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Abstract— Sensor fusion methods combine noisy measure-
ments of common variables observed by several sensors, typ-
ically by averaging information matrices and vectors of the
measurements. Some sensors may have also observed exclusive
variables on their own. Examples include robots exploring
different areas or cameras observing different parts of the
scene in map merging or multi-target tracking scenarios.
Iteratively averaging exclusive information is not efficient,
since only one sensor provides the data, and the remaining
ones echo this information. This paper proposes a method to
average the information matrices and vectors associated only
to the common variables. Sensors use this averaged common
information to locally estimate the exclusive variables. Our
estimates are equivalent to the ones obtained by averaging
the complete information matrices and vectors. The proposed
method preserves properties of convergence, unbiased mean,
and consistency, and improves the memory, communication,
and computation costs.

I. INTRODUCTION

Sensor networks are a powerful technology for monitoring,
surveillance, and detection of events in the environment.
Sensor fusion methods estimate variables by combining
noisy measurements taken by individual units. Measurements
are expressed in Information Filter form (IF), and their infor-
mation matrices and vectors are averaged using distributed
consensus to produce the global information matrix and
vector, see e.g., [6], [22]. The global estimate in terms of
mean vectors and covariance matrices can then be obtained
by inverting the averaged information matrix. When the
variables to be estimated change along time, an additional
step is locally carried out at each sensor to predict the new
state of the variables [1], [7], [8], [17]. Each particular sensor
may have not observed the whole set of variables. This
situation has been studied in [14] in terms of the observability
of the system. Several multi-target tracking algorithms may
fail when there are exclusive variables, and thus specific
solutions have been provided to deal with these features [13].
However, during the sensor measurement averaging phases,
no specific separation between common and exclusive vari-
ables is performed, and exclusive information is exchanged
and averaged at each iteration. Average consensus is an
interesting choice when sensors have different information
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about the same variables. However, iteratively averaging
exclusive information is not efficient. A single sensor pro-
vides information for the exclusive elements, whereas the
remaining sensors just echo this information.

Fig. 1. Robots exploring a region, with common areas in blue.

In map merging, multi-target tracking, or surveillance
scenarios, sensors have a description of what a map feature,
interesting target, or intruder are (visual features, doors,
furniture, or moving bodies). Each sensor individually detects
these variables, and before fusing the sensorial data, sensors
must establish relationships between their variables. This
problem, known as data association, has been investigated
in the context of distributed map merging [2] and distributed
target tracking [13], [19]. Matches are established between
the variables of neighboring sensors, using e.g, the Joint
Compatibility Branch and Bound [16], Nearest Neighbor,
Combined Constraint Data Association [5], Iterative Closest
Point [9], or RANSAC [11]. After that, exclusive variables
are identified without requiring any extra efforts: they are
variables that have not been associated to any other one.
For applications that do not require data association, where
sensors a priori know which variables will be estimated, it
would be necessary to run a voting method in the network
to find out which variables are exclusive.

Common and exclusive features have been previously
discussed in the context of robot exploration and submap-
ping [18]. In multi-robot scenarios, it is interesting to
send robots to explore different regions. Thus map merging
scenarios are an example of situations with high amount
of exclusive features (Fig. 1). Although some consensus-
based approaches have been proposed [2], [3], most of the
map merging solutions rely on centralized schemes, all-to-
all communication, or broadcasting methods, e.g., [12] for
particle filters, [21] for multi-robot submaps, or [20] for
graph maps. Since these solutions are not robust to link
failures or changes in the communication topology, some
decentralized solutions have been proposed where robots
propagate and keep track of the measurements [15] or latest
local maps [10] of all the team members. Their memory cost
does not scale properly, and it increases as new robots join



the team, even if the scene size does not change. Although
propagation is reasonable for variables exclusively sensed by
a robot, consensus methods are a better choice for estimating
common features observed by several robots.

The contribution of this paper is the design and analysis
of a novel sensor fusion strategy that relies on executing
consensus only on the information matrices and vectors of
the common variables. Our method allows the robots to
better distribute the computations, in particular in what refers
to matrix inversion operations, and greatly improves the
communication usage. We show that our method leads to the
same solution as algorithms that do not make this distinction.
We study the convergence, consistency, and unbiasedness of
the algorithm, and illustrate its behavior in a map merging
scenario. Due to space limitations, all proofs are omitted and
will appear elsewhere.

