
Distributed line search via dynamic convex combinations

Jorge Cortés Sonia Martı́nez

Abstract— This paper considers multi-agent systems seeking
to optimize a convex aggregate function. We assume that
the gradient of this function is distributed, meaning that
each agent can compute its corresponding partial derivative
with state information about its neighbors and itself only.
In such scenarios, the discrete-time implementation of the
gradient descent method poses the fundamental challenge of
determining appropriate agent stepsizes that guarantee the
monotonic evolution of the objective function. We provide a
distributed algorithmic solution to this problem based on the
aggregation of agent stepsizes via adaptive convex combinations.
Simulations illustrate our results.

I. INTRODUCTION

A popular approach to the coordination of multi-agent
systems consists of designing a distributed algorithm that
solves an optimization problem encoding the coordination
task. This top-bottom method has been proven to be very
useful in a variety of problems involving multi-vehicle coor-
dination, network utility maximization, energy dispatch, and
information processing by sensor networks. Due to a lack
of centralized authority, the proposed algorithms are to be
executed by employing local information only, which allows
for greater scalability and robustness to agent failure. In this
paper, we consider a particular class of convex optimization
problems for which gradient-descent-type algorithms are
naturally distributed. In other words, each agent can compute
the partial derivative of the function to be optimized with
information of its neighbors and itself. Despite their natural
decentralization, the implementation of (steepest) gradient-
descent-type algorithms requires global information in order
for agents to find a common stepsize. This motivates the
question addressed here of how agents can coordinate their
stepsize computations.

Literature review. This manuscript contributes to the recent
body of research on distributed optimization by a network
of agents subject to intermittent interactions. In these works,
the objective function can be expressed as a sum of convex
functions and be subject to different inequality and equality
constraints; see for example [8], [11], [15]. Building on
consensus-based coordination rules [2], [10], [9], [6], the
aforementioned efforts lead to discrete-time schemes em-
ploying function subgradients. Continuous-time approaches
which are robust to errors due to communications and
initialization include [12] on undirected networks and [5]
on directed networks. With the goal of designing faster

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{cortes,soniamd}@ucsd.edu

algorithms, [13], [14] focus on Newton schemes. Except
for [14], which employs a decentralized backtracking line-
search rule to implement the Armijo rule, the aforementioned
approaches assume that agents have access to a common
stepsize to implement the distributed algorithm. Another
effort which focuses on the solution to linear programs
includes [3] and references therein. However, these papers
make use of alternative schemes to consensus such as
leader election. Our work connects with the literature on
algorithms for gradient-descent methods [1]. The classical
steepest-descent method [4] for unconstrained minimization
converges linearly and can show poor performance. How-
ever, the understanding of these algorithms is central for
the theory and design of more sophisticated optimization
algorithms [7]. It is within this simple context that we study
how a network of agents can determine appropriate stepsizes
in a distributed way. Our adaptive algorithm belongs to the
class of distributed linear iterations which define agreement
protocols [2], contributing further to this area of work.

Statement of contributions. We introduce a class of algo-
rithms that allows a group of agents to descend a convex ob-
jective function by following an aggregated descent direction.
Each agent employs a stepsize that results from a distributed
stepsize computation subroutine. This strategy takes as inputs
the stepsizes computed by each agent via a line-search
procedure. By means of a proper initialization, and after
only a finite number of rounds, the strategy outputs a vector
of stepsizes that agents can readily implement to decrease
the function. If let run indefinitely, the strategy converges to
a convex combination of stepsizes that guarantees that the
function decreases via the steepest descent direction or other
alternative aggregated directions of descent. Most proofs are
omitted for space reasons and will appear elsewhere.

Organization. Section II introduces basic notation, notions of
graph theory, and line search. Section III states formally the
problem of interest. Section IV introduces several stepsize
aggregation models for distributed line search based on
convex combinations and Section V presents a provable
distributed linear iteration algorithm to compute them. This
algorithm is analyzed both in continuous and discrete time,
and its rate of convergence is characterized. Section VI
presents simulations of the resulting algorithms. We gather
our conclusions and ideas for future work in Section VII.

