi(∆, D2).

Similar analysis holds for when i is following (or switching)
at both D1e1 and D2e1.
To show that ∂DJi(∆, D1) > 0 when i is leading at D1e1,
let a > 0 be sufficiently small such that i is also leading at
(D1 − a)e1. Then,

Ji(∆, D1) = Ji(∆, D1 − a)− Γd((D1 − a)e1, x̄i)

+ Γa+ Γd(D1e1, x̄i) > Ji(∆, D1 − a),

where we have used the triangle inequality. Since a can be
taken arbitrarily small, ∂DJi(∆, D1) > 0 follows. If i is
switching at D1e1, the above argument with Γsa instead of
Γa, together with Γsa ≥ Γa, yields the same conclusion.
Roughly speaking, Lemma III.1 states that it is more costly
to lead (or follow or switch) in the formation as the forma-
tion progresses. The last statement in Lemma III.1 simply
states that leading or switching is always costly. This is to
be distinguished from following which, as we show later,
decreases the cost-to-go function in an optimal VOLD.



Next, consider the cost-to-go for agent i at the kth switch
which, for brevity, is given by functions Jki : Rk>0 → R>0

defined for k = 1, . . . , N as,

Jki (δ1, . . . , δk) = Γ

k∑
n=1
n odd

δn + γ

k∑
n=2
n even

δn + sΓs(k − 1)

+ Γd

(( k∑
n=1

δn + s(k − 1)

)
e1, x̄i

)
.

By construction, Ji(∆, Dk(∆)) ≡ Jki (δ1, . . . , δk). Anal-
ogous functions Jkj exist such that Jj(∆, Dk(∆)) ≡
Jkj (δ1, . . . , δk). The following state some properties of these
functions which one may prove using a similar argument as
in the proof of Lemma III.1.

Lemma III.2 For ∆ ∈ RN>0,

(P1) ∂δ1J
k
i (δ1, . . . , δk) > 0,

(P2) ∂δ2J
k
j (δ1, . . . , δk) > 0, for k ≥ 2,

(P3) ∂δnJ
k
m(δ1, . . . , δk) = ∂δn+2

Jkm(δ1, . . . , δk), for
k ≥ n+ 2 and m = i, j,

(P4) ∂δnJ
k
m(δ1, . . . , δk) < ∂δnJ

k+2
m (δ1, . . . , δk), for

k ≥ n and m = i, j.

B. Properties of optimal VOLDs

This section explores an important property of the breakaway
location prescribed by a solution to I. To begin, consider any
Ci, Cj ∈ R>0 and suppose there exists a VOLD ∆ ∈ RN>0

such that Ci = JNi (∆) and Cj = JNj (∆) (i.e., the final
cost-to-go for i and j are Ci and Cj respectively). Towards
a characterization of the possible breakaway locations, con-
sider the combined cost-to-go for i and j,

Cj + Ci = JNj (∆) + JNi (∆).

Under the change of variables ψ =
∑N
k=1 δk this becomes,

Cj + Ci = JNi+j(ψ) := (Γ + γ)ψ + 2(N − 1)sΓs

+ Γd
(
(ψ + s(N − 1))e1, x̄j

)
+ Γd

(
(ψ + s(N − 1))e1, x̄i

)
.

Note that ψ is related to the breakaway location of the
formation by DN (∆) = ψ+ s(N −1). In words, JNi+j(ψ) is
the combined cost-to-go of i and j for a formation with
N − 1 leader switches which breaks at ψ + s(N − 1).
Therefore, without knowledge of the specific elements of
∆ but given Cj , Ci, and N we can describe the possible
breakaway locations of the formation implicitly in terms of
all ψ which satisfy Cj+Ci = JNi+j(ψ). Since JNi+j is strictly
convex, there exist only two ψ1, ψ2 which satisfy,

Cj + Ci = JNi+j(ψ1) = JNi+j(ψ2),

for given Ci, Cj , N (note that ψ1, ψ2 may not be unique but,
because we assumed that such a VOLD exists, are guaranteed
to be real). We further characterize ψ1, ψ2 by ψ1 ≤ ψNmax ≤
ψ2 where ψNmax = argminψ J

N
i+j(ψ). The following result

makes known which of ψ1 + s(N − 1) or ψ2 + s(N − 1)
is a possible breakaway location for a solution to I. First,

we introduce some notation. For N ∈ N, let QN be the
N -dimensional simplex bounded by ψNmax. Formally,

QN =

{
∆ ∈ RN>0 :

N∑
k=1

δk ≤ ψNmax

}
.

If ∆ ∈ QN , then it must be that the breakaway location is
ψ1 + s(N − 1). We see next that this is indeed the case.

Proposition III.3 (UAVs breakaway as soon as possible).
ω(N) ⊂ QN .

The result above provides an upper bound on the breakaway
distance prescribed by a VOLD which is a solution to I.
Therefore, we can restrict the feasible set of VOLDs in I
to ∆ ∈ DN

c ∩ QN . For ∆ ∈ QN , we have the additional
property that a UAVs cost-to-go strictly decreases while
following, as stated next.