II. PRELIMINARIES

We let n be the number of sensors, and i, j, be indices
of sensors. We use G for the global map, and e and c for
exclusive and common variables respectively. We use t ∈ N
for iteration numbers. We let Id be the d×d identity matrix,
and 0d1×d2

be a d1 × d2 matrix with all its elements equal
to zero. Given A,B, matrices, A � B (A ≺ B) means that
matrix B −A is positive semidefinite (positive definite).

Sensor fusion methods [6], [22] estimate some variables
x ∈ RMG using measurements acquired by n sensors i ∈
{1, . . . , n} during successive measurement steps k ∈ N. In
this paper we focus on the static case, which takes place
when all sensors take a measurement at a single step, e.g.,
at k = 0. Some of the variables x are common, xc ∈ RMc

G ,
whereas others have been exclusively observed by a single
sensor, xe

i ∈ RMe
i , with MG =Me

1 + · · ·+Me
n +Mc

G,

x = ((xe
1)T , . . . , (xe

n)T , (xc)T )T .

Let matrix Hi ∈ RMi×MG relate the locally observed
variables and the global ones. The observation yi ∈ RMi

of sensor i is a noisy measurement of the true variables x,

yi = Hix + vi, vi ∼ N(0,Σi), (1)

where Σi ∈ RMi×Mi is the covariance of observation noise
vi, and the noises independent, E[viv

T
j ] = 0, for all i 6= j.

Measurement yi can be expressed in terms of its exclusive
ye
i ∈ RMe

i and common yc
i ∈ RMc

i parts, with Mi =
Me

i +Mc
i , and eq. (1) becomes

yi = ((ye
i )T , (yc

i )
T )T , (2)

ye
i = xe

i + ve
i , yc

i = Hc
i x

c + vc
i ,

since only sensor i provides information of xe
i and thus

Hi =

[
0 . . . I . . .0 0
0 . . . 0 . . .0 Hc

i

]
. (3)

Here, we observe the decomposition of the covariance matrix
Σi associated to the noise vi = ((ve

i )T , (vc
i )

T )T ,

Σi =

[
E[ve

i (ve
i )T ] E[ve

i (vc
i )

T ]
E[vc

i (v
e
i )T ] E[vc

i (v
c
i )

T ]

]
=

[
Mi Ni

NT
i Oi

]
. (4)

The goal is to build the global estimate xG ∈ RMG , which
is composed of exclusive di ∈ RMe

i and common features
f ∈ RMc

G , with covariance matrix ΣG ∈ RMG×MG ,

xG =


d1

...
dn

f

 , ΣG =


D11 . . . D1n E1

...
. . .

...
...

Dn1 . . . Dnn En

ET
1 . . . ET

n F

 , (5)

where Dij are the covariances of the exclusive variables of
sensors i and j, F is the covariance of the common parts,
and matrices Ei relate the exclusive and common variables.
In particular, it is interesting that the nodes compute xG, and
the elements in the main diagonal of the covariance matrix
ΣG. Usually, these elements provide enough information for
any higher level algorithm to make decisions. The unbiased,
maximum likelihood estimate xG of x given the measure-
ments yi acquired by all the sensors i ∈ {1, . . . , n}, with
covariance matrix ΣG, is

xG = I−1G iG, ΣG = I−1G ,

IG =

n∑
i=1

Ii, iG =

n∑
i=1

ii, (6)

where Ii, ii, are the information matrix and vector of the
measurement taken by robot i,

Ii = HT
i Σ−1i Hi, ii = HT

i Σ−1i yi. (7)

For independent, zero-mean, non-Gaussian measurement
noises, eq. (6) gives the linear minimum-variance unbiased
estimate of x given the measurements.

A. Distributed sensor fusion

The global estimate in eq. (6) is computed with dis-
tributed average consensus on the information matrices Ii ∈
RMG×MG , and vectors ii ∈ RMG of the measurements [6],
[22]. Each sensor i maintains and exchanges variables
Îi(t) ∈ RMG×MG , îi(t) ∈ RMG with an estimate of the
averages of the local information matrices and vectors in
eq. (7) for all the robots j ∈ {1, . . . , n}, and updates these
variables at each iteration t through the exchange of data
with its neighbors. Three properties which are of interest
in sensor fusion algorithms are convergence to the global
estimate in eq. (6), and unbiasedness and consistency of the
temporal estimates. Convergence refers to the fact that the
averaged estimates Îi(t), îi(t) at each robot i ∈ {1, . . . , n},
and averaging iteration t, converge to the global estimate IG,
iG, as t → ∞. In particular, for fixed graphs or switching
graphs jointly connected [22],

