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Abstract. This paper proposes a novel approach, termed team-triggered,
to the real-time implementation of distributed controllers on networked
cyberphysical systems. We build on the strengths of event- and self-
triggered control to synthesize a single, unified approach that combines
aspects of both and is implementable over distributed networked systems,
while maintaining desired levels of performance. We establish provably
correct guarantees of the distributed strategies resulting from the pro-
posed approach and examine their robustness against multiple sources
of errors including communication delays, packet drops, and communi-
cation noise. The results are illustrated in simulations of a multi-agent
coverage control problem.

1 Introduction

The interest in the efficient and robust operation of cyberphysical systems has
motivated a growing body of work that studies the distributed design and real-
time implementation of controllers for networked sensors and actuators. In these
systems, energy consumption is correlated with the rate at which sensors take
samples, processors recompute control inputs, and actuator signals are trans-
mitted. Performing these tasks periodically is costly and might be, at times,
unnecessary or unfeasible due to physical constraints. Examples of unnecessary
actions include sampling a part of the state that is already known or can be re-
constructed with already available information, or recomputing a control signal
that has not changed substantially. To address these issues, the goal of triggered
control is to identify criteria that allow agents to tune the implementation of
controllers and sampling schemes to the execution of the task at hand and the
desired level of performance.

In event-triggered control, the focus is on detecting events during the network
execution that are relevant from the point of view of task completion and should
trigger specific agent actions. In self-triggered control, instead, the emphasis is on
developing tests that rely only on the information available to individual agents
to schedule future actions. Event-triggered control results in better performance
but is costly to implement over fully distributed networked scenarios because of
the need for continuous availability of information to check the triggers. Self-
triggered control is more easily amenable to distributed implementation but
results in conservative executions because of overapproximation by individual
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agents about the state of the environment and the network. This paper builds
on the strengths of event- and self-triggered control to propose a single, unified
approach for networked cyberphysical systems that combines the best of both
worlds.

Literature review. The need for systems integration and the importance of
bridging the gap between computing, communication, and control in the study
of cyberphysical systems cannot be overemphasized [1, 2]. Real-time controller
implementation is an area of extensive research, including periodic [3–5], event-
triggered [6–10], and self-triggered [11–14] procedures. Our approach shares with
these works the aim of trading computation and decision making for less com-
munication, sensor, or actuator effort while still guaranteeing a desired level of
performance.

Of particular relevance to this paper are works that study self- and event-
triggered implementations of controllers for networked cyberphysical systems.
The predominant paradigm is that of a single plant that is stabilized through a
decentralized triggered controller over a sensor-actuator network, see e.g. [15–17].
Fewer works have considered scenarios where multiple plants or agents together
are the subject of the overall control design, as is the case of this paper. Ex-
ceptions include consensus via event-triggered [18, 19, 15] or self-triggered con-
trol [18, 20], model predictive control [21], and model-based event-triggered con-
trol [22, 23]. The work [24] implements self-triggered communication schemes to
perform distributed control where agents assume worst-case conditions occur
for other agents when deciding when new information should be obtained. An
idea to extend the event-triggered tools to decentralized systems with multiple
plants is presented in [18]; however, agents require continuous information about
each others’ states in order to implement the resulting event-triggered controller.
Distributed strategies based on event-triggered communication and control are
explored in [25, 26], where each agent has an a priori computed local error toler-
ance and once it violates it, the agent broadcasts its updated state to its neigh-
bors. The same event-triggered approach is taken in [27] to implement gradient
control laws that achieve distributed optimization. The work [22], closer in spirit
to the ideas presented here, considers an interconnected system in which each
subsystem helps neighboring subsystems by monitoring their estimates and en-
suring that they stay within some performance bounds. The approach, however,
requires different subsystems to have synchronized estimates of one another even
though they do not communicate at all times. A main novelty of this manuscript
with respect to the works listed above is the combination of elements of both
event- and self-triggered strategies into a single unified approach.

Statement of contributions. We propose a novel scheme for networked cy-
berphysical systems that combines ideas from event- and self-triggered control.
The basic concept is for agents to make promises to one another about their
future states and being responsible for warning each other if they later decide to
break them (event-triggering). Such promises can be broad, from very tight state



Robust team-triggered coordination 3

trajectories to loose descriptions of reachability sets. The information provided
by these promises allows individual agents to autonomously determine when
fresh information is needed (self-triggering). We refer to the approach as team-
triggered because of the fact that agents need to make sure that their neighbors
are operating with correct information about them. The team-triggered approach
incorporates the reactive nature of event-triggered implementations while at the
same time endows individual agents with autonomous tools and criteria to de-
termine when and what information is needed, as self-triggered implementations
do. The benefits of the proposed scheme are threefold. First, because of the
availability of the promises, agents do not require continuous state information
about neighbors, in contrast to event-triggered strategies implemented over dis-
tributed systems that assume continuous information is available in order to be
able to detect the relevant triggers. Second, because of the extra information
provided by promises about what other agents plan to do, agents can operate
more efficiently and less conservatively than if only worst-case scenarios are as-
sumed, as is done in self-triggered control. Lastly, we show that the networked
system is guaranteed to maintain desired levels of performance while being ro-
bust to multiple physical sources of error such as communication delays, packet
drops, and communication noise. We illustrate our results through simulations
in a multi-agent coverage control problem. The journal version [28] of this work
contains all proofs and additional results.

Organization. Section 2 lays out the problem of interest. Section 3 presents
the team-triggered approach and Section 4 discusses correctness and robustness
guarantees. Simulations illustrate our results in Section 5. Section 6 gathers our
conclusions and ideas for future work.

