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SUMMARY

This paper introduces a novel continuous-time dynamicameiconsensus algorithm for networks whose
interaction is described by a strongly connected and weghinced directed graph. The proposed
distributed algorithm allows agents to track the averageeaif dynamic inputs with some steady-state error
whose size can be controlled using a design parameter. Hadysstate error vanishes for special classes
of input signals. We analyze the asymptotic correctnessi@faigorithm under time-varying interaction
topologies and characterize the requirements on the geefmi discrete-time implementations. We show
that our algorithm naturally preserves the privacy of trealanput of each agent. Building on this analysis,
we synthesize an extension of the algorithm that allowsviddal agents to control their own rate of
convergence towards agreement and handle saturation $auntthe driving command. Finally, we show
that the proposed extension additionally preserves theagyiof the transient response of the agreement
states and the final agreement value from internal and ettadversaries. Numerical examples illustrate

the results. Copyright 201X John Wiley & Sons, Ltd.

Received ...

KEY WORDS: dynamic average consensus; time-varying indghass; directed graphs; rate of
convergence; limited control authority; privacy preséioa

Copyright®© 201X John Wiley & Sons, Ltd.

Prepared usingncauth.cls [Version: 2010/03/27 v2.00]



2 S.S.KIA, ET AL.

1. INTRODUCTION

This paper studies the dynamic average consensus problem for a kefinsartonomous agents.
Given a set of time-varying signals, one per agent, this problem conéidésigning a distributed
algorithm that allow agents to track the time-varying average of the signalg asiy information
from neighbors. Solutions to this problem are of interest in scenariog¢haire the fusion of
dynamic and evolving information collected by multiple agents. Examples include rabtii-
coordination [], distributed spatial estimatior2] 3], sensor fusion 4, 5], feature-based map
merging p], and distributed tracking7]. We are particularly interested in algorithmic solutions
that allow agents to adjust the rate of convergence towards agreengeabl@to handle constraints

on actuation, and preserve the privacy of the information available to tgamsi adversaries.

Literature review. Consensus problems have been intensively studied over the lastTearain
body of work focuses on the static case, where agents aim to reackhnsoisson a function
depending on initial static values, see e#8.9, 10, 11, 12] and references therein. In contrast,
the literature on dynamic consensus is not as rich. The initial widilgJroposes a dynamic average
consensus algorithm that under proper initialization is able to track, with #esaly-state error,
the average of dynamic inputs whose Laplace transfer functions havesitone pole at the
origin and the rest of the poles are in the left half-plane.4p the authors generalize the static
consensus algorithm ofiLf] to track the average of inputs with bounded derivatives which differ
by a zero-mean Gaussian noise. The algorithm acts as a low-pass filteldkhat agents to track
the average of dynamic inputs with a non-zero steady-state error, whitkhes in the absence
of noise. Using input-to-state stability analysi$5] proposes a proportional-integral algorithm to

solve the dynamic consensus problem which, from any initial conditionyerges with non-zero
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DYNAMIC AVERAGE CONSENSUS 3

steady-state error if the signals are slowly time-varying, and exactly if thelsigare static. This
algorithm is generalized irLp] to achieve zero-error dynamic average consensus of a specil clas
of time-varying input signals whose Laplace transform is a rational fumetith no poles in the
left-hand complex plane. The proposed algorithm employs frequenmaitidools and exploits the
properties of the inputs’ Laplace transforms. All the algorithms mentionedeatiee designed in
continuous time and work for networks with a fixed, connected, and wtddegraph topology.
The results of 15] can be applied to networks with a strongly connected and weight-balanced
digraph topology provided each agent can communicate with its out-nemglamal knows the
weights of its incoming edges. Such requirement may be hard to satisfy iargzemwhere the
topology is changing. The worl [] develops an alternative class of discrete-time dynamic average
consensus algorithms whose convergence analysis relies on inpuiptg-stability properties in

the presence of external disturbances. With a proper initialization of ttesste proposed schemes
can track, with a bounded steady-state error, the average of the tiyiagvenputs whoseth-order
difference is bounded. If theth-order difference is asymptotically zero, the estimates of the average
converge to the true average asymptotically with one timestep delay. Othezsclafsalgorithms
related to our work are leader-follower algorithms for networks of mobilenegwith integrator
dynamics, e.g., sed §, 19, and robust average consensus algorithms in the presence of additiv
input disturbance<2[)]. In the former scenario, agents reach consensus by following thesigmal

of the leader agent(s), instead of converging to the average of inmailsigcross the network. In the
latter case, the algorithm performance achieving consensus is analythedpresence of dynamic
external disturbances. A common limitation of the works cited above is the lazdnsideration of
restrictions on the rate of convergence of individual agents, boucdieitiol authority, or privacy
issues. Regarding the latter, the above algorithms require agents to shaegthement state with
their neighbors, and, in some cases, even their local inputs. Therdfadyversaries are able to
listen to the exchanged messages, they could infer local inputs, sensitiggetit responses and

final agreement states of the network.
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4 S.S.KIA, ET AL.

Statement of contributiondVe begin by providing a formal statement of the dynamic average
consensus problem for a multi-agent system, paying special attention tat¢hefrconvergence,
limits on control actuation, and the preservation of privacy. Our starting fothe introduction of a
continuous-time algorithm that allows the group of agents communicating otrengly connected
and weight-balanced digraph to track the average of their referenatsinfth some steady-state
error. We carefully characterize the asymptotic convergence prap@etftithe proposed strategy,
including its rate of convergence, its robustness against initializationsemmod its amenability
to discrete-time implementations. We also discuss how the algorithm performspecifically,
the steady-state error and the transient response) can be tuned viagiga garameters. For
special classes of inputs, which include static inputs and dynamic inputs diffiehby a constant
value, we show that the steady-state error vanishes. We also establialyahiehm correctness
under time-varying network topologies that remain weight-balanced aridfariéely often jointly
strongly connected. Our next step is the introduction of an extension girtdgosed dynamic
average consensus algorithm to include a local first-order filter at agett. We show how this
extension allows individual agents to tune their rate of convergence devaggreement without
affecting the rest of the network or changing the ultimate tracking erronthddVe also establish
that, under limited control authority, this extension has the same correctnasantees as the
original algorithm as long as the input signals are bounded with a bouetiye growth. Several
simulations illustrate our results. Our final step is the characterization of iecypreservation
properties of the proposed dynamic average consensus algorithmengidar adversaries who aim
to retrieve information about the inputs, their average, or the state trajectdhiese adversaries
might be inside (internal) or outside (external) the network, do not ineerfeth the algorithm
execution, and may have access to different levels of information, su&havledge of certain
parts of the graph topology, the algorithm design parameters, initial corglitiwrthe history of
communication messages. We show how the proposed algorithms naturabiyvprése privacy
of the input of each agent against any adversary. Moreover, tablish that the extension that

incorporates local first-order filters protects the privacy of the agee state trajectories against
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DYNAMIC AVERAGE CONSENSUS 5

any adversary by adding a common signal to the messages transmitted angittgpre This

strategy also preserves the privacy of the final agreement valuesagaiarnal adversaries.

Organization. Section 2 introduces basic notation, graph-theoretic concepts, and the model of
time-varying networks. SectioBiformally introduces the dynamic consensus problems of interest.
Section4 presents our dynamic average consensus algorithm, establishes itstremse and
analyzes its properties regarding changing interaction topologies, téidoree implementations,
and rate of convergence. Sectibrintroduces a modified version which enables agents to opt for
a slower rate of convergence and solves the consensus problem ireseaqe of bounded control
commands. Sectiof considers the privacy preservation properties of the proposedithlysr
Section7 presents simulations illustrating our results. Finally, Sec8ayathers our conclusions

and ideas for future work.

2. PRELIMINARIES

In this section, we introduce basic notation, concepts from graph theed/throughout the paper,

and our model for networks with time-varying interaction topologies.

2.1. Notational conventions

The vectorl,, is the vector ofn ones,0,, is the vector ofn zeros, andl,, is the identity matrix
with dimensionn x n. We denote byA " the transpose of matriX. For a square matrixd we
defineSym(A) = 1(A+ AT). We useDiag(A,,--- , Ay) to represent the block-diagonal matrix
constructed from matriced, ..., Ay. We defindI,, = I,, — %1,112. We denote the induced two-
norm of a real matrixA by ||A|], i.e., ||A|| = omax(A), Whereo,.x is the maximum singular

value of A. The spectral radius of a square matexis represented by(A). For a vectoru,

we use||lu|| to denote the standard Euclidean norm, i) = vVuTu. For vectorsu,--- ,uy,
we let (uy,--- ,uy) represent their aggregated vector. For a complex varighigc) indicates

its real part. For a scalar variable the saturation function with limi® < @ < oo is indicated by
saty (u), i.e.,saty (u) = sign(u) min{|u|, @ }. We letd; (e) € O(d2(€)) denote the fact that there exist
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6 S.S.KIA, ET AL.

positive constants andk such thatd; (e)| < k|d2(€)|, ¥ |e| < c. For network-related variables, the
local variables of each agent are distinguished by a superscriptu&#.,s the local dynamic
input of agenti. If p’ € R is a local variable at agerit the aggregateg’’s are represented by

p=(p',...,p") € RY. Our analysis involves linear systems of the form

@(t) = Az(t) + Bul(t), 1)

where statese(t) take values in the Euclidean spaf®, and inputs are measurable locally
essentially bounded maps: [0, 0) — R™. Thezero-systenassociated tol] is by definition the
system with no inputs, i.e¢ = Axz. We denote byj|ulless the (essential) supremum norm , i.e.,

lu|less= sup{|ju(t)||, t > 0} < oo. Theconvergence ratef a stable linear systeth = Ax is

r =inf{x > 0|3k > 0 such that|z(¢)|| < x||z(0)||e™**, ¢ > 0}. 2

Here, z(t) is the solution of the system when it starts from any initial statg) € R™. This
definition implies that for a linear time-invariant dynamical system, the rate ofergance is the

least negative real part of the eigenvalues of the system matrix.

