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Abstract— This paper studies the robustness under additive
persistent noise of a class of continuous-time distributed al-
gorithms for convex optimization. A group of agents, each with
its own private objective function and communicating over a
weight-balanced digraph, seeks to determine the global decision
vector that minimizes the sum of all the functions. Under mild
conditions on the local objective functions, we establish that
the distributed algorithm is noise-to-state exponentially stable
in second moment with respect to the optimal solution. Our
technical approach combines notions and tools from graph
theory, stochastic differential equations, and Lyapunov stability
analysis. Simulations illustrate our results.

I. INTRODUCTION

Finding the minimizer of a sum of convex functions in a
distributed way has been the focus of many works in the
literature. Two main families of problems arise in this area:
either the local objectives depend only on local variables that
might be globally constrained, giving rise to network utility
maximization problems; or the local objectives depend on a
global decision vector. Here we focus on the second class
of problems. Applications include large-scale optimization,
machine learning,rendezvous and tracking in motion coor-
dination of multi-agent systems, and source-localization in
wireless sensor networks.

Literature review: Different networks (composed by either
plain processors, sensors, or mobile robots) call for different
modeling requirements and design techniques, so we offer
here a partial list of references as a guide for the reader. Some
algorithms evolve in discrete jumps with associated gradient
stepsize that is vanishing [1], [2], [3], nonvanishing [4],
[5], and/or might require to solve a local optimization at
each time step [1], [6], [3], [7]; others evolve in continuous
time [8], [9]; and some are hybrid [10]. Most algorithms
converge asymptotically to the solution while others con-
verge to an (arbitrarily good) approximation [4], [5]. Some
examples of convergence rates, or size of the cost error
as a function of the number of iterations, are 1/

√
k [1],

[3] and 1/k [6]. The communication topologies might be
undirected [8, Sec. IV], [4], [6], [9], [7], directed and weight-
balanced (when the adjacency matrix is doubly stochas-
tic) [1], [8, Sec. V], [2], [5], or just directed [3]; also, they
can be fixed [8], [6], [9], [7], or change randomly over time
(under a periodic connectivity assumption) [1], [4], [2], [3],
[5]. On the other hand, the objective functions might range
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from being twice differentiable [9] or once differentiable [8,
Sec. V], [7], to just Lipschitz [1], [8, Sec. IV], [4], [6], [2],
[3], [5] (with bounded gradients [4], [5]); in addition, they
might need to be strongly convex [9], strictly convex [6], [7]
(uniformly), or just convex [1], [8, Sec. IV], [4], [2], [3], [5].
Some algorithms use the Hessian of the objective functions
in addition to the gradients [9], [7]. Also, the agents might
need to share their gradients [9] (in some instances) or even
their objectives [7]. Some incorporate a global constraint
known to all the agents using a projection method [1], [2],
[3], [5] or a dual method [7], and in same cases each agent
has a different constraint [2]. Remarkably, a family of algo-
rithms impose a constraint on the initial condition [9], [7].
Some works consider additive noise affecting the dynamics
through stochastically perturbed gradients with associated
vanishing stepsize [1] or nonvanishing stepsize [5]. Finally,
the algorithms can be synchronous [8], [6], [9] or allow
gossip/randomized communication [1], [4], [2], [3], [5], [7],
or might even use event-triggered communication [10].

There is lack of works in the literature merging continuous-
time dynamics and additive persistent noise in the communi-
cation channels. These, however, might correspond to model-
ing requirements in applications like rendezvous and tracking
in networks of mobile robots, where the motion coordination
task is coupled with an optimization of local performance
measures, and also in the calibration of networked analog
systems, like satellites. Moreover, the convergence rate guar-
antees in works like [1], [3], [6] consider the error cost, rather
than the estimates’ distance to the global decision vector,
which is relevant in the aforementioned applications. In this
paper, we build on the approach presented in [11], [8] to
address these novel features.

