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_Abstract—This paper studies the real-time implementation of of event- and self-triggered control to synthesize a unified
distributed controllers on networked cyber-physical systems. W approach for controlling networked systems in real time tha
build on the strengths of event- and self-triggered control to combines the best of both worlds.

synthesize a unified approach, termed team-triggered, where Literat iew: Th d f t int fi d
agents make promises to one another about their future states iierature review. ‘ine need ior Systems Integration-an

and are responsible for waming each other if they later decide the importance of bridging the gap between computing, com-
to break them. The information provided by these promises munication, and control in the study of cyber-physical sys-
allows individual agents to autonomously schedule information tems cannot be overemphasized [3], [4]. Real-time comtroll

requests in the future and sets the basis for maintaining desired implementation is an area of extensive research including

levels of performance at lower implementation cost. We establish S .
provably correct guarantees for the distributed strategies tha periodic [S], [6], event-triggered [7], [8], [9], [10], andelf-

result from the proposed approach and examine their robustness triggered [11], [12], [13] procedures. Our approach shares
against delays, packet drops, and communication noise. The with these works the aim of trading computation and decision
results are illustrated in simulations of a multi-agent formation making for less communication, sensor, or actuator effort
control problem. while still guaranteeing a desired level of performance. Of
particular relevance to this paper are works that study aati
I. INTRODUCTION event-triggered implementations of controllers for neteal
A growing body of work studies the design and real-timgyber-physical systems. The predominant paradigm is that o
implementation of distributed controllers to ensure thieieht @ single plant that is stabilized through a decentralizegt tr
and robust operation of networked cyber-physical systéms.gered controller over a sensor-actuator network, see B4g. [
multi-agent scenarios, energy consumption is correlatigd w[15], [16]. Fewer works have considered scenarios where
the rate at which sensors take samples, processors reaompiiltiple plants or agents together are the subject of the
control inputs, actuator signals are transmitted, andiverse overall control design. Exceptions include consensusveate
are left on listening for potential incoming signals. Periing  triggered [17], [18], [19] or self-triggered control [17]20],
these tasks periodically is costly, might lead to inefficieféndezvous [21], model predictive control [22], and model-
implementations, or face hard physical constraints. Toestd based event-triggered control [23], [24]. The event-teiggl
these issues, the goal of triggered control is to identifeda  controller designed in [17] for a decentralized system with
that allow agents to tune the implementation of controlierd multiple plants requires agents to have continuous inftiona
sampling schemes to the execution of the task at hand aput each others’ states. The works in [17], [25] implement
the desired level of performance. In event-triggered adntr Self-triggered communication schemes to perform disteithu
the focus is on detecting events during the network exegutigontrol where agents assume worst-case conditions for othe
that are relevant from the point of view of task completiodgents when deciding when new information should be ob-
and should trigger specific agent actions. In self-triggerdained. Distributed strategies based on event-triggevethu-
control, the emphasis is instead on developing tests tiat r@ication and control are explored in [26], where each agest h
only on current information available to individual agetes an a priori computed local error tolerance and once it véslat
schedule future actions. Event-triggered strategies rgéipe it, the agent broadcasts its updated state to its neighiboes.
result in less samples or controller updates but, when ézdcusame event-triggered approach is taken in [27] to implement
over networked systems, may be costly to implement beca@adient control laws that achieve distributed optimizatiThe
of the need for continuous availability of the informatiorworks [23], [28], [29] are closer in spirit to the ideas pretssl
required to check the triggers. Self-triggered strategigs here. In the interconnected system considered in [23], each
more easily amenable to distributed implementation builressubsystem helps neighboring subsystems by monitoring thei
in conservative executions because of the overapprodmatestimates and ensuring that they stay within some perfazenan
by individual agents about the state of the environment had tounds. The approach requires different subsystems to have
network. These strategies might be also beneficial in smarsynchronized estimates of one another even though they do
where leaving receivers on to listen to potential messagespt communicate at all times. In [28], [29], agents do not
costly. Our objective in this paper is to build on the stréxsgt have continuous availability of information from neighband
instead decide when to broadcast new information to them.

Preliminary versions of this paper have appeared as [1] ahd [2 Statement of contributionse propose a novel scheme
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Our approach is based on agents making promises to difee Hausdorff distance betweeh, S, € R? is
another about their future states and being responsible for
warning each other if they later decide to break them. This 14
reminiscent of event-triggered implementations. Prosisan
be broad, from tight state trajectories to loose descmgtiof

