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Distributed generator coordination for initialization
and anytime optimization in economic dispatch

Ashish Cherukuri Jorge Cortés

Abstract—This paper considers the economic dispatch problem
for a group of generator units communicating over an arbitrary
weight-balanced digraph. The objective of the individual units
is to collectively generate power to satisfy a certain load while
minimizing the total generation cost, which corresponds to
the sum of individual arbitrary convex functions. We propose
a class of distributed Laplacian-gradient dynamics that are
guaranteed to asymptotically find the solution to the economic
dispatch problem with and without generator constraints. The
proposed coordination algorithms are anytime, meaning that its
trajectories are feasible solutions at any time before convergence,
and they become better and better solutions as time elapses.
Additionally, we design the provably correct, distributed DE-
TERMINE FEASIBLE ALLOCATION strategy to handle generator
initialization and scenarios with addition and deletion of units.
Several simulations illustrate our results.

I. INTRODUCTION

Environmental concerns and economic challenges are fuel-
ing technological advancements in renewable energy sources
and their integration into electricity grids. In the near future,
this trend will make power generation highly distributed, giv-
ing rise to large-scale grid optimization problems with an ex-
tremely dynamic nature. Since centralized approaches to these
problems might become impractical, there is a need to develop
distributed methods that find solutions for load management
and distribution. Such distributed algorithms have the potential
to meet dynamic demands and be robust against generation and
transmission failures. With this motivation in mind, we study
here the economic dispatch (ED) problem where a group of
generators whose generation costs are described by smooth,
convex functions seek to determine generation levels that
respect individual constraints, meet a specified load, and mini-
mize the total generation cost. Our aim is to design distributed
algorithms that asymptotically converge to the solutions of the
ED problem, are anytime, i.e., generate executions which are
feasible at any time and have monotonically decreasing cost,
and can handle unit addition and deletion.

Literature review: Given the expected high density of the
future electricity grid [1], the nature of the solution methodolo-
gies to the ED problem has shifted in recent years from central-
ized [2] to distributed ones. Among these, several works intro-
duce consensus-based algorithms for generators with quadratic
cost functions and undirected [3], [4], [5] or directed [6]
communication topologies. A limitation of consensus-based
approaches is that, in general, the resulting algorithm is not
anytime. Instead, center-free algorithms [7], [8] solve an
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optimal resource allocation problem that corresponds to the
ED problem for general convex functions, are distributed, and
anytime, but cannot handle individual generator constraints.
The work [9] deals with general convex functions and unit
constraints, but the proposed algorithm only finds suboptimal
solutions by solving a regularized version of the ED problem.
None of the approaches mentioned above study scenarios
where the set of generator units varies over time, which
normally results in violations of the load requirements. The
iterative algorithms in [10] solve asymptotically the problem
of finding a feasible (not necessarily optimal) power allocation
for the ED problem, i.e., one that satisfies the individual
constraints and meets the load requirements. The distributed
algorithmic solution that we provide in this paper is able to find
a feasible allocation in finite time, and can therefore handle
unit addition and deletion. Our work is also related to the
emerging body of research on distributed optimization, see
e.g., [11], [12], [13] and references therein. In this class of
problems, each agent in the network maintains, communicates,
and updates an estimate of the complete solution vector. This is
a major difference with respect to our setting, where each unit
optimizes over and communicates its own local variable, and
these variables are tied in together through a global constraint.

Statement of contributions: Our starting point is the for-
mulation of the economic dispatch (ED) problem for a group
of generator units that communicate over an arbitrary weight-
balanced, strongly connected digraph. The first contribution
pertains to the relaxed economic dispatch (rED) problem,
which is the ED problem without bounds on the individual
generators’ capacity. We introduce the distributed Laplacian-
gradient dynamics, establish its exponential convergence to
the set of solutions of the rED problem, and characterize the
associated rate. As a by-product of our analysis, we establish
the anytime nature of this algorithm and its convergence
under jointly strongly connected communication topologies.
Our second contribution concerns the ED problem. We use a
nonsmooth exact penalty function to transform the problem,
which has generators’ capacity bounds, into an equivalent op-
timization with no such constraints. The resulting formulation
resembles the rED problem, and this leads us to the design
of the distributed Laplacian-nonsmooth-gradient dynamics.
This algorithm provably converges to the solutions of the
ED problem, and is also anytime and robust to switching
communication topologies that remain strongly connected.
Our third contribution deals with the distributed allocation
of the load to the network of generators while respecting
their capacity bounds. We propose a three-phase strategy
termed DETERMINE FEASIBLE ALLOCATION. The first phase
maintains a spanning tree over the units present in the network,
the second phase determines the capacity of each subtree to
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allocate additional power, and the third phase allocates power
to each individual unit, respecting the constraints, to meet the
overall load. Our algorithm terminates in finite time and can be
used for the initialization of the Laplacian-nonsmooth-gradient
dynamics and to handle scenarios with power imbalances
caused by the addition or deletion of generators.

Organization: Section II contains notation and basic pre-
liminaries. Section III defines the ED and rED problems. Sec-
tions IV and V introduce, respectively, the Laplacian-gradient
and the Laplacian-nonsmooth-gradient dynamics. Section VI
presents the DETERMINE FEASIBLE ALLOCATION routine and
establishes its correctness. Section VII presents simulation
results. Finally, Section VIII gathers our conclusions.

II. PRELIMINARIES

We begin with some notational conventions. Let R, R≥0,
R>0, Z≥1 denote the real, nonnegative real, positive real, and
positive integer numbers, resp. The 2- and∞-norms on Rn are
‖·‖2 and ‖·‖∞, resp. We let B(x, δ) = {y ∈ Rn | ‖y−x‖2 <
δ}. For D ⊂ Rn, bd(D) and |D| denote its boundary and
cardinality, resp. We denote 0n = (0, . . . , 0) ∈ Rn, 1n =
(1, . . . , 1) ∈ Rn, and In ∈ Rn×n for the identity matrix. For
x, y ∈ Rn, x ≤ y iff xi ≤ yi for i ∈ {1, . . . , n}. A set-valued
map f : Rn ⇒ Rm associates to each point in Rn a set in
Rm. Finally, we let [u]+ = max{0, u} for u ∈ R.

A. Graph theory
We present basic notions from algebraic graph theory

following [14]. A directed graph (or digraph) is a pair
G = (V, E), with V the vertex set and E ⊆ V × V the
edge set. A path is a sequence of vertices connected by
edges. A digraph is strongly connected if there is a path
between any pair of vertices. The sets of out- and in-neighbors
of vi are, resp., Nout(vi) = {vj ∈ V | (vi, vj) ∈ E}
and Nin(vi) = {vj ∈ V | (vj , vi) ∈ E}. A weighted
digraph G = (V, E ,A) is composed of a digraph (V, E)
and an adjacency matrix A ∈ Rn×n≥0 with aij > 0 iff
(vi, vj) ∈ E . The weighted out- and in-degree of vi are, resp.,
dout(vi) =

∑n
j=1 aij and din(vi) =

∑n
j=1 aji. The Laplacian

matrix is L = Dout−A, where Dout is the diagonal matrix with
(Dout)ii = dout(i), for all i ∈ {1, . . . , n}. Note that L1n = 0.
If G is strongly connected, then zero is a simple eigenvalue
of L. G is undirected if L = L> and weight-balanced if
dout(v) = din(v), for all v ∈ V . Equivalently, G is weight-
balanced iff 1>n L = 0 iff L+ L> is positive semidefinite. Any
undirected graph is weight-balanced. If G is weight-balanced
and strongly connected, then zero is a simple eigenvalue of
L + L>. In such case, one has for x ∈ Rn,

x>(L + L>)x ≥ λ2(L + L>)
∥∥∥x− 1

n
(1>n x)1n

∥∥∥2
2
, (1)

with λ2(L + L>) the smallest non-zero eigenvalue of L + L>.