Statement of contributions: We study the robustness under
additive persistent noise of a family of continuous-time
distributed algorithms for convex optimization. This type of
noise might be due to errors in the communication channels
or in the computations performed by the agents. We show
how the this family of algorithms allow the agents’ estimates
to converge exponentially fast, in a precise stochastic sense,
to a neighborhood of the optimal solution, and the size of
that neighborhood depends on the size of noise. Specifically,
we establish that the evolution of the agents’ estimates is
noise-to-state exponentially stable in second moment with
respect to the optimum global decision vector. As part of our
technical approach, we study the interaction between local
optimization and local consensus through the co-coercivity



of a family of vector fields that are the sum of a gradient of a
convex function plus a nonsymmetric Laplacian. Specifically,
we give sufficient conditions for this family of vector fields to
be co-coercive under a class of linear transformations. These
techniques allow us to overcome the challenges posed by
directed communication topologies and channels affected by
additive persistent noise. Most proofs are omitted for reasons
of space and will appear elsewhere.

Organization: The paper is organized as follows. Section II
introduces preliminary notions on graph theory and stochas-
tic differential equations. Section III formulates the problem
of interest. Section IV presents our main results as well
as illustrative simulations. Finally, Section V discusses our
conclusions and ideas for future work. The appendix gathers
a relevant result for our technical approach.

II. PRELIMINARIES

Here we introduce some notations and review basic notions
on graph theory and stochastic differential equations.

Notational conventions: We let R and R≥0 be the sets of
real and nonnegative real numbers, respectively. We also
define the following vectors in Rn: 1n , [1, . . . , 1]>,
0n , [0, . . . , 0]>, and ei has a 1 in the ith entry and
the rest of its entries are zero; also, In is the identity
matrix in Rn×n. We denote by ‖.‖2 the Euclidean norm for
vectors. The Frobenius norm of the matrix B ∈ Rn×m is
|B|F ,

√
trace (B>B) =

√
trace (BB>). We also define

‖x‖B , ‖Bx‖2, which provides a seminorm on Rm whose
nullset is the nullspace of B, defined as N (B) = {x ∈ Rm :
Bx = 0}. (Some authors prefer to define ‖x‖A ,

√
x>Ax,

but this has the inconvenience that A has to be symmetric
and positive semidefinite.) For a symmetric real matrix A ∈
Rn×n, we order its eigenvalues as λmax(A) , λ1(A) ≥ · · · ≥
λn(A) , λmin(A). Similarly, we order the singular values
of any matrix B ∈ Rn×m as σmax(B) , σ1(B) ≥ · · · ≥
σr(B) , σmin(A), where r = rank(B) is the rank of B. We
recall that σi(B) =

√
λi(B>B). Given a vector v whose

entries are matrices, diag(v) is a block diagonal matrix with
the blocks in v. The Kronecker product of any two matrices
is denoted by A⊗B.

A function f : X → R, where X is a convex set, is
convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for
each x, y ∈ X and any λ ∈ [0, 1]; and f is concave if −f is
convex. A function f : X1 → X2, for normed vector spaces
X1, X2, is Lipschitz with constant κ if ‖f(x)− f(y)‖X1

≤
κ‖x − y‖X2

for each x, y ∈ X1, where ‖.‖X is the norm in
the vector space X . If f : Rn → R is continuously twice
differentiable, we denote its gradient and Hessian by ∇f
and ∇2f , respectively. Given a differentiable vector field
F : Rn → Rm, we let DF : Rn → Rm×n denote its
Jacobian, where DF(x)ij = ∂Fi(x)

∂xj
for all x ∈ Rn.

Graph theory: The following notions in graph theory follow
the exposition in [12]. A weighted digraph G = (I, E ,A)

is a triplet where I = {1, . . . , N} is the vertex set, E ⊆
I × I is the edge set, and A ∈ RN×N≥ 0

is the weighted
adjacency matrix with the property that aij > 0 if and
only if (i, j) ∈ E . The Laplacian matrix L ∈ RN×N of
G is L , diag(A1N ) − A, which satisfies L1N = 0N . The
complete graph is the digraph with edge set EK = I×I. For
convenience, we let LK denote the Laplacian of the complete
graph with edge weights 1/N . Note that LK = IN − M,
where M , 1

N 1N1
>
N , and that LK is idempotent, i.e.,

L2
K = LK. The weighted out-degree and in-degree of i ∈ I

are, respectively, dout(i) =
∑N
j=1 aij and din(i) =

∑N
j=1 aji.

A digraph is weight-balanced if dout(i) = din(i) for all i ∈ I,
that is, 1>NL = 0N , which is also equivalent to the condition
of L + L> being positive semidefinite. A path is an ordered
sequence of vertices such that any pair of vertices appearing
consecutively is an edge. A digraph is strongly connected if
there is a path between any pair of distinct vertices.

