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Abstract— This paper proposes two continuous-time dynamic
average consensus algorithms for networks with strongly con-
nected and weight-balanced interaction topologies. The pro-
posed algorithms, termed1st-Order-Input Dynamic Consensus
(FOI-DC ) and 2nd-Order-Input Dynamic Consensus (SOI-DC ),
respectively, allow agents to track the average of their dynamic
inputs within an O(ǫ)-neighborhood with a pre-specified rate.
The only requirement on the set of reference inputs is having
continuous bounded derivatives, up to second order forFOI-
DC and up to third order for SOI-DC . The correctness analysis
of the algorithms relies on singular perturbation theory for
non-autonomous dynamical systems. When dynamic inputs are
offset from one another by static values, we show thatSOI-DC
converges to the exact dynamic average with no steady-state
error. Simulations illustrate our results.

I. I NTRODUCTION

Given a multi-agent system and a set of time-varying input
signals, one per agent, the dynamic average consensus prob-
lem consists of designing distributed algorithms that allow
individual agents to obtain the average of the inputs. This
problem has applications in numerous areas, including multi-
robot coordination [1], distributed estimation [2], sensor
fusion [3], [4], and distributed tracking [5]. In this paper, we
employ a singular perturbation approach to design provably
correct dynamic consensus algorithms.

Literature review:The work [3] generalizes the average static
consensus algorithm proposed in [6] to track the average
of inputs with uniformly bounded rate which are different
from one another by zero-mean white Gaussian noise. The
algorithm acts as a low-pass filter which allows agents to
track the average of the agents’ dynamic inputs with a non-
zero steady sate error, which vanishes in the absence of
noise. The work [7] proposes a dynamic average consensus
algorithm that, from a proper initialization, is able to track
with zero steady-state error the average of dynamic inputs
whose Laplace transfer function has all its poles in the left
half-plane, and has at most one pole at origin. In [8], a
proportional dynamic average consensus algorithm can track,
with a bounded non-zero steady-state error, the average of
reference inputs whose weighted sum with their derivatives
is bounded. For static inputs, this algorithm converges with
zero-steady-state error if it is initialized properly. This work
also proposes a proportional-integral (PI) algorithm which
achieves dynamic average consensus, with a non-zero steady-
state error, provided signals are slowly varying. The PI
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algorithm is generalized in [9] to achieve zero-error dynamic
average consensus of special class of time-varying inputs
with rational Laplace transforms and no poles in the left
complex half-plane. The aforementioned algorithms are all
designed in continuous time. The work [10] develops instead
a discrete-time dynamic average consensus estimator that,
with a proper initialization, can track with bounded steady-
state error the average of the time-varying inputs whosenth-
order difference is bounded. The solutions to the dynamic
average consensus problem mentioned above each suffer
from at least one of the following shortcomings: they require
proper initializations that makes them prone to initialization
errors and not robust to changes to agents joining and leaving
the network; or they relay on knowledge of the dynamics
generating the inputs at each agent therefore they are tailored
to specified classes of inputs which limits their applicability.
In contrast, the algorithms proposed in this paper do not
suffer from these shortcomings.

Statement of contributions:The starting point for our algo-
rithm design is the following observation: given a hypothet-
ical static average consensus algorithm able to converge ‘in-
finitely’ fast, one could solve the dynamic average consensus
problem by running it at each time. In practice, however,
some time is required for information to flow across the
network, and hence the result of the repeated application
of any static average consensus algorithm will operate with
some error whose size depends on its speed of convergence
and how fast inputs change. A follow-up observation is that,
in some applications, the task is not just to obtain the average
of the dynamic inputs but rather to physically track this value,
possibly with limited control authority. In these cases, high
rate algorithms might not be implementable. We propose two
dynamic average consensus algorithms (termed1st-Order-
Input Dynamic Consensus(FOI-DC) and 2nd-Order-Input
Dynamic Consensus(SOI-DC)) whose design incorporates
two time scales, a fast and a slow one. The fast dynamics,
which builds on the PI algorithm mentioned above, acts in
a similar way to a static average consensus with a high rate
of convergence that is able to compute the dynamic input
average at each time. The slow dynamics allows agents to
track this average at a feasible rate. The novelty here is that
these slow and fast dynamics are running simultaneously and,
thus, there is no need to wait for convergence of the fast
dynamics and then take slow steps towards the input average.
Our technical approach uses singular perturbation theory to
study the algorithm convergence. We show that, when the
derivatives of the agents’ inputs are continuous and bounded
(up to second order forFOI-DC and up to third order for