II. PRELIMINARIES

This section presents basic notions from graph theory, opti-
mization via gradient descent, and line search.

A. Notation

We employ Rn>0 (resp. Rn≥0) to denote the positive or-
thant (resp. the nonnegative orthant) of Rn. We use the
notation 1n ∈ Rn>0 (resp. 1n−1 ∈ Rn−1>0) for the vector
(1, . . . , 1)T (resp. 1n−1 = (1, . . . , 1)T). We denote the
eigenvalues of a square matrix M ∈ Rn×n as λi(M),
i ∈ {1, . . . , n}. We assume that the eigenvalues are indexed
so that Re(λ1(M)) ≤ Re(λ2(M)) ≤ · · · ≤ Re(λn(M)),
where Re denotes the real part of a complex number. We
denote by In the identity matrix of dimension n × n. The
spectral radius of M is ρ(M) = maxi∈{1,...,n} |λi(M)|. The
essential spectral radius of a matrix M with ρ(M) = 1
is ρess(M) = maxi∈{1,...,n}{|λi(M)| | λi(M) 6= 1}. The
notation M ≥ 0 means that M is positive semidefinite.
In particular, M1 ≥ M2 if and only if M1 −M2 ≥ 0. A
matrix M ∈ Rn×n is Metzler if all its off-diagonal elements
are nonnegative. A matrix M ∈ Rn×n≥0 is irreducible if, for
any nontrivial partition J ∪ K of the index set {1, . . . , n},
there exist j ∈ J and k ∈ K such that mjk 6= 0. We let
span{w1, . . . , wl} denote the vector space generated by the
vectors w1, . . . , wl ∈ Rn. Given g : R→ R and h : R→ R,
we denote g(r) ∈ O(h(r)) if and only if there is C > 0 and
r0 such that |g(r)| ≤ C|h(r)|, for all r ≥ r0.

B. Graph-theoretic notions

We present some basic notions from algebraic graph theory
following the exposition in [2]. An undirected graph, or
simply graph, is a pair G = (V,E), where V is a finite
set called the vertex set and E is the edge set consisting
of unordered pairs of vertices. For i, j ∈ V and i 6= j,
the set {i, j} denotes an undirected edge, and i and j are
neighbors. We let NG(i) denote the set of neighbors of ui
in G. The graph G is connected if for any pair of nodes i, j
there exists a sequence of edges {i, i1}, {i1, i2}, . . . , {ik, j}
connecting i with j. The adjacency matrix of a graph G is
a non-negative symmetric matrix A = (aij) ∈ Rn×n≥0 such
that aij 6= 0 if and only if {i, j} is an edge of the graph.
Here, we consider aij = 1, when {i, j} ∈ E. Consider the
diagonal matrix D = diag(A1n). The Laplacian matrix of G
is defined as L = D−A, which is a symmetric and positive
semi-definite matrix. Note that L has an eigenvalue at 0 and
1n is the corresponding eigenvector. A graph G is connected
if and only if L is irreducible and 0 is a simple eigenvalue.
Finally, a map g : Rn → Rn is distributed over G if, for
all j ∈ {1, . . . , n}, the component gj can be expressed as
gj(x) = gj(xi1 , . . . , xinj

), where NG(j) = {i1, . . . , inj
},

for all x ∈ Rn.

C. Directions of descent and line search

Given a continuously differentiable function f : Rn → R,
we let ∇f : Rn → Rn denote its gradient

∇f(x) =
(∂f
∂x1

(x), . . . ,
∂f

∂xn
(x)
)
.