Stochastic differential equations: Informally speaking, a
stochastic differential equation (SDE) [13], [14], [15] is an
ordinary differential equation driven by a “random process”
called Brownian motion, B : Ω × [t0,∞) → Rm. Here, Ω
is the outcome space and P is a probability measure defined
on the sigma-algebra F of measurable events (subsets) of
Ω. Together they form the probability space (Ω,F ,P). For
each outcome ω ∈ Ω, the mapping B(ω, .) : [t0,∞) → Rm
is called a sample path of the Brownian motion and is
continuous with probability 1 and with B(., t0) = 0; and for
each time t ∈ [t0,∞), the function B(t) , B(., t) : Ω→ Rm
is a random variable such that the increments B(t) − B(s)
have a multivariate Gaussian distribution of zero mean and
covariance (t− s)Im and are independent from B(s) for all
t0 ≤ s < t. The SDE

dx(ω, t) = g(x(ω, t), t)dt+G(x(ω, t), t)Σ(t)dB(ω, t) (1)

can be regarded as the limiting case of the recurrence

x(ω, tk+1) = x(ω, tk) + g
(
x(ω, tk), tk

)
(tk+1 − tk)

+G
(
x(ω, tk), tk

)
Σ(tk)

(
B(ω, tk+1)− B(ω, tk)

)
,

defined in the partition t0 ≤ · · · ≤ tk ≤ . . . , when
maxi≥0{ti+1 − ti} → 0. The vector field g : Rn ×
[t0,∞) → Rn is the drift, the matrix valued function
G : Rm× [t0,∞)→ Rn×q is the diffusion term that models
the way in which the noise enters the dynamics, and Σ :
[t0,∞)→ Rq×m determines the size of the noise. The matrix
Σ(t)Σ(t)> is called the infinitesimal covariance. Under some
regularity conditions, the solution inherits some properties of
the Brownian motion; for instance, x : Ω × [t0,∞) → Rn
has continuous sample paths with probability 1, and for each
t ≥ t0, the function x(., t) : Ω → Rn (written x(t) for
convenience) is a random variable with some distribution.
That is, we are able to measure the probabilities of certain
events concerning the random variables {x(t)}t≥t0 .



III. PROBLEM STATEMENT

Consider a network of agents represented by a strongly
connected and weight-balanced digraph G. An edge (i, j) ∈
E corresponds to the ability of agent i to receive information
sent from agent j. Now consider a function of the form

f(x) =

N∑

i=1

fi(x), (2)

where each fi : Rd → R is convex and only known to
agent i. If at least one of the functions in the sum, say fi0 , is
strongly convex, then (2) has a unique minimizer xmin ∈ Rd.
Our goal is to design a distributed algorithm that helps
the network find such minimizer. More precisely, agents
can communicate only to their neighbors in the directed
network, and there is additive persistent noise affecting the
communication channels as well as the computations.

a) Communication noise: The communication channels be-
tween agents are subject to Gaussian white noise. Specifi-
cally, when agent j sends the signal x(t) ∈ Rd to agent i at
t ≥ t0, agent i receives the corrupted signal

x(t) + Ĵij(t)W
(i,j)
comm(ω, t), (3)

where Ĵij : [t0,∞) → Rd×d is measurable and essentially
locally bounded such that Ĵij(t) = 0d×d if and only if aij =
0. Informally, the random variable W : Ω × [t0,∞) → Rd
that represents the Gaussian white noise is the derivative
of a Brownian motion W = “dB

dt ”. Later, a rigorous
implementation of this model will give rise to a stochastic
differential equation because we can only quantify the effect
of this noise as an integral over a time interval. A possible
interpretation is that

∫ t+∆t

t

Ĵij(s)Ĵij(s)
>ds

is the cumulative covariance matrix due to the Gaussian noise
that affects the communication channel (i, j) ∈ E during the
interval [t, t+ ∆t].

The noise we are considering is additive because it is always
present, no matter the value of the signal; and is persistent
because it is not required to decay with time. Since the matrix
Ĵij is a property of the communication network for each
(i, j) ∈ E , it might be unknown to agent i.

b) Computation noise: Similarly, any computation carried
out by an agent is also corrupted by noise. Specifically, when
agent i computes ∇fi(x(t)) ∈ Rd at time instant t ≥ t0, it
actually obtains

∇fi(x(t)) + J̃ii(t)W
i
comp(ω, t), (4)

where W i
comp is an independent copy of W (i,j)

comm, and J̃ii :
[t0,∞) → Rd×d is measurable and essentially locally
bounded. As before, agent i might not know the matrix J̃ii.