Notation. We let R, R≥0, and Z≥0 denote the sets of real, nonnegative real,
and nonnegative integer numbers, respectively. The two-norm a vector is de-
noted by ‖ · ‖2. Given x ∈ R

d and δ ∈ R≥0, B(x, δ) denotes the closed ball
centered at x with radius δ. For Ai ⊂ R

mi×ni with i ∈ {1, . . . , N}, we denote by
diag (A1, . . . , AN ) ∈ R

m×n the block-diagonal matrix with A1 through AN on

the diagonal, where m =
∑N

i=1 mi and n =
∑N

i=1 ni.
Given a set S, we denote by |S| its cardinality. We let P

cc(S) denote the
collection of all closed and connected subsets of S. Similarly, we let Pc(S) denote
the collection of all closed subsets of S. Given S ⊂ R

d, we denote the distance
from a point x to S as dist(x, S) = infy∈S ‖x − y‖2. Given S1, S2 ⊂ R

d, the
Hausdorff distance between S1 and S2 is

dH(S1, S2) = max{ sup
x∈S1

inf
y∈S2

‖x− y‖2, sup
y∈S2

inf
x∈S1

‖x− y‖2}.

The Hausdorff distance is a metric on the set of all non-empty compact subsets
of Rd. Given two set-valued functions C1, C2 ∈ C0(I ∈ R;Pc(Rd)), we define the
distance between the set-valued functions as

dfunc(C1, C2) = sup
t∈I

dH(C1(t), C2(t)). (1)
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An undirected graph G = (V,E) is a pair consisting of a set of vertices V =
{1, . . . , N} and a set of edges E ⊂ V × V such that if (i, j) ∈ E, then (j, i) ∈ E
as well. The set of neighbors of a vertex i is given by N (i) = {j ∈ V | (i, j) ∈ E}.

Given v ∈
∏N

i=1 R
ni , we let viN = (vi, {vj}j∈N (i)) denote the components of v

that correspond to vertex i and its neighbors in G.

2 Problem statement

We consider a distributed control problem carried out over a realistic, unreliable
wireless network. Consider N agents whose communication topology is described
by an undirected graph G. The fact that (i, j) belongs to E models the ability of
agents i and j to communicate with one another. The set of all agents that i can
communicate with is then given by its set of neighbors N (i) in the graph G. The
state of agent i ∈ {1, . . . , N}, denoted xi, belongs to a closed set Xi ⊂ R

ni . The

network state x = (x1, . . . , xN ) therefore belongs to X =
∏N

i=1 Xi. According
to the discussion above, agent i can access xi

N when it communicates with its
neighbors. We assume that each agent has access to its own state at all times.

We consider linear dynamics for each i ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi +Biui, (2)

with Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , and ui ∈ Ui. Here, Ui ⊂ R
mi is a closed set of

allowable controls for agent i. We assume that the pair (Ai, Bi) is controllable
with controls taking values in Ui. Further, we assume there exists a safe-mode
controller usf

i : Xi → Ui such that

Aixi +Biu
sf
i (xi) = 0, for all xi ∈ Xi, (3)

i.e., a controller able to keep agent i’s state fixed. Note that this means that the
null space of Bi should be contained in the null space of Ai.

2.1 Controller and system certification

The goal of the network is to drive the agents’ states to some desired set of con-
figurations D ⊂

∏N
i=1 Xi and ensure that it stays there. Depending on how the

set D is defined, this objective can capture different coordination tasks including
deployment, rendezvous, or formation control. The scope of the paper is not to
design the controller that achieves this, but rather synthesize efficient strategies
for the real-time implementation of a given controller in the presence of com-
munication delays, packet drops, and communication noise that still certifies
convergence to the desired set D.

Given the agent dynamics, the communication graph G, and the set D, our
starting point is the availability of a continuous control law that drives the
system asymptotically to D. Formally, we assume that a continuous map u∗ :



Robust team-triggered coordination 5

∏N
i=1 Xi → R

m and a continuously differentiable function V :
∏N

i=1 Xi → R,
bounded from below, exist such that for all x /∈ D,

∇iV (x) (Aixi +Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (4a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗
i (x)) < 0. (4b)

We assume that both the control law u∗ and the gradient ∇V are distributed
over G. By this we mean that, for each i ∈ {1, . . . , N}, the ith component
of each of these objects only depends on xi

N , rather than on the full network
state x. For simplicity, and with a slight abuse of notation, we write u∗

i (x
i
N )

and ∇iV (xi
N ) to emphasize this fact when convenient. This property has the

important consequence that agent i can compute u∗
i and ∇iV with the exact

information it can obtain through communication on G.
The controller u∗ requires continuous agent-to-agent communication in or-

der to be implemented. However, this is unrealistic and inefficient in practical
networked scenarios, especially in the presence of communication delays and
packet drops. Our goal is to relax this continuous information requirement to
provide robust and efficient real-time controller implementations over networked
cyberphysical systems.

2.2 Physical sources of error

We are ultimately interested in scenarios with unreliable communication among
agents. More specifically, we look at three things. The first is communication
noise, which we assume is bounded as follows: given a state xi, a message yi
can be sent such that ‖yi − xi‖2 ≤ ω̄ for some known ω̄ ∈ R≥0. Second is
the possibility of packet drops in the network. For any given message an agent
sends to another agent, there is an unknown probability 0 ≤ p < 1 that the
packet is dropped, and the message is never received. Lastly, we also consider
the possibility that, at any time t, there is an unknown (possibly time-varying)
communication delay ∆(t) ≤ ∆̄ in the network, where ∆̄ ∈ R≥0 is known. In
other words, if agent j sends agent i a message at time t, agent i will not receive it
with probability p or receive it at time t+∆(t) with probability 1−p. We assume
that small messages (i.e., 1-bit messages) can be sent reliably with negligible
delay. This assumption is similar to the “acknowledgments” and “permission”
messages used in other works, see [25, 29] and references therein.