2.2. Graph theory

We briefly review some basic concepts from the graph, see ¥h.A directed graphor simply
adigraph, is a pairG = (V,€), whereY = {1,..., N} is thenode seand€ C V x V is theedge
set An edge fromi to j, denoted by(s, j), means that ageritcan send information to agentFor
an edge(i, j) € &, ¢ is called anin-neighborof j, andj is called anout-neighborof . A digraph
g = (v, &) is aspanning subgraplof a digraphG = (V,€) if & c £. A graph isundirectedif
(1,7) € € anytime(4,4) € €. Given digraphg; = (V,&;), i € {1,...,m}, defined on same node
set, thejoint digraph of these digraphs is the uniaj_,G, = (V,& U& U ---UE,). A directed
pathis an ordered sequence of vertices such that any ordered paitiokgaappearing consecutively
is an edge of the digraph. directed treeis an acyclic digraph with the following property: there
exists a node, called the root, such that any other node of the digrajple caached by one and only
one directed path starting at the rootdkected spanning treef a digraph is a spanning subgraph
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DYNAMIC AVERAGE CONSENSUS 7

that is a directed tree. A digraph is callstlongly connected for every pair of vertices there is a
directed path between them.

A weighted digraphis a tripletG = (V,&,A), where (V,€) is a digraph andA € RV*V is a
weighted adjacencymatrix with the property that;; > 0 if (¢,j) € £ and a;; = 0, otherwise.
We usel'(A) to denote a digraph induced by a given adjacency mariXA weighted digraph
is undirectedif a;; = a;; for all 4,5 € V. The weighted out-degreand weighted in-degreef a

aj; and d*'(i) = Y1, a;;. We let i, = max  d™(i)

nodes, are respectively,"&l(i) = ZN =1 Lax { )
- 1e{l,..., N

j=1
denote the maximum weighted out-degree. A digraptvesght-balancedf at each node € V,
the weighted out-degree and weighted in-degree coincide (although thay lmeiglifferent across
different nodes). The out-degree matBR" is the diagonal matrix with entrieR%" = d®“'(;), for
alli € V. The(out-) Laplacianmatrix isL = D°"' — A. Note thatL1y = 0. A weighted digrapl is
weight-balanced if and only if% L = 0. Based on the structure bf at least one of the eigenvalues
of L is zero and the rest of them have nonnegative real parts. We denat@gémalues ot by
iy i€ {1,...,N}, wherex; = 0 andR(\;) < R(}\;), for i < j. For a strongly connected digraph,
zero is a simple eigenvalue bf We denote the eigenvalues®fm (L) by \;,i € {1,...,N}. Fora

strongly connected and weight-balanced digraph, zero is a simple eigemi&ym(L). For such

a digraph, we order the eigenvaluesSpin(L) asA; =0 < Ay < A\g < --- < Ay.
2.3. Time-varying interactions via switched systems

Here, we introduce our model of networks with fixed number of agentsrhatvarying interaction
topologies. LetV, £(t), A(t)) be a time-varying digraph, where the nonzero entries of the adjacency
matrix are uniformly lower and upper bounded, ig;(t) € [a,a], where0 < a < g, if (j,7) € £(t),
anda;; = 0 otherwise. Our model of time-varying networks is thgft) = I'(A,)), t > 0, with
o:[0,00) = P ={1,...,m} apiecewise constant signal belonging to some switching gdere,

m can be infinity. In our developments later, we provide precise specificafiiwis. By piecewise
constant, we mean a signal that only has a finite number of discontinuities fmaayime interval

and that is constant between consecutive discontinuities (no chattéiitigput loss of generality,

we assume that switching signals are continuous from the right. The unsfatnility of switched
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8 S.S.KIA, ET AL.

linear systems with time-dependent switching signals (where uniformity rédetse multiple
solutions that can be obtained as the switching signal ranges over a sgisehjris characterized

by the following result.

Lemma 2.JAsymptotic stability of switched linear systems implies exponential stabflitj) [
For linear switched systems with trajectory-independent switching, uniésymptotic stability is

equivalent to exponential stability.

We end this section by introducing the following notations. Given a time-vagdigngph, we denote
by Uﬁ’jg(t) the joint digraph in the time intervdt,,t;) wheret; < ts < +oco. We say a time-
varying graphg(t) is jointly strongly connectedver the time-intervalt, , o) if Uﬁfg(t) is strongly
connected. The time instants at which the switching signaldiscontinuous are callesvitching
timesand are denoted by, ¢4, to, - - -, Wherety, = 0. We uselL,, to represent the out-Laplacian of

the digrapHh’(A,).

3. PROBLEM STATEMENT

We consider a network d¥ agents with single-integrator dynamics given by
i'=c, ie{l,...,N}, (3)

wherez® € R is theagreement statandc’ € R is thedriving commandf agenti. The network
interaction topology is modeled by a weighted digrgplAgent: € {1, ..., N} has access to atime-

varying input signak‘ : [0, ) — R. The problem we are interested in solving is the following.

Problem 1(Dynamic average consensus)
Let G be strongly connected and weight-balanced. Design a distributed algaitbimthat each

agent’s state’(t) asymptotically tracks the averaggzj\[: L v (t) of the inputs. |

This problem finds numerous applications in networks of multiple agents thattaess to partial
and evolving information, and aim to combine it in a dynamic fashion. Exampéesuamerous and
include data fusion, spatial estimation, and localization and mapping, to name Eniealgorithm
design amounts to specifying a suitable driving commeéntbr each agent € {1,...,N}. By
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DYNAMIC AVERAGE CONSENSUS 9

distributed, we mean that agerinly interacts with its out-neighbors. In addition, we also consider
variations of the problem above that are intended to satisfy some pracscaisishat arise in
using the consensus algorithm in applications where the agent statepomdesto a physical
guantity such as position or velocity in motion coordination of autonomous molsleteign such
applications, a genuine concern is whether the comméantictated by the consensus algorithm
can be implemented given the physical limitation of the actuation systems. This tastiva to

formulate the following variation of Probleth

Problem 2(Dynamic average consensus with controllable rate of convergence)

Solve Probleni such that each agent converges at its own desired rate of congergen |

By giving a freedom to choose their desired rate of convergence,llaw agents with limited
control authority to opt for a slow rate of convergence. We can alsotlusecontrol over
the individual rate of convergence of agents in scheduling different dimarrivals. This can
benefit applications such as payload delivery or aerial surveillaniteodgh reducing the rate of
convergence helps with cases where control authority is limited, there isarargee that control

bounds, if present, would be satisfied. This motivates us to formulate th@mdtem.

Problem 3(Dynamic average consensus with limited control authority)

Solve Probleni under bounded driving commands, i#.= sat (¢?) foralli € {1,...,N}. O

Finally, we consider the problem of dynamic average consensus withcgrigreservation in
the presence of adversaries. Our motivation to study such properties $tem the fact that
privacy guarantees on a distributed algorithm facilitate the agent partigipatithe completion
of cooperative tasks. In an average consensus problem, theypcoacern of agents can be local
(e.g., some or all of the agents do not want to reveal their local inputs taithiele world) or global
(e.g., all agents do not want to reveal their agreement value to agernitteaugsvork). We consider
adversaries inside or outside the network that do not interfere with thethlgamplementation
but seek to steal information about the inputs, agreement value, or #enagnt state trajectories of
the individual agents. The information these adversaries can acckgteimthe time history of intra
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10 S.S.KIA, ET AL.

network communication messages, partial or full knowledge about the coiwation topology, and

the algorithm design parameters, and/or its initial conditions.

Problem 4(Dynamic average consensus with privacy preservation)

Solve Problem4-3 such that the following privacy requirements are satisfied

(a) the local inputs of the agents should not be revealed or be recciitst iy any adversary;
(b) the agreement value should not be revealed to or be reconstrugtibktdrnal adversaries;

(c) the agreement state should not be revealed to or be reconstructéuhy byversary. O

For vector-valued inputs, one can apply the solution of Problerhi each dimension.