B. Nonsmooth analysis
Here, we introduce notions from nonsmooth analysis fol-

lowing [15]. A function f : Rn → Rm is locally Lips-
chitz at x ∈ Rn if there exist Lx, ε ∈ (0,∞) such that
‖f(y) − f(y′)‖2 ≤ Lx‖y − y′‖2, for all y, y′ ∈ B(x, ε).

A function f : Rn → R is regular at x ∈ Rn if, for all
v ∈ Rn, the right and generalized directional derivatives of
f at x in the direction of v coincide, see [15] for definitions
of these notions. A function that is continuously differentiable
at x is regular at x. Also, a convex function is regular. A
set-valued map H : Rn ⇒ Rn is upper semicontinuous at
x ∈ Rn if, for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such
that H(y) ⊂ H(x) + B(0, ε) for all y ∈ B(x, δ). Also, H is
locally bounded at x ∈ Rn if there exist ε, δ ∈ (0,∞) such
that ‖z‖2 ≤ ε for all z ∈ H(y) and y ∈ B(x, δ).

Given a locally Lipschitz function f : Rn → R, let
Ωf be the set (of measure zero) of points where f is not
differentiable. The generalized gradient ∂f : Rn ⇒ Rn is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co denotes convex hull and S ⊂ Rn is any set of mea-
sure zero. The set-valued map ∂f is locally bounded, upper
semicontinuous, and takes non-empty, compact, and convex
values. A critical point x ∈ Rn of f satisfies 0 ∈ ∂f(x).

C. Stability of differential inclusions
We gather here some useful tools for the stability analysis of

differential inclusions [15]. A differential inclusion on Rn is

ẋ ∈ H(x), (2)

where H : Rn ⇒ Rn is a set-valued map. A solution
of (2) on [0, T ] ⊂ R is an absolutely continuous map
x : [0, T ] → Rn that satisfies (2) for almost all t ∈ [0, T ]. If
H is locally bounded, upper semicontinuous, and takes non-
empty, compact, and convex values, then existence of solutions
is guaranteed. The set of equilibria of (2) is Eq(H) = {x ∈
Rn | 0 ∈ H(x)}. A set S ⊂ Rn is weakly (resp., strongly)
positively invariant under (2) if, for each x ∈ S, at least a
solution (resp., all solutions) starting from x is (resp., are)
entirely contained in S. For dynamics with uniqueness of
solution, both notions coincide and are referred as positively
invariant. Given f : Rn → R locally Lipschitz, the set-valued
Lie derivative LHf : Rn ⇒ R of f with respect to (2) at x is

LHf = {a ∈ R | ∃v ∈ H(x) s.t. ζ>v = a for all ζ ∈ ∂f(x)}.

The next result characterizes the asymptotic properties of (2).
Theorem 2.1: (LaSalle Invariance Principle for differential

inclusions): Let H : Rn ⇒ Rn be locally bounded, upper
semicontinuous, with non-empty, compact, and convex values.
Let f : Rn → R be locally Lipschitz and regular. If S ⊂ Rn is
compact and strongly invariant under (2) and maxLHf(x) ≤
0 for all x ∈ S, then the solutions of (2) starting at S converge
to the largest weakly invariant set M contained in S ∩ {x ∈
Rn | 0 ∈ LHf(x)}. Moreover, if the set M is finite, then the
limit of each solution exists and is an element of M .

D. Constrained optimization and exact penalty functions
Here, we introduce some notions on constrained optimiza-

tion problems and exact penalty functions following [16], [17].
Consider the constrained optimization problem,

minimize f(x), (3a)
subject to g(x) ≤ 0m, h(x) = 0p, (3b)
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where f : Rn → R, g : Rn → Rm, and h : Rn → Rp,
with p ≤ n, are continuously differentiable. The refined Slater
condition is satisfied by (3) if there exists x ∈ Rn such that
h(x) = 0p, g(x) ≤ 0m, and gj(x) < 0 for all nonaffine
functions gj . The optimization (3) is convex if f and g are
convex and h affine. For convex optimization problems, the
refined Slater condition implies that strong duality holds. A
point x ∈ Rn is a Karush-Kuhn-Tucker (KKT) point of (3) if
there exist Lagrange multipliers λ ∈ Rm≥0, ν ∈ Rp such that

g(x) ≤ 0m, h(x) = 0p, λ>g(x) = 0,

∇f(x) +

m∑
j=1

λj∇gj(x) +

p∑
k=1

νk∇hk(x) = 0.

If the optimization (3) is convex and strong duality holds, then
a point is a solution of (3) if and only if it is a KKT point.

In the presence of inequality constraints in (3), we are
interested in using exact penalty function methods to eliminate
them while keeping the equality constraints. Following [17],
consider the nonsmooth exact penalty function f ε : Rn → R,

f ε(x) = f(x) +
1

ε

m∑
j=1

[gj(x)]+

with ε > 0, and define the minimization problem

minimize f ε(x), (4a)
subject to h(x) = 0p. (4b)

Note that, if f is convex, then f ε is convex (given that t 7→
1
ε [t]+ is convex). Therefore, if the problem (3) is convex, then
the problem (4) is convex as well. The following result, see
e.g. [17, Proposition 1], identifies conditions under which the
solutions of the optimization problems (3) and (4) coincide.

Proposition 2.2: (Equivalence between (3) and (4)): As-
sume that the problem (3) is convex, has nonempty and
compact solution set, and satisfies the refined Slater condition.
Then, (3) and (4) have exactly the same solutions if

1

ε
> ‖λ‖∞,

for some Lagrange multiplier λ ∈ Rm≥0 of the problem (3).

Note that a Lagrange multiplier for (3) exists because the
refined Slater condition holds, and hence every solution is a
KKT point. The next result characterizes the solutions of a
class of optimization problems. The proof is straightforward.

Lemma 2.3: (Solution form for a class of constrained opti-
mization problems): Consider the problem

minimize

n∑
i=1

fi(xi), (5a)

subject to 1>n x = xl, (5b)

where fi : R → R is continuous, locally Lipschitz, and
convex, for i ∈ {1, . . . , n}. Define f : Rn → Rn by
f(x) = (f1(x1), . . . , fn(xn)). A point x∗ is a solution of (5)
if and only if there exists µ ∈ R such that

µ1n ∈ ∂f(x∗) and 1>n x
∗ = xl. (6)

III. PROBLEM STATEMENT

Consider a network of n ∈ Z≥1 power generator units
whose communication topology is represented by a strongly
connected and weight-balanced digraph G = (V, E ,A). Each
generator corresponds to a vertex and an edge (i, j) represents
the capability of unit j to transmit information to unit i.
The power generated by unit i is Pi ∈ R. Each generator
i ∈ {1, . . . , n} has a cost generation function fi : R → R≥0,
assumed to be convex and continuously differentiable. The
total cost incurred by the network with the power allocation
P = (P1, . . . , Pn) ∈ Rn is given by f : Rn → R≥0 as

f(P ) =

n∑
i=1

fi(Pi).