(S1,52) = max{sup inf ||z —y||2, sup inf [z —y|2}.
zeS, YES2 yES, TEST

The Hausdorff distance is a metric on the set of all non-
reachability sets. With the information provided by proesis empty compact subsets &f'. Given two bounded set-valued

individual agents can autonomously determine when in tl]fnlén(:t'onscl’C2 € C(I C R;PY(RY)), its distance is

future fresh information will be needed to maintain a desire diunc(C1, Ca) = sup dg (C1(t), Ca(t)). (1)

level of performance. This is reminiscent of self-triggere tel

implementations. The benefits of the proposed scheme ajig¢undirected graply = (V, E) is a pair consisting of a set of

threefold. First, because of the availability of the proesis verticesV = {1,...,N} and a set of edgeB C V x V such

agents do not require continuous state information abawht if (i,7) € E, then(j,i) € E. The set of neighbors of a

neighbors, in contrast to event-triggered strategies emplertex: is \'(i) = {j eV |(ij) € E}. Givenv € Hf\il R,

mented over distributed systems that require the contimugye letvi, = (v;, {v;}jens)) denote the components ofthat

availability of the information necessary to check thevate correspond to vertex and its neighbors irg.

triggers. Second, because of the extra information pravide

by promises about what other agents plan to do, agents can; NETWORK MODELING AND PROBLEM STATEMENT
enerally wait longer periods of time before requesting new . - .

ignformat)i/on and ogerar:e more efficiently than ifq only V\?OI’St- We consider a distributed control problem caried out

. : . , over an unreliable wireless network. Considadr agents
case scenarios are assumed, as is done in self-triggerdicon

Less overall communication is beneficial in reducing thaltotWhose communication topology is described by an undirected

network load and decreasing chances of communication sielééaphg' The fact thati, j) belongs tak? models the ability of

. .agentsi andj to communicate with one another. The agents
or packet drops due to network congestion. Lastly, we peovi : . . . N
. can communicate with are its neighbo¥§(7) in G. The state
theoretical guarantees for the correctness and perfoenaihc "
. N - of i € {1,..., N}, denotedr;, belongs to a closed set; C
team-triggered strategies implemented over distributett n_ °
. R™. The network state: = (x1,...,2y) therefore belongs
worked systems. Our technical approach makes use of Sf%t')( N v According to the discussion above. agent
valued analysis, invariance sets, and Lyapunov stabilifg. [Ti=y X g - age

also show that, in the presence of physical sources of erfgl) 8ccessy when it communicates with its neighbors. By

and under the assumption that 1-bit messages can be %ﬁumption, each agent has access to its own state at al time

reliably with negligible delay, the team-triggered apmioa € consider linear dynamics for eacle {1,..., N},

can be slightly modified to be robust to delays, packet drops, & = fi(ws,wi) = Ajzy + By, (2)
and communication noise. Interestingly, the self-triggeap- . o

proach can be seen as a particular case of the team-triggdht 4 € R" ™™, B; € R">™, andw; € U;. Here,U; C
approach where promises among agents simply consist of tHej ~ 1S @ closed set of allowable controls fofr agent\We
reachability sets (and hence do not actually constrainr th&FSUMe the existence ofsafe-modeeontrollerw? : ; — U;,
state). We illustrate the convergence and robustnesstsesul Az + Biud(z;) =0, forall z; € X;,

through simulation in a multi-agent formation control plerh,

paying special attention to the implementation costs aed the-, a controller able to keep agefststate fixed. The existence

role of the tightness of promises in the algorithm perforogan Of @ safe-mode controller for a general controlled system
may seem restrictive, but there exist many cases, including

Organization: Section I lays out the problem of interest,,sniinear systems, that admit one, such as single intagrato
Section 11l briefly reviews current real-time implementati \epicles with unicycle dynamics. Letting= (1, ...,uy) €

approaghes based on agent triggers. Section IV pre_:sentsdhg Hililui’ the dynamics can be described by
team-triggered approach for networked cyber-physical sys

tems. Sections V and VI analyze the correctness and robust- & = Az + Bu, 3)
lstate our restts i Section wil. Finaly. Secton vit " A = dig(du... Ay) € R and B -
: Y diag (By,...,By) € R"*™, wheren = Zfil n;, andm =

gathers our conclusions and ideas for future work. SN m.. We refer to the team of agents with communication
Notation: We letR, R, andZ, denote the sets of real, topology G and dynamics (3), where each agent has a safe-

nonnegative real, and nonnegative integer numbers, resp@ode controller and access to its own state at all times, as

tively. The two-norm of a vector i§ - ||. Givenz € R* and a networked cyber-physical systeffhe goal is to drive the

d € R>o, B(xz,d) denotes the closed ball centeredrawith agents’ states to some desired closed set of configurations

radiusé. For A; € R™*™ withi € {1,..., N}, we denote by D c X and ensure that it stays there. Depending on tibig

diag (A1,...,Ay) € R™*" the block-diagonal matrix with defined, this objective can capture different coordinatasks,

A; through Ay on the diagonal, wheren = Zf;l m; and including deployment, rendezvous, and formation confrbe

n= Zf;l n;. Given a setS, we denote byS| its cardinality. goal of the paper is not to design the controller that aclsieve

We let P°(S), respectivelyP®(S), denote the collection of this but rather synthesize efficient strategies for the-tiez

compact, respectively, compact and connected, subse$s ofimplementation of a given controller.