4. DYNAMIC AVERAGE CONSENSUS

In this section, we introduce a distributed dynamic average consensusthatgdhat solves
Probleml with a steady-state error for arbitrary time-varying input signals. We gshaivthe size
of this error can be controlled using a design parameter and that, folakpksses of inputs,
the steady-state error is zero. We also analyze the asymptotic correcfribssalgorithm under
time-varying interaction topologies and characterize the requirements otefisze for discrete-

time implementations.
4.1. Fixed interaction topology

Here, we assume that the interaction topology of the network is fixed. WWegeathe following

distributed algorithm as our solution for Problédm

N
it =4 — a(z’ —u') - BZ Lijal — o', (4a)
j=1
N
o' =aB ) Lijal, (4b)
j=1

where fori € {1,..., N}, z*,v* € R are variables associated with agénmlso, L is the Laplacian
of the digraphG modeling the interaction topology. This algorithm uses the last two term&apf (
as a proportional integral feedback to impose agreement among ndighlageents while these
agents, because of the first two terms 4§( are moving towards their respective input signal.
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DYNAMIC AVERAGE CONSENSUS 11

Under suitable conditions on the communication topology, explained belowctinésre results in
each agents eventually following the average of all the inputs acrosstiherkeThe constants,
B € R are design parameters that can be used to tune the algorithm perforimatieefollowing,

we study the convergence and stability properties by using the equicalepact form below

g = oy — Ly —w, (5a)
w = afly — Hy(i + an). (5b)
where
- 1 &
ylle_ﬁzluja iE{lv"~7N}7 (63.)
=
w=v—0, U=Iy(0+au). (6b)

Recall from Sectio thatz? is the agreement state of agenthus, with the change of variable&s]
we are transferring the desired equilibrium of the system, in agreementtstaaro. We start our

study by analyzing the stability and convergence properties of the geters of £), i.e.,

Y Y —aly — L —1Iyn
=A ,  WhereA = . @)
w w afL 0
In the following, we show that the dynamical systen), (Over a strongly connected and weight-

balanced digraph, is stable and convergent.

Lemma 4.YAsymptotic convergence of))
Let G be strongly connected and weight-balanced. For@ang > 0, the trajectory of ) overg
starting from any initial conditiony(0), w(0) € R” satisfies,
) a1 N ) 1 N
v =~ j:1wﬂ(o), w'(t) — N;w](O), ast - oo, Yie{l,...,N}, (8)

exponentially fast with a rate of convergence upper boundedibya, SR ()\2)}.

Proof

Consider the following change of variables where- \/LﬁlN and R is such thatr" R = 0 and
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12 S.S.KIA, ET AL.

R'R=1Iy_,,
p Yy Iy 0 ;7 0
=TT, , Ty = , Ty = » Ts= [7‘ R} - O
q w aIN IN 0 113—r

We partition the new variables g8 = (p1,p2.n) and g = (¢1,g2.n), Wherep;,¢; € R and

pa:n, g2:n € RN~L Using @) the dynamics 7) can be stated in the following equivalent form

D1 ~|m _ 0 -1
_AlT, A= , (10a)
a1 | Ka 0 —a
P2:N _|p2:~ _ ~BRTLR  —Iyn_
_a . A= . (10b)
q.Q:N_ _Q2:N L 0 —O(IN_l

The eigenvalues ot are0 and —a. The eigenvalues of the matrif are —«, with multiplicity

N —1, and —gX\;, with i € {2,..., N}. Recall that);’s are eigenvalues ot. For a strongly
connected digraphy; = 0 and the rest of the eigenvalues have positive real parts. Therédore,
a, B > 0, the dynamical systemi()), and equivalently¥), is a stable linear system.

The null-space of the system matuikis spanned byl y, —aly), the eigenvector associated with

zero eigenvalue. Therefore))(converges exponentially fast to the set

{(va) | Y= ,LL]-Na w = 7/1'0‘1N7 ne R} (11)

Left multiplying both sides of{) by Diag(0x ", 15 ") and invoking the weight-balanced property

of the digraph, we obtaiEf\L1 W' = 0, and therefore,

N N
D wit)=> w'(0), Vt>0. (12)
=1 =1

The combination of 11) and (L2) yields that, from any initial conditiony(0), w(0) € RY, the

trajectory of the dynamical systeni)(satisfies §), exponentially fast. Based oR)( the rate of

convergence imin{«, SR(A\2)}. O

The next result further probes into the properties of the dynamicalmy@eby upper bounding
the difference between the stafeof agent; at any timet and the equilibrium value. This bound is
instrumental later in the characterization of the steady-state errdy.of (
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DYNAMIC AVERAGE CONSENSUS 13

Lemma 4.ZUpper bound on trajectories of)j

Under the assumptions of Lemmidl, the following bound holds for eache {1,..., N},

< Hy(t) + a_lr'rTw(O)H < s(t),

. a_l N .
v(H+ 5 w0

where
s(t) = (et 4 e~ Phet) y(O)H tateot w(O)H
(B3 = a) e — et (ally(0)]| + |[w(©)]) , it @ # 8,
. (13)
teBat (aHy(O)H n Hw(O)H) , if o — 8o,
Proof

The solution of the state equationlOj from any initial condition y(0),w(0) € RY is

(p1(t), q1(t), Pa:n (), @2:n (1)) = () (p1(0), ¢1(0), P2:n(0), g2:n (0)), Where

1 a (e —1) 0 0

0 emot 0 0

0 0 ®(t,0) — [ ®(t,7)e T dr
0 0 0 e In_q

and®(t,7) = e ARTLR(t=7) Now, from [22, Fact 11.15.7, item xvii], we deduce

H(I,(t,T)H _ H e—,BRTLR(t—T) ’ S e—ﬂj\z(t—T)7 (15)
and hence
t t R
H / B(t,7)e 7 dTH < / e Art=T) gmaT g (16)
0 0
Now, using the change of variable®(one has
y(t) = S11y(0) + S12w(0), (17)
where
t
Sii=e “rr’ + R®(t,00R" — aR( / ®(t,7)e " dr)R', (18a)
0
t
Sip=(—at+ate rrT — R(/ ®(t,7)e T dr)R'. (18b)
0
The result now follows from usinglf) and (L6) to bound the expressio ). O
Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)
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14 S.S.KIA, ET AL.

Next, using the results guaranteed by Lemfrizwe study the convergence and stability properties
of our proposed dynamic average consensus algorithnwe start by establishing an upper bound

on its tracking error for any given initial condition.

Theorem 4.1Upper bound on the tracking error af)j
Let G be strongly connected and weight-balanced. Each agent has a peamvisnuously
differentiable inputu’(t). For «, 8 > 0, the trajectory of the algorithm4) over G starting from

any initial conditionz(0), v(0) € R¥ satisfies, for alf € {1,..., N},

t
xz(t)—%zw(t)—i-% v (0)] <s(t) + /0 e~ Pha(t=T) ’nNu(T)Hdnu (19)
j=1 j=1
(Bha — @)L (e— —e—Bizt)Hu(o) ifa# B,
te=Bat ||4(0)], if = Bha,

wheres(t) is defined in {3), andy andw are defined ing).

Proof
Using the change of the variable®) {ve can represent), an equivalent representation df(in

the following equivalent form wherd and A are defined in10),

D1 ~ |P1
=A , (20a)
| 91 a1
D2:N _ | PN 0
- A - (it + o), (20D)
qZ:N q2:N RT

For any given initial conditions, the solution of the state equatii is

p1(t) p1(0) 0

q1(t) o) q1(0) B 0 |
pQ;N(t) pg;N(O) fot @(t, T) e dr (q2:N( +R U fO t 7' 1:[r ( )dT
| q2:n (1) | (22n(0)| | —RT4(0) + RTa(t) ]

whereQ(t) is defined in {4). Recalling the change of variable3 (we have

y(t) = S119(0) + S12w(0) — R/Ot ®(t,7) e dr R"u(0) + R/Ot ®(t,7)R"u(r)dr, (21)
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Prepared usingncauth.cls DOI: 10.1002/rnc



DYNAMIC AVERAGE CONSENSUS 15

where S;; and S, are defined in 18). Note that 6b) implies that>~ | wi(0) = 321 v#(0).
Notice also thaiR™ = R Iy, andHRH = HRTH = omax(R) = 1. Then, by recalling 15), it is

straightforward to show thaflg) is satisfied. O

The next result shows that, for input signals whose orthogonal giajeinto the agreement space

are essentially bounded, the algorithih $olves Problem with a bounded steady-state error.

Corollary 4.1(The algorithm {) solves Problen)

Let G be strongly connected and weight-balanced. Assume that the derdvafitiee inputs of the
network satisfy||TIy|less= v < oco. Then, for anya, 8 > 0 the algorithm 4) over G initialized
atz*(0),v'(0) € R such thafy" " | v(0) = 0 solves Problen with an upper-bounded steady-state

error. Specifically,

lim sup <(BA)ly, ie{l,...,N}. (22)

t—o00

, 1L
7 (1)~ 7 2w ()
Jj=1
Proof
In Theorem4.1, for a strongly connected and weight-balanced digraph, we showédhba
trajectories of the algorithm?, for any z¢(0),v*(0) € R, i € {1,..., N}, satisfy the bound1(©).