lim
t→∞

Îi(t) = IG/n, lim
t→∞

îi(t) = iG/n,

lim
t→∞

x̂i(t) = lim
t→∞

(Îi(t))
−1 îi(t) = xG,

lim
t→∞

Σ̂i(t) = lim
t→∞

(Îi(t))
−1 = nΣG,

with xG, ΣG, IG, iG as in eq. (6). The temporal estimates
Îi(t), îi(t) are unbiased when

E [x̂i(t)] = E
[
(Îi(t))

−1 îi(t)
]

= x,



for all i and t, and they are consistent when

E
[
(x̂i(t)− x)(x̂i(t)− x)T

]
� Σ̂i(t).

Unbiasedness has been proved for the sensor fusion algo-
rithms [6], [22], and consistency has been proved for [6]
and for the consensus-based Kalman filter method in [8].

III. DISTRIBUTED CONSENSUS ON
COMMON INFORMATION

The strategies in the previous section involve the exchange
of information matrices and vectors, with sizes respectively
quadratic and linear in MG = Me

1 + . . .Me
n +Mc

G, for
several averaging iterations. Instead, in this paper we propose
to compute average consensus of the information matrices
and vectors associated to the measurements of the common
variables, Ri ∈ RMc

G×M
c
G , ri ∈ RMc

G , given by

Ri = (Hc
i )TO−1i Hc

i , ri = (Hc
i )TO−1i yc

i . (8)

We propose to make each sensor i maintain variables r̂i(t) ∈
RMc

G , R̂i(t) ∈ RMc
G×M

c
G , with an estimate of the average

of Ri, ri, and update them with [6], [22], so that

lim
t→∞

R̂i(t) =
1

n

n∑
j=1

Rj , lim
t→∞

r̂i(t) =
1

n

n∑
j=1

rj . (9)

As in [6], [22], we assume that R̂i(t), r̂i(t) can be expressed
in terms of Rj , rj ,

R̂i(t) =

n∑
j=1

φij(t)Rj , r̂i(t) =

n∑
j=1

φij(t)rj , (10)

with φij(t) ∈ R; as t → ∞, these weights φij(t) → 1/n.
Thus, in our approach sensors exchange matrices and vectors
quadratic and linear in the size of the common elements,
Mc

G, instead of MG.
We first analyze how the different elements of the global

estimate in eq. (5) are obtained from the measurements taken
by the robots i ∈ {1, . . . , n} in eqs. (2)-(4). We define the
following matrices M̄i ∈ RMe

i×M
e
i , N̄i ∈ RMe

i×M
c
G , and

vector ȳi ∈ RMe
i ,

M̄i = Mi −NiO
−1
i NT

i , N̄i = NiO
−1
i Hc

i ,

ȳi = ye
i −NiO

−1
i yc

i , (11)

which can be locally computed by each node i ∈ {1, . . . , n}.
Proposition 3.1 (Exclusive/Common Decomposition):

The exclusive and common parts of the global estimate xG,
ΣG in eq. (5) can be expressed in terms of the exclusive and
common measurements yi, Σi in eqs. (2)-(4) as follows:

F = (

n∑
i=1

Ri)
−1, Dij = N̄iFN̄

T
j , Ei = N̄iF, (12)

Dii = M̄i + N̄iFN̄i, f =F

n∑
i=1

ri, di = ȳi + N̄if .

with Ri, ri being the common information matrices and
vectors in eq. (8), and M̄i, N̄i, ȳi being the locally computed
matrices and vectors in eq. (11). •

Note that the terms in eq. (12) are not an approximation;
instead, they are the equivalent expression to the classical
estimation operations in eq. (5). The interest is that the sizes
of Ri, ri only depend on the common features observed by
the robots, and not on the total amount of global features
MG =Me