The function f is also convex and continuously differentiable.
The generators must meet a total power load Pl ∈ R>0, i.e.,∑n
i=1 Pi = Pl, while at the same time minimizing the total

cost f(P ). Each generator has upper and lower limits on the
power it can produce, Pmi ≤ Pi ≤ PMi for i ∈ {1, . . . , n}.
Formally, the economic dispatch (ED) problem is

minimize f(P ), (7a)

subject to 1>nP = Pl, (7b)

Pm ≤ P ≤ PM . (7c)

We refer to (7b) as the load condition and to (7c) as the
box constraints. We let FED = {P ∈ Rn | Pm ≤ P ≤
PM and 1>nP = Pl} denote the feasibility set of (7). Since
FED is compact, the set of solutions of (7) is compact. More-
over, since the constraints (7b) and (7c) are affine, feasibility
of the ED problem implies that the refined Slater condition
is satisfied and strong duality holds. Note that PM ∈ FED

implies FED is a singleton set, i.e., FED = {PM}. Similarly
Pm ∈ FED implies FED = {Pm}. Without loss of generality,
we assume that PM and Pm are not feasible points.

A simpler version of this problem is the relaxed economic
dispatch (rED) problem, where the total cost is optimized with
the load condition but without the box constraints. Formally,

minimize f(P ), (8a)

subject to 1>nP = Pl. (8b)

We let FrED = {P ∈ Rn | 1>nP = Pl} denote the feasibility
set of (8). Our objective is to design distributed procedures that
allow the network to solve the ED problem. In Section IV we
present an algorithmic solution to the rED problem and then
build on it in Section V to solve the ED problem.

IV. DISTRIBUTED ALGORITHMIC SOLUTION TO THE
RELAXED ECONOMIC DISPATCH PROBLEM

Here we introduce a distributed algorithm to solve the rED
problem (8). Consider the Laplacian-gradient dynamics

Ṗ = −L∇f(P ), (9)

where L is the Laplacian of the communication digraph G. This
dynamics is distributed in the sense that, to implement it, each
generator only requires information from its out-neighbors.
Specifically, if each generator knows the cost function of its
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neighbors, then they interchange messages that contain their
respective power levels. Otherwise, if such knowledge is not
available, (9) can be implemented in a distributed manner
with neighboring generators interchanging messages with their
respective gradient information. The next result states that (9)
asymptotically converges to the set of solutions of (8).

Theorem 4.1: (Convergence of the Laplacian-gradient dy-
namics to the solutions of rED problem): Consider the rED
problem (8) with f : Rn → R≥0 radially unbounded.
Then, the feasible set FrED is positively invariant under the
dynamics (9) and all trajectories starting from FrED converge
to the set of solutions of (8).

Proof: For convenience, we use the shorthand notation
XL-g : Rn → Rn to refer to (9). We first establish that the
total power generated by the network is conserved,

LXL-g(1
>
nP ) = 1>nXL-g(P ) = −(1>n L)∇f(P ) = 0, (10)

where in the last equality we have used the fact that G
is weight-balanced. As a consequence, FrED is positively
invariant under (9). Next, we show that f is monotonically
nonincreasing. Its Lie derivative along (9) is

LXL-gf(P ) = −∇f(P )>L∇f(P )

= −1

2
∇f(P )>(L + L>)∇f(P ) ≤ 0, (11)

where again we have used in the last equality that G is weight-
balanced. Given P0 ∈ Rn, let

f−1(≤ f(P0)) = {P ∈ Rn | f(P ) ≤ f(P0)}.

Note that this sublevel set is closed, and since f is ra-
dially unbounded, bounded. Then, the set WP0

= f−1(≤
f(P0)) ∩ FrED is closed, bounded, and from (10) and (11),
positively invariant. The application of the LaSalle Invariance
Principle, cf. Theorem 2.1, implies that the trajectories starting
in WP0

converge to the largest invariant set M contained
in {P ∈ WP0

| LXL-gf(P ) = 0}. From (11) and the fact
that G is weight-balanced and strongly connected, we deduce
that LXL-gf(P ) = 0 implies ∇f(P ) ∈ span{1n}, and hence
P ∈ Eq(XL-g). Since 1>nP0 = Pl by hypothesis, we conclude
that M = Eq(XL-g) ∩ FrED, which precisely corresponds to
the set of solutions of (8), cf. Lemma 2.3.

Remark 4.2: (Initialization of the Laplacian-gradient dy-
namics): To guarantee convergence to the solutions of the rED
problem, the Laplacian-gradient dynamics (9) requires an ini-
tial condition satisfying the load constraints. Such initialization
can be performed in a number of ways. For instance, if each
unit knows Pl and n, then the algorithm can start from Pl

n 1n.
If only one unit knows Pl, then that unit can set its initial
generation level set to Pl while the others start from 0. •

If in addition to the hypothesis of Theorem 4.1, f is strictly
convex, then (8) has a unique solution, and the trajectories
of (9) converge to it. The proof of Theorem 4.1 reveals two
important properties of the dynamics: the load condition is sat-
isfied at all times and the total cost is monotonically decreasing
until convergence. These properties imply that (9) is anytime,
i.e., its trajectories are feasible solutions at any time before
convergence, and they become better and better solutions as
time elapses. We next characterize its convergence rate.

Proposition 4.3: (Convergence rate of the Laplacian-

gradient dynamics): Under the hypotheses of Theorem 4.1,
further assume that there exist k,K ∈ R>0 such that
kIn � ∇2f(P ) � KIn for P ∈ Rn. Then, the dynamics (9)
converges to the unique solution of (8) exponentially fast
with rate greater than or equal to kλ2(L+L>)

2 .

Proof: Uniqueness of the solution to (8) follows from
noting that strong convexity implies strict convexity. Let
P opt ∈ Rn denote the unique optimizer and define V : FrED ⊂
Rn → R by V (P ) = f(P ) − f(P opt). Note that V (P ) ≥ 0,
and V (P ) = 0 iff P = P opt. From (11),

LXL-gV (P ) ≤ −1

2
λ2(L + L>)‖∇f(P )− 1

n
(1>n∇f(P ))1n‖22,

where we have used (1). For convenience, let e(P ) =
∇f(P ) − 1

n (1>n∇f(P ))1n. Using the fact that f is strongly
convex, for P, P ′ ∈ FrED, we have

f(P ′) ≥ f(P ) + e(P )>(P ′ − P ) +
k

2
‖P ′ − P‖22. (12)

For fixed P , the minimum of the right-hand side is f(P ) −
1
2k‖e(P )‖22, and hence f(P ′) ≥ f(P ) − 1

2k‖e(P )‖22. In
particular, for P ′ = P opt, this yields V (P ) ≤ 1

2k‖e(P )‖22.
Combining this with the bound on LXL-gV above, we get

LXL-gV (P ) ≤ −kλ2(L + L>)V (P ),

which implies that, along any trajectory t 7→ P (t) of (9), one
has V (P (t)) ≤ V (P (0))e−kλ2(L+L>)t. Our next objective is
to relate the magnitude of V at P with ‖P − P opt‖. From
∇2f(P ) � KIn, one has f(P ′) ≤ f(P ) + ∇f(P )>(P ′ −
P ) + K

2 ‖P
′ − P‖22. Minimizing both sides over P ′ ∈ FrED,

V (P ) ≥ 1

2K
‖e(P )‖22. (13)

Now, using (12) for P ′ = P opt, one has

f(P opt) ≥ f(P ) + e(P )>(P opt − P ) +
k

2
‖P opt − P‖22

≥ f(P )− ‖e(P )‖2‖P opt − P‖2 +
k

2
‖P opt − P‖22.