Then, we can easily deducg?) from (19) using

t ~
/ o= Ba(t-7)
0

‘HN’I:L(T)"C[T < (ﬂj\g)_l(l — e_ﬁj‘zt)'y.

Remark 4.1 Effect of faulty initial conditions)

The conditionzfilvi(o) =0 of Corollary 4.1 can be easily satisfied if each agent starts at
v%(0) = 0. This is a mild requirement becauseis an internal state for agentand therefore it

is not affected by imperfect communication errors. Additionally, for largevorks, if we assume

that the initialization error is zero-mean Gaussian noise, we can ezpjéqtvi(o) =0. 0

Remark 4.ZTuning the performance ofl via design parameters)
Corollary 4.1 shows that to reduce the nonzero steady-state error, one can eitleasithe graph
connectivity (largei\,) or use a larger value gf. The parametex can also be exploited to regulate
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16 S.S.KIA, ET AL.

the algorithm performance. According to the boudd)(the rate of convergence of the transient
behavior is governed byin{c, 8\, }. If one is forced to use largé\, to reduce the steady-state

error, them can fulfill the role of regulating the rate of convergence of the algorithm. |

Remark 4.3Comparison with input requirements of the solutions in the literature)

In order to guarantee bounded steady-state tracking error, the soltiarffer for Probleml
through Corollaryd.1 only requires that the projection of the network’s aggregated inputates
vector into the agreement space is bounded. This is more general thaeqgthi;ments in the

literature, which generally ask for bounded input and/or boundedatees (e.g.,4, 15, 17]). O

In the following, we identify conditions involving the inputs and their derivegiwinder which the

algorithm @) solves Probleni with zero steady-state error.

Lemma 4.3Conditions on inputs for zero steady-state errordf (
Let G be strongly connected and weight-balanced. Assume there exist8 such that, for all

i € {1,..., N}, one of the following conditions are satisfied

(@) @i (t) + au'(t) converges to a common functioft) ast — oc;

(b) i’ (¢) + axi(t) converges to a common functiéft) ast — oo.

Then, the algorithm4) overg with the givena, andz#(0), v/(0) € R such thaf"" | v*(0) = 0, for

anyj > 0, makesr'(t) — + Z;.V:l u’(t) ast — oo, foralli € {1,...,N}.

Proof

Using the change of variable8d) we can representl] in the following equivalent compact form

y=—ay— fLy —v+Iy(u+ au), (23a)

v = afLy. (23b)

When condition (a) holds we havd y (@ + au) — 0, ast — oo. Then, @3) is a linear system
with a vanishing inputlly (@ + aw). Therefore, it converges to the equilibrium of its zero-
system. In light of Lemma. 1, we conclude thag'(t) — — 2 Z;.Vzl v’ (0) asymptotically for all
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DYNAMIC AVERAGE CONSENSUS 17

i €{1,...,N}. However, due to initialization requirement we ha@fil v%(0) = 0. As a result
' (t) = % Z;il u’ (t) globally asymptotically for € {1,..., N}.

When condition (b) holds we havBIy (i + auw) — 0, ast — oo. Recall §) the equivalent
representation of4). It is a linear system with a vanishing inpliy (% + cu). Then, using

a similar argument used fo2g) above, we can show that ib)( v'(t) — —0% Z;\lewg(o)
asymptotically for alli € {1,..., N}. Using @b), we can showy Y | wi(0) = =N, +i(0). As a

resultz’(t) — + Zé\’:l u’ (t) globally asymptotically fos € {1,..., N}. O

Remark 4.4Inputs that satisfy the conditions of Lemri&)

The classes of inputs in Lemn¥a3 depend on the parametarwhich must be known by each
agentin order to obtain zero steady-state error. There are clasapsitsfthat satisfy the conditions
regardless of the value of, such as static inputs and dynamic inputs which differ from one another
by static values. For these classes of inpIlks,(i + at) = 0, and the convergence is exponential

with ratemin{«, SR(A2)}. m|

4.2. Time-varying interaction topologies

In this section, we analyze the stability and convergence properties ofyi@mic average
consensus algorithmd) over networks with changing interaction topology. Changes can be due
to unreliable transmission, limited communication/sensing range, or obstactg3?,l%t), A(t))

be a time-varying digraph, where the nonzero entries of the adjacenax muaruniformly lower

and upper bounded (i.ex,;(t) € [a,a], where0 < a < a, if (j,i) € £(t), anda;; = 0 otherwise).
Intuitively one can expect that consensus in switching networks will oiédhere is occasional
enough flow of information from every node in the network to every otloglen Then, according

to Section2.3, in order to describe our switching network model, we start by specifyiagéh of

admissible switching signals.

Definition 1(Admissibleswitching setS,amis)
An admissible switching s&f.qmis IS a set of piecewise constant switching signald0, co) — P
with some dwell time, (i.e.,tx1 — ¢ > tr > 0, forallk =0,1,...) such that
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18 S.S.KIA, ET AL.

o the induced digraph(A, ) is weight-balanced for > o;
e the number of contiguous, nonempty, uniformly bounded time-interialst; ., ), j =
1,2,..., starting att;, = to, with the property thaUZ{“F(AG(t)) is a jointly strongly

connected digraph goes to infinity s+ oc. O

Our model of network with switching topology is th&{A, ), with o € S,amis- The algorithm 4),

after applying the change of variableés,(is represented in compact form as follows

Y Y 0 —aly — BLlyy —In
— Aa’(t) _ R Aa(t) = . (24)
w w IIy (’LL + Oz'it) O‘B'—a(t) 0.
Similarly to our analysis of the algorithm over fixed interaction topologies, we Isyaexamining
the zero-system o), i.e.,
Y Y
= A, . (25)
w w
The following result analyzes the convergence and stability propertidseawitched dynamical

system £5) when the switching signal € S,amis.

Lemma 4.4Asymptotic convergence o2))
Leto € Saamis and consideg(t) = I'(A, ) for ¢ > 0. Then, for any, 3 > 0, the trajectory of the

algorithm @5) starting from any initial conditiony(0), w(0) € R¥ satisfies §), exponentially fast.

Proof
Using the change of the variable®) ,(we can represenff) in the equivalent form(0) in which A

andL are replaced byTU(t) andL, ), respectively. We can writg as follows
p=-T,L,Tsp—q. (26)

We can look at this dynamical equation as a linear system with ippuitich vanishes exponentially
fast (notice thaj = —aq). Next, we examine the stability of zero-system &6)( Under the state

transformation = T3p, this zero-system can be represented in the following equivalent form

77 = _Lan- (27)
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DYNAMIC AVERAGE CONSENSUS 19

According to P, Theorem 2.33], when the switching sigaalk such that the number of contiguous,
nonempty, uniformly bounded time-intervats, . ¢;.,), j = 1,2, ..., starting att;, = t,, with the
property thatuz-;“F(Ag(t)) has a spanning tree, the@7] asymptotically achieves consensus.
Invoking this result, we can conclude that fere S.qmis, the trajectories of 47) converge
asymptotically to+- Ej.v: 1 1;(0) wheren;(0) is theith element ofp(0). For zero-system of2(),

this is equivalent t@; (t) — p1(0) andpa.x () — 0 uniformly asymptotically for alb € S,amis-

The switching signhat € S.amis IS a trajectory-independent (it is time-dependent) switching signal.
Then, Lemma2.1 implies that the convergence of the zero systemas (s indeed globally
uniformly exponentially fast. Using input-to-state stability results (s&& P4]), then we can
conclude that in46), p; (t) — p1(0) andpq.x () — 0 ast — oo uniformly globally exponentially.

Recall the change of variabl@)( then it is easy to show that fo2%) we also haveg). O

Obtaining an explicit value for the rate of convergence 25) (for all possibles € S,amis IS
not straightforward. However, we can show that the rate of conmemgés upper bounded by
max (R(Ap2)), where ), is the eigenvalue of, with smallest nonzero real part. The following
p

result relates the upper bound on the difference between the/statef agenti at any timet and

the final agreement value to the rate of convergencé)of (

Lemma 4.5Upper bound on trajectories dty))

Under the assumptions of Lemmi&}, the following bound holds for eache {1,--- , N},

1

y@+f1,ﬁiMm)gHyﬂw+almﬁwﬂmHggﬂ, (28)

wheres(t) is the same as(t) in (13) only A, is replaced by, > 0 where),, satisfies

H e*ﬁRTLamR(t*to)

| < re Pl g > 0, (29)
for some finited < «.

Proof
We follow the same steps of the proof of Lema. The only difference is that the norm bouridb(
of the transition matrix op.. y state equation has to be modified, as explained below. We showed in
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20 S.S.KIA, ET AL.

the proof of Lemmat.5that whers € S,qumis for all ¢t > ¢, the zero-system o£€) is exponentially

stable. Therefore, there exist positﬁlg andx such that

H@(t, to) = e_BRTLg(t) R(t—to)

’ < e Pret=t0) >4 > 0.