Corollary III.4 (Following is beneficial) If ∆ ∈ QN has i
following at D̂e1 then ∂DJi(∆, D̂) < −∂DJj(∆, D̂) < 0.

The above analysis also allows us to identify additional
properties of the cost-to-go functions at the kth switch.

Lemma III.5 If ∆ ∈ QN then,

(P5) ∂δ1J
k
j (δ1, . . . , δk) ≤ −∂δ1Jki (δ1, . . . , δk) < 0,

(P6) ∂δ2J
k
i (δ1, . . . , δk) ≤ −∂δ2Jkj (δ1, . . . , δk) < 0, k ≥ 2

The results thus far are now used to state a fact about the
final cost-to-go for UAV i given a solution to I.

Lemma III.6 (i receives its proposed cost-to-go). If ∆ ∈
ω(N) then Ĉi = JNi (∆).

C. Equivalent formulation

Here, we combine the results established above to reduce
the feasibility set to only those VOLDs exhibiting properties
of optimal VOLDs. In particular, Lemma III.1 and Corol-
lary III.4 reveal that, for ∆ ∈ QN , the local minima of Ji
and Jj occur at the distances where an agent initiates a switch
from following to leading. Therefore, ∆ ∈ DN

c ∩QN iff,

Jj(∆, DN (∆)) ≤ Jj(∆, Dk(∆)) + εj , k ∈ [1, N − 1] ∩O,
Ji(∆, DN (∆)) ≤ Ji(∆, Dk(∆)) + εi, k ∈ [2, N − 1] ∩ E.

Thus we reformulate I as follows. For fixed N ∈ N,

minimize
∆∈QN

Cj (3a)

subject to

Cj ≤ Jkj (δ1, . . . , δk) + εj , k ∈ [1, N − 1] ∩O, (3b)

Ĉi ≤ Jki (δ1, . . . , δk) + εi, k ∈ [2, N − 1] ∩ E, (3c)

Cj = JNj (∆), (3d)

Ĉi = JNi (∆), (3e)

where we use Ji(∆, Dk(∆)) ≡ Jki (δ1, . . . , δk). The next
result states the equivalence of (3) and I.



Corollary III.7 For N ∈ N, the set of solutions to (3)
is ω(N).

Note that the equality constraints (3d)-(3e) are not affine and
substituting (3d) in (3a) and (3b) yields non-convex inequal-
ity constraints. Moreover, since Ĉi is a fixed quantity, (3e)
cannot be combined with (3c). We deal with these issues in
the next section by further restricting the feasibility set.

IV. CONVEX RESTRICTION OF THE INNER OPTIMIZATION
PROBLEM

This section proposes a method to further restrict the set of
feasible VOLDs in (3) to those where (3b)-(3c) are active
for k = 1, . . . , N − 2. We show that if O is feasible, then
there exists at least one solution with this desired structure
and that, for fixed N , the restriction of the feasible set to
VOLDs of this desired structure is convex.

A. Reduction of the set of solutions

We desire a solution to (3) of a specific form which are
characterized by elements of the set,

ω0(N) = {∆ ∈ ω(N) : Cj = JNj (∆),

Cj = Jkj (δ1, . . . , δk) + εj , k ∈ [1, N − 2] ∩O,
Ĉi = Jki (δ1, . . . , δk) + εi, k ∈ [2, N − 2] ∩ E}.

From an implementation standpoint, solutions in ω0(N) have
the desirable property that agents lead/follow as long as
possible before initiating a leader switch. Specifically, UAV
i initially leads the formation until j attains a cost-to-go
of Cj − εj . At that point, a switch is initiated and j leads
until i attains a cost-to-go of Ĉi − εi. This procedure is
repeated until the last switch, whose location is determined
by the amount of residual leading/following necessary for i
and j to simultaneously attain Ĉi and Cj , respectively (this
corresponds to satisfying constraints (3d)-(3e)). Note that,
in general, for any given N ∈ N, the set ω0(N) might be
empty. However, the following result states that a solution
in ω0(N) exists for the optimization problem (2).

Proposition IV.1 (Most constraints can be active) If Ω 6=
∅, then there exists N ∈ N such that ∅ 6= ω0(N) ⊆ Ω.

Inspired by the above, let us consider the restricted problem

minimize
∆∈QN

Cj (4a)

subject to

Cj = Jkj (δ1, . . . , δk) + εj , k ∈ [1, N − 2] ∩O, (4b)

Ĉi = Jki (δ1, . . . , δk) + εi, k ∈ [2, N − 2] ∩ E, (4c)

Ĉi ≤ JN−1
i (δ1, . . . , δN−1) + εi, (4d)

Ĉj ≤ JN−1
j (δ1, . . . , δN−1) + εj , (4e)

Cj = JNj (∆), Ĉi = JNi (∆). (4f)

Constraints (4b)-(4c) impose the desired structure on a
VOLD, whereas (4d)-(4e) ensure that cooperation is induced.