Since f(P opt) ≤ f(P ) for any P ∈ FrED, we deduce ‖P −
P opt‖2 ≤ 2

k‖e(P )‖2. Combining this with (13), we get

‖P − P opt‖22 ≤
8

k2
KV (P ). (14)

To obtain an upper bound, we use the fact that f is convex,
and hence f(P opt) ≥ f(P )+∇f(P )>(P opt−P ). Rearranging,

V (P ) ≤ ∇f(P )>(P − P opt)

= e(P )>(P − P opt) ≤ ‖e(P )‖2‖P − P opt‖2,

implying V (P )2 ≤ ‖e(P )‖22‖P − P opt‖22. Using (13), we get

V (P ) ≤ 2K‖P − P opt‖22. (15)

Finally, along any trajectory t 7→ P (t),

‖P (t)− P opt‖22 ≤
16K2

k2
‖P (0)− P opt‖22e−kλ2(L+L>)t,

using (14) and (15) with P = P (0), as claimed.

Remark 4.4: (Comparison with the center-free algorithm):
The work [7] proposes the center-free algorithm to solve
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the rED problem (termed there optimal resource allocation
problem). This algorithm essentially corresponds to a discrete-
time implementation of the Laplacian-gradient dynamics (9).
The convergence analysis of the center-free algorithm relies on
two assumptions. First, ∇2f needs to be globally upper and
lower bounded (in particular, this implies that f is strongly
convex). Second, the Laplacian must satisfy a linear matrix
inequality that constrains the choice of weights. In contrast, no
such conditions are required here to establish the convergence
of (9). In addition, the guaranteed rate of convergence of the
center-free algorithm vanishes as the upper bound on ∇2f
increases for a fixed weight assignment unlike the one obtained
in Proposition 4.3 for (9). •

We next establish the convergence of the Laplacian-gradient
dynamics in scenarios where the communication topology is
switching under a weaker form of connectivity.

Proposition 4.5: (Convergence of the Laplacian-gradient
dynamics under switching topology): Let Ξn be the set of
weight-balanced digraphs over n vertices. Denote the com-
munication digraph of the group of units at time t by G(t).
Let t 7→ G(t) ∈ Ξn be piecewise constant and assume there
exists an infinite sequence of contiguous, nonempty, uniformly
bounded time intervals over which the union of communica-
tion graphs is strongly connected. Then, the dynamics

Ṗ = −L(G(t))∇f(P ), (16)

starting from an initial power allocation P0 satisfying 1>nP0 =
Pl converges to the set of solutions of (8).

The proof is similar to that of Theorem 4.1 using that (i) the
load condition is preserved along the switched dynamics, (ii)
f is a common Lyapunov function, and (iii) infinite switching
implies convergence to the invariant set characterized by∇f ∈
span{1n}, the set of solutions of the rED problem.

V. DISTRIBUTED ALGORITHMIC SOLUTION TO THE
ECONOMIC DISPATCH PROBLEM

Here we propose a distributed algorithm to solve the ED
problem. We first develop an alternative formulation of this
problem without inequality constraints using an exact penalty
function approach. This allows us to synthesize the distributed
Laplacian-nonsmooth-gradient dynamics mimicking the algo-
rithm design of Section IV.

A. Exact penalty function formulation

We first show that, unlike the rED problem, there might
be no network-wide agreement on the gradients of the local
objective functions at the solutions of the ED problem.

Lemma 5.1: (Solution form for the ED problem): For
any solution P opt of the ED problem (7), there exist
ν ∈ R, λm, λM ∈ Rn≥0 with ‖λm‖∞, ‖λM‖∞, 2|ν| ≤
2 maxP∈FED

‖∇f(P )‖∞ such that

∇fi(P opt
i ) =


−ν + λmi if P opt

i = Pmi ,

−ν if Pmi < P opt
i < PMi ,

−ν − λMi if P opt
i = PMi .

Proof: The Lagrangian for the ED problem (7) is
L(P, λm, λM , ν) = f(P ) + (λm)>(Pm − P ) + (λM )>(P −

PM )+ν(1>nP −Pl). A point P opt is a solution of (7) iff there
exist ν ∈ R, λm, λM ∈ Rn≥0 satisfying the KKT conditions

Pm − P opt ≤ 0n, (λm)>(Pm − P opt) = 0, (17a)

P opt − PM ≤ 0n, (λM )>(P opt − PM ) = 0, (17b)

1>nP
opt = Pl, ∇f(P opt)− λm + λM = −ν1n. (17c)

Now, consider the partition of {1, . . . , n} associated to P opt,

I0(P opt) = {i ∈ {1, . . . , n} | Pmi < P opt
i < PMi },

I+(P opt) = {i ∈ {1, . . . , n} | P opt
i = PMi },

I−(P opt) = {i ∈ {1, . . . , n} | P opt
i = Pmi }.

If i ∈ I0(P opt), then (17a)-(17b) imply λmi = λMi = 0, and
hence ∇fi(P opt

i ) = −ν by (17c). If i ∈ I+(P opt), then (17a)-
(17b) imply λmi = 0, λMi > 0, and hence ∇fi(P opt

i ) =
−ν − λMi by (17c). Finally, if i ∈ I−(P opt), then (17a)-(17b)
imply λmi > 0, λMi = 0, and hence ∇fi(P opt

i ) = −ν + λmi
by (17c). To establish the bounds on the multipliers, we
distinguish between whether (a) I0(P opt) is non-empty or (b)
I0(P opt) is empty. In case (a), from (17), ν = −∇fi(P opt

i ) for
all i ∈ I0(P opt), and therefore |ν| ≤ ‖∇f(P opt)‖∞. In case
(b), from (17), we get ν ≤ −∇fj(P opt

j ) for all j ∈ I+(P opt).
Similarly, we obtain ν ≥ −∇fk(P opt

k ) for all k ∈ I−(P opt).
Therefore, −∇fk(P opt

k ) ≤ ν ≤ −∇fj(P opt
j ) for all j ∈

I+(P opt) and k ∈ I−(P opt). Since I0(P opt) is empty and by
assumption Pm, PM 6∈ FED, both I−(P opt) and I+(P opt) are
non-empty. Therefore, we obtain |ν| ≤ ‖∇f(P opt)‖∞. This in-
equality, together with (17c) and the fact that either λmi or λMi
is zero for each i ∈ {1, . . . , n}, implies ‖λm‖∞, ‖λM‖∞ ≤
2‖∇f(P opt)‖∞ ≤ 2 maxP∈FED

‖∇f(P )‖∞.
Our next step is to provide an alternative formulation of

the ED problem that is similar in structure to that of the rED
problem. We do this by using an exact penalty function method
to remove the box constraints. Specifically, let

f ε(P ) =

n∑
i=1

fi(Pi) +
1

ε

( n∑
i=1

([Pi − PMi ]+ + [Pmi − Pi]+)
)
.