FOI-DC), the algorithms converge to anO(ǫ)-neighborhood
of the dynamic input average. Here,ǫ is a design parameter.
Our algorithms do not require any specific initialization and
do not relay on knowledge of the dynamics generating the
inputs. We also show how an appropriate variation of our
algorithms allows each agent to converge at their own desired
rate of convergence. Simulations illustrate our results.

Organization:Section II introduces basic notation and con-
cepts from graph theory, static consensus, and singular per-
turbation theory. Section III presents the problem statement.
Section IV motivates the use of singular perturbation theory
to solve the dynamic average consensus problem. Section V
introduces two novel dynamic average consensus algorithms
and analyzes their correctness. Section VI illustrates their
performance in simulation.

II. PRELIMINARIES

This section gathers basic preliminaries on notation, graph
theory, static consensus and singularly perturbed dynamical
systems.

A. Notation

The vector1n represents an-dimensional vector with all
elements equal to one, andIn represents the identity matrix
with dimensionn×n. We denote byA⊤ the transpose of ma-
trix A. We useDiag(A1, · · · ,AN ) to represent the block-
diagonal matrix constructed from matricesA1, . . . ,AN . We
let δ1(ǫ) ∈ O(δ2(ǫ)) denote the fact that there exist positive
constantsc andk such that

|δ1(ǫ)| ≤ k|δ2(ǫ)|, ∀ |ǫ| < c.

For network related variables, the local variables at each
agent are distinguished by a superscripti, e.g., ui is the
local input of agenti. We denote the aggregate vector of
local variablespi’s by p = (p1, . . . , pN ) ∈ R

N .

B. Graph theory

Here, we briefly review some basic concepts from graph
theory and linear algebra following [11]. Adirected graph,
or simply a digraph, is a pair G = (V, E), where V =
{1, . . . , N} is the node setandE ⊆ V × V is the edge set.
We make the convention that an edge fromi to j, denoted
by (i, j), models the fact that agentj can send information
to i. For an edge(i, j) ∈ E , i is called anin-neighborof j
and j is called anout-neighborof i. A directed pathis an
ordered sequence of vertices such that any ordered pair of
vertices appearing consecutively is an edge of the digraph.
A digraph is calledstrongly connectedif for every pair of
vertices there is a directed path between them.

A weighted digraphis a tripletG = (V, E ,A), where(V, E)
is a digraph andA ∈ R

N×N is a weightedadjacencymatrix
with the property thataij > 0 if (i, j) ∈ E and aij = 0,
otherwise. A weighted digraph isundirected if aij = aji
for all i, j ∈ V. The weighted out-degreeand weighted in-
degreeof a nodei, are respectively, din(i) =

∑N

j=1
aji and

dout(i) =
∑N

j=1
aij . A digraph isweight-balancedif at each

nodei ∈ V, the weighted out-degree and weighted in-degree
coincide (although they might be different at different nodes).

The out-degree matrixDout is the diagonal matrix whose
Dout

ii = dout(i), for i ∈ V. The (out-) Laplacianmatrix is
L = Dout−A. Based on the structure ofL, at least one
of the eigenvalues ofL is zero and the rest of them have
nonnegative real parts. Also,L1N = 0. For a strongly
connected digraph, zero is a simple eigenvalue ofL. A
digraphG is weight-balanced if and only if1T

NL = 0.