3 Team-triggered coordination for real-time networked

control

Here we present a novel communication strategy to implement distributed con-
trollers in real time on cyberphysical systems. Our strategy, termed team-triggered,
combines ideas from event- and self-triggered approaches. Agents make promises
to their neighbors about their future states and inform them later if these
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promises are violated (hence the connection with event-triggered control). With
the information available to them, each agent computes the next time that an
update is required based on the evolution of the Lyapunov function (hence the
connection with self-triggered control).

3.1 Promises

A promise can be either a time-varying set of states (state promise) or controls
(control promise) that an agent sends to another agent. Specifically, a state
promise that agent j makes to agent i at time t is a set-valued, continuous
(with respect to the Hausdorff distance) function Xi

j [t] ∈ C0([t,∞);Pcc(Xj)).
This means that agent j promises to agent i that its state at any time t′ ≥ t
will satisfy xj(t

′) ∈ Xi
j [t](t

′). Similarly, a control promise can be conveyed by

a set-valued, continuous function U i
j [t] ∈ C0([t,∞);Pc(Uj)). This means that

agent j promises to only use controls uj(t
′) ∈ U i

j [t](t
′) for all t′ ≥ t. With this

information and knowledge of the dynamics of agent j, agent i can compute the
state promise

Xi
j [t](t

′) = {z ∈ Xj | ∃uj : [t, t
′] → Uj with uj(s) ∈ U i

j [t](s) for s ∈ [t, t′]

such that z = eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. (5)

For simplicity, when the time at which the promise is received is not relevant,
we use the notation Xi

j [·] and U i
j [·] or simply Xi

j and U i
j , respectively. All

promise information available to agent i ∈ {1, . . . , N} at some time t is given by

Xi
N [·]|[t,∞) = (xi|[t,∞), {X

i
j [·]|[t,∞)}j∈N (i)) ∈ C0

(
[t,∞);

∏
j∈N (i)∪{i} P

cc(Xj)
)
.

To extract information from this about a specific time t′, we use Xi
N [·](t′) or

simply Xi
N (t′) = (xi(t

′), {Xi
j [·](t

′)}j∈N (i)) ∈
∏

j∈N (i)∪{i} P
cc(Xj). The general-

ity of the above definitions allow promise sets to be arbitrarily complex. Here, we
restrict ourselves to promise sets that can be described with a finite number of
parameters so that these promises can be conveyed to one another in a realistic
manner, i.e., without requiring an infinite number of bits.

The method of generating promises is not unique and can be done in a
number of ways. A promise rule is a method to create promises. Formally, a
state promise rule for agent j ∈ {1, . . . , N} generated at time t is a continu-
ous (with respect to the distance dfunc between set-valued functions, c.f. (1))

map Rs
j : C0

(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)

→ C0 ([t,∞);Pcc (Xj)). This means

that if agent j must send information to agent i at time t, it sends the state
promise Xi

j [t] = Rs
j(X

j
N [t]). A control promise rule for agent j ∈ {1, . . . , N}

generated at time t is a continuous map Rc
j : C

0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)
→

C0 ([t,∞);Pc (Uj)). This means that when agent j must send information to

agent i at time t, it sends the control promise U i
j [t] = Rc

j(X
j
N [t]), from which

the state promise is computed by (5). We make the assumption that, in the ab-
sence of communication delays or noise in the state measurements, the promises
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generated by these rules have the property that Xi
j [t](t) = {xj(t)}. Note that

because of this fact, it is unnecessary to send the current state xj(t) in addition
to a state promise, since this information is already contained in the promise
Xi

j [t]. However, when a control promise U i
j [t] is sent, the current state xj(t)

should also be sent.

Example 1 (Static ball-radius promise rule). Here we describe one simple control
promise rule, termed the static ball-radius rule, to create promises that can be
described with a finite number of parameters. Given j ∈ {1, . . . , N}, a continuous
control law uj :

∏
i∈N (j)∪{j} P

cc(Xi) → R
mj , and δ > 0, the static ball-radius

control promise rule for agent j generated at time t is

Rc,sb
j (Xj

N [·]|[t,∞))(t
′) = B(uj(X

j
N (t)), δ) ∩ Uj t′ ≥ t. (6)

Note that this promise is a fixed ball of radius δ in the control space Uj centered
at the control signal used at time t. This promise can be sent with two parameters
(assuming δ is known by all agents), the state xj(t) when the promise was sent,

and the control action uj(X
j
N (t)) at that time. •

Having introduced the notion of promise, several observations can be made.
First, the availability of promises equips agents with set-valued information mod-
els about the state of other agents. This fact makes it necessary to address the
definition of distributed controllers that operate on sets, rather than points. We
discuss this point in Section 3.2. Then, based on the promises that agent i re-
ceives from its neighbors at a given time t, it is responsible for computing the
next time it will require updated information. We discuss this in Section 3.3. On
the other hand, if at any time agent j breaks its promise to agent i, i.e., its state
no longer belongs to its promise set, this triggers an event requiring agent j to
send updated information to agent i. We discuss this in Section 3.4.