1 + · · ·+Me
n +Mc

G. We propose to perform the
averaging consensus iterations on these common information
matrices Ri and vectors ri, instead of on the information
matrices Ii and vectors ii of the whole set of global variables.
Then, the robots can compute the remaining elements in
eq. (12) from F and f . Besides, the only matrix inversion
operations (eqs. (8) and (11)-(12)) involve Oi and Ri with
sizes quadratic on Mc

i and Mc
G respectively. Recall that in

the original sensor fusion algorithms, matrices Σi and IG are
inverted instead (eqs. (6)-(7)), with sizes quadratic on Mi

and MG.
Algorithm 3.1 (Consensus on common information): We

propose to make each robot i execute an average consensus
with variables r̂i(t), R̂i(t), initialized with Ri, ri in eq. (8),
using the consensus algorithms in Section II. Given r̂i(t),
R̂i(t), at robot i and iteration t, we define the following
estimates of the variables associated to the global covariance
matrix and vector in eqs. (5), and (12),

F̂i(t) = (R̂i(t))
−1, f̂i(t) = (R̂i(t))

−1r̂i(t), (13)

d̂i
j(t) = ȳj + N̄j f̂i(t), D̂i

jj(t) = nM̄j + N̄jF̂i(t)N̄
T
j ,

for all j ∈ {1, . . . , n}, and given the estimates of two robots
i, i′, we define for all j, j′ ∈ {1, . . . , n}

D̂ii′

jj′(t) = (D̃i
jj′(t) + D̃i′

jj′(t))/2, D̃i
jj′(t) = N̄jF̂i(t)N̄

T
j′ ,

Êii′

j (t) = (Ẽi
j(t) + Ẽi′

j (t))/2, Ẽi
j(t) = N̄jF̂i(t). (14)

We are interested in each robot i computing the variables
in eq. (13) since they usually provide enough information
about the environment for any higher level algorithm to make
decisions. If necessary, however, also variables in eq. (14)
can be obtained by the robots. Both strategies are discussed
in the next section. •

In the remaining of this paper, we study the properties of
the global map estimated by each robot i and iteration t.
The exclusive variables d̂i′

j (t), D̂i′

jj(t) in eq. (13) may have
been computed by a robot i′ not necessarily equal to robot
i (using the averaged estimates r̂i′(t), R̂i′(t) of robot i′),
and propagated through the network. Variables in eq. (14)
may have involved two different robots. In order to cover
all the possible computation/propagation strategies, we give
the following general definition of the global estimate of a
robot i. The global mean x̂i(t) estimated according to our
algorithm by each robot i at iteration t is,

x̂i(t) =
(

(d̂i1
1 (t))T , . . . , (d̂in

n (t))T , (f̂i(t))
T
)T

, (15)



and its associated global covariance matrix Σ̂i(t) is

Σ̂i(t) = (16)
D̂i1

11(t) D̂i1i2
12 (t) . . . D̂i1in

1n (t) Êi1i
1 (t)

D̂i2i1
21 (t)

...
. . .

...
...

D̂ini1
n1 (t) . . . D̂in

nn(t) Êini
n (t)

(Êi1i
1 (t))T . . . (Êini

n (t))T F̂i(t)

 ,

which is symmetric since D̂ii′

jj′(t) = (D̂i′i
j′j(t))

T . Note that
depending on the scenario considered, robot i may not
estimate the full covariance matrix, but only the common
part F̂i(t) and the main diagonal elements D̂ij

jj . Now we
discuss the different scenarios and the specific global mean
x̂i(t) and covariance Σ̂i(t) obtained in each case.

A. Strategies for estimating the global map

Each robot i executing Algorithm 3.1 has an estimate of
the common features f̂i(t) and covariance F̂i(t). In addition,
it can compute an estimate of its exclusive features d̂i

i(t),
and covariance matrix D̂i

ii(t), using only its own local data
ȳi, M̄i, N̄i in eq. (11), and f̂i(t) and F̂i(t). In some scenarios,
it may be interesting to let each robot i have only this
information, i.e., the improved estimates of its local features
due to the sensor fusion operation. In this case, the global
estimate would be spread along the robot network. Instead,
if we are interested in each robot having a copy of the global
estimate, we can use the following strategies.

1) Strategy A: Robots exchange periodically messages
(flooding or propagation) of linear size 2Me

i with their
estimates of their exclusive features d̂i

i(t), and the main
diagonal of their covariances matrices D̂i

ii(t). Usually, these
elements provide enough information for any higher level
algorithm to make decisions. The global mean x̂i(t) and
covariance Σ̂i(t) estimated by robot i at iteration t as in
eqs. (15), (16), with i1 = 1, . . . , in = n. This is the most
important strategy and it is the one we implement in our
simulations.