As aresult, in the case of switched dynamical systemd,anX. is replaced by\,. Then, from (.7)

we can deduce the boungdg). O

In light of Lemma4.5, the extension of the results on the stability analysis and ultimate convergence
error bound of the algorithm4} over fixed interaction topologies to switching networks whose
switching signalo € Sagmis is straightforward. For such switching networks, Theorér and
Corollary 4.1 are valid, with the only change of replacirg\, by 5),, cf. (29), in the statement.
Because of Lemma4.4, the proof that Lemmd.3 applies to switched networks with € SagmisiS

straightforward. For the sake of brevity the detailed statements and pn@ofenitted.

4.3. Discrete-time implementation over fixed interaction topologies

Here, we study a discrete-time algorithm that solves Proldlevith non-zero steady-state error. In
doing so, we are motivated by the aim of understanding the differencesamections between
continuous- and discrete-time systems for multi-agent systems and by gractitsaderations

regarding algorithm implementability. Given a stepsize 0, fori € {1,..., N}, consider

2k +1) =2 (k) — daz' (k) — 68 Y Lij(27 (k) + v (k) — v’ (k), (30a)
N "
vilk+1) = v'(k) + 6B Y Lij(2 (k) + v (k)), (30b)
J=1
2 (k) = 2 (k) + ' (k). (30c)

Using (00 to obtainzi(k) = z*(k) — u'(k), and substituting this in309 and @0k), we obtain

N
2k +1) = 2% (k) — da(z' (k) — u'(k)) — 68 Z Lijz (k) — 0v' (k) + Au'(k), (31a)
j=1
N
vik+1) =o' (k) + 6B Y Lijal (k), (31b)
j=1
Copyright®© 201X John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢201X)

Prepared usingncauth.cls DOI: 10.1002/rnc



DYNAMIC AVERAGE CONSENSUS 21

where Au’(k) = u'(k + 1) — u*(k). Notice that the discrete-time algorithri(j is an equivalent
iterative form of @) obtained by Euler discretization with stepsizéNhend — 0, we can expect
that the stability and convergence properties &) (are similar to that of 4), i.e., 2 tracks
the average of the network inputs in i&3~!) neighborhood, provided the network topology
is strongly connected and weight-balanced digraph. Notice that the s&u@tl) allows us to
circumvent discretizing the derivative of the input signals and, as # rasaid the one-step delayed
tracking reported in17]. Next, note that:* is never communicated directly.

Next, we explore the bounds on the stepsizeuch that 80) is convergent and tracks the input
average. The proof of the results is presented in AppeAdWe start by studying the stability and

convergence properties of the zero-system.

Lemma 4.qConvergence analysis and stepsize characterization of the ze¢eorsys31))
Let G be strongly connected and weight-balanced. &af > 0, the trajectory of the zero-system

of discrete-time algorithm3(1) overg starting from any initial conditior:(0), v(0) € R satisfies

1 N N
i a i i 1 ; .
x(k)%_TZJJ(OL v(k)eﬁzlvj(oy Vie{l,...,N},
i= j=
asymptotically, ag — oo, provideds € (0, min{a !, =1 (d% )~1}). O

The following result establishes an upper bound on the solutions of thethlgd30) for any given

initial conditions. In the following, we le® (k, j) = (Iy—1 — 6BRTLR)*7.

Theorem 4.ZUpper bound on the tracking error 1))
Let G be strongly connected and weight-balanced. Each agent has anityputFor o, 3 > 0, the

trajectory of the algorithm30) overg starting from any initial conditior (0), v(0) € R¥ satisfies,

N k—1 N k—1
sk — = Sl (k) + s S (150 S v (0)| < Hy(t) +53°(1- 6a)j7'rT'w(O)H <
N j=1 N 3=0 j=1 §=0
k—1 k—1
(1= a8 3 (1= dap)| [y + | @k, 0) || + o[ (X B0k = 1.5)(1 = 507 ||[u0) |+
j=0 j=0
| (ki Bk —1,7)(1 = 6a)))||[[w(©) + § Bk —1,)(1 — sa)|||au)||+
j=0 j=
’ RIH &k —1,/)R" Au(h)|, (32)
§=0
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22 S.S.KIA, ET AL.
foralli € {1,..., N}, wherey is defined in 68 andw is
w=v—0, 0=Iy(Au(k)+ dau(k)). (33)
0

Next, we show that for networks with strongly connected and weight-bathdigraph topologies,
the discrete-time algorithm3() solves Probleml with a nonzero steady-state error, provided
6 € (0,min{a~", ~1(d® )~1}), the algorithm is initialized properly and the essential norm of

max

the projection of the input difference vector into the agreement spaceiwibd.

Corollary 4.2(The algorithm 80) solves Problem)

Let G be strongly connected and weight-balanced. Assume that the differehtiee inputs of the
network satisfyf| IIy Au|less= v < oo. Then, for anyy, 8 > 0, the algorithm 80) overg initialized
at 2*(0),v(0) € R such thaty"Y | v*(0) = 0 solves Probleni. (in the outputz’) with an upper-

bounded steady-state error provided (0, min{a~*, 3=1(d2 )~1}), specifically

max

< (Br2)"Yy, ie{l,...,N}.

lim

) 1 N oo
@ (k) = 5 D' (k)

O

One can make similar comments to those of Rendafkvegarding the tuning of the performance
of (30) via the design parametessand. In the following, we identify conditions, involving inputs

and their differences, under which the algorith®)(solves Problem with zero steady-state error.

Lemma 4.{Conditions on inputs for zero steady-state error3g)
Let G be strongly connected and weight-balanced. Assume there exdsts
(0,min{a~1, 3~ 1(d® )~1}) and o > 0 such that for alli € {1,..., N}, one of the following

max

conditions are satisfied

(@) Au‘(k) + dau’(k) converges to a common dynami¢s);

(b) Aul(k +1) — Au’(k) + daAu’(k) converges to a common dynamics).
Then, the algorithm30) overg with the givens anda, 2#(0), v(0) € R such thafy >~ | +i(0) =0,
for any 8 > 0, makese(k) — & S0, u(k), ask — oo, foralli € {1,...,N}. 0
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5. DYNAMIC AVERAGE CONSENSUS WITH CONTROLLABLE RATE OF

CONVERGENCE AND LIMITED CONTROL AUTHORITY

In this section, we address the dynamic average consensus Prablentis3. As discussed in
Section3, the goal in setting up these problems is to come up with an algorithm which is more
suitable for applications where the agreement staia (3) corresponds to some physical variable
such as position of a robotic system. In such networked systems, agentshangHimited control
authority and can not implement the high-rate commands dictated by the cosisdgarithm.

Although the rate of convergence of the algorithm can be controlled byhihieeofa and3, these
variables are centralized variables and the effect is universalsttr@setwork. One can expect that

a more efficient consensus algorithm is one that allows agents with limited powesve at their

own pace. To this end, we make a modification to the structure of the cossalgsuithm §),

F =4 — a(z —u) 5ZL”2 — o, (34a)

?-)i = O[B Z Lijzj, (34b)
i=1

it = =0 () (2" — ) + 0’ — a2t —ub) BZL”z] (34c)

where 6’ : [0,00) — R is a time-varying gain which is bounded from below and above, i.e., at
all t > 0 we have0 < §° < 0'(t) < 6%, for i € {1,...,N}. As we show below, agents that wish
to slow down their rate of convergence use this gain to adjust it. Note thadiagcstructure of
the algorithm. As such, the stability properties 8§-(34b) (information phasgare independent

of (340 and are as characterized in SectibriThe information phase allows agents to obtain the
average with a convergence rate that is common across the networkyidaids 84c) (motion
phas@ allows each agernte {1,..., N} to tweak its convergence rate by adjusting the gaiiwe
start our analysis by examining the rate of convergence of the algori@hjra(d establishing an

upper bound on its tracking error.

Lemma 5.1The algorithm 84) solves Problen2)
Let G be strongly connected and weight-balanced. For inputs whose desivattisfy|TIy @ ||ess=
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~ < oo, for anya, 4 > 0 the algorithm 84) initialized atz*(0), v(0) € R such thad N | vi(0) =0,
then we have the same ultimate tracking error bound2df. (The rate of decay of the transient

response isain{f’, o, BXQ} for each agente {1,...,N}.

Proof
Consider the information phas@4g-(34b). From Theoremt.1 and Corollary4.1, it follows that

2 — = Z _, u/(t) has the ultimate bound

/BAQ v, (35)

lim sup |z
t—o0

BRI

and converges to this neighborhood of the input average with a raiedfr, 3\, }. Next, consider

the motion phase3@o), which can be written as
P =0t (" -2+, ie{l,...,N},Vt>0.
With the change of variablet = 2 — 2%, i € {1,..., N}, this can be equivalently written as
d' = —0'(t)d", i€ {l,...,N}, Vt>0. (36)

Using the Lyapunov functio? = 1(d)2, it is not difficult to show that, foi0 < ¢’ < ¢°(¢) <

6%, (36) is an exponentially stable system which satisfies the following bound
|2i(t) — 2 (8)] = |d' ()| < |27(0) — 2 (0)| ™2, i€ {1,...,N}, Vt>0.
Therefore,
1 N 1 N
_ = J _ = j
1) N;uoﬁ) f) N;uu)

Then, we conclude thaPp) is satisfied. The rate of convergence of agastmin{#’, o, BXo}. [

< |21(0) — 2°(0)| e 2 + |2 , ie{l,...,N}, vt>0.