3.2 Controllers on set-valued information models

Here we briefly discuss the type of controllers that the team-triggered approach
relies on. The underlying idea is that since agents possess set-valued information
about the state of other agents through promises, controllers themselves should
be defined on sets, rather than on points. Our starting point is therefore the
availability of a continuous controller of the form u∗∗ :

∏
j∈{1,...,N} P

cc(Xj) → R
m

that satisfies

∇iV (x) (Aixi +Biu
∗∗
i ({x})) ≤ 0, i ∈ {1, . . . , N}, (7a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗∗
i ({x})) < 0. (7b)

In other words, if exact, singleton-valued information is available to the agents,
then the controller u∗∗ guarantees the monotonic evolution of the Lyapunov
function V . We assume that u∗∗ is distributed over the communication graph G.
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As before, this means that for each i ∈ {1, . . . , N}, the ith component u∗∗
i can be

computed with information in
∏

j∈N (i)∪{i} P
cc(Xj) rather than in the full space∏

j∈{1,...,N} P
cc(Xj).

Controllers of the form described above can be obtained using a number of
design methods. We do not enter into the specific details, but briefly mention
how one such controller can be derived from the availability of the controller u∗ :
X → R

m introduced in Section 2. The intuitive idea is that, given the promise
information Xi

N (t) that an agent i has about some time t, one can simply apply
the controller u∗ to any point yN ∈ Xi

N (t). This can be formalized as follows:

let E :
∏N

j=1 P
cc(Xj) → X be a continuous map that is distributed over the

communication graph G and satisfies, for each i ∈ {1, . . . , N}, that Ei(Y ) ∈ Yi

for each Y ∈
∏N

j=1 P
cc(Xj) and Ei({y}) = yi for each y ∈ X . Now, define

u∗∗(Y ) = u∗(E(Y )). (8)

Note that this controller satisfies (7a) and (7b) because u∗ satisfies (4a) and (4b).

3.3 Self-triggered information updates

Here, we discuss in detail how agents use the promises received from other agents
to generate self-triggered information requests in the future. Let tilast be some
time at which agent i receives updated information (i.e., promises) from its
neighbors. Until the next time information is obtained, agent i has access to the
collection of functions Xi

N describing its neighbors’ states and can compute its
own evolution under the controller u∗∗ via

xi(t) = eAi(t−tilast)xi(t
i
last) +

∫ t

tlast

eAi(t−τ)Biu
∗∗
i (Xi

N (τ))dτ, t ≥ tilast. (9)

With this in place, agent i can schedule the next time tinext at which it will
need updated information from its neighbors. To do so, we define, for any YN ∈∏

j∈N (i)∪{i} P
cc(Xj),

LiV
sup(YN ) = sup

yN∈YN

∇iV (yN ) (Aiyi +Biu
∗∗
i (YN )) , (10)

where yi is the element of yN corresponding to i. Using this, we create an im-
plementable trigger that computes when an agent requires new information to
guarantee the monotonically decreasing evolution of V . Specifically, the critical
time at which information is requested is given by tinext = max{tilast+Td,self, t

∗},
where Td,self > 0 is an a priori chosen parameter that we discuss below and t∗ is
implicitly defined as the first time t∗ ≥ tilast such that

LiV
sup(Xi

N (t∗)) = 0. (11)

Note that as long as (11) has not yet occurred for all agents i ∈ {1, . . . , N} for
some time t and the promises that agents j ∈ N (i) have made to i have not
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been broken, one can guarantee that

d

dt
V (x(t)) ≤

N∑

i=1

LiV
sup(Xi

N (t)) < 0.

This follows from assumptions (7a) and (7b) and the continuity of (10) when
evaluated at the promise sets that each agent possesses.

Although an agent i sends a request REQ for new information from its neigh-
bors j ∈ N (i) at time tinext, it does not mean that it arrives at this time. We
assume that the REQ message can be sent reliably with negligible delay since it
is a very small message. Given the model for delays and uncertainties, as long as
agent i has still not received information from some neighbors j, it will continue
to send j requests for new information every ∆̄ seconds. This is because if at
time tinext+∆̄ the message still has not arrived, it means the packet was dropped
since ∆̄ is the maximum allowable delay.

The parameter Td,self > 0 is known as the self-triggered dwell time. We intro-
duce it because, in general, it is possible that t∗ = tilast, implying that instanta-
neous communication is required. The dwell time is used to prevent this behavior
as follows. Note that LiV

sup(Xi
N (t′)) ≤ 0 is only guaranteed while t′ ∈ [tilast, t

∗].
Therefore, in case that tinext = tilast + Td,self, i.e., if t

∗ < tilast + Td,self, the agent
uses the safe-mode control during t′ ∈ (t∗, tilast + Td,self] to leave its state fixed.
This design ensures the monotonicity of the evolution of the Lyapunov func-
tion V along the network execution. The team-triggered controller is therefore
defined, for t ∈ [tilast, t

i
next), by

uteam
i (t) =

{
u∗∗
i (Xi

N (t)), if LiV
sup(Xi

N (t)) ≤ 0,

usf
i (xi(t)), if LiV

sup(Xi
N (t)) > 0.

(12)

Next, we discuss how to ensure promises are still valid in the presence of
communication noise. To deal with the communication noise, when an agent
i receives an estimated promise X̂i

j from another agent j, it must be able to

create a valid promise Xi
j that contains the promise that agent j intended to

send. Note that the specific way of doing this depends on how promises are
exchanged between agents. We refer to this action as making a promise set
valid. The following example shows how it can be done for the static ball-radius
promises described in Example 1.