Throughout the paper, we use the notation ∇if to refer to
the ith component of ∇f . Given a function f : Rn → R and

x ∈ Rn, v ∈ Rn is a direction of descent of f at x if there
exists T > 0 such that

f(x+ δv) < f(x), δ ∈ (0, T).

If f is continuously differentiable at x, this is equivalent
to saying that ∇f(x)T v < 0. The procedure of calculating
the actual step δ to be taken in the direction v is called
line search. The choice of a stepsize and a direction that
guarantees the reduction of the function at each iterate leads
to various gradient algorithms. In particular, one could aim
to find the best stepsize that optimizes the decrease in the
value of f along a direction v, i.e.,

εv = argminδ∈[0,∞) f(x+ δv). (1)

Let hv(δ) = f(x + δv). For a continuously differentiable
function, it is not difficult to see that the stepsize (1) is
characterized by the equation

h′v(εv) = ∇f(x+ εvv)T v = 0. (2)

The choice v = ∇f (which corresponds to the direction that
instantaneously descends f the most) leads to the steepest-
descent method,

xk+1 = xk − αk∇f(xk), k ≥ 0,

which locally converges to the set of minimizers of f .

III. PROBLEM STATEMENT

Consider a network of n agents, indexed by i ∈ {1, . . . , n},
with interaction topology described by a graph G. The net-
work state, denoted x, belongs to Rn. Agent i is responsible
for the ith component xi ∈ R. The results that follow can
also be extended to scenarios where each agent supervises
several components of the vector x ∈ Rn, but here we keep
the exposition simple. Consider a convex function f : Rn →
R whose gradient ∇f : Rn → Rn distributed over G. Thus,
each agent i ∈ {1, . . . , n} can compute

vi(x) = (0, . . . ,∇if(x), . . . , 0), (3)

with information from its neighbors in G. The next result
states that the line search procedure for f and each direction
vi can be carried out in a distributed way.

Lemma 3.1: (Individual agent stepsize computation): Let
f : Rn → R be continuously differentiable and assume
∇f : Rn → Rn is distributed over G. Let x ∈ Rn
and i ∈ {1, . . . , n} with vi(x), as defined in (3), be non-
vanishing. Then, the optimal stepsize εvi(x) along vi(x) and
the associated decrease ∆vi(x) in the value of f can be
computed with knowledge only of {xi}∪ {xj | j ∈ NG(i)}.

Proof: For simplicity, we use the shorthand notation hi,
εi, and ∆i to denote hvi(x), εvi(x), and ∆vi(x) respectively.
Note that (2) in this case reduces to

h′i(εi) = ∇if(x+ εivi(x))T∇if(x) = 0. (4)

The only difference between x + εivi(x) and x is in the
ith component, which agent i is responsible for. Since

the gradient of f is distributed over G, agent i has all
the information required to solve equation (4). A similar
argument holds for the associated decrease in the value of f ,

∆i = f(x)− f(x+ εivi(x))

= hi(0)− hi(εi) = −
∫ εi

0

h′i(δ) dδ

= −
∫ εi

0

∇if(x+ δvi(x))T∇if(x) dδ, (5)

which completes the result.

Note that the line search procedure performed by agent i
assumes that all other agents remain fixed. The problem of
interest to this paper is the following.

Distributed line-search computation problem. Let x ∈ Rn.
Given δi such that f(x + δivi(x)) < f(x), where vi(x) is
given as in (3) for all i ∈ {1, . . . , n}, design a distributed
algorithm that allows the group of agents to agree on
stepsizes (ε1, . . . , εn) ∈ Rn≥0 such that

f(x+ ε1v1(x) + · · ·+ εnvn(x)) < f(x).

In particular, a solution such that εi = ε for all i ∈
{1, . . . , n}, solves the distributed steepest-descent line-
search computation problem.

We make the following considerations regarding the above
problem. First, note that the choice εi = δi, i ∈ {1, . . . , n},
is not a solution in general. In principle, there are several
ways to approach this problem. For instance, one can resort
to parallel algorithms to identify those agents that maximize
the function decrease and coordinate their changes in state
accordingly via leader election. Instead, here we look for
solutions that allow all agents to simultaneously contribute
to the decrease of the function.