IV. ROBUST DISTRIBUTED OPTIMIZATION

Here we describe the coordination algorithm that the network
of agents employ to solve the optimization problem in
Section III. We also describe our hypotheses and present the
main convergence results.

The intuition behind the algorithm is the following: each
agent’s dynamics is driven by the gradient descent on its
own private objective function plus a second-order consensus
protocol based on local communication of estimates with its
neighbors in the directed graph. Let xi(t) ∈ Rd be the current
estimate of agent i ∈ {1, . . . , N} about the minimizer of (2).
The ith agent’s dynamics is

dxi(t) = γ̃

N∑

j=1,j 6=i

aij
((
xj(t)− xi(t)

)
dt+ Ĵij(t)dB1,(i,j)(t)

)

+

N∑

j=1,j 6=i

aij
((
zj(t)− zi(t)

)
dt+ Ĵij(t)dB2,(i,j)(t)

)

−∇f̃i(xi(t))dt− J̃ii(t)dB3,i(t) ; (5)

dzi(t) = −
N∑

j=1,j 6=i

aij
((
xj(t)− xi(t)

)
dt+ Ĵij(t)dB1,(i,j)(t)

)
,

where B1,(i,j), B2,(i,j) and B3,i are independent d-
dimensional Brownian motions for each directed channel
(i, j) ∈ E and each agent i ∈ I, respectively. Note that we
have used the model for the noisy communication channels
given by (3) and the model for the computation errors
in (4). As described in Section II, the matrix A describes
the topology of the directed network and hence determines
the local interactions between agents. In the above dynamics,
zi(t), for each agent, is an auxiliary (integrator) variable that
helps agents reach consensus. The constant γ̃ > 0 is a design
parameter to be determined.

Next we write the above dynamics in compact form and
further generalize the model for the noise. Let L be the
Laplacian of the strongly connected and weight-balanced
digraph G modeling inter-agent communication, and define
L , L ⊗ Id. Denote by x , [(x1)

>
, . . . , (xN )

>
]> ∈ (Rd)N

the collection of estimates across the network. Finally, define
the auxiliary function f̃ : (Rd)N → R by

f̃(x) =

N∑

i=1

fi(x
i), (6)

which is the decentralized version of the function (2). We
study the continuous time dynamics given by the following
system of stochastic differential equations:

dx =−(∇f̃(x) + γ̃ Lx + Lz)dt+G1(x, z, t)Σ1(t)dB(t),

dz =Lxdt+G2(x, z, t)Σ2(t)dB(t). (7)

Here, z , [(z1)
>
, . . . , (zN )

>
]> ∈ (Rd)N is the aggregate of

the auxiliary states of the agents; the matrix-valued functions
G1, G2 : R2Nd × [t0,∞) → RNd×q are bounded and
globally Lipschitz in the first two arguments and measurable



and essentially bounded in time; the matrix-valued functions
Σ1,Σ2 : [t0,∞) → Rq×m are measurable and essentially
locally bounded, where m ≥ 1; and {B(t)}t≥t0 is an m-
dimensional Brownian motion defined in the probability
space (Ω,F ,P).

The compact form (7) offers an alternative motivation which
is explained in [11] and [8, Sec. V]; summarizing, it can
be regarded as a modified saddle-point dynamics to find the
saddle point of the augmented Lagrangian f̃(x)+ γ̃

2x
>Lx+

z>Lx, where z is regarded as the Lagrange multiplier asso-
ciated to the agreement constraint Lx = 0. The modification
comes from replacing L> in the saddle point dynamics,
which is not distributed over the directed network, by L.
We emphasize that the dynamics (7) is distributed over
the digraph G because the agent i can update xi(t) and
zi(t) using only the information sent from its neighbors,
{xj(t), zj(t)}, and its knowledge of the function fi, which
is private. This is the case because the gradient is distributed,
∇f̃(x) = [∇f̃1(x1)>, . . . ,∇f̃N (xN )>]>, and the agent i can
compute the ith d-dimensional block (Lx)i ∈ Rd. Agents do
not need to know the functions Σ1, Σ2, G1, G2.