2) Strategy B: Alternatively, if robots were required to
estimate all the entries of the covariance and mean of the
global map, they could use the strategy described here.
Each robot j propagates (once, e.g., at the beginning) vector
ȳj ∈ RM

e
j ; matrix N̄j ∈ RM

e
j×M

c
G ; and matrix M̄j ∈

RM
e
j×M

e
j in eq. (11). Once robot i receives these matrices

and vectors, it computes variables in eqs. (13)-(16) using its
own F̂i(t), f̂i(t). The global mean x̂i(t) and covariance Σ̂i(t)
estimated by robot i at iteration t would be in this case in
as eqs. (15), (16) with i1 = · · · = in = i.

Remark 3.1 (Global map mean and covariance): In this
paper, we consider the case where the final aim is that the
robots compute the mean and covariance of the global map.
We plan to investigate in future work the alternative case,
where agents seek to obtain the global information matrices
and vectors instead. •

Remark 3.2 (Performance comparison): Regardless of
the strategy selected, the computation load of our algorithm
is lower than in classical sensor fusion algorithms, where

each robot must invert the whole information matrix of the
global estimate to obtain the global map. Here, the sizes
of the matrices R̂i(t) which are inverted depend on the
common features only. In the worst case, when all the robots
observe exactly the same features, the performance is the
same. The improvement of our method over classical sensor
fusion solutions becomes more important in scenarios with
a high amount of exclusive variables. •

B. Algorithm properties

Here, we analyze the convergence, unbiasedness and con-
sistency of Algorithm 3.1. The proof of the next result
follows from (9) and Proposition 3.1.

Proposition 3.2 (Convergence): Assume eq. (9) holds.
Then, for all i, i′, j, j′, the following variables in eqs. (13)-
(14) converge to

lim
t→∞

F̂i(t) = nF, lim
t→∞

D̂i
jj(t) = nDjj ,

lim
t→∞

D̂ii′

jj′(t) = nDjj′ , lim
t→∞

Êii′

j (t) = nEj ,

lim
t→∞

f̂i(t) = f , lim
t→∞

d̂i
j(t) = dj , (17)

with F,Djj , Djj′ , Ej , f ,dj being the blocks of the global
covariance matrix and the global mean vector as in eq. (12).

•
Proposition 3.3 (Unbiasedness): Assume that R̂i(t),

r̂i(t), are as in eq. (10). Then, the global map mean x̂i(t)
(eq. (15)) estimated by each robot i at each iteration t is
unbiased,

E [x̂i(t)] = x. (18)

•
Theorem 3.1 (Consistency): Assume that R̂i(t), r̂i(t) for

all i and t can be expressed as in eq. (10), and that in addition
the weights 0 ≤ φij(t) ≤ 1. Then, the numerical covariance
Qi(t) of the global mean x̂i(t) (eq. (15)) estimated by each
robot i at each iteration t, defined as

Qi(t) = E
[
(x̂i(t)− x)(x̂i(t)− x)T

]
, (19)

is related to the covariance matrix Σ̂i(t) in eq. (16) as
follows,

Qi(t) � Σ̂i(t). (20)

•

IV. SIMULATIONS

We apply the method proposed in this paper to a map
merging scenario, where 7 robots explore an unknown envi-
ronment (Fig. 2 (a)). Features inside rooms are only observed
by robots that enter this room (Fig. 2 (b)). When robots finish
their exploration, they merge their maps. Fig. 2 (c) shows the
global map (6) that could be computed if all the local maps
were available to a fusion center.

Robots execute the data association algorithm in [4] to
establish a relationship between the features locally observed
by themselves and the ones observed by the robot team. They
identify exclusive features, which have not been associated
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Fig. 2. 7 robots (triangles) explore an environment where there are some landmarks (dots). Robots perform different trajectories (lines) and traverse
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ellipses) the position of the features in the main corridor and in the rooms it has entered, as well as its own pose (blue triangle). (c) Centralized global
map (eqs. (6),(12)). The common parts are shown in black, whereas the exclusive features observed by each robot are displayed in different colors. Two
features (F [1, 45] and F [1, 10]) that will be studied later are shown inside boxes.
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Fig. 3. Position of features F [1, 10] and F [1, 45] (x-coordinate) estimated
by robot R1 along t = 10 iterations of the algorithm. Feature F [1, 10] has
been observed by several robots (common), whereas F [1, 45] has been only
observed by R1. (a), (b) The estimated mean (blue dashed) approaches the
centralized estimate (black solid). (c), (d) The numerical covariance (red
dotted), which cannot be computed by the robots, approaches the centralized
covariance (black solid); this numerical covariance (red dotted) is always
bounded by the locally estimated covariance (blue dashed), which converges
to n times the centralized covariance.