As before, the design parametersand 5 can be used to tune the overall rate of convergence.
Agents who wish to move at a slower pace can use the motion phas@witlmin{a, 3.} to
accomplish their goal. The time-varying natureddfallows for agents to accelerate and decelerate
the convergence as desired. Notice that the ultimate error bound gutdoytelgorithm 84) is

the same as the one for algorithd).(Therefore, the local first-order filteB4c) adjusts the rate of
convergence without having any adverse effect on the error bound
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Remark 5.XDiscrete-time implementation and switching networks)
The results above can be extended to switching networks and discreteetitimgss For brevity
this extension is omitted. In the discrete-time implementation, it is straightforwarato thtat for

convergence we should requites (0, min{f~!, a1, 3~ 1(d )~1}), whered = {r{laxN}{éi}.D
1e{l,...,

Next, we consider the case when saturation is present in the driving cainiffamfollowing result
states that, under suitable conditions, the algoritBf) is a solution for Problen3 with the same

error bounds as if no saturation was present.

Lemma 5.4The algorithm 84) solves Problen3)

Let G be strongly connected and weight-balanced. Suppose the driving caimshaach agent
i €{l,...,N} is bounded by’ > 0, i.e., i’ = sat (c'). Assume for every agernte {1,..., N},
the following holds: (a) the input signal at each agent is such %h@;vzl w is bounded, the
input derivatives satisfyiTIyt|[ess= 7 < oo, and ||if||ess= u* < oo; (b) & > pi + . Then, for
anya, 3 > 0, and constang® > 0, the algorithm 84) starting from anyz*(0), v*(0) € R such that

ZZNZI v*(0) = 0 satisfies that the ultimate tracking error boué)(

Proof

Following the proof of Lemma.1, for the information phase3@g and @4b), we have 85). To
complete the proof, we will show that under the given conditions for thetisfgnals, despite
the saturationy’ — 2% asymptotically for ali € {1,..., N}. Under the saturation constraing4)
takes the formi® = —sat (0°(z* — 2%) + 2), for i € {1,..., N}. The rest of the proof relays on
PropositionB.2. According to this result, we need to show thatzA)is a bounded signal; b)
|2(t)| < & for all t > t* wheret* is some finite time. For any given finite initial conditions and
input signals with bounded average the requirement (a) is satisfied doevergence guarantees
of (349-(34b). In the following, we show that the requirement (b) is also satisfied dueetgitien
assumptions. With change of variablés)andy = z — < Z?’Zl w1, we can represenB{d as

z2=—-ay—fOLy —w+ ﬁ Z;.V:l W 1y. Therefore,

+ lim HﬂLy(t)H ie{l,....,N}.
t—o00

t—00 T t—ooo

, . , 1L
lim |z’(t)‘ < lim |—ay'(t) — w'(t) + N Ziﬂ (1)
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Using the results and the variables introduced in the proof of Thedr&nwve can show that

N
1 B y(0) . , .
—ay—w+NZuJ1N:—{aSu_~_521 a512+522] —e “* RR"4(0) + u(t),
j=1 w(0)

whereS;; andS;, are given in {8), and we have
t
So1 = —aR®(t,0) + OZQR(/ ®(t,7)e " dr)R" + aRR" e=*,
0
t
Sy =rr' +aR( / ®(t,7)e " dr)R" + RR" e~ . (37)
0
Recall that®(t, ) = e AR'LR(t=7) then,
t t
ﬁLR/ ‘I>(t7T)RT’l'L(T)dTH - HBRRTLR/ B(t, T)RTu(T)dTH -
0 0
t
RePRLR! / BRTLRR MR BT ya(r)dr | <
0

t
Re PRILR! / BRTLRePR LR dT||HNﬂ||ess‘
0

< [ TIn|[ess+ e [TIN[ess

T T y
Re PRTLRI(SRTLRL —IN)IIHNU||eS4

Recall 1). In light of the relations above we can show that

lm [£'(t)] < p'+7v, i€{l,...,N}

t—o0

Therefore, there exists a finite timesuch thatzi(¢)| < ¢t forallt > t* andi € {1,...,N}. O

6. DYNAMIC AVERAGE CONSENSUS WITH PRIVACY PRESERVATION

Here, we study the dynamic average consensus problem with privasgrgation. We consider
adversaries that do not interfere with the implementation of the algorithm buintarested in
retrieving information about the inputs, their average, or the agreemeattstfectories of the
individual agents. These adversaries mighirtbernal, i.e., part of the network, axternal Internal
adversaries have access at no cost to certain information that exaelvexsaries do not. More
specifically, an internal adversary has knowledge of the parametetof the algorithm 4), its
corresponding row in the Laplacian matrix, and the agreement state of itemitbors. We also
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DYNAMIC AVERAGE CONSENSUS 27

assume that the agent is aware of whether the algorithm is initialized ith= 0. We refer to the
extreme case when an internal adversary knows the whole Laplacian aratiilze initial conditions

of its out-neighbors as privileged internal adversaryRegarding external adversaries, we assume
they have access to the time history of all the communication messages. Wiortferextreme
case when an external adversary has additionally knowledge of thmptersy, 3, the Laplacian
matrix, and the initial conditions aspaivileged external adversary

The next result characterizes the privacy-preservation propefttee dynamic average consensus

algorithm @) against adversaries. Specifically, we show that this algorithm satisbetem4(a).

Lemma 6.YThe algorithm {) preserves the privacy of the local inputs against adversaries)
Let G be strongly connected and weight-balanced. The executions of thétahg¢#) over G with

a, 8> 0, initialized atz?(0), v'(0) € R such thafy ¥ | v(0) = 0, satisfy

(a) an external (respectively internal) adversary cannot reearishre input of any (respectively
another) agent;
(b) a privileged adversary cannot reconstruct the input of agen{l,..., N} as long as there

existst > 0 such thati(t) # 0 for t € [0, 7).

Proof
First, we investigate the validity of claim (a). Using the results in the proof afofém4.1 and
recalling the change of variable8)( the solution of the algorithmd4j for given initial conditions

z%(0),v%(0) € R, fori € {1,..., N} can be written as follows

a(t) Si S| [20)+ (F X W)y | (XN, Wi (0)1n
= + + (38)

(1) Sor Sas| [0(0) + Ty (w(0) + au(0))| | TIy(w(t) + ault))

-R f(f &(t,7)e " dr RTu(0) + Rfot ®(t, 7)R"u(r)dr

)

QR [ ®(t,7)e " dr RTu(0) — aR [j ®(t,7) R u(7)dr + e~ RRTu(0) — RRuft)
whereS;; and S, are given in {8), andS,; and Sy, are given in 87). For an external adversary
that only has knowledge of the time historyafthe number of unknowns ir88) (i.e., w(0), u(t),
u(t), v(t), for vt > 0, a, 8 andL), regardless of the initial condition requirem@tji1 v*(0) =0,
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is larger than the number of equations. This is true even if the inputs are 3tatis, the claim
(a) for external adversaries follows. Regarding the claim (a) for mialesidversaries, we consider
the extreme case where the adversarial agent; sigythe in-neighbor of every other agent in the
network, and therefore knows the time history of the aggregated vectdow consider 4b) for

all i e v\ {j}. Recall that ageni does not knowL;;, k € V, of all agenti € V' \ {j}. Therefore,
even if it knows the initial conditions?(0), it cannot obtainvi(t), ¢t > 0. Next consider 43),
and again assume an extreme case that the adversarial jagant numerically reconstruci!
with an acceptable precision and the inputs are static. Despite these asssnipitause’ and
Zszl L;.z", vt > 0 of all agenti € V \ {j} are unknown to agent regardless of value af, this
agent cannot reconstruet from (4b). This concludes validity of the claim (a) for internal agents.
Next, we examine claim (b) considering both the internal and externaltsatyecase at the same
time. For an internal adversary, assume the extreme case when it is thghbereof every other
agent in the network. As a result, it knows the time history of the aggregatgdre. At any given

T > 0, using its knowledge of:(t) overt € [0, 7] and the information on the initial conditions and
the parameters of the algorithm, a privileged internal or external adyecaa reconstruct(t),
ie{l,...,N}, for all t € [0, 7] by integrating 4b). The adversary can also use its knowledge of
x(t) overt € [0, 7] to construct numericallg:(¢) over the same period of time. Then, the adversary

using @3a), knows the right-hand side of the following equation
N
Wt ou' = —i' —axt = Y Lya? —v', Vie{l,...,N}. (39)
j=1
Because there exists> 0 such thati’(¢) + 0 for ¢ € [0,7), (39) is an ordinary differential equation

(ODE) with variableu’. The adversary does not know the initial conditigi0), hence, it cannot

obtain the unique solution of the ODE, i.e., the dynamic inguflhis validates claim (b). O