C. Static consensus

Here, we briefly review the solution given in [8] to find in a
distributed way the average of a set of static inputs. LetG be
a strongly connected and weight-balanced digraph. Assume
each nodei ∈ {1, . . . , N} has access to a static inputui ∈ R.
Consider the dynamics

ẋi = −(xi − ui)−
∑N

j=1
Lijx

j −
∑N

j=1
Lijν

j ,

ν̇i =
∑N

j=1
Ljix

j .
(1)

The paper [8] establishes that, starting from any initial
condition xi(0), νi(0) ∈ R, the variablexi converges to
1

N

∑N

j=1
uj exponentially fast for alli ∈ {1, . . . , N}. Note

that the distributed implementation of this algorithm requires
each agent to know the weights of its in-neighbors. If the
graph is undirected, this requirement is trivially satisfied.

D. Singularly perturbed dynamical systems

Here we give a short account of the terminology employed
in singularly perturbed dynamical systems following [12,
Chapter 11]. Let

ẋ = f(t,x, z, ǫ), x(t0) = η(ǫ), (2a)

ǫ ż = g(t,x, z, ǫ), z(t0) = ζ(ǫ). (2b)

The use of a small constantǫ > 0 creates two-time scales
in the system, resulting into a fast and a slow dynamics.
Singular perturbation theory establishes precise conditions
under which the behavior of the system follows that of
the limiting system whenǫ goes to0. We assume thatf
andg are continuously differentiable in their arguments for
(t,x, z, ǫ) ∈ [0,∞)×Dx×Dz×[0, ǫ0], whereDx ⊂ R

n and
Dz ⊂ R

m are open connected sets. When we setǫ = 0 in
(2), the dimension of the state equation reduces fromn+m
to n because the differential equation (2b) degenerates into
the algebraic equation

0 = g(t,x, z, 0). (3)

We say that the model (2) is in standard form if (3) has
k ≥ 1 isolated real roots

zi = hi(t,x), i ∈ {1, . . . , k}, (4)

for each(t,x) ∈ [0,∞)×Dx. This assumption assures that a
well-definedn−dimensionalreduced model(slow dynamics)



will correspond to each root of (3). To obtain theith reduced
model, we substitute (4) into (2a), atǫ = 0, to obtain

ẋ = f(t,x,h(t,x), 0), (5)

where we have dropped the subscripti from h. The
boundary-layersystem (fast dynamics) is

dz

dτ
= g(t,x, z, 0), τ =

t

ǫ
, (6)

wherex and t are treated as fixed parameters. The stability
and convergence properties of these dynamical systems can
be established via [12, Theorem 11.2].

III. PROBLEM STATEMENT

We consider a network ofN agents with single-integrator
dynamics given by

ẋi = ci, i ∈ {1, . . . , N}, (7)

wherexi ∈ R is theagreement stateandci ∈ R is thedriving
commandof agent i. The network interaction topology is
modeled by a weighted digraphG. Agent i ∈ {1, . . . , N}
has access to a time-varying input signalui : [0,∞) → R.
The problem we seek to solve is stated next.

Problem 1: (Dynamic average consensus with pre-specified
least rate of convergence):Let G be strongly connected
and weight-balanced. Design a distributed algorithm such
that eachxi in (7) tracks the average 1

N

∑N

j=1
uj(t) of

the inputs with a convergence rate less than or equal to
β > 0, i.e., ∃κ > 0 such that|xi(t) − 1

N

∑N

j=1
uj(t)| ≤

κ|xi(0)− 1

N

∑N

j=1
uj(0)|e−βt for all t ≥ 0.

For vector-valued inputs, one can apply the solution of
Problems 1 in each dimension independently. Note that the
algorithm (1) provides a solution to Problem 1 for static
inputs and no pre-specified rate of convergence. It is worth
noticing the fact thatβ in the problem statement is an upper
bound of the convergence rate, not a lower bound. This is
motivated by scenarios where agents have limited control
authority and cannot implement arbitrary driving commands
dictated by the consensus algorithm. This is normally the
case when (7) corresponds to a model of a physical process.