to any other feature. They execute the proposed sensor
fusion method on their common features (Algorithm 3.1)
for t = 10 iterations, using the strategy A (Section III-
A). At each iteration t, each robot i uses its most recent
estimates of the common parts R̂i(t), r̂i(t), to compute its
exclusive features estimates d̂i

i(t) and exclusive covariance
matrix D̂i

ii(t). Then, it propagates d̂i
i(t) and the elements in

the main diagonal of D̂i
ii(t). In Fig. 3 we can see the evo-

lution of the estimated mean(Fig. 3 (a)-(b)) and covariance
(Fig. 3 (c)-(d)) of features F [1, 10] and F [1, 45] at robot
R1. Feature F [1, 10] was observed by several of the robots,
whereas F [1, 45] was exclusively observed by R1. For both
features, the estimated means (Fig. 3 (a)-(b)) converge to the
centralized estimate; the estimated covariances (Fig. 3 (c)-

(d)) always bound the numerical covariances (which cannot
be computed by the robots) and converge to n times the
centralized covariances.

We finally discuss the communication cost of our ap-
proach. We represent numbers with single precision (4
Bytes per element) and show the results in KBytes. In the
first phase, robots execute a local data association in their
neighborhood followed by a propagation of matches through
the network. This operation has associated a communication
cost of 123.34 KBytes per robot for sending their local
maps (means and covariances) in the neighborhood; then
the propagation of matches process takes 5 iterations with
a total communication cost of 8.69 KBytes. After that,
robots know which features are exclusive and execute the
proposed algorithm, with the strategy A (Section III-A). They
propagate their exclusive parts at each iteration t, and execute
consensus on the common features. The communication
costs per robot at each iteration t are shown in Fig. 4. Our
method (Fig. 4 (a)) outperforms classical consensus methods
(Fig. 4 (b)) due to the management of exclusive and common
data. We have made a comparison against a strategy based
on pure propagation of the local maps (Fig. 4 (c)). In our
algorithm, the amount of data sent by every robot is almost
the same, and thus the green dashed and gray solid lines are
almost the same (Fig. 4 (a)), whereas for the pure propagation
method (Fig. 4 (c)) some of the robots send large amounts
of data (green dashed). Pure propagation methods are prone
to create bottlenecks, which are even more critical for larger
networks with more robots. The maximum memory used by
the robots during the execution of our algorithm was 169
KBytes (105 KBytes for storing the common parts and 65
KBytes for storing the exclusive parts), whereas the classical
consensus required each robot to store 454 KBytes. In order
to obtain the estimate of the global map, one of the most
computationally demanding operation is the inversion of the
information matrix, whose size depends on the amount of
common features for our method and on the total amount of
landmarks for the classical consensus. The robots computed
the global map estimate in 0.192 seconds when they executed
the classical consensus, and only 0.017 seconds when they
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(a) Consensus with common/exclu. (b) Consensus without common/exclu. (c) Local map propagation

Fig. 4. Communication costs of our method (Algorithm 3.1 & Strategy A) (a) compared to consensus methods that do not make any distinction between
common or exclusive features (b), and to a pure propagation of local maps (c), with numbers represented with single precision (4Bytes). The average
amount of information sent by each robot is displayed in solid gray, and the maximum cost among all the robots is shown in green dashed. For our method
(a), we display as well the amount of data used for sending the exclusive information (blue dashed) and for agreeing in the common data (red dashed).

used our method.

V. CONCLUSIONS

We have presented a method for sensor fusion that im-
proves the network usage by taking advantage of the pres-
ence of exclusive features, which have been observed by a
single agent. This algorithm converges to the same solution
as methods that consider exclusive and common features
together. We have shown that our method is convergent,
unbiased, and consistent. We have applied our method to
a map merging scenario, where it is usual to have a high
number of exclusive features, and we have demonstrated
the performance of our method compared to classical ones.
Future work will explore more general distributed estimation
scenarios, with time-varying variables that begin as exclusive
and become common over time and also investigate the
design of algorithms where robots compute the information
matrices and vectors of the global estimate, instead of its
covariance and mean.
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