IV. WEIGHTED NETWORK-AGGREGATED STEPSIZES

The next result provides guidance as to how the problem
stated can be solved. Lemma 4.1 determines how stepsizes
based on a convex combination guarantee the decrease of the
cost function.

Lemma 4.1: (Network-aggregated stepsize): Let f : Rn →
R be convex. For x ∈ Rn, let w1, . . . , wn ∈ Rn be directions
of descent of f from x. Let δi ∈ R>0 be a stepsize such that
f(x+δiwi) < f(x), for each i ∈ {1, . . . , n}. Let µi ∈ [0, 1],
for i ∈ {1, . . . , n}, such that µ1 + · · · + µn = 1. Then
µ1δ1w1+· · ·+µnδnwn is an aggregated direction of descent
of f from x, and f (x+ δ

∑n
i=1 µiδiwi) < f(x).

Note that the aggregation procedure in Lemma 4.1 reduces
the size of the agent stepsizes, i.e., µiδi < δi, i ∈ {1, . . . , n}.
This makes sense as the individual agent stepsizes have been
computed with the overly optimistic assumption that nobody
else would change its state. This reduction in stepsize is the
price that the agents have to pay to make sure the aggregate
function decreases. The following are particular cases of
stepsizes that we consider in the sequel. With the notation

of Lemma 4.1, let wi = vi(x) be given by (3). The common
network-aggregated stepsize vector is

µi =
1
δi

1
δ1

+ · · ·+ 1
δn

, i ∈ {1, . . . , n}. (6)

By using this stepsize vector, agents decrease the function
along ∇f(x). The proportional-to-cost network-aggregated
stepsize vector is

µi =
∆i

∆1 + · · ·+ ∆n
, i ∈ {1, . . . , n}, (7)

where ∆i = fi(x)− fi(x+ δivi(x)), for i ∈ {1, . . . , n}. Fi-
nally, the proportional-to-state network-aggregated stepsize
vector is

µi =
di

d1 + · · ·+ dn
, i ∈ {1, . . . , n}, (8)

where di = δi‖vi(x)‖, for i ∈ {1, . . . , n}. Note that the
weights defined in (7) are larger for those agents who offer a
larger decrease in the value of the objective function. Thus,
they encode a type of “proportional fairness” in the way
that each agent can decrease the cost function. A similar
consideration applies to (8). We call the resulting direction
of descent proportional-to-cost (resp. proportional-to-state)
direction of descent.

Lemma 4.1 paves the way for performing line search in a
distributed way. Using this result, the agents in the network
can collectively fuse their stepsizes in order to guarantee
that the resulting network state after updates by all agents
decreases the value of the objective function. Remarkably,
this is accomplished without the need to share the individ-
ual directions of motion of the agents. In particular, the
aggregated stepsize models (6)-(8) take into account the
current network state in the determination of the appropriate
stepsizes. The challenge is then to perform these stepsize
aggregations in a distributed way. We address this in the
following section.

V. ADAPTIVE ALGORITHM FOR DISTRIBUTED STEPSIZE
COMPUTATION

One can implement a number of distributed algorithms to
compute the stepsizes (6)-(8) across the whole network. For
instance, average consensus could be employed to compute
the corresponding aggregate sums in the denominators of
these expressions. This, together with knowledge of the
size of the network, would allow each agent to compute
the aggregated stepsize. However, the convergence of these
algorithms is typically asymptotic, and so it may appear
impractical to execute one at each state through the evolution
of the network. Instead, we would like to find distributed
algorithms that, for each x ∈ Rn, even if not implementing
exactly the models (6)-(8), (i) can guarantee that the function
decreases and (ii) approach asymptotically the directions of
descent and stepsizes provided in Lemma 4.1.