IV. M OTIVATION TO USE SINGULAR PERTURBATION

THEORY FOR THEDESIGN OFCONSENSUSALGORITHMS

In this section, we explain the rationale behind the de-
sign of our algorithmic solutions to solve Problem 1. The
simplest dynamics that achieves for each agentxi(t) →
1

N

∑N

j=1
uj(t), as t → ∞, exponentially fast with rateβ,

is the following

ẋi = −β
(

xi −
1

N

N
∑

j=1

uj(t)
)

+
1

N

N
∑

j=1

u̇i(t).

To decentralize this dynamics, we can make use of a mech-
anism that generates the average of the inputs and also the
average of the derivative of inputs,rapidly, in each agent in a

distributed fashion. Then, the distributed dynamic consensus
algorithm becomes a two-time scale operation, a fast dynam-
ics to generate each average and a slow dynamics to track the
input average. Such dynamics could be realized by means
of the following mixed discrete/continuous-time algorithm
running synchronously at each nodei ∈ {1, . . . , N}.

1: (Initialization) atk = 0 initialize xi(0) ∈ R
n

2: while data existsdo
3: Obtain inputsui(k) and u̇i(k)
4: Initialize zi(0), νi(0) ∈ R

5: Solve the following dynamical equation










żi(t) = −(zi(t) + βui(k) + u̇i(k))

−
∑N

i=j Lij(z
j(t) + νj(t)),

ν̇i(t) =
∑N

j=1
Ljiz

j(t),

(8)

6: Let zi converge to equilibrium̄zi

7: Define:

xi(k + 1) = xi(k)−∆tβ
(

xi(k) + z̄i(k)
)

(9)

8: k ← k + 1
9: end while

In the above algorithm∆t is the stepsize. Building on the
discussion in Section II-C, at each timestepk, the dynamical
system (8) acts as a static consensus algorithm with static
inputβui(k)+u̇i(k). This algorithm converges exponentially
to z̄i(k) = − 1

N

∑N

j=1
(βui(k) + u̇i(k)). Therefore, at any

timestepk, for all i ∈ {1, . . . , N}, (9) becomes

xi(k + 1)=xi(k)−∆tβ
(

xi(k)−
1

N

N
∑

j=1

(ui(k) + u̇i(k))
)

.

For small ∆t, the stability and convergence of the above
difference equation can be studied using the following
continuous-time model

ẏi = −β yi, i ∈ {1, . . . , N}. (10)

where

yi = xi −
1

N

N
∑

j=1

uj , i ∈ {1, . . . , N}. (11)

The dynamical system (10) is a stable linear system with
eigenvalue−β. Therefore, it converges to zero exponen-
tially fast with rateβ. As a result,xi in (9) converges to
1

N

∑N

j=1
uj(t) exponentially, for alli ∈ {1, . . . , N}.

The aforementioned algorithm solves Problem 1, pro-
vided (8) converges to its equilibrium in a time interval with
length∆t. Hence, this algorithm is only conceptual: the cost
of solving (8) at each timestep makes it un-implementable.
Inspired by the multi-time scale structure observed above,we
use singular perturbation theory to weave together steps 5–
7 and devise a continuous-time dynamic average consensus
algorithm. By doing so, we avoid solving the fast dynamics
at each iteration, i.e., the slow dynamics does not need to
wait for the fast dynamics to converge.



V. DYNAMIC CONTINUOUS-TIME CONSENSUS

ALGORITHMS VIA SINGULARLY PERTURBEDDYNAMICS

In this section, we present novel continuous-time dynamic
average consensus algorithms whose design is based on
singular perturbation theory. Forβ > 0 and i ∈ {1, . . . , N},
consider the following dynamical systems

• 1st-Order-Input Dynamic Consensus(FOI-DC):
{

ǫ żi = −(zi + β ui + u̇i)−
∑N

i=j Lij(z
j + νj),

ǫ ν̇i =
∑N

j=1
Ljiz

j ,

(12a)

ẋi = −β xi − zi, (12b)

• 2nd-Order-Input Dynamic Consensus(SOI-DC):










ǫ żi = −(zi + β ui + u̇i)−
∑N

j=1
Lij(z

j + νj)

− ǫ(β u̇i + üi),

ǫ ν̇i =
∑N

j=1
Ljiz

j ,

(13a)

ẋi = −β xi − zi, (13b)

The following result establishes in what sense1st-Order-
Input Dynamic Consensussolves Problem 1.