Example 2 (Valid static ball-radius promise rule with communication noise). In
the scenario with communication noise bounded by ω̄, when agent j attempts
to send the control promise B(uj(X

j
N (t)), δ) to agent i at time t as defined in

Example 1, it will instead receive Û i
j [t] = B(ûi

j(X
j
N (t)), δ), where uj(X

j
N (t)) ∈

B(ûi
j(X

j
N (t)), ω̄). To ensure that the promise agent i operates with about agent

j contains the true promise made by agent j, it can set

U i
j [t](t

′) = B(ûi
j(X

j
N (t)), δ + ω̄) ∩ Uj t′ ≥ t.
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To create the state promise from this agent i would need the true state xj(t) of
j at time t. However, since only the estimate x̂i

j(t) is available, we modify (5) by

Xi
j [t](t

′) = ∪xj∈B(x̂i
j
(t),ω̄){z ∈ Xj | ∃uj : [t, t

′] → Uj with uj(s) ∈ U i
j [t](s)

for s ∈ [t, t′] such that z = eAj(t
′−t)xj +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. •

3.4 Event-triggered information updates

Agent promises may need to be broken for a variety of reasons. For instance,
an agent might receive new information from its neighbors and, based on it,
decide to change its former plans. Disturbances in the agent dynamics or new
requirements imposed by the level of completion of the network task are yet
more reasons for why promises might be broken. In the team-triggered approach,
promises get updated through events triggered by the agents that decide to break
them. Specifically, consider an agent i that made a promise Xj

i [t] to agent j at

some time t that is not able to keep after time t′ ≥ t, i.e., xi(t
′) /∈ Xj

i [t](t
′).

Then, agent i must send a new feasible promise Xj
i [t

′] to agent j. This event-
triggered mechanism requires each agent to keep track of the last promise it
made to each one of its neighbors and constantly monitor them to detect when
they are broken.

If the message arrived exactly at time t′, there would be no issue because
agent j will always be operating with correct information, namely that xi(t

′) ∈

Xj
i [t

′](t′). However, this message might arrive with a delay ∆(t′) or even be
dropped altogether. To deal with this, we require agent i to also send agent j
a small message WARN at time t′ that warns agent j that agent i has broken
its promise at time t′. As before, we assume that the message WARN can be
sent reliably with negligible delay. With this warning, agent j can make sure it
is operating with correct information at all times as follows. Let us first define
the notation of a reachable set. Given y ∈ Xi, let Ri(s, y) be the reachable set
of points under (2) starting from y in s seconds,

Ri(s, y) = {z ∈ Xi | ∃ui : [0, s] → Ui s.t. z = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Assuming here that each agent has exact knowledge about the dynamics and
control sets of its neighboring agents, each agent can construct, each time the
WARN message is received, sets that are guaranteed to contain their neighbors’
states. Formally, given the original promise Xj

i [t] received by agent i at time t,
and letting t∗ be the time at which the WARNmessage was received from agent i,
we then define the new promise for agent i as

Xj
i [t

∗](t′) = ∪
xi∈X

j
i
[t](t∗)Ri(t

′ − t∗, xi) ⊂ Xi.

This new promise Xj
i [t

∗](t′) is guaranteed to contain xi(t
′) for t′ ≥ t∗. As before,

if the full message is not received after ∆̄ seconds, agent j will send requests REQ
to agent i until the message is successfully transmitted.
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Consider an agent i ∈ {1, . . . , N} that has sent a promise Xj
i [tlast] to a

neighboring agent j at some time tlast. If agent i ends up breaking its promise
at time t∗ ≥ tlast, i.e., xi(t

∗) /∈ Xj
i [tlast](t

∗), then it is responsible for sending a

new promise Xj
i [tnext] to agent j at time tnext = max{tlast + Td,event, t

∗}, where
Td,event > 0 is an a priori chosen parameter that we discuss below. This implies
that agent i must keep track of promises made to its neighbors and monitor them
in case they are broken. Note that this mechanism is implementable because each
agent only needs information about its own state and the promises it has made
to determine whether the trigger is satisfied.

The parameter Td,event > 0 is known as the event-triggered dwell time. We
introduce it because, in general, the time t∗ − tlast between when agent i makes
and breaks a promise to an agent j might be arbitrarily small. The issue, however,
is that if t∗ < tlast+Td,event, agent j operates under incorrect information about
agent i for t ∈ [t∗, tlast + Td,event). We deal with this by introducing a warning
message WARN that agent i must send to agent j when it breaks its promise at
time t∗ < tlast + Td,event. If agent j receives such a warning message, it redefines
the promise Xi

j as follows,

Xj
i [·](t) =

⋃

xi∈X
j
i
[·](t∗)

R(t− t∗, xi), (13)

for t ≥ t∗, until the new message arrives at time tnext = tlast + Td,event. By

definition of the reachable set, the promise Xj
i [·](t) is guaranteed to contain

xi(t) for t ≥ t∗.
This algorithm ensures that promises are kept at all times. Even if promises

are broken, the WARN message allows agents to redefine promises such that they
always contain the true states of the relevant agents. The following remark points
out minor modifications that would need to be made to the above discussion in
the case of modeling uncertainties.

Remark 1 (Modeling uncertainties). In the case of modeling uncertainties or if
each agent i does not know exactly the dynamics of its neighbors j ∈ N (i),

the reachable sets Rj(s, y) can be replaced by any other set R̂j(s, y) that con-
tains Rj(s, y) for all s ≥ 0. •

Combining the controller uteam
i with the event- and self-triggered methods of

sharing information yields the robust team-triggered law, cf. Algorithm 1.

4 Analysis of the robust team-triggered law

In this section we analyze the convergence, performance, and robustness proper-
ties of the robust team-triggered law proposed in Section 3. We begin by
noting the monotonic behavior of V with respect to the algorithm executions.