Remark 6.XPrivacy preservation of static inputs against privileged adver3aries
To protect local static inputs from privileged adversaries, agents d@draatatic or time-varying
value to their inputs at the beginning for some short period of time (so thatetigrement
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of Lemma6.1(b) is satisfied) and then remove it. This modification does not affect thé fina

convergence properties of the algoritha). ( O

In general, the algorithm?) does not satisfy the requirements (b) and (c) of Probleidere, we

propose a slight extension d4) that overcomes this shortcoming. For eaeh{1,..., N}, let

F =0 — a2 —u) BZL”,Z — ot (40a)
N

’l')i = Oéﬂ Z Lijéj, (4Ob)
j=1

P =0t (2" — 2") + 0t — a2t —uh) ﬂZLUz — (40c)

=20+ (), (40d)

where v : [0,00) — R is a common dynamic signal which is known to all agents. Ako,
[0,00) — R such tha®’ < ¢%(t) < §" for all t > 0 is a local signal only known to ageitThe role
of the signaky is to conceal the final agreement value from the external adversarsagisfy the
item (b) in Problemd. Note that, becausE;.V:1 L;; = 0, the signak) has no effect on the algorithm
execution, and therefore, the executions of algorith#t} &nd (34) are the same. Consequently,
Lemmab.1is valid for (40) as well. As agents communicaté instead ofz?, and the signal)

is unknown to the external adversaries, recovering the steady-stat®msf the algorithm is
impossible for such adversaries. The agreement state equation of emty; ag (400 is a local
equation, with all the components set by that agent. Therefé(@), andd’ can easily be concealed
from other agents, making it impossible for adversaries to reconstruttajeetories of:’. This
allows us to satisfy the item (c) in Problefn The following result shows that the algorithmhOf

is privacy preserving and solves Problénits proof is a consequence of the above discussion and

Lemmas5.1and6.1, and is omitted for brevity.

Lemma 6.4The algorithm {40) solves Problerd)
Under the hypotheses of Lemnfal, the ultimate tracking error bound?) is valid for all
trajectories — z¢(t) of the algorithm ¢0). Furthermore,
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Figure 1. Weight-balanced digraphs used in simulatione@dje weights are equal 19.

(a) an external (respectively internal) adversary cannot reaanshe input of any (respectively
another) agent;

(b) a privileged adversary cannot reconstruct the input of agen{l,..., N} as long as there
existst > 0 such thati‘(t) # 0 for ¢t € [0,7);

(c) external adversaries cannot obtain the final agreement value ofetivork as long ag is
unknown to them;

(d) an adversary cannot reconstruct the trajectory z°(¢) of agenti € {1,..., N} as long as

x%(0) or % is unknown to it.

7. SIMULATIONS

Here, we evaluate the performance of the proposed dynamic averagensos algorithms in a

number of scenarios. Fid.shows the weight-balanced digraphs employed in the simulation.

7.1. Networks with time-varying interaction topologies

Consider a group o6 agents whose communication topology is time-varying. We consider the
following cases for the input signals
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5 XG — averag%

‘7X1 7)(2 7)(3 7)(4 X

(a) Case 1 (b) Case 2

Figure 2. Simulation results for Case 1 and Case 2 of the rinatexample of Sectior.1: Solid thick blue

line (colored thin lines) is the input average (resp. agesdratate of agents).

u'(t) = 5sint + 75 + 3, ul (t) = 0.55sin(0.8t),

u?(t) = 5sint + ﬁ +4, u?(t) = 0.5sin(0.7t) + 0.5 cos(0.6t),
Case 1: u(t) = 5sint + ﬁ + 9, Case 2: ud(t) = 0.1¢,

ut(t) = 5sint + 10e~! +4, ut(t) = atan(0.5t),

uS(t) = bsint + atant — 1.5, ud(t) = 0.1cos(2t),

ub(t) = 5sint — tanht + 1. ub(t) = 0.5sin(0.5¢).

In Case 1, the communication topology iteratively changes, in alphabetidal, ogvery two
seconds among the digraphs in Figb)-(e). In Case 2, the communication topology changes, in
alphabetical order, every two seconds among the digraphs id(@ig(e). Aftert = 10 seconds, the
communication topology is fixed at the digraph in Figa). Figure2 shows the simulation results
generated by implementing the algorith#) ith the following parameters: in Cased= =1
and in Case 2y = 3 andg = 10.

These examples show that, as long as the switching signal beloSgs.tg, the agreement staté
stays bounded. In Case 1, because the input signals converge to a mdommotion, the version
of Lemma4.3 for switching networks implies that the algorithm) (converges to the average
with zero steady-state error. However, in Case 2, we only can guerénaeking with bounded
steady-state error. During the times that the network is only weight-balatieérror grows but
still stays bounded. One can expect that each connected groupgesite their respective input
average. During these periods of time, there is no way for separate cemgdo have knowledge
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of the other groups’ inputs. However, once the network is strongly ected and weight-balanced,

then @) resumes its tracking of the input average across all network, astexpec
7.2. Dynamic inputs offset by a static value

Consider a process described by a fixed value plus a sine wave wieggericy and phase are
changing randomly over time. A group 6fagents with the communication topology shown in

Fig. 1(a) monitors this process by taking synchronous samples, each agctordin
u'(m) = 2 + sin(w(m)t(m) + ¢(m)) +b*, m=0,1,....

Because of the unknown fixed bias of each agent, after each sampling, every agent wants to
obtain the average of the measurements across the network beforetthampling time. Herey ~
N(0,0.25), ¢ ~ N(0, (w/2)?), with N(., .) indicating a Gaussian distribution. The data is sampled at
0.5 Hertz, i.e.,At = 2 seconds. The bias at each agerit'is= —0.55, b> = 1, b> = 0.6, b* = —0.9,

b®> = —0.6, andb® = 0.4. Between sampling times andm + 1, the inputu’(k) is fixed atu’(m).
Figure 3 shows the result of the simulation using the discrete-time consensus algosithmiih

« = B = 1. The communication bandwidth is 2 Hertz, i.&5 0.5 seconds. The application &)
results in perfect tracking after some time as forecasted by LethimaNotice that here as it is
impossible for the agents to know/(—1), the use of the algorithm inl[], which requires the

agents to initialize their agreement states‘t-1), results in tracking with a steady-state error.
7.3. Limited control authority

We use the following numerical example to demonstrate the performance ofgtrttans @)
and 34) when the driving command is bounded. Consider a group of 6 agentawoonmunication
topology is given in Figl(a). The input signals are as follows

ul(t) = u(t) (4 cos(0.5t) + 10), u?(t) = u(t)(4tanht — 5) + 4tanh(t — 25) + 5),

u3(t) = u(t)(4 sin(0.5t + 1) +8), u*(t) = u(t)(4atan(0.5t — 5) — 6),

ud(t) = u(t)(sin(2t) — 5), uS(t) = u(t)(4 cos(0.5t) + 7),
whereu(t) = >°7° ((=1)"H(t — 104)), in which H is the step functionH () =0 if ¢ <0, and
H(t) = 1if t > 0. For both algorithms4) and 34) we usex = 10 andg = 15. In the algorithm 84)
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Figure 3. Simulation results for the numerical example aft®®a 7.2, The solid lines: the agreement states

of (30); x: sampling points ainAt; o: the average atAt; +: the average atd.
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Figure 4. Simulation results for the numerical example aft®a 7.3: Solid blue line (black dashed lines) is

the input average (resp. agreement state of agents).

we setf’ =1 and we use the saturation bound= 15 for all i € {1,...,6}. Figure 4 shows
the results of the simulation for these two algorithms. Using high value$ fawe can reduce
the tracking error, however, this results in larger driving commands. Assualt, both algorithms
violate the saturation bound. However, because the requirements of Lémrage satisfied in
this example, as shown in Fid(b), the ultimate tracking behavior of the agreement states of the
algorithm (34) despite the saturation resembles the response of the algodjhimtbie absence of

saturation bounds. There is not such guarantees for the algoddHisee Fig4(a)).
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8. CONCLUSIONS

This paper has addressed the multi-agent dynamic average conseabilempover strongly
connected and weight-balanced digraphs. We have proposed a déstridgorithm that makes
individual agents track the average of the dynamic inputs across therketith a steady-state
error. We have characterized how this error and the rate of comagegepend on the design
parameters of the proposed algorithm, and identified special cases tf fopwhich the steady-
state error is zero. Our algorithm enjoys the same convergence prepgartieenarios with time-
varying topologies and is amenable to discrete-time implementations. We haveoakidered
extensions of the algorithm design that can handle limited control authoritgraraety preservation
requirements against internal and external adversaries. Numeremsesvof research appear open
for future work, including the study of discrete-time implementations with the featconsidered
here (time-varying topologies, limited control authority, and with privacysereation features),
the design of provably-correct algorithms that do not require a prierght-balanced interaction

topologies, and the application to distributed estimation and map-merging s&enario
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A. PROOF OF THE RESULTS OF SECTION 4.3