Theorem 5.1 (Convergence ofFOI-DC): Let G be a strongly
connected and weight-balanced digraph. Assume that the first
and the second derivatives of the input signalui at each
agenti ∈ {1, . . . , N} are continuous and bounded fort ≥
0. Then, there existsǫ⋆ > 0 such that, for allǫ ∈ (0, ǫ⋆],
starting from any initial conditionsx(0), z(0),ν(0) ∈ R

N ,
the statexi, i ∈ {1, . . . , N}, of the algorithm (12) converges
exponentially fast with rateβ to an O(ǫ)-neighborhood of
1

N

∑N

j=1
uj(t).

Proof: We show the algorithm satisfies the conditions
of [12, Theorem 11.2] globally (for the terminology used
here we refer to Section II-D). The boundary-layer (fast)
dynamics of the algorithm (12) is, fori ∈ {1, . . . , N},

d zi

dτ
= −(zi + β ui(t) + u̇i(t))−

∑N

i=1
Lij(z

j + νj),
d νi

dτ
=

∑N

i=1
Ljiz

j .

Invoking the discussion in Section II-C, this fast dynamics
globally exponentially converges to

zi = −
1

N

N
∑

j=1

(β ui + u̇i), i ∈ {1, . . . , N}. (14)

Substituting (14) into (12b), and using the change of vari-
ables (11), we obtain (10) as the reduced system (slow
dynamics) model. Forβ > 0, (10) is a stable linear system
with system matrix eigenvalue equal to−β. Thus, for all
i ∈ {1, . . . , N}, yi(t) converges globally exponentially fast
to zero with a rate ofβ, which ∀t ≥ 0 is equivalent to

|xi(t)−
1

N

N
∑

j=1

uj(t)| ≤ |xi(0)−
1

N

N
∑

j=1

uj(0)|e−βt. (15)

Based on the required conditions for input signals, the
algorithmFOI-DC satisfies the differentiability and Lipschitz
conditions of [12, Theorem 11.2] on any compact set of
(x, z,ν). Thus, all the conditions of [12, Theorem 11.2]
are satisfied globally. As a result, for alli ∈ {1, . . . , N},
|xi(t, ǫ)−xi(t)| ≤ O(ǫ) wherexi(t, ǫ) is the solution of the
singularly perturbed system (12) andxi(t) is the solution of
the slow dynamics. Recall (15), then for alli ∈ {1, . . . , N}
and all t ≥ 0 we have

|xi(t, ǫ)−
1

N

N
∑

j=1

uj(t)| < O(ǫ)+|xi(0)−
1

N

N
∑

j=1

uj(0)|e−βt,

which concludes our proof.

The following result establishes in what sense2nd-Order-
Input Dynamic Consensussolves Problem 1.

Theorem 5.2 (Convergence ofSOI-DC): Let G be a strongly
connected and weight-balanced digraph. Assume that the
first, second, and third derivatives of the input signalui at
each agenti ∈ {1, . . . , N} are continuous and bounded for
t ≥ 0. Then, there existsǫ⋆ > 0 such that, for allǫ ∈ (0, ǫ⋆],
starting from any initial conditionsx(0), z(0),ν(0) ∈ R

N ,
the statexi, i ∈ {1, . . . , N}, of the algorithm (13) converges
exponentially fast with rateβ to an O(ǫ)-neighborhood of
1

N

∑N

j=1
uj(t).

Proof: The proof of this result is very similar to the
proof of Theorem 5.1 so we only provide a brief sketch.
Notice that the parallelism between the slow and fast dy-
namics ofSOI-DC andFOI-DC. As shown in the proof of
Theorem 5.1, these dynamics are both globally exponentially
stable. Based on the required conditions for the input signals,
the algorithmSOI-DC also satisfies the differentiability and
Lipschitz conditions of [12, Theorem 11.2] on any compact
set of (x, z,ν). Thus, all the conditions of [12, Theorem
11.2] are satisfied globally.