The dynamics (7) contains a more general description of the
agents’ communication and computation capabilities than the
one we discussed in Section III, as we show next.
Remark 4.1. (A particular model for the noise): Next
we write Σ1 and Σ2 in the dynamics (7) that corre-
spond to this model; here G1 = G2 = INd. Define the
matrices Σ̂1(t) ,

[
γ̃J(t) J(t) −J̃(t)

]
and Σ̂2(t) ,[

−J(t) 0 0
]
, both in RNd×3Nd, where J(t) ∈ RNd×Nd

is the matrix whose (i, j)th d-dimensional block is aij Ĵij(t) ,
and J̃(t) ∈ RNd×Nd is defined, following (4), as J̃ ,
diag

(
J̃11(t), . . . , J̃NN (t)

)
. Then, each matrix Σk, k = 1, 2,

is formed by shifting (i− 1)Nd entries to the right each ith
d-dimensional row-block of Σ̂k and filling up with zeros:
[
Σ1

Σ2

]
,

[(
(e1e

>
1 )⊗ Id

)
Σ̂1 · · ·

(
(eNe

>
N )⊗ Id

)
Σ̂1

(
(e1e

>
1 )⊗ Id

)
Σ̂2 · · ·

(
(eNe

>
N )⊗ Id

)
Σ̂2

]
,

which takes values in R2Nd×3N2d, so that each agent experi-
ences an independent realization of the noise corresponding
to the communication channel (i, j) ∈ E . •

Now we prepare the hypotheses for our main result.
Assumption 4.2. (Objective functions): Assume that the
functions {fi : 1 ≤ i ≤ N} are convex and twice
continuously differentiable with uniformly upper-bounded
Hessians, such that at least one of the functions is strongly
convex; that is, there exist positive numbers R and r such that
0 4 ∇2fi 2 R Id for all i ∈ {1, . . . , N}, and r Id 4 ∇2fi0
for some i0 ∈ {1, . . . , N}. •

The bounded Hessians assumption is standard in the liter-
ature, whereas we have relaxed the strong convexity of all
the objectives (standard to deal with robustness in general)
to strong convexity of only one objective.

Part of our design requires selecting γ̃ in the dynamics (7).

The provable interval for γ̃ for convergence and disturbance
attenuation depends on the overall topology of the network,
as we show next.
Assumption 4.3. (Choice of the design parameter): Before
giving the provable interval for γ̃, we start defining some
auxiliary quantities. Consider any fixed ε > 0 and any δ ∈(
0, k̃K̂−2

)
, where

k̃ , λmin
(
r ei0e

>
i0 + ε (L + L>)

)
, K̂ , R+ 2ε σmax(L).

Here, r and R come from the gradient bounds in Assump-
tion 4.2. We select the design parameter γ̃ as

γ̃(ε, δ) , 2+β2

β + 2ε, β ∈
(
0, min{β∗1(δ, ε), β∗2(δ)}

)
,

where β∗1(δ, ε) and β∗2(δ) are chosen as follows: First,

β∗1(δ, ε) ,

√
k̃2K̂−2 − k̃δ.

Second, we choose β∗2(δ) such that

h(β, δ) < 0 ∀β ∈
(
0, β∗2(δ)

)
,

where h(., δ) : (0,∞)→ R is given by

h(β, δ) ,
(
− y(β) +

√
y(β)2− 1

)
λ2(L + L>) + β2

2δ , (8)

with y(β) , β4+3β2+2
2β . •

Our main result shows that the dynamics of each agent’s
estimate is noise-to-state exponentially stable in second mo-
ment [16] with respect to xmin.
Theorem 4.4. (Exponential Noise-to-State Stability of the
dynamics): Under Assumption 4.2 and for the choice of
the parameter γ̃ in Assumption 4.3, the dynamics (7) in a
strongly connected and weight-balanced digraph has the fol-
lowing stability property: there exist constants Cµ, Dµ, Cθ >
0 such that for all t ≥ t0 and for any initial values x0 ,
x(t0), z0 , z(t0) in (Rd)N , the following holds:

E
[
‖x(t)− 1N ⊗ xmin‖22

]

≤E
[
‖x(t)− 1N ⊗ xmin‖22 + ‖z(t)− z∗‖2LK

]

≤CµV2
0 e
−Dµ (t−t0) + Cθ

(
ess sup
t0≤τ≤t

∣∣∣
[
Σ1(τ)
Σ2(τ)

]∣∣∣
F

)2

,

where xmin is the unique minimizer of (2), z∗ satisfies
Lz∗ = −∇f̃(1N ⊗ xmin), LK , LK ⊗ Id, and V2

0 ,
‖x0 − x∗‖22 + ‖z0 − z∗‖2LK

.