Note that this corresponds to a scenario where generator i ∈
{1, . . . , n} has local cost given by

f εi (Pi) = fi(Pi) +
1

ε

(
[Pi − PMi ]+ + [Pmi − Pi]+

)
. (18)

This function is convex, locally Lipschitz, and continuously
differentiable in R except at Pi = Pmi and Pi = PMi . Its
generalized gradient ∂f εi : R ⇒ R is given by

∂f εi (Pi) =



{∇fi(Pi)− 1
ε } if Pi < Pmi ,

[∇fi(Pi)− 1
ε ,∇fi(Pi)] if Pi = Pmi ,

{∇fi(Pi)} if Pmi < Pi < PMi ,

[∇fi(Pi),∇fi(Pi) + 1
ε ] if Pi = PMi ,

{∇fi(Pi) + 1
ε } if Pi > PMi .

As a result, the total cost f ε is convex, locally Lipschitz, and
regular. Its generalized gradient at P ∈ Rn is ∂f ε(P ) =
∂f ε1(P1)× · · · × ∂f εn(Pn). Consider the optimization

minimize f ε(P ), (19a)

subject to 1>nP = Pl. (19b)
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We next establish the equivalence of (19) with the ED problem.
Proposition 5.2: (Equivalence between (7) and (19)): The

solutions of (7) and (19) coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED
‖∇f(P )‖∞

. (20)

Proof: Observe the parallelism between (7) and (3) on
one side and (19) and (4) on the other. Recall that, for
the ED problem (7), the set of solutions is nonempty and
compact, and the refined Slater condition is satisfied. Thus,
from Proposition 2.2, the solutions of (19) and (7) coincide
if 1

ε > ‖λ
m‖∞, ‖λM‖∞ for some Lagrange multipliers λm

and λM . From Lemma 5.1, there exists λm and λM satisfying
‖λm‖∞, ‖λM‖∞ ≤ 2 maxP∈FED ‖∇f(P )‖∞. Thus, if ε <

1
2maxP∈FED

‖∇f(P )‖∞ , then 1
ε > 2 maxP∈FED ‖∇f(P )‖∞ ≥

‖λm‖∞, ‖λM‖∞ and the claim follows.

B. Laplacian-nonsmooth-gradient dynamics

Here, we propose a distributed algorithm to solve the ED
problem. Our design builds on the alternative formulation (19).
Consider the Laplacian-nonsmooth-gradient dynamics

Ṗ ∈ −L∂f ε(P ). (21)

The set-valued map −L∂f ε is non-empty, takes compact,
convex values, and is locally bounded and upper semicon-
tinuous. Therefore, existence of solutions is guaranteed (cf.
Section II-C). Moreover, this dynamics is distributed in the
sense that, to implement it, each generator only requires
information from its out-neighbors. When convenient, we
denote the dynamics (21) by XL-n-g : Rn ⇒ Rn. The next
result establishes the strongly positively invariance of FED.

Lemma 5.3: (Invariance of the feasibility set): The fea-
sibility set FED is strongly positively invariant under the
Laplacian-nonsmooth-gradient dynamics (21) provided that
ε ∈ R>0 satisfies (with dout,max = maxi∈V dout(i))

ε <
min(i,j)∈E aij

2dout,max maxP∈FED
‖∇f(P )‖∞

. (22)

Proof: We begin by noting that, if ε satisfies (22), then
there exists α > 0 such that

ε <
min(i,j)∈E aij

2dout,max maxP∈FαED
‖∇f(P )‖∞

, (23)

where FαED = {P ∈ Rn | 1>nP = Pl and Pm − α1n ≤
P ≤ PM + α1n}. Now, we reason by contradiction. As-
sume that FED is not strongly positively invariant under the
Laplacian-nonsmooth-gradient dynamics XL-n-g. This implies
that there exists a boundary point P̄ ∈ bd(FED), a real
number δ > 0, and a trajectory t 7→ P (t) obeying (21)
such that P (0) = P̄ and P (t) 6∈ FED for all t ∈ (0, δ).
Without loss of generality, assume that P (t) ∈ FαED for all
t ∈ (0, δ). Now, using the same reasoning as in the proof of
Theorem 4.1, it is not difficult to see that the load condition is
preserved along XL-n-g. Therefore, trajectories can only leave
FED by violating the box constraints. Thus, without loss of
generality, there must exist a unit i such that Pi(0) = PMi and
Pi(t) > PMi for all t ∈ (0, δ). This means that there must exist
t→ ζ(t) ∈ −L∂f ε(P (t)) and δ1 ∈ (0, δ) such that ζi(t) ≥ 0

a.e. in (0, δ1). Next we show that this can only happen if
Pj(t) ≥ PMj for all j ∈ Nout(i). Since Pi(t) > PMi for
t ∈ (0, δ1), then ∂fi(Pi(t)) = {∇fi(Pi(t)) + 1

ε }. Therefore,

ζi(t) = −
∑

j∈Nout(i)

aij

(
∇fi(Pi(t)) +

1

ε
− ηj(t)

)
,

where ηj(t) ∈ ∂fj(Pj(t)). Note that if Pj(t) ≥ PMj , then
ηj(t) ≤ ∇fj(Pj(t))+ 1

ε , whereas if Pj(t) < PMj , then ηj(t) ≤
∇fj(Pj(t)). For convenience, denote this latter set of units by
N<

out(i). Now, we can upper bound ζi(t) by

ζi(t) ≤ −
∑

j∈Nout(i)

aij

(
∇fi(Pi(t))−∇fj(Pj(t))

)
− 1

ε

∑
j∈N<out(i)

aij

≤ 2 max
P∈FαED

‖∇f(P )‖∞dout,max −
1

ε

∑
j∈N<out(i)

aij < 0,

where the last inequality follows from (23). Hence, ζi(t) ≥ 0
only if Pj(t) ≥ PMj for all j ∈ Nout(i) and so the latter
is true on (0, δ1) by continuity of the trajectories. Extending
the argument to the neighbors of each j ∈ Nout(i), we obtain
an interval (0, δ2) ⊂ (0, δ1) over which all one- and two-hop
neighbors of i have generation levels greater than or equal to
their respective maximum limits. Recursively, and since the
graph is strongly connected and the number of units finite, we
get an interval (0, δ̄) over which P (t) ≥ PM , which implies
P (0) = PM , contradicting the fact that PM 6∈ FED.

We next build on this result to show that the dynamics (21)
asymptotically converges to the set of solutions of (7).

Theorem 5.4: (Convergence of the Laplacian-nonsmooth-
gradient dynamics to the solutions of ED problem): For ε satis-
fying (22), all trajectories of the dynamics (21) starting from
FED converge to the set of solutions of the ED problem (7).

Proof: Our proof strategy relies on the LaSalle Invariance
principle for differential inclusions (cf. Theorem 2.1). Recall
that the function f ε is locally Lipschitz and regular. Further-
more, the set-valued map P 7→ XL-n-g(P ) = −L∂f ε(P ) is
locally bounded, upper semicontinuous, and takes non-empty,
compact, and convex values. The set-valued Lie derivative
LXL-n-gf

ε : Rn ⇒ R of f ε along (21) is

LXL-n-gf
ε(P ) = {−ζ>Lζ | ζ ∈ ∂f ε(P )}. (24)

Since G is weight-balanced −ζ>Lζ = − 1
2ζ
>(L + L>)ζ ≤ 0,

which implies maxLXL-n-gf
ε(P ) ≤ 0 for all P ∈ Rn. From

Lemma 5.3, the compact set FED is strongly positively invari-
ant under XL-n-g. Therefore, the application of Theorem 2.1
yields that all evolutions of (21) starting in FED converge to
the largest weakly invariant set M contained in FED ∩ {P ∈
Rn|0 ∈ LXL-n-gf

ε(P )}. From (24) and the fact that G is weight-
balanced, we deduce that 0 ∈ LXL-n-gf

ε(P ) if and only if there
exists µ ∈ R such that µ1n ∈ ∂f ε(P ). Using Lemma 2.3,
this is equivalent to P ∈ FED being a solution of (19). This
implies that M corresponds to the set of solutions of (19).
Finally, since (22) implies (20), Proposition 5.2 guarantees
that the solutions of (7) and (19) coincide.