It is worth noticing that, with respect to the algorithms
available in the literature, both (12) and (13) perform tracking
with a pre-specified rate of convergence, can handle arbitrary
initial conditions (and are therefore robust to initialization
errors) and do not require any knowledge of the dynamics
generating the inputs. In the following, we show that the
algorithm SOI-DC has some advantages overFOI-DC at
the expense of the extra condition on the input signals.

Lemma 5.1: (SOI-DC for inputs offset by a static value):
Let G be a strongly connected and weight-balanced digraph.
Assume that the difference in the input signals is a static
offset, i.e.,ui(t) = uc(t) + ūi, whereūi is a constant scalar
for each i ∈ {1, . . . , N}. Then, starting from any initial
conditionsx(0), z(0),ν(0) ∈ R

N , for anyǫ > 0 andβ > 0,
the algorithmSOI-DC converges exponentially fast to the
exact input average, i.e.,xi(t) → 1

N

∑N

j=1
uj(t) as t → ∞

for all i ∈ {1, . . . , N}.

Proof: Consider the following change of variables:

p = z + (β uc + u̇c)1N , q = x− uc1N , η =
[

r R
]⊤

ν,



wherer = 1√
N
1 andR ∈ R

N×N−1 satisfiesR⊤R = IN−1

and r⊤R = 0. We let η = (η1,η2:N ) whereη1 ∈ R and
η
2:N ∈ R

N−1. Then, we can re-write (13) as follows

ǫ ṗ = −(p+ β ū)−Lp−LRη
2:N , (16a)

ǫ η̇
2:N = R⊤L⊤p, (16b)

ǫη̇1 = 0, (16c)

q̇ = −β q − p. (16d)

We can show that the equilibrium point of this system is (p̄ =
−( β

N

∑N

j=1
ūj)1N , η̄

2:N = −β(R⊤LR)−1R⊤ū, η̄1 =
1

N

∑N

j=1
νj(0), q̄ = ( 1

N

∑N

j=1
ūj)1N ). Consider the fol-

lowing Lyapunov function wherẽq = q− q̄, p̃ = p− p̄ and
η̃
2:N = η

2:N − η̄
2:N .

V =
β

2
q̃⊤q̃ +

ǫ

8
p̃⊤p̃+

ǫ

8
η̃⊤
2:N η̃

2:N .

The derivative of this Lyapunov function along the trajecto-
ries of (16a), (16b) and (16d) is

V̇ =−
1

8
p̃⊤(L+L⊤)p̃− (

1

2
p̃+ β q̃)⊤(

1

2
p̃+ β q̃),

which for strongly connected digraph, it is negative semi-
definite. For a strongly connected and weight-balanced di-
graph, we haveS = {p̃, q̃ ∈ R

N , η̃
2:N ∈ R

N−1 | V̇ = 0} =
{p̃, q̃ ∈ R

N , η̃
2:N ∈ R

N−1 | p̃ = α1N , p̃ = −2β q̃, α ∈
R}. Next, we show that no solution of (16a), (16b) and (16d)
can stay inS except{p̃ = 0, q̃ = 0, η̃

2:N = 0}. A trajec-
tory t 7→ (p(t), q(t),η

2:N (t)) belonging toS must satisfy
p̃(t) ≡ α(t)1N and p̃(t) ≡ −2β q̃(t). Then, (16a), (16b)
and (16d) become, respectively,

ǫα̇1N = −α1N −LRη̃
2:N , (17a)

ǫη̇
2:N = 0, (17b)

α̇1N = βα1N . (17c)

From (17b),t 7→ η
2:N (t) must be constant. Recall that for

strongly connected and weight-balanced digraphsR⊤LR

is invertible. Therefore, multiplying (17a) byR⊤ from the
left, we conclude that̃η

2:N = 0. As a result, from (17a)
and (17c) we deduce thatt 7→ α(t) = 0. In other words,
{p̃ = 0, q̃ = 0, η̃

2:N = 0} is the only solution of (16)
that identically belongs toS. Invoking the LaSalle invariant
principle [12, Theorem 4.4 and Corollary 4.2]), we conclude
that q̃ → 0 and as a resultxi → 1

N

∑N

j=1
uj(t), for all

i ∈ {1, . . . , N}, globally asymptotically ast → ∞. The
systems (16a), (16b) and (16d) are linear time-invariant,
therefore the rate of convergence is exponential.