A. Distributed computation of convex combinations

We start by noting that the aggregated stepsize models (6)-
(8) have a similar structure that can be captured as follows:
given a vector y ∈ Rn>0, compute the aggregated vector

(yT1n)−1y.

Each model corresponds to a different choice of vector y.
Here, we propose a continuous-time distributed algorithm
that performs this computation.

Define the matrix Q(y) ∈ Rn×n such that Qij(y) =
−yiyj , for (i, j) ∈ E, and Qii(y) =

∑
j∈NG(i) y

2
j , i ∈

{1, . . . , n}, and consider the function V : Rn → R, given
by V (µ) = 1

2µ
TQ(y)µ. In the sequel, we consider that the

network of agents interacts over a connected and undirected
graph, G. Since G is undirected, it is easy to verify that
V (µ) = 1

2

∑n
i=1

∑
j∈NG(i)(yjµi − yiµj)2. Three important

properties of the matrix Q(y) are that: (i) Q(y) = Q(y)T ,
(ii) −Q(y) is Metzler, and (iii) Q(y) is irreducible (because
G is connected).

Let us now define the quadratic program

minimize
1

2
µTQ(y)µ, (9a)

subject to 1Tnµ = 1. (9b)

Lemma 5.1: The unique solution to (9) is given by µ? =
(yT1n)−1y.

It is easy to see that Q(y)µ? = 0. The previous lemma
encodes key properties of Q(y) and leads us to design the
following distributed algorithm,

µ̇ = −LQ(y)µ, µ(0) = µ0, (10)

where µ0 ∈ Rn>0 satisfies µT0 1n = 1. In coordinates, this
can be rewritten as

µ̇i = −
∑

j∈NG(i)

aij(∇jV (µ)−∇iV (µ)),

µi(0) = µ0,i,

where ∇iV (µ) = 2
∑
k∈NG(i)(y

2
kµi − yiykµk), leading to a

distributed algorithm over G.

Note that the dynamical system (10) leaves µ(t)T1n = 1
invariant for all t ∈ R≥0. This can be verified by noting that
µ̇(t)T1n = (µ(t))TQL1n = 0. The following result holds.

Lemma 5.2: For any µ0 ∈ Rn>0 such that µT0 1n = 1, the
solution of (10) converges asymptotically to µ?, the solution
to the quadratic program (9).

B. Discrete-time implementation and rate of convergence

Even though convex combinations are preserved by the
dynamics (10), the algorithm does not leave Rn≥0 invariant
because the matrix −LQ is not positive. This means that the
algorithm can not be stopped anytime to output an appropri-
ate set of stepsizes. The algorithm also requires a continuous-
time implementation, which prescribes communications to

occur infinitely often. Because of these considerations, here
we focus on its discrete-time implementation, and in partic-
ular, on the study of its rate of convergence.

Using a first-order Euler discretization, (10) becomes

µk+1 = (In − hLQ(y))µk, (11)

where µ0 ∈ Rn>0 satisfies (µ0)T1n = 1. It can be seen that
(µk+1)T1n = (µk)T (In−hQ(y)L)1n = (µk)T1n = 1. The
next result provides a sufficient condition on the stepsize h
that guarantees convergence.

Lemma 5.3: For any µ0 ∈ Rn>0 such that (µ0)T1n = 1,
the solution of (11) converges asymptotically to µ? =
(yT1n)−1y under the assumption that

h <
2

λn(L)λn(Q(y))
.

Moreover, the essential spectral radius of In − hLQ(y) is
upper bounded by 1− hλ2(L)λ2(Q(y)).

Using the bound on the essential spectral radius of In −
hLQ(y), we next determine a bound on the rate of conver-
gence of the algorithm as follows.