Since, FED is strongly positively invariant under XL-n-g, f ε

is nonincreasing along XL-n-g (cf. proof of Theorem 5.4), and
f ε and f coincide on FED, the Laplacian-nonsmooth-gradient
dynamics is an anytime algorithm for the ED problem (7).
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Because these properties do not depend on the specific graph,
the convergence properties of (21) are the same if the commu-
nication topology is time-varying as long as it remains weight-
balanced and strongly connected. Finally, the initialization
procedures of Remark 4.2 do not work for (21) because of
the box constraints. The iterative algorithms in [10] provide
initialization procedures that only converge asymptotically to
a feasible point in FED. We address this issue next.

VI. ALGORITHM INITIALIZATION AND ROBUSTNESS
AGAINST GENERATOR ADDITION AND DELETION

The distributed dynamics proposed in Sections IV and V
rely on a proper initialization of the power levels of the units to
satisfy the load condition, which remains constant throughout
the execution. However, the latter is no longer the case if some
generators leave the network or new generators join it. For the
rED problem, this issue can easily be resolved by prescribing
that the power of each unit leaving the network is compensated
with a corresponding increase in the power of one of its
neighbors, and that new generators join the network with zero
power. However, for the ED problem, the presence of the box
constraints makes the design of a distributed solution more
challenging. This is the problem we address here. Interestingly,
our strategy, termed DETERMINE FEASIBLE ALLOCATION, can
also be used to initialize the dynamics (21).

We assume here that the communication topology among
the generators is undirected and connected at all times. A
unit deletion event corresponds to removing the corresponding
vertex, and all edges associated with it, in the communication
graph. A unit addition event corresponds to adding a vertex,
and some additional edges associated with it, to the communi-
cation graph. At any given time, the communication topology
is represented by Gevents = (Vevents, Eevents).

A. Algorithm rationale and informal description

We begin by providing an informal description of the
DETERMINE FEASIBLE ALLOCATION strategy which allows
individual generators to collectively adjust their powers in
finite time to meet the total load while satisfying the box con-
straints. The strategy has three components. The first maintains
a spanning tree and ensures that information about added or
deleted generators is incorporated. The second computes the
aggregated capacity of the network to accommodate power
loads. The third determines a feasible power allocation for the
generators. We next describe these components in more detail.

(i) Phase 1 (tree maintenance): This phase maintains a
spanning rooted tree Troot whose vertices are, at any instant
of time, the generators present in the network. When a unit
enters the network, it sets its power to zero (all units fall
into this case when this procedure is run to initialize (21))
and is assigned a token of the same value. A unit that leaves
the network transfers a token with its power level to one of
its neighbors. Every unit i, except the root, resets its current
generation to Pi +P tkn

i , where P tkn
i is the summation of the

tokens of i (with default value zero if no token is received).
The root adds Pl to its token if the algorithm is executed
for the initialization of (21). With these levels, the network
allocation might be unfeasible and sums Pl − P tkn

root .

(ii) Phase 2 (capacity computation): Each unit i aggre-
gates the difference between the current generation and the
lower and upper limits, respectively, for all the units in the
subtree Ti of Troot that has i as its root. Mathematically,
Cm
i =

∑
j∈Ti(Pj−P

m
j ) and CM

i =
∑
j∈Ti(P

M
j −Pj). These

values represent the collective capacity of Ti to decrease or
increase, respectively, the total power of the network while
satisfying the box constraints. If −Cm

root ≤ P tkn
root ≤ CM

root does
not hold, then the root declares that the load cannot be met.

(iii) Phase 3 (feasible power allocation): The root initiates
the distribution of P tkn

root , starting with itself and going down
the tree until the leaves. Each unit gets a power value from its
parent, which it distributes among itself (respecting its box
constraints) and its children, making sure that the ulterior
assignments down the tree are feasible.

We next provide a formal description and analysis of phases
2 and 3. Regarding the tree maintenance in phase 1, we do
not enter into details given the ample number of solutions
to achieve this task available in the literature on parallel
algorithms, see e.g. [18], [19]. We only mention that the root
can be arbitrarily selected, the tree can be built via any tree
construction algorithm, and addition and deletion events can
be handled via tree repairing algorithms [20], [21], [22].

B. The GET CAPACITY strategy

Here, we describe the GET CAPACITY strategy that imple-
ments the capacity computation in phase 2. The procedure
assumes that each unit i knows the identity of its parent
parenti and children childreni in the tree Troot, and is therefore
distributed. An informal description is as follows.

[Informal description]: The leaves of the tree start
by sending their capacities Pi − Pmi and PMi − Pi
to their parents. Each unit, i, upon receiving the
capacities of all its children, adds them along with
its own to get Cm

i and CM
i , and sends the value to

its parent. The routine ends upon reaching the root.

Algorithm 1: GET CAPACITY

Executed by: generators i ∈ Vevents
Data : Pi, Pmi , P

M
i , parenti, childreni

Initialize : ~Cm
i = ~CM

i := −∞1|childreni|
if childreni is empty then

Cm
i = Pi−Pmi , CM

i := PMi −Pi
else

Cm
i = CM

i := −∞
1 if childreni is empty then send (Cm

i , C
M
i ) to parenti

2 while (Cm
i , C

M
i ) = (−∞,−∞) do

3 if message (Cm
j , C

M
j ) received from child j then

4 update ~Cm
i (j) = Cm

j and ~CM
i (j) = CM

j

5 if (~Cm
i (k), ~CM

i (k)) 6= (−∞,−∞) for all
k ∈ childreni then

6 set (Cm
i , C

M
i ) =

(Pi−Pmi + Sum(~Cm
i ), PMi −Pi+ Sum(~CM

i ))
7 if i is not root then
8 send (Cm

i , C
M
i ) to parenti
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Algorithm 1 gives a formal description of GET CAPACITY.
The following result summarizes its properties. The proof is
straightforward and we omit it for brevity.

Lemma 6.1: (Correctness of GET CAPACITY): Starting from
the spanning tree Troot over Gevents and P ∈ R|Vevents|, the
algorithm GET CAPACITY terminates in finite time, with each
unit i ∈ Vevents having the following information:

(i) the capacities Cm
i =

∑
k∈Ti Pk − Pmk and CM

i =∑
k∈Ti P

M
k − Pk of the subtree Ti, and

(ii) the capacities Cm
j , C

M
j of the subtrees {Tj}j∈childreni

stored in ~Cm
i ,

~CM
i ∈ R|childreni|.

Note that the capacities Cm
i and CM

i are non-negative if all
units in the subtree Ti satisfy the box constraints. However,
this might not be the case due to the resetting of generation
levels in phase 1 to account for unit addition and deletion. We
next establish some important properties of these capacities.