Remark 5.1: (Relationship between the size ofβ and ǫ): As
stated in Theorems 5.1, and 5.2,β is the convergence rate
of xi to anO(ǫ)-neighborhood of1

N

∑N

j=1
uj(t). One can

increase the rate of convergence by choosing a largeβ. How-
ever, to keep the two-time scale structure of the algorithms,
one would then be forced to use a smallerǫ. Quantifying
this trade-off, and specifically the range of admissible values
of ǫ for a givenβ, is left as future work. �

We conclude this section by describing a variation of the
algorithmsFOI-DC and SOI-DC that does not require all

agents to use the same parameterβ to guarantee convergence.
Consider the dynamical system

{

ǫ żi = −(zi + ui)−
∑N

i=j Lij(z
j + νj),

ǫ ν̇i =
∑N

j=1
Ljiz

j ,
(18a)

{

ǫ ẏi = −(yi + u̇i)−
∑N

i=j Lij(y
j + µj),

ǫ µ̇i =
∑N

j=1
Ljiy

j ,
(18b)

ẋi = −βi xi − βi zi − yi, (18c)

where βi > 0’s for all i ∈ {1, . . . , N}. Note that this
algorithm has the benefit of each agent using its own local
parameter. The drawback is the need for additional dis-
tributed processing and communication. The following result
characterizes the convergence properties of this algorithm. Its
proof is along the same lines of the proof of Theorem 5.1
and omitted for brevity.

Theorem 5.3 (Convergence of(18)): Let G be a strongly
connected and weight-balanced digraph. Assume that the
first and the second derivatives of the input signalui at
each agenti ∈ {1, . . . , N} are continuous and bounded for
t ≥ 0. Then, there existsǫ⋆ > 0 such that, for allǫ ∈ (0, ǫ⋆]
starting from any initial conditionsx(0), z(0),ν(0) ∈ R

N ,
the statexi, i ∈ {1, . . . , N}, of the algorithm (18) converges
exponentially fast with rateβi to anO(ǫ)-neighborhood of
1

N

∑N

j=1
uj(t).

VI. N UMERICAL EXAMPLES

Here, we present three numerical examples to demon-
strate the performance of the algorithmsFOI-DC, SOI-DC
and (18). First, we consider a randomly generated undirected
network (using Matlab BGL package [13]) consisting of
N = 100 agents. The local input signals are

ui(t) = ai sin(bi t+ ci), i ∈ {1, . . . , N}, (19)

where the input coefficients are generated randomly uni-
formly in the following ranges:ai ∼ U [−5, 5], bi ∼ U [1, 2],
ci ∼ U [0, π/2]. Figure 1 shows the time histories of the
local internal statesxi generated by the algorithmFOI-DC
for different values ofǫ andβ.

Figure 3 demonstrates the performance of the algo-
rithmsFOI-DC andSOI-DC when the difference in the input
signals is a static offset. Figure 2 shows the network and
inputs employed (we setθ = 0 in all the input signals).
Figure 4 demonstrates the performance of the algorithm (18)
when agents use differentβ’s. Figure 2 shows the network
and inputs employed (here, we setθ = 1 in all the input
signals).

VII. C ONCLUSIONS

We have proposed two continuous-time dynamic average
consensus algorithms for networks with strongly connected
and weight-balanced interaction topologies. The proposed
strategies have a two-time scale structure and do not require
model information on the dynamic inputs. Using singular
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(c) ǫ = 0.001 andβ = 3

Fig. 1: Performance evaluation of the algorithmFOI-DC
with respect to different choices forǫ andβ using a random
network of N = 100 agents and inputs given in (19):
Smallerǫ results in smaller error and largerβ results in faster
convergence. The solid blue line is the average of the inputs
and the dashed lines are the agreement states of agents.