Here, we provide the proof of the results presented in Sedti@n

Proof of Lemmat.6

We can represent the zero-system of the discrete-time algorifinm(the following compact form

z(k+1) (k)
= P; , Ps=1In+0A. (41)
v(k+1) v(k)

whereA is given in (7). Then,

In the proof of Lemma4.1 we showed that the eigenvalues df are —« with multiplicity
of N and —p\; for i € {1,...,N}. Then, the eigenvalues dPs are 1 — o with multiplicity
of N and 1-48);, wherei e {1,...,N}. Note that the eigenvalues dfy —JSL are 1 —
d0BX;. Invoking [8, Lemma 3], for a strongly connected and weight-balanced digraph, whken
(0,min{a 1, B~1(d?™ )~1}), the eigenvalues — 68\, i = 2,..., N, are strictly inside the unit
circle in the complex plane. Note that foe= 1, 1 — §8); = 1. Therefore, we conclude that when
€ (0,min{a~", ~1(d2™ )~1}), for a strongly connected and weight-balanced digrBphas an

eigenvalue equal tb and the rest of the eigenvalues are located inside the unit circle. TherEfo

is @ semi-convergent matrix, i.éimy_, ., PF exists. Therefore

x(k+1) (k)
— — 0, ask — oo.

v(k+1)|  |v(k)

Then,
— = Pj — =0A — 0, ask — 0.
v(k+1) v(k) v(k) v(k) v(k)

As a result,

lim =u , peER. (42)

k—o0

v(k) —aly
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For a weight-balanced digraph, left multiplying the state equatiorwdfy 17, we obtain
SN ik +1) = SN vi(k). Consequently) N | vi(k) = 31 vi(0), V k. Invoking (42), then

atk = oo we have—Npua = YN v7(0). As aresulty = — %~ SN 4i(0). O

Proof of Theorem.2
Consider the change of variables introduced @a),( (33) and ©). Then 1), the equivalent

representation of30), can be expressed in the following equivalent form

pi(k+1) _ | pi(k)
= P§ )
(@1 (k+1) q1(k)
_Pz:N(k +1) _ | pan(k) 0
= P; | Ak 4 1) — Au(k) + Sadu(k)),
g2 (k+1) q2.nv (k) RT

whereP;s = I, + A andP;s = Iy_, + § A, with A and A are defined in10). For any given initial

conditions, the solution of this difference equation is

k—1

pr(k) =p1(0) = 8 Y (1= da)q:(0),

Jj=0

q1(k) =(1 - da)*q1(0),

kS
—

p2.n (k) =2(k,0)pa.n (0) — ‘ ®(k—1,5)(1 — 6a) (q2:n (0) + R Au(0))+

<
I
o

E
—

®(k—1,7)R" Au(j),

<
Il
o

qo.n (k) =(1 = 8a)*(g2.n (0) + RTAu(0)) — RT Au(k).

Recalling the change of variable®) (we have

k—1 k—1
y(k) =D11y(0) + Dipw(0) — B> ®(k —1,5)(1 - da) RTAu(0) + R ®(k— 1,j)R Au(j),
j=0 j=0
where
k—1 k—1
D, = 17a52175a Wyrr" + R®(k,0)R faszb —1,7)(1 = 6a))RT,
Jj=0 7=0
k—1 k—1
Dy =—0» (1-da)yrr’ — R _®(k—1,j)(1-da))R"
j=0 j=0
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N

Because1y 'TIy =0, from (33) we can deduced Y, wi(0) = S_N, vi(0). Then, it is

straightforward to obtain3@). O

Proof of Corollary4.2
We showed in Theorem.2 that, for any given stepsize, the boungP) on the outputz’ of
algorithm @0) holds. In the following, for the stepsizes satisfying (0, min{a ", =1 (d?™, )~1}),
we find the limiting value of the terms of this bound when- co. Notice that0 < § < a1,
then 0 < (1 — ad) < 1. As a result, wherk — co we haver;é(l —da)’ = (6a)~t, leading
to (1—ad Y i_j(1—da)’) =0 ask — co. Recall ®(k, j) = (Iy_1 — BRTLR)""J. Because
0<d<pB 1™ )~1, the spectral radius of(1,0) is less than one, therefor@(k,0) — 0
and Zf;é ®(k—1,7) = (S BRTLR)™! ask — oo (see P2, Fact 10.3.1.xiii]). Also, there exists
€ (0,1) such thatp(®(1,0)) < w < 1. Then3x > 0 such thatH@(k - 1,j)H < pwk=1=J for

0<j<k-—1,[25 pp. 26]. As a result, we have

HZ@ )(1—da)! "<u2wk 159 (1 = sa)’.

Notice that
k—1 k—1 1 S k—1 w
k—1—j k-1 — k—1 i
> W1 = b)) =w , (— ) =(1-da) (=52
7=0 j=0 =0
Then, ask — oo we have
uwk’l(l—l_%“)%O, w>1-0dq,
k—1 k—1
Hsz(k—1,j)(1—5a)3H§uZwk’1’9(1—5a)9: (=110, w=1—sa,
§=0 j=0

Invoking [22, Fact 8.18.12], we have
H(RTLR)*H = o (RTLR) ™) < o (RT Sym(L)R)™1) = A; L.

Also, notice thatvk > 0, we haveHRTAu H = HRTHNAu H HRTHHHNAu )H <.

Using the limiting values above, we can conclude that
k—1 k—1 .
| > @k~ L)RT2u()|| <1|| D @k - 1.5) = | GBRTLR) || < 1/(384).
7=0 j=0
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This completes the proof. O

Proof of Lemmat.7

Using the change of variablé4), the algorithm 80) can be stated as follows (compact form)

y(k+1) y(k) Iy (Au(k) + adu(k))
= P + , (43)

v(k+1) v(k) 0
where P;s is defined in 41). When condition (a) holds we hawdy (Au(k) + dau(k)) — 0, as
k — oco. Then @3) is a linear system with a vanishing inplity (Au(k) + dau(k)). Therefore, it
converges to the equilibrium of its zero-system. Notice that the system matfi¢és) and (31)
are the same. Therefore, whér (0, min{a !, 371 (d°® )~1}), we can use result of Lemma6
to conclude thay' (k) — — 2~ S~ i(0), fori € {1,..., N}. Becaus&_ ", v*(0) = 0, then we
havez'(t) — + Zj.vzl u? (k) globally asymptotically foi € {1,..., N}. Next, notice that using the

change of variables5g) and 33) another equivalent representation 8P) can be stated as follows

ylk+1) y(k 0

( =Ps ®1_ ; (44)
w(k+1) w(k) Iy (Au(k + 1) — Au(k) + daAu(k))

where Ps again is defined in41). When condition (b) holds we haddy (Au(k) + dau(k)) — 0

as k — co. Then, @4) is a linear system with a vanishing inply(Au(k + 1) — Au(k) +

daAwu(k)). Then, using a similar argument used fer3( above, we can show that in4)

yi(k) — —2~ SN wi(0) ask — oo fori € {1,...,N}. Using 33), we can showp_ Y | w'(0) =

SN 0'(0). As aresulti (k) — + Z;v:1 u’ (k) globally asymptotically for € {1,..., N}. O

B. SUPPORTING MATERIAL FOR THE PROOF OF LEMMA.2

The following results are used in the proof of Lemma.

Proposition B.1
Consider the following system whetew, 5 € R, 5 > 0 andw is a piece-wise continuous time-
varying signal

gy = —fsatz(y — w) — fw. (45)
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Assume that|w||ess < . Then, for any initial conditiory(0) € R, y(¢) — 0 asymptotically.

Proof

Consider the candidate Lyapunov functibh= %yQ with derivative V = —ysatz(y — w) — yw
along the trajectories ofif). To prove thal’ is negative definite, first note that becalisg|ess < ¢,
we have that ify — w > ¢theny > ¢+ w > 0andify — w < —¢theny < —¢+ w < 0. As aresult,
—y(+w) < =€ —|[|wllesdlyl <0, ify—w>g,

V=4_y2<o0, if |y —w| <e,

—y(=c+w) < —(c— |[w[lesdly| <0, Fy—w<-c
All the conditions of the Lyapunov stability analysis for non-autonomousesys P6, Theorem

4.9] are satisfied globally. Thereforgt) — 0 globally asymptotically ag — oc. O

Proposition B.2

Consider the following system whereu € R andu is a piece-wise continuous time-varying signal,
& = —satz(B(x — u) — ), (46)

Assumeu and its derivative: are both essentially bounded signals, and there is some #fnite)
such that for alt > ¢*, |u(¢)| < e. Then, for any initial conditionz(0) € R we havex(t) — u(t)

asymptotically.

Proof
Given that ¢6) is ISS, c.f. 7], and sinceSu + « is bounded, for any finite initial condition(0),
there is a finiteu(x(0)) > 0 such that we havér| < p(2(0)) for all ¢ > 0. Under the change of

variablesy = S(x — ), equation 46) can be written in the following equivalent form

y = —Bsate(y — ) — fi. (47)
Since the solutions ofi@) are all bounded and because bathndz are bounded signals, starting
from any initial condition, we have the guarantee that the solution$®f ére also bounded. Since
the inputu to the system47) satisfies the conditions of Propositi@nl after some finite time*,
we can conclude that(t) — 0, or equivalently:(¢) — u(t), globally asymptotically. O
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