Lemma 5.4: Let r > 0, and let Tr > 0 be the time it
takes (11) to reach and remain in the ball of center µ? with
radius r. Then

Tr ∈ O
(

1

hλ2(L)λ2(Q(y))
log

(
‖µ0 − F ?µ0‖2

r

))
,

where F ? = yzT

zT y
and z is the right eigenvector of In −

hLQ(y) with eigenvalue 1.

Remark 5.5 (Extension to y ∈ Rn≥0): In the previous two
subsections we have assumed that yi > 0 for all i ∈
{1, . . . , n}. The results can be extended for the case when
yi = 0, for some i ∈ {1, . . . , n}, by assuming that these
nodes act as a relay between any of their neighbors in
G = (V,E). To see this, without loss of generality, suppose
y1 = 0 only for i = 1. In this case, the matrix Q(y) will
have an additional eigenvector, e1 = (1, 0, . . . , 0)T ∈ Rn,
with zero eigenvalue. Consider the graph G = (V ,E) where
V = {2, . . . , n}, and {i, j} ∈ E if and only if {i, j} ∈ E or
{1, i}, {1, j} ∈ E. Let L be the associated graph Laplacian.
Let Q(y) be the restriction of Q(y) over Rn \ span{e1}.
System (11) can be replaced by

µk+1
1 = µk1 ,

µk+1 = (In − hLQ(y))µk,

where a similar bound for h as in Lemma 5.3 can be taken,
and (µ0)T1n = 1. The analysis of the subsystem in µ is
similar to the one in µ in (11). First, it can be seen that
(µk)T1n = 1 for all k ≥ 1. More precisely, (µk+1)T1n =
µk+1
1 +(µk+1)T1n−1 = µk1 +(µk)T (In−hLQ(y))T1n−1 =
µk1 +(µk)T1n−1 = 1. In particular, we have that (µ0)T1n−1
is conserved. The analysis of the system, is similar to the
previous discrete-time implementation, and it can be seen

that it converges to the convex combination µ? = (µ0
1, µ

?),
where

µ?i =
(µ0)T1n−1
yT1n

yi, i ∈ {2, . . . , n}. •

C. Distributed line-search computation algorithm

Here, we describe a distributed algorithm that allows agents
to adapt their step-sizes and solve approximately the dis-
tributed (steepest-descent) line-search computation problem.
Agents start from an initial condition µ0 such that µT0 1n = 1
(e.g., µ0 = 1

n1n). Note that the assumption that agents know
n is necessary since it is equal to the dimension of x ∈ Rn.
Then, agents implement (11) for an agreed number of rounds
N that guarantees µki ≥ 0, for all i ∈ {1, . . . , n}. The
algorithm is formally described in Algorithm 1.

Algorithm 1: DISTRIBUTED WEIGHTED STEPSIZE

Executed by: Each agent i ∈ {1, . . . , n}
Data: the function f , the state x, the number of rounds

N ∈ N ∪ {0}, and aggregated stepsize model R
1 set vi(x) = −(0, . . . , 0,∇if(x), 0, . . . , 0)
2 compute stepsize δi = εi > 0 satisfying
∇if(x+ εivi(x))T∇if(x) = 0

3 set yi corresponding to aggregated stepsize model R,
send yi to neighbors, receive {yj | j ∈ NG(i)}, and
compute Qij(y) for j ∈ NG(i)

4 set µ0
i = 1

n
5 for l ∈ {1, . . . , N} do
6 µli = ((In − hLQ(y))µl−1)i
7 send µli to neighbors, receive {µlj | j ∈ NG(i)}
8 end
9 set m0

i = µNi
10 send m0

i to neighbors, receive {m0
j | j ∈ NG(i)}

11 for l ∈ {1, . . . , N} do
12 ml

i = min{ml−1
i ,ml−1

j | j ∈ NG(i)}
13 send ml

i to neighbors, receive {ml
j | j ∈ NG(i)}

14 end
15 while mn

i < 0 do
16 reassign µNi = ((In − hLQ(y))µN)i
17 reset m0

i = µNi
18 send m0

i to neighbors, receive {m0
j | j ∈ NG(i)}

19 for l ∈ {1, . . . , N} do
20 ml

i = min{ml−1
i ,ml−1

j | j ∈ NG(i)}
21 send ml

i to neighbors, receive {ml
j | j ∈ NG(i)}

22 end
23 end
24 change state from xi to xi + µNi δi∇if(x)