1
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3

4

5

u1(t)=5 sin(t)+θ 10

t+2
+1,

u2(t)=5 sin(t)+θ 0.5t−1,
u3(t)=5 sin(t)+θ cos(0.5t)+4,
u4(t)=5 sin(t)+θ log(t+ 1)+5,
u5(t)=5 sin(t)+θ atan(t)+10.

Fig. 2: A digraph and the corresponding input at each agent.

perturbation analysis, we have shown that the algorithms
reach anO(ǫ)-neighborhood of the dynamic input average
with an exponential rate irrespective of the initial conditions.
Future work will be devoted to rigorously characterizing the
O(ǫ)-convergence neighborhood and extending the results to
networks with switching topology.

REFERENCES

[1] P. Yang, R. Freeman, and K. Lynch, “Multi-agent coordination by
decentralized estimation and control,”IEEE Transactions on Automatic
Control, vol. 53, no. 11, pp. 2480–2496, 2008.

[2] S. Meyn, Control Techniques for Complex Networks. Cambridge
University Press, 2007.

[3] R. Olfati-Saber and J. Shamma, “Consensus filters for sensor networks
and distributed sensor fusion,” inIEEE Conf. on Decision and Control
and European Control Conference, (Seville, Spain), pp. 6698–6703,
December 2005.

[4] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in
IEEE Conf. on Decision and Control, (New Orleans, LA), pp. 5492–
5498, Dec. 2007.

0

5

−5
0 5 1510 20

er
ro

r

t
(a) ǫ = 1 andβ = 1

0

5

0 5 1510 20

er
ro

r

t
(b) ǫ = 0.01 andβ = 1

Fig. 3: Performance evaluation of the algorithmsFOI-DC
andSOI-DC with respect to input signals which are different
from one another by static values. Figure 2 shows the
network and inputs employed (here, withθ = 0). Dashed
(resp. solid) lines represent the error between the agreement
states of the algorithmFOI-DC (resp.SOI-DC) and the input
average. As guaranteed by Lemma 5.1, the algorithmSOI-
DC converges with zero steady-state error for arbitrary
values ofǫ.

 

 

0

5

10

− 5
0 5 1510 20

x1 x2 x3 x4 x5 Input Average

x
i

t
Fig. 4: Execution of the algorithm (18) over the networked
system of Figure 2, withθ = 1, ǫ = 0.01 and β1 =
1.2, β2 = 1, β3 = 0.5, β4 = 0.4, β5 = 0.2. Agent i
has rate of convergenceβi, hence, agent5 has the slowest
rate of convergence.

[5] P. Yang, R. Freeman, and K. Lynch, “Distributed cooperative active
sensing using consensus filters,” inIEEE Int. Conf. on Robotics and
Automation, (Roma, Italy), pp. 405–410, April 2007.

[6] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,”IEEE Transactions
on Automatic Control, pp. 1520–1533, September 2004.

[7] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consen-
sus on mobile networks,” inIFAC World Congress, (Prague, Czech
Republic), July 2005.

[8] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” inIEEE Conf.
on Decision and Control, (San Diego, CA), pp. 398–403, Dec. 2006.

[9] H. Bai, R. Freeman, and K. Lynch, “Robust dynamic average consen-
sus of time-varying inputs,” inIEEE Conf. on Decision and Control,
(Atlanta, GA, USA), pp. 3104–3109, December 2010.

[10] M. Zhu and S. Mart́ınez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[11] F. Bullo, J. Cort́es, and S. Martı́nez, Distributed Control of Robotic
Networks. American Mathematical Society, Princeton University
Press, 2009. Available at http://www.coordinationbook.info.

[12] H. K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.
[13] D. Gleich,Models and Algorithms for PageRank Sensitivity. PhD the-

sis, Stanford University, September 2009. Chapter 7 on MatlabBGL.