Lemma 6.2: (Bounds on feasible power allocations to sub-
tree): Given P ∈ R|Vevents|, the following holds

(i) Cm +CM ≥ 0 if PM ≥ Pm (and the same result holds
with strict inequalities)

(ii) for each i ∈ |Vevents|, the additional power P gv
i ∈ R

can be further allocated to the units in Ti respecting
their box constraints if and only if −Cm

i ≤ P
gv
i ≤ CM

i .
Proof: Fact (i) follows from noting that

Cm
i =

∑
k∈Ti

(Pk − Pmk ) =
∑
k∈Ti

(PMk − Pmk )− CM
i .

Regarding fact (ii), P gv
i can be allocated among the units in

Ti while satisfying the box constraints for each of them iff∑
k∈Ti

Pmk ≤
∑
k∈Ti

Pk + P gv
i ≤

∑
k∈Ti

PMk ,

that is, adding P gv
i to the current generation of Ti gives a

value that falls between the collective lower and upper limits
of Ti. Rearranging the terms yields the desired result.

C. Algorithm: FEASIBLY ALLOCATE

Here, we describe the FEASIBLY ALLOCATE strategy that
implements the feasible allocation computation of phase 3. Be-
fore this strategy is executed, the generation levels computed in
phase 1 are unfeasible because their sum is Pl−P tkn

root and does
not satisfy the load condition. Additionally, because of unit
addition and deletion, some might not be satisfying their box
constraints. The FEASIBLY ALLOCATE strategy addresses both
issues. The procedure assumes that each unit i knows parenti,
childreni, and the capacities Cm

i , CM
i , ~Cm

i , and ~CM
i obtained

in GET CAPACITY, and is therefore distributed. Informally,
[Informal description]: The root initiates the algo-
rithm by setting P gv

root = P tkn
root . Each unit i, upon

initializing P gv
i , computes its change in power gen-

eration (P chg
i ∈ R) and the power to be allocated

among its children (~P chg
i ∈ R|childreni|). The unit sets

its generation to Pi + P chg
i and sends ~P chg

i (j) to
child j ∈ childreni. The strategy ends at the leaves.

Algorithm 2 gives a formal description of FEASIBLY ALLO-
CATE. The next result establishes its correctness.

Algorithm 2: FEASIBLY ALLOCATE

Executed by: generators i ∈ Vevents
Data : Pi, Pmi , PMi , parenti, childreni, ~Cm

i , ~CM
i

Initialize : P chg
i := −∞, ~P chg

i := −∞1|childreni|,
myP dm

i := Pi−Pmi , myP dM
i := PMi −Pi

1 while P chg
i = −∞ do

2 if i root or message ~P chg
parenti

(i) from parenti then
3 if i root then P gv

i =P tkn
root else P gv

i = ~P chg
parenti

(i)

4 set P chg
i = argminx∈[−myPdm

i ,myPdM
i ] |x|

5 for j ∈ childreni do
6 set ~P chg

i (j) = argminx∈[−~Cm
i (j), ~CM

i (j)] |x|
7 set P gv

i = P gv
i − P

chg
i − Sum(~P chg

i )
8 if P gv

i ≥ 0 then
9 set X = min{P gv

i ,myP dM
i − P chg

i }
10 set (P chg

i , P gv
i ) = (P chg

i +X,P gv
i −X)

11 for j ∈ childreni do
12 set X=min{P gv

i , ~CM
i (j)− ~P chg

i (j)}
13 set (~P chg

i (j), P gv
i )=(~P chg

i (j)+X,P gv
i −X)

14 else
15 set X = max{P gv

i ,−myP dm
i − P chg

i }
16 set (P chg

i , P gv
i ) = (P chg

i +X,P gv
i −X)

17 for j ∈ childreni do
18 set X=max{P gv

i ,−~Cm
i (j)− ~P chg

i (j)}
19 set (~P chg

i (j), P gv
i )=(~P chg

i (j)+X,P gv
i −X)

20 set Pi = Pi + P chg
i

21 send ~P chg
i (j) to each j ∈ childreni

Proposition 6.3: (Correctness of FEASIBLY ALLOCATE):
Let P tkn

root ∈ R such that −Cm
root ≤ P tkn

root ≤ CM
root. Then, the

FEASIBLY ALLOCATE strategy terminates in finite time and
the resulting power allocation P+ ∈ R|Vevents| satisfies the
box constraints, Pmi ≤ P

+
i ≤ PMi for all i ∈ Vevents, and the

load condition, Pl =
∑
i∈Vevents P

+
i .

Proof: Note that, by Lemma 6.2(ii), −Cm
root ≤ P tkn

root ≤
CM

root implies that P tkn
root can be allocated to the generators in T .

In turn, by the same result, for an arbitrary unit i, −Cm
i ≤

P gv
i ≤ CM

i is equivalent to the existence of a decomposition
P chg
i ∈ R and ~P chg

i ∈ R|childreni| such that

P chg
i + Sum(~P chg

i ) = P gv
i , (25a)

−myP dm
i ≤ P chg

i ≤ myP dM
i , (25b)

−~Cm
i ≤ ~P chg

i ≤ ~CM
i , (25c)

where we use the short-hand notation myP dm
i = Pi − Pmi

and myP dM
i = PMi − Pi. Equation (25b) corresponds to

the box constraints being satisfied for unit i if assigned the
additional power P chg

i to generate. Equation (25c) ensures that
a feasible power allocation exists for the subtree of each of its
children. We break down the computation of P chg

i and ~P chg
i

in two steps. First, we find the portion of power that ensures
feasibility for i and its children. This is done via

ai = argminx∈[−myPdm
i ,myPdM

i ] |x| ,
~bi(j) = argminx∈[−~Cm

i (j), ~CM
i (j)] |x| , for j ∈ childreni.
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Observe that P chg
i = ai and ~P chg

i = ~bi satisfy (25b) and (25c)
but not necessarily (25a). The second step takes care of this
shortcoming by defining Xi ∈ R and ~Yi ∈ R|childreni| as

P chg
i = ai +Xi, ~P chg

i = ~bi + ~Yi.

In these new variables, (25) reads as

Xi + Sum(~Yi) = P gv
i − ai − Sum(~bi), (26a)

−myP dm
i − ai ≤ Xi ≤ myP dM

i − ai, (26b)

−~Cm
i −~bi ≤ ~Yi ≤ ~CM

i −~bi. (26c)

Adding the lower limits of (26b) and (26c) yields −Cm
i −ai−

Sum(~bi), where we use Cm
i = myP dm

i +Sum(~Cm
i ). Similarly,

the upper limits sum CM
i − ai − Sum(~bi). Therefore, with

−Cm
i ≤ P

gv
i ≤ CM

i , (26) is solvable by unit i with knowledge
of P gv

i , myP dm
i , myP dM

i , ~Cm
i , and ~CM

i . Note that the lower
limits of (26b) and (26c) are nonpositive and the upper ones
are nonnegative. Therefore, if P gv+

i ≥ 0, FEASIBLY ALLO-
CATE considers first unit i and then its children sequentially
and assigns the maximum power each can take (bounded by
the upper limit of (26b) and (26c)) as Xi and ~Yi until there is
no more to allocate. Similarly if P gv+

i < 0 negative values are
assigned (lower bounded by lower limits of (26b) and (26c)).
For unit i, this corresponds to steps 9-10 (if P gv+

i ≥ 0)
or 15-16 (if P gv+

i < 0) of Algorithm 2. For the children,
this corresponds to steps 11-13 (if P gv+

i ≥ 0) or steps 17-19
(if P gv+

i < 0) of Algorithm 2. Consequently, the resulting
power allocation P+ = P + P chg satisfies Pm ≤ P+ ≤ PM

because (25b) holds for each unit i ∈ Vevents. Additionally,∑
i∈Vevents

P chg
i = P chg

root +
∑

i∈Vevents\root

P chg
i

= P chg
root +

∑
i∈childrenroot

~P chg
root = P gv

root,

where we use that (25a) holds for each i ∈ Vevents in the
second and third inequalities. Since P gv

root = P tkn
root and∑

i∈Vevents Pi = Pl − P tkn
root , we get

∑
i∈Vevents P

+
i = Pl.