The different aggregated stepsize models (6)-(8) are captured
in the algorithm via R. In this way, the choice yi = 1

δi
leads

to DISTRIBUTED WEIGHTED STEPSIZE (and results in the
steepest descent direction). As N grows, this leads to the
common network-aggregated stepsize vector (6). The choice
yi = ∆i, i ∈ {1, . . . , n} as in (7) leads to the DISTRIBUTED
WEIGHTED STEPSIZE for the proportional-to-cost descent

direction. As N grows, this leads to the proportional-to-
cost network aggregated stepsize vector (7). Finally, the
choice yi(f, x) = di, i ∈ {1, . . . , n} as in (8) leads to
the DISTRIBUTED WEIGHTED STEPSIZE for the proportional-
to-state descent direction. As N grows, this leads to the
proportional-to-state network aggregated stepsize vector (7).

The DISTRIBUTED WEIGHTED STEPSIZE algorithm can be
informally described as follows. In order to implement a step
of the gradient-descent algorithm, each agent outputs first
a set of stepsizes µNi , i ∈ {1, . . . , n}. These stepsizes are
obtained after applying (11) during N iterations. After this,
if all of the µNi are positive or zero, which happens when
mn
i = minj{1,...,n} µ

N
j ≥ 0, for all i ∈ {1, . . . , n}, then

the gradient-descent procedure can be safely implemented.
Otherwise, agents iterate (11) additional times until the
property µNi ≥ 0, i ∈ {1, . . . , n} holds. The algorithm
assumes that yi > 0, for all i ∈ {1, . . . , n}. When yi = 0,
agent i should relay information from neighbors to other
neighbors at any communication round.

We need a formal result that states properties of algorithm
and its output.

VI. SIMULATIONS

In this section, we include some numerical experiments on
a simple mathematical example to illustrate the results. We
consider a network of 8 agents subject to a fixed topology
corresponding to the graph G depicted in Figure 1. The

1

2

3

4

5

6

7

8

Fig. 1. Graph of 8 networked agents for the simulation example

function to be optimized f : R8 → R8 is defined as f(x) =
xT (In+L)x+qTx, where q = (1,−1, 2, 1, 0,−1, 1, 0) ∈ R8

and L is the graph Laplacian associated with G. It is easy
to verify that f is convex and distributed over G.

We implement the algorithm in two main situations. First,
we consider DISTRIBUTED WEIGHTED STEPSIZE for the
steepest descent direction. Figure 2 compares how the func-
tion is decreased by the centralized steepest descent method
(blue), the conservative steepest descent method if all agents
had the information to compute the stepsize in (6) (red),
and the algorithm DISTRIBUTED WEIGHTED STEPSIZE for

the steepest descent direction with N = 4 (green) and an
appropriate h. After N = 4, all weights µNi have become
positive. As it can be seen, both the conservative steepest

10 15 20 25

20

40

60

80

Fig. 2. Evolution of various algorithms to decrease f along the steepest
descent direction

descent method and its decentralized version are very close
even if the number of rounds (N = 4) used to compute
the stepsizes in a distributed way is small. The differences
between the centralized steepest descent method and the
other two are to be expected, as the common network-
aggregated stepsize vector (6) is more conservative in order
to guarantee that the function is still decreased.