Proposition 1. The function V is monotonically nonincreasing along the net-
work dynamics (2) under the robust team-triggered law, with packet drops
occurring with some unknown probability 0 ≤ p < 1 messages being delayed by
some known maximum delay ∆̄, and communication noise bounded by ω̄.
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Algorithm 1 : robust team-triggered law

(Self-triggered information update)

At any time t agent i ∈ {1, . . . , N} receives new promise(s) X̂i
j [t] from neighbor(s)

j ∈ N (i), agent i performs:

1: create valid promise Xi
j [t] with respect to ω̄

2: compute own state evolution xi(t
′) for t′ ≥ t using (9)

3: schedule information request to neighbors in max{t∗ − t, Td,self} seconds
4: apply controller uteam(t′) for t′ ≥ t
5: while message from j has not been received do

6: if current time equals t+max{t∗ − t, Td,self}+ k∆̄ for k ∈ Z≥0 then

7: send agent j a request REQ for new information
8: end if

9: end while

(Respond to information request)
At any time t agent j ∈ N (i) requests information, agent i performs:

1: send new promise Y j

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agent j

(Event-triggered information update)
At all times t, agent i performs:

1: if there exists j ∈ N (i) such that xi(t) /∈ Y j

i [·](t) then
2: send warning message WARN to agent j
3: if agent i has sent a promise to j at some time tlast ∈ (t− Td,event, t] then
4: schedule to send new promise Y j

i [tlast + Td,event] = Rs
i(X

i
N [·]|[tlast+Td,event,∞))

to agent j in tlast + Td,event − t seconds
5: else

6: send new promise Y j

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agent j

7: end if

8: end if

(Respond to warning message)
At any time t agent i ∈ {1, . . . , N} receives a warning message WARN from agent
j ∈ N (i)

1: redefine promise set Xi
j [·](t

′) = ∪x0
j
∈Xi

j
[·](t)Rj(t

′ − t, x0
j ) for t

′ ≥ t

2: while message from j has not been received do

3: if current time equals t+ k∆̄ for k ∈ Z≥0 then

4: send agent j a request REQ for new information
5: end if

6: end while

Proof. To prove the result, we write the time derivative of the Lyapunov function
using the controller uteam

i for all agents i ∈ {1, . . . , N},

d

dt
V (x(t)) =

N∑

i=1

∇iV (xi
N (t))

(
Aixi(t) +Biu

team
i (Xi

N (t))
)

(14)

≤
N∑

i=1

sup
xi
N
(t)∈Xi

N
(t)

∇iV (xi
N (t))

(
Aixi(t) +Biu

team
i (Xi

N (t))
)
≤ 0.
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This is guaranteed by the design of the robust team-triggered law. In
fact, the WARN messages allow agents to ensure that the information they
are operating with is correct, i.e., that promises are valid at all times. When
LiV

sup(Xi
N (t)) ≤ 0, the control policy as defined in (12) is uteam

i (Xi
N (t)) =

u∗∗
i (Xi

N (t)). In this case the summands of (14) are exactly LiV
sup(Xi

N (t) as
defined in (10). When LiV

sup(Xi
N (t)) > 0, the control uteam

i (Xi
N (t)) = usf

i (xi),
for which the summands of (14) are exactly 0. ⊓⊔

The following result states that, under the robust team-triggered law,
Zeno behavior does not occur when using positive dwell times.

Lemma 1 (No Zeno behavior). Consider a networked cyberphysical system
as described in Section 2 executing the robust team-triggered law, cf. Algo-
rithm 1, with dwell times Td,self, Td,event > 0. Then the network does not exhibit
Zeno behavior.

We are now ready to study the algorithm convergence. For simplicity, we first
consider the case with no packet drops, communication delays, or communication
noise and later extend the result.

Proposition 2. Given the network dynamics (2) under the robust team-

triggered law with no packet drops, communication delays, or communication
noise, the system asymptotically approaches the set D.

There are two main challenges in proving Proposition 2. The first is that we
need a way to model the asynchronous executions of the agents’ actions. The
second is that because of the intermittent communications between agents, the
memories of the agents evolve discontinuously in time, making it difficult to use
standard stability methods of analyzing the trajectories of the system.

Proof sketch. To model the asynchronism, let the time schedule of agent i
be given by T i = {ti0, t

i
1, . . . } where tiℓ corresponds to the ℓth time that agent i

receives information from one or more of its neighbors. Note that this information
can be received because i requests it itself, or j sends it to i because an event
is triggered. Analytic synchronization is a procedure of merging together the
individual time schedules into a global one T = {t0, t1, . . . } by setting

T = ∪N
i=1T

i.

This synchronization is done for analysis purposes only and the time schedules
T i are not known by the agents themselves. Note that more than one agent may
receive information at any given time t ∈ T .

The information possessed by any given agent are trajectories of sets for each
of their neighbors, i.e., promises. For convenience, we denote by

S =

N∏

i=1

Si, where

Si = C0
(
R;Pcc(X1)× · · · × P

cc(Xi−1)×Xi × P
cc(Xi+1)× · · · × P

cc(XN )
)
,
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the space that the state of the entire network lives in. Note that this set allows
us to capture the fact that each agent i has perfect information about itself.
Although agents only have information about their neighbors, the above space
considers agents having promise information about all other agents to facilitate
the analysis. This is only done to allow for a simpler technical presentation,
and does not impact the validity of the arguments made here. The information
possessed by all agents of the networks at some time t is collected in

(
X1[·]|[t,∞), . . . , X

N [·]|[t,∞)

)
∈ S,

where Xi[·]|[t,∞) =
(
Xi

1[·]|[t,∞), . . . , X
i
N [·]|[t,∞)

)
∈ Si. We can then formulate

the robust team-triggered law discontinuous map of the form S × Z≥0 →
S × Z≥0. This fact makes it difficult to use standard stability methods to ana-
lyze the convergence properties of the network. Our approach to this problem
consists then of defining a set-valued map M : S×Z≥0 ⇒ S×Z≥0 whose trajec-
tories contain the trajectories of the robust team-triggered law. Although
this ‘overapproximation procedure’ enlarges the set of trajectories to consider,
the gained benefit is that of having a set-valued map with suitable continuity
properties that is amenable to set-valued stability analysis. We describe this in
detail next.