This convergence result says that each agent’s estimate
converges exponentially fast, in second moment, to a neigh-
borhood of the optimal solution, and the size of that neigh-
borhood depends on the size of the noise. The explicit
constants Cµ, Dµ, Cθ > 0 are omitted here for lack of space.
Figure 1 illustrates this convergence result.

The proof strategy to establish Theorem 4.4 relies on the
identification of a NSS-Lyapunov function for (7) which in
turn implies the Noise-to-State Stability property, cf. [16].
To verify the properties of the aforementioned Lyapunov
function, we study the interaction between local optimization
and local consensus through the co-coercivity of a family
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Fig. 1: Evolution of the stochastic distributed optimization algorithm (7) over a group of N = 4 agents communicating
over a directed ring (E = {(1, 3), (3, 2), (2, 4), (4, 1)}). The local objective functions are defined on R2 and given by
f1(x1, x2) = 1

2 ((x1 − 4)2 + (x2 − 3)2), f2(x1, x2) = x1 + 3x2 − 2, f3(x1, x2) = log(ex1+3 + ex2+1), and f4(x1, x2) =
(x1 + 2x2 + 5)2 + (x1 − x2 − 4)2. In all the cases, the initial conditions are x = [−3,−3,−1,−1, 1, 1, 3, 3], and z = 18.
Plot (a) shows the evolution of the first and second coordinates of the agents’ estimates with γ̃ = 3, G1 = G2 = I8,
and Σ1 = Σ2 = 0.2 I8. Despite the additive persistent noise, the estimates converge, in probability, to a neighborhood of
the minimizer xmin = [1.10,−2.74]. Plot (b) shows the asymptotic convergence in second moment to a neighborhood of
the solution for three values of the design parameter. Plot (c) depicts the ultimate bound for the second moment when
Σ1 = Σ2 = s I8 for increasing values of s from 0 to 0.7 and increments of 0.05; we observe that when the design parameter
puts more emphasis on consensus, the noise gain is smaller. (The expectations have been computed averaging over 100
realizations of the noise.)

of vector fields that are the sum of a gradient of a con-
vex function plus a nonsymmetric Laplacian. Specifically,
Theorem A.2 gives sufficient conditions for this family of
vector fields to be co-coercive. These techniques allow us to
overcome the challenges posed by directed communication
topologies and channels affected by additive persistent noise.
In addition, they help us characterize the exponential rate of
convergence, in second moment, to a neighborhood and the
functional dependence of that neighborhood on the size of
the disturbance.

As a particular case we obtain a refinement of the result
in [8] showing exponential convergence of the algorithm.
Corollary 4.5. (Case without noise: global exponential
stability): Under the same hypotheses of Theorem 4.4, if
Σ1 = Σ2 = 0 in (7), then

‖x(t)− 1N ⊗ xmin‖22 ≤ ‖x(t)− x∗‖22 + ‖z(t)− z∗‖22
≤ CµV2

0 e
−Dµ (t−t0) + ‖z0 − z∗‖2M,

for all t ≥ t0, where M = 1
N 11

>⊗Id. In particular, choosing
z∗ such that Mz∗ = Mz0 (so that ‖z0−z∗‖M = 0), which
is always possible because Mz(t) = Mz(t0), we obtain that
the point [1>N⊗x>min, z

∗>]> is globally asymptotically stable.

Proof. Since Σ1 = Σ2 = 0, for any value of x0, z0, the
system of SDEs (7) becomes a system of ordinary differential
equations. Let zagree(t) , Mz(t). By left-multiplying the
dynamics of z(t) in (7) by M, we obtain that żagree = 0,
where zagree(t0) = Mz0. Therefore, zagree(t) = zagree(t0) for
all t ≥ t0. Using that M is symmetric and M = M2, if we

define z∗agree , M z∗, then

(z(t)− z∗)>M(z(t)− z∗)

= (zagree(t)− z∗agree)
>M(zagree(t)− z∗agree)

= (zagree(t0)− z∗agree)
>M (zagree(t0)− z∗agree)

= (z0 − z∗)>M (z0 − z∗) = ‖z0 − z∗‖2M.