VII. SIMULATIONS

In this section, we illustrate the application of the Laplacian-
nonsmooth-gradient dynamics to solve the ED problem (7) and
the performance of the DETERMINE FEASIBLE ALLOCATION
strategy to handle unit addition and deletion.

1) IEEE 118 bus: Consider the ED problem for the
IEEE 118 bus test case [23]. This test case has 54 gen-
erators, with quadratic cost functions for each unit i,
fi(Pi) = ai + biPi + ciP

2
i , whose coefficients belong

to the ranges ai ∈ [6.78, 74.33], bi ∈ [8.3391, 37.6968],
and ci ∈ [0.0024, 0.0697]. The total load is Pl =
4200 and the capacity bounds vary as Pmi ∈ [5, 150]
and PMi ∈ [150, 400]. The communication topology
is a directed cycle with the additional bi-directional
edges {1, 11}, {11, 21}, {21, 31}, {31, 41}, {41, 51}, with all
weights equal to 1. Fig. 1 depicts the execution of (21). Note
that as the network converges to the optimizer while satisfying
the constraints, the total cost is monotonically decreasing.

2) Unit addition and deletion: Consider six power gen-
erators initially communicating over the graph in Fig. 2(a).
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400

(a) Power allocation

0 100 200 300 400
6

6.2

6.4

6.6

6.8

7 x 104

(b) Total cost

Fig. 1. Evolution of the power allocation (a) and the network cost (b) under
the Laplacian-nonsmooth-gradient dynamics in the IEEE 118 bus test case.

Unit ai bi ci Pm
i PM

i

1 1 4 5 0.9 1.5
2 1 2 3 2 3.6
3 4 4 1 1 2.4
4 2 3 2 2.5 3.5
5 1 0 5 1.1 1.6
6 1 1 1 1 2.7
7 2 2 1 1.5 3

TABLE I
COEFFICIENTS OF THE QUADRATIC COST FUNCTION

fi(Pi) = ai + biPi + ciP
2
i AND LOWER Pm

i AND UPPER PM
i

GENERATION LIMITS FOR EACH UNIT i.

The units implement (21) starting from the allocation P0 =
(1.15, 2.75, 1.5, 3.35, 1.25, 2) that meets the power load Pl =
12 and quickly achieve a close neighborhood of the opti-
mizer (0.94, 2, 2.4, 2.61, 1.35, 2.7). After 0.75 seconds, unit
7 joins the network and unit 3 leaves it, with the resulting
communication topology depicted in Fig. 2(b). The network
then employs the DETERMINE FEASIBLE ALLOCATION strat-
egy, whose execution is illustrated in Fig. 2(b)-2(d), to han-
dle these events and determine the new feasible allocation
(0.9, 2.05, 3.5, 1.35, 2.7, 1.5) from which (21) is re-initialized.
Table I details the cost function and the box constraints for
each generator. Fig. 3 shows the evolution of the power
allocations and the network cost. The network asymptotically

0 0.5 1 1.5
0.5
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1.5

2

2.5

3

3.5

(a) Power allocation

0 0.5 1 1.5
80

85

90

95

100

105

(b) Total cost

Fig. 3. Time evolutions of the power allocation and the network cost
under the Laplacian-nonsmooth-gradient dynamics. The network of 6 gen-
erators with topology depicted in Fig. 2(a) converges towards the optimizer
(0.94, 2, 2.4, 2.61, 1.35, 2.7) when, at t = 0.75s, unit 3 (red line) leaves and
unit 7 (brown line) gets added. After executing the DETERMINE FEASIBLE
ALLOCATION strategy to find a feasible power allocation, the network with
topology depicted in Fig. 2(b) evolves along the Laplacian-nonsmooth-
gradient dynamics to arrive at the optimizer (0.9, 2, 2.5, 1.1, 2.7, 2.8).

converges to the optimizer (0.9, 2, 2.5, 1.1, 2.7, 2.8). The dis-
continuity in the allocation observed at t = 0.75s corresponds
to the DETERMINE FEASIBLE ALLOCATION strategy taking
care of the addition of unit 7 and deletion of unit 3. Note
also the corresponding jump in the network cost. In this case,
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(0.94), P tkn
1 = 0 (2)

(5.01)(1.35)

(2.7) (0)

(b)

1 2

45

6 7

(3.0, 3.9), P gv
1 = 0 (2.51, 0.09)

(2.51,−1.51)(0.25, 0.25)

(1.95, 0.25)

(−1.5, 3.0)

(c)

1 2

45

6 7

(−0.04) (0.05)

(−1.51)(0)

(0) (1.5)

(d)

Fig. 2. (a) Initial communication topology with all edge weights equal to 1. (b) Communication topology after the addition of unit 7 and deletion of unit
3. Generation levels at the end of Phase 1 of the DETERMINE FEASIBLE ALLOCATION strategy are in parentheses. The tree is depicted via edges with dots.
When leaving, unit 3 transfers its power as a token to unit 4 and hence, after token addition, 4’s generation becomes 5.01 (higher than its maximum capacity).
Unit 7 enters with zero power. Thus, all units except 4 have zero token value. Unit 1, being the root of the tree, sets P tkn

1 = 0. (c) State after the execution
of GET CAPACITY. For each unit i, (Cm

i , CM
i ) are indicated in parentheses. Unit 1 initiates FEASIBLY ALLOCATE to distribute P gv

1 = 0. (d) State at the
end of FEASIBLY ALLOCATE, with values of the power distributed to the units in parentheses. These values sum up to 0, and when added to their respective
generation levels in (b) result into the allocation P+

0 = (0.9, 2.05, 3.5, 1.35, 2.7, 1.5) that satisfies the load condition and the box constraints.

the jump is to a higher value, although in general it could
go either way depending on the network topology, the cost
functions, and the box constraints of the group of generators
after the events. The algorithm eventually achieves a lower
network cost than the one obtained before the events because
the added generator 7 incurs a lower cost when producing the
same amount of power as the deleted generator 3.

VIII. CONCLUSIONS

We have proposed a class of anytime, distributed dynamics
to solve the economic dispatch problem over a group of
generators with convex cost functions. When generators com-
municate over a weight-balanced, strongly connected digraph,
the Laplacian-gradient and the Laplacian-nonsmoooth-gradient
dynamics provably converge to the solutions of the economic
dispatch problem without and with generator constraints, re-
spectively. We have also designed the DETERMINE FEASIBLE
ALLOCATION strategy to allow a group of generators with box
constraints communicating over an undirected graph to find
a feasible power allocation in finite time. This method can
be used to initialize the Laplacian dynamics and to handle
scenarios where the load condition might be violated by the
addition and/or deletion of generators. Future work will focus
on the characterization of the rate of convergence of the
Laplacian-nonsmooth-gradient dynamics, the extension of the
algorithms to make them oblivious to initialization errors,
the consideration of transmission losses and nonsmooth cost
functions, and the study of more general generator dynamics
and communication topologies.
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