We start by defining the set-valued map M . Let (Z, ℓ) ∈ S ×Z≥0. We define
the (N + 1)th component of all the elements in M(Z, ℓ) to be ℓ + 1. The ith
component of the elements in M(Z, ℓ) is given by one of following possibilities.
The first possibility is simply the ith component of Z,

(
Zi
1[·]|[tℓ+1,∞), . . . , Z

i
N [·]|[tℓ+1,∞)

)
, (15)

which models the case when the agent i does not receive any information from
its neighbors. The second is

(
Y i
1 [·]|[tℓ+1,∞), . . . , Y

i
N [·]|[tℓ+1,∞)

)
, (16)

where for j 6= i

Y i
j [·]|[tℓ+1,∞) =

{
Zi
j [·]|[tℓ+1,∞), if i does not receive information from j,

Rs
j(Z

j
N [·]|[tℓ+1,∞)), otherwise,

(17a)

and

Y i
i [·](t) = eAi(t−tℓ+1)Zi

i (tℓ+1) +

∫ t

tℓ+1

eAi(t−τ)Biu
team
i (τ)dτ, t ≥ tℓ+1, (17b)

which models the case when the agent i has received updated information from
at least one neighbor (here, with a slight abuse of notation, we use the notation
uteam to denote the controller evaluated at the set Y i[·]).
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Two properties regarding the set-valued map M are worth emphasizing.
First, any trajectory of the robust team-triggered law is also a trajectory
of the nondeterministic dynamical system defined by M ,

(Z(tℓ+1), ℓ+ 1) ∈ M(Z(tℓ), ℓ).

Second, unlike the map defined by the robust team-triggered law, which
is discontinuous, it can be shown that the set-valued map M is closed (a set-
valued map T : X ⇒ Y is closed if xk → x, yk → y and yk ∈ T (xk) imply
that y ∈ T (x)). Using this and the monotonicity of the Lyapunov function V ,
cf. Proposition 1, we can resort to a form of the LaSalle Invariance Principle
for set-valued discrete-time dynamical systems to show that all trajectories of T
converge to the largest weakly invariant set contained in

S∗ = {(Z, ℓ) ∈ S × Z≥0 | ∃(Z ′, ℓ+ 1) ∈ M(Z, ℓ) such that V (Z ′) = V (Z)},

= {(Z, ℓ) ∈ S × Z≥0 | LiV
sup(Zi

N ) ≥ 0 for all i ∈ {1, . . . , N}}. (18)

Using this information, we are able to show that the omega-limit set of any
trajectory of M specific to the robust team-triggered law corresponds to
the set D. This concludes our proof sketch for Proposition 2.

In the scenario with possible packet drops, communication delays and sensor
noise, we are able to state the following result.

Corollary 1. Consider a networked cyberphysical system as described in Sec-
tion 2 with packet drops occurring with some unknown probability 0 ≤ p < 1,
messages being delayed by some known maximum delay ∆̄, and communication
noise bounded by ω̄, executing the robust team-triggered law (cf. Algo-
rithm 1) with dwell times Td,self, Td,event > 0. Then, any bounded network evolu-
tion with uniformly bounded promises asymptotically converges to the neighbor-
hood of D given by

D′(∆̄, ω̄) = {x ∈ X | inf
xi
N

′∈B(xi
N
,ω̄)

LiV
sup

(
{xi}×

∏

j∈N (i)

⋃

yj∈B(xi
j
′
,ω̄)

Rj(∆̄, yj)
)
≥0,

for all i ∈ {1, . . . , N}}, (19)

with probability 1.

Note that by equation (7b), the definition (10), and the continuity of u∗∗, D
precisely corresponds to D′(0, 0). We only provide a proof sketch of the result.
Note that, under the hypotheses of the corollary, agents might never know the
exact state of themselves or their neighbors at any time. The basic idea is the
observation that all properties of M used in the proof of Proposition 2 still hold
in the presence of packet drops, delays, and communication noise as long as the
time schedule T i remains unbounded for each agent i ∈ {1, . . . , N}. For this to
happen, each agent i must receive an infinite number of messages, and tiℓ → ∞.
Since packet drops have probability 0 ≤ p < 1, the probability that there is a
finite number of updates for any given agent i is 0. Thus, with probability 1,
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there are an infinite number of information updates for each agent. Using a
similar argument to that in the proof of Proposition 2, one can establish that
the bounded trajectories of M still converge to S∗ as defined in (18). Finally,
one can use this fact to conclude that the omega-limit set of any trajectory of M
specific to the robust team-triggered law corresponds to the set D′(∆̄, ω̄).