Algorithm 1: OPTIMAL COST ALGORITHM

parameters: Γ,Γs, γ, s, x̄i, x̄j , εi, εj
input : Ĉi
output : C∗j (optimal cost-to-go for j)

1 k := 0
2 foreach N0 ∈ {1, 2} do
3 repeat
4 N := N0 + 2k
5 For N , solve convex problem (4)
6 Let CN0

j (N) be the optimal value from line 5
7 if (k 6= 0) ∧ (CN0

j (N) > CN0
j (N − 2)) then

8 CN0,∗
j := CN0

j (N − 2) and goto line 11
9 endif

10 k := k + 1
11 end
12 end
13 C∗j := min{C1,∗

j , C2,∗
j }

For N ∈ N fixed, let σ(N) denote the solution to (4) (it can
be shown that σ(N) is a singleton). Because the feasibility
set of (4) is contained in the feasibility set of (3), in general
σ(N) 6⊂ ω(N) (and thus σ(N) 6⊂ ω0(N)). Nevertheless, the
following result follows from Proposition IV.1 and the fact
that if ω0(N) 6= ∅ for some N then σ(N) = ω0(N).

Corollary IV.2 If Ω 6= ∅, then there exists N ∈ N such that
∅ 6= σ(N) ⊂ Ω.

The following result, combined with Corollary IV.2, shows
that (4) achieves the goal of replacing the non-convex prob-
lem I with a convex counterpart.

Theorem IV.3 The problem (4) is convex.

This result concludes our study of the inner optimization
problem: since I can be replaced with (4) and Theorem IV.3
states that the latter is a convex optimization problem,
existing efficient techniques can be used to find an optimal
solution for a given N ∈ N. From the optimal value of (4),
an explicit construction of the corresponding VOLD can be
achieved using, for instance, the PARTITION REFINEMENT
ALGORITHM [1]. This algorithm efficiently computes the
optimal VOLDs as solutions to N algebraic equations.

V. OPTIMAL NUMBER OF LEADER SWITCHES

Having described how to efficiently solve the inner op-
timization problem I, we turn our attention to the outer
optimization problem O. Specifically, we are interested in
identifying a criterion that allows us to identify an optimal N
and helps us search for it. The following result provides such
a criterion. Before stating it, we note that the optimal value
of (4) for a given N ∈ N can be expressed as JNj (σ(N)).

Theorem V.1 If JNj (σ(N)) < JN+2
j (σ(N + 2)) for some

N ∈ N, then JNj (σ(N)) < JN+2k
j (σ(N + 2k)) for k ∈ N.



By Theorem V.1, if adding two switches yields a larger
optimal value of (4), then it is not necessary to check the
optimal value of (4) for any additional multiples of two more
switches. Together with Corollary IV.2 and Theorem IV.3,
this leads to the design of the OPTIMAL COST ALGORITHM.

Corollary V.2 Let ∆ ∈ Ω with N = |∆|. If Ĉi is the input
to the OPTIMAL COST ALGORITHM and C∗j is the output,
then C∗j = JNj (∆).

In Figure 2, the OPTIMAL COST ALGORITHM determines the
optimal cost-to-go for j and then the PARTITION REFINE-
MENT ALGORITHM constructs an optimal VOLD.
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Ĉi

DN (∆)0 Distance

N = 5

C
o
st
-t
o
-g
o

(a) Cost-to-go functions given an optimal VOLD.
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(b) Resulting flight paths of UAVs under an optimal VOLD.

Fig. 2. An optimal VOLD which solves (2). Here, Γ = 1,Γs = 1.7, γ =
0.5, s = 0.2, x̄i = (100, 10), x̄j = (90,−20), εi = 0.2, εj = 0.3 and the
input to the OPTIMAL COST ALGORITHM is Ĉi = 80. The cost-to-go for
UAV i (resp. j) is plotted in blue (resp. thinner red) and the optimal cost
to j is C∗

j = 87. The solid horizontal lines are the final cost-to-gos while
the dashed lines are εi,j below. The goal of a cooperation-inducing VOLD
is to keep both agents’ cost-to-go above the dashed line.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of finding optimal leader alloca-
tions for ε-cooperative UAVs that travel in formation towards
their destination goals under costly leader switching. We
have formulated this problem as a constrained optimization
problem and established its lack of convexity. Our analysis
of the properties of the objective function and the feasible
set has allowed us to restrict the latter and turn the original
problem into a combination of a convex optimization prob-
lem (that determines the optimal leader allocation given a
fixed number of switches) and a discrete problem (that seeks
to determine an optimal numbers of switches). Moreover,
we have developed a criterion for the discrete problem that

allows us to determine an optimal number of switches and
helps us search for them. Future work will be devoted to (i)
developing tight bounds on the numbers of optimal switches
to help us better initialize the OPTIMAL COST ALGORITHM,
(ii) considering formations of more than two UAVs, and
(iii) incorporating the results obtained here in matching
processes, where agents make and receive proposals about
the possibility of joining in formation.
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