Hence, using that L2
K = LK,

‖z(t)− z∗‖22 = (z(t)− z∗)>(z(t)− z∗)

= (z(t)− z∗)>
(
LK + M

)
(z(t)− z∗)

= ‖z(t)− z∗‖2LK
+ ‖z0 − z∗‖2M,

so the result follows from Theorem 4.4.

V. CONCLUSIONS

We have studied the robustness against additive persistent
noise of a class of continuous-time algorithms for distributed
convex optimization over weight-balanced digraphs. Specif-
ically, we have shown that the agents’ estimates converge
exponentially fast, in second moment, to a neighborhood
of the optimum global decision vector. The size of this
neighborhood is proportional to the size of the noise. Future
work will include distributed procedures to determine the
values of the design parameter that guarantee convergence
and disturbance attenuation, relaxing the weight-balanced
property of the directed communication topology, and ex-
tensions to scenarios with delays and bandwidth limitations.
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APPENDIX

Our technical approach includes studying the interaction
between local optimization and local consensus. First, we
give the definition of co-coercivity of vector fields that are
distorted by a linear transformation.
Definition A.1. (Co-coercivity of vector fields): A vector
field F : Rm → Rm is (S, δ) − co-coercive with respect to
x̄ ∈ Rm, for some matrix S ∈ Rm×m and some number
δ > 0, if, for all x ∈ Rm,

(x− x̄)>S(F (x)− F (x̄)) ≥ δ ‖F (x)− F (x̄)‖22. (9)

(This is a restatement of S>F (x) being co-coercive [17].)

Next, we study a family of vector fields that combine local
gradient descent and local consensus via a nonsymmetric
Laplacian. In particular, we provide sufficient conditions for
these vector fields be co-coercive under a class of linear
transformations. This plays a central role in our technical
approach to deal with additive persistent noise both for
undirected and directed topologies.
Theorem A.2. (A family of vector fields, including (S, δ)−
co-coercivity): Let G : (Rd)N → (Rd)N be a continuously
differentiable vector field such that DG(x) ∈ RNd×Nd is
symmetric positive semidefinite for all x ∈ (Rd)N , and let
T : (Rd)N → (Rd)N be the linear vector field given by
T(x) = 2(L ⊗ Id)x, where L is the Laplacian matrix of
a strongly connected and weight-balanced digraph. Assume
that there exist an integer i0 ∈ {1, . . . , N} and positive
numbers r,R such that r (ei0e

>
i0

)⊗Id 2 DG(x) 2 R INd for
all x ∈ (Rd)N . If we define k̃ , λmin

(
r ei0e

>
i0

+ ε (L+L>)
)

and K̂ , R+ 2ε σmax(L), then the following facts regarding
the vector field F , G + εT, for any ε > 0, hold:

(i) k̃ > 0 and 2k̃ INd 2 DF + (DF)>.

(ii) For any x, x̄ ∈ (Rd)N ,

k̃‖x− x̄‖2 ≤ ‖F(x)− F(x̄)‖2 ≤ K̂‖x− x̄‖2.

(iii) F is (I+β2S, δ)−co-coercive with respect to every x̄ ∈
(Rd)N for any nonzero matrix S̃ ∈ RNd×Nd if δ ∈ [0, δ∗1)
and β ∈ [0, β∗1 ], where

δ∗1 , k̃K̂−2 and β∗1 ,
√(

k̃K̂−2 − δ
)
/(‖S̃‖2 k̃−1).

The following result is needed to establish that the parame-
ter γ̃ is well defined.
Lemma A.3. Let the scalar function h(., δ) : (0,∞) → R
be defined as in (8), and assume L is the Laplacian matrix of
a strongly connected and weight-balanced digraph. Then, for
every δ > 0, there exists β̂ , β̂(δ) > 0 such that h(β, δ) < 0
for all β ∈ (0, β̂).

The next remark notes that the proposed interval for the
parameter γ̃ is guaranteed to be nonempty.
Remark 5.1. (The design parameter γ̃ is well defined):
Since k̃ > 0 by Theorem A.2 (i), it follows that in the
construction of γ̃ we can take δ > 0 and thereby take
β∗1(δ, ε) > 0. On the other hand, the quantity β∗2(δ) can also
be taken positive thanks to Lemma A.3. As a consequence,
the proposed provable interval for γ̃ is nonempty.