5 Simulations

This section presents simulations of a planar coverage control problem to il-
lustrate the performance of the team-triggered approach and compare it with
periodic and self-triggered approaches. Our starting point is the distributed co-
ordination algorithm based on Voronoi partitioning introduced in [30]. The dy-
namics of each agent is a single integrator

ẋi = ui, i ∈ {1, . . . , N}, (20)

where ‖ui‖2 ≤ umax. Given a convex polygon Q ⊂ R
2 and some known density

function φ : Q → R≥0, consider the objective function

H(x) = Eφ

[
min

i∈{1,...,N}
‖q − xi‖

2

]
=

N∑

i=1

∫

Vi

‖q − xi‖
2φ(q)dq. (21)

Here, {V1, . . . , VN} denotes the Voronoi partition ofQ, cf. [31]. Roughly speaking,
the valueH encodes the expected value of the minimum distance from some agent
in the network to a generic point in the polygon, given the density function φ.
The continuous control law u∗ = (u∗

1, . . . , u
∗
N ) is the gradient of H,

u∗
i = −2MVi

(pi − CVi
),

where MVi
and CVi

are the mass and centroid of Vi, respectively. Note that
this control law is distributed on the Delaunay graph, i.e., where each agent’s
neighbors are its Voronoi neighbors. The system (20) under the control law
u∗ converges to the set of centroidal Voronoi configurations, i.e., configurations
where each agent is at the centroid of its own Voronoi cell.

In the following simulations, we consider N = 8 agents operating in a square
environment of side lengths 4 with umax = 1. The density function is given by
φ(q) = e−‖q−p1‖2 + e−‖q−p2‖2 , where p1 = (2, 3) and p2 = (3, 1). The promises
among agents are generated using the static ball-radius rule described in Ex-
ample 1 with δ = 0.5umax. The controller we use in the team-triggered ap-
proach is defined from u∗ using the procedure described in Section 3.2, using
yij = cc(Xi

j) ⊂ Xi
j for each j ∈ N (i) (here, cc(S) is the circumcenter of S). The

dwell time in the team-triggered execution is Td,self = 0.05. According to Corol-
lary 1, under communication delays bounded by ∆̄ and sensor noise bounded
by ω̄, the system converges to a neighborhood of the set of centroidal Voronoi
configurations. In this case, one can actually provide a characterization of this
asymptotic behavior as follows: in the limit, each agent is within 2(∆̄umax + ω̄)
of the centroid of its own Voronoi cell.



Robust team-triggered coordination 17

(a) (b) (c)

Fig. 1. Executions of the (a) periodic, (b) self-triggered, and (c) team-triggered imple-
mentations of the gradient-based continuous controller for optimal deployment in [30].
The black and gray dots correspond to initial and final conditions, respectively.
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Fig. 2. (a) shows the evolution of the objective function (21), (b) shows the commu-
nication power (Watts) consumption over time and (b) shows the total transmission
energy used (Joules) for the three executions in Figure 1.

Figure 1 shows network executions under periodic, self-triggered, and team-
triggered implementations of the controller. This figure also compares the evo-
lution of the objective function (21). Figure 2 compares the total energy used to
transmit messages by the entire network as the system evolves. For each agent
i ∈ {1, . . . , N}, we quantify the power Pi used by i to communicate using [32],

Pi = 10 log10

[ n∑

j∈{1,...,n},i6=j

β100.1Pi→j+α‖xi−xj‖2

]
,

where α > 0 and β > 0 depend on the characteristics of the wireless medium
and Pi→j is the power received by j of the signal transmitted by i. In our
simulations, all these values are set to 1. We can see from Figure 2(b) that
the total amount of transmission energy used with the team-triggered approach
is significantly less than those of the periodic and self-triggered approaches.
Remarkably, this comes without compromising the stability of the system, cf.
Figure 1. For instance, Figure 1(b) shows that the speed of convergence is a little
slower in the triggered strategies, but yields a large amount of savings in terms
of message transmission energy.
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We conclude this section by illustrating how tightness of promises affect the
performance of the network. We do this by varying the parameter δ in the
definition (6) of the static-ball radius rule. This parameter captures how large the
promise sets that agents send to each other are. We define λ = δ

2 , so that λ = 0
corresponds to exact information (the control promise is a point in the allowable
control set) and λ = 1 corresponds to no promises at all (the control promise is
the entire allowable control set). Note that the latter case exactly corresponds to
a self-triggered strategy because agents are simply using reachability sets about
their neighbors as the promises. Figure 3 shows the average power consumption
and the time to converge to 99% of the final value of the objective function for
varying tightness on the promises. Note that for small λ, the amount of energy
required for sending messages is minimal while the time to convergence only
increases slightly.
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Fig. 3. Implementation of the team-triggered strategy with varying tightness of
promises. Plot (a) shows average communication power consumption (Watts) by the
whole network and (b) shows time to converge to 99% of the final value (seconds).
The parameter λ captures tightness of promises, with λ = 0 corresponding to exact
information and λ = 1 corresponding to the self-triggered case (no promises at all, just
the description of the reachability set).

6 Conclusions

We have proposed a novel approach, termed team-triggered, for the real-time
control of networked cyberphysical systems. When information between subsys-
tems is obtained through wireless communication, event-triggered strategies may
be costly to implement because they need continuous availability of information
to check the triggers, and self-triggered strategies are conservative because they
tend to generate more communications than strictly necessary. The robust

team-triggered law combines ideas from both event- and self-triggered con-
trol into a unified paradigm that incorporates their strengths while maintaining
desired levels of performance. The backbone of the team-triggered approach is
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the quality of promises that agents make to one another. Future work will be
devoted to tuning the generation of promises to optimize system properties such
as communication energy and time to convergence, analyzing the algorithm per-
formance under other sources of errors such as disturbances in the dynamics,
and relaxing our assumptions to make the approach more generally applicable.
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