Second, we consider DISTRIBUTED WEIGHTED STEPSIZE
for proportional-to-cost descent. Figure 3 compares the evo-
lutions of the gradient algorithms following the steepest
descent (blue), the decentralized proportional-to-cost de-
scent method if all agents had the information to compute
the stepsize as in (7) (red), and DISTRIBUTED WEIGHTED
STEPSIZE for proportional-to-cost descent with N = 4
(green) and an appropriate h. After N = 4, all weights µNi
are already positive. Similarly as before, and as expected,

10 15 20 25

20

40

60

80

Fig. 3. Evolution of various algorithms to decrease f along the steepest
descent direction and proportional-to-cost aggregated direction

the function is decreased less rapidly by means of the
conservative proportional-to-cost descent direction method
and its decentralized version via DISTRIBUTED WEIGHTED
STEPSIZE when compared to the centralized steepest descent
method. However the previous two are relatively close even
though the number of rounds N = 4 used in DISTRIBUTED
WEIGHTED STEPSIZE is low.

VII. CONCLUSIONS

We have considered networked scenarios where a group of
agents seeks to optimize a convex aggregate function using

gradient information. We have presented a novel distributed
algorithm for the computation of aggregated stepsizes that
guarantee the decrease of the objective function. We have an-
alyzed the properties of this strategy when implemented both
in continuous and discrete time, and characterized its rate of
convergence. With a proper initialization, the algorithm gives
rise to a convex combination after a finite number of rounds,
and can therefore be implemented to fuse the stepsizes of
individual agents. Simulations illustrate the results. Future
work will be devoted to the analytical characterization of
the performance of the proposed strategies, the consideration
of scenarios with switching communication graphs, and the
design of distributed line search strategies for higher-order
(e.g., Newton) schemes.

ACKNOWLEDGMENTS

Both authors wish to thank Jon Nicolás and Alexandra
Cortés-Martı́nez for constant inspiration and joy. This work
was partially supported by grants NSF CMMI-1300272 (JC)
and AFOSR-11RSL548 (SM).

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

[2] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. American Mathematical Society. Princeton University
Press, 2009. Available at http://www.coordinationbook.info.

[3] M. Burger, G. Notarstefano, and F. Allgower. Distributed robust
optimization via cutting-plane consensus. In IEEE Int. Conf. on
Decision and Control, pages 7457–7463, Maui, December 2012.

[4] A. Cauchy. Méthode générale pour la résolution des systems
d’equations simultanées. Comptes rendus de l’Académie des Sciences,
25:46–89, 1847.

[5] B. Gharesifard and J. Cortés. Distributed continuous-time convex
optimization on weight-balanced digraphs. IEEE Transactions on
Automatic Control, 59(3), 2014. To appear.

[6] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[7] D.G. Luenberger. Introduction to Linear and Nonlinear Programming.
Addison-Wesley, Reading, Mass., 1973.

[8] A. Nedic and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.

[9] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and coop-
eration in multi-agent networked systems. Proceedings of the IEEE,
2006.

[10] W. Ren and R. Beard. Distributed coordination of multi-vehicle
cooperative control—Theory and applications. Communications and
Control Engineering Series. Springer-Verlag, 2008.

[11] P. Wan and M. D. Lemmon. Event-triggered distributed optimization in
sensor networks. In Symposium on Information Processing of Sensor
Networks, pages 49–60, San Francisco, CA, 2009.

[12] J. Wang and N. Elia. A control perspective for centralized and
distributed convex optimization. In IEEE Int. Conf. on Decision and
Control, pages 3800–3805, Orlando, Florida, 2011.

[13] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato.
Newton-Raphson consensus for distributed convex optimization. IEEE
Transactions on Automatic Control, 2013. Submitted.

[14] M. Zargham, A. Ribeiro, and A. Jadbabaie. A distributed line search
for network optimization. In American Control Conference, pages
472–477, Montreal, Canada, 2012.

[15] M. Zhu and S. Martı́nez. On distributed convex optimization under in-
equality and equality constraints via primal-dual subgradient methods.
IEEE Transactions on Automatic Control, 57:151–164, 2012.