Given the agent dynamics, the communication grgpbnd to agenti at timet. Since agents do not have access to exact
the setD, our starting point is the availability of a controlinformation at all times, they cannot implement the comérol
law that drives the system asymptotically fo Formally, we «* exactly, but instead use the feedback law
assume that a continuous map: X — U/ and a continuously self i
differentiable functionl’ : X — R, bounded from below exist ui (t) = ui (T (1))-

such thatD is the set of minimizers o and, for allz ¢ D, e are now interested in designing a triggering method such
that agenti can decide whert}/(t) needs to be updated.
. ) Let t55t be the last time at which all agents have received
i Azz B,L : <0, 1,...,N, 4a . IaSt, . i i i
ViV(@) (Aizi + Bii (@) < 0, i €{ ' (42) information from their neighbors. Then, the timgy at which
the estimates should be updated is when
d

. — V(2 (thex)) (5)
We assume that both the control lav# and the gradient dt

VV are distributed ove. By this we mean that, for each B even B
i € {1,...,N}, the ith component of each of these objects Zviv(x(t”e’“)) (Aii(tnex) + By (tiast)) = 0.
only depends omj\[, rather than on the full network state =t

For simplicity, and with a slight abuse of notation, we writdJnfortunately, (5) requires global information and canhet
ui(zi,) € U; and V;V (%) € R™ to emphasize this fact checked in a distributed way. Instead, one can define a local

N
> ViV(x) (Aiz; + Biu (x)) < 0. (4b)
1=1

N

when convenient. This property has the important consemgueigvent that defines when a single agert {1, ..., N} should
that agenti can compute these quantities with the exa¢tPdate its information as any time that
information it can obtain through communication gn ViV (2(t)) (Aixi(t) 4 Biufe”(t)) —0. (6)

Remark I.1 (Assumption on non-negative contribution of As long as each ageintcan ensure the local event (6) has not
each agent to task completionNote that (4b) simply states yet occurred, it is guaranteed that (5) has not yet occurred
that V' is a Lyapunov function for the closed-loop systemeither. The problem with this approach is that each agent
Instead, (4a) is a more restrictive assumption that esdlgnti ¢ € {1,..., N} needs to have continuous access to information
states that each agent does not individually contribute inahout the state of its neighbor§’(i) in order to evaluate
negative way to the evolution of the Lyapunov function. Thi¥;V(z) = V,;V(z},) and check condition (6). The self-
latter assumption can in turn be relaxed [14] by selectifjggered approach removes this requirement on continuous
parametersyy,...,ay € R with ny:l a; = 0 (note that availability of information by having each agent employ
someq; would be positive and others negative) and specifyirigstead the possibly inexact information about the state of
instead that, for eache {1,..., N}, the left-hand side of (4a) their neighbors. The notion of reachability set plays a kag r
should be less than or equaldg. Along these lines, one couldin achieving this. Givery € A, the reachable sebf points
envision the design of distributed mechanisms to dynatgicalinder (2) starting fromy in s seconds is,

adjust these parameters, but we do not go into details here fo Ri(s,y) = {2 € & | Jus : 0,5] — U such that

space reasons. . .
_ _A;s Ai(s—T)n.,, .
From an implementation viewpoint, the controllet re- S y+/0 ¢ Biui(r)dr}.

quires continuous agent-to-agent communication and menti . . L
; L : sing this notion, if agents have exact knowledge about the
ous updates of the actuator signals, making it unfeasible . . . .
: . . namics and control sets of its neighboring agents (but not
practical scenarios. In the next section we develop a Sith-

. o eir controllers), each agent can construct, each time sta
triggered communication and control strategy to address L . .
. . ) . . . . information is received, sets that are guaranteed to aontai
issue of selecting time instants for information sharing.

their neighbors’ states.

IIl. SELF-TRIGGERED COMMUNICATION AND CONTROL

Definition 11l.1 (Guaranteed sets) If ¢ is the time at

This section provides an overview of the self-triggeredhich agenti receives state information;(tf,) from its

communication and control approach to solve the problengighbor; € N/ (i), then theguaranteed seis given by

described in Section Il. In doing so, we also introduce s&ver , , , , .

concepts that play an important role in our discussion .later X5t tiast 7 (as)) = Ryj(t — tiast 7 (tias)) © A, (7)

The general |de_a is to guarantee t_hat th_e time derivativeeof tyq is guaranteed to contain(t) for ¢ > ti,,

Lyapunov functionV along the trajectories of the networked

cyber-physical system (3) is less than or equdl &t all times, ~ We let X' (t) = XU (¢, t},g, 2 (tlas)) When the starting state

even when the information used by the agents is inexact. z;(t},) and timetj,, do not need to be emphasized. We denote
To model the case that agents do not have perfect imy X (t) = (xi(t), {X}(t)};eni)) the information available

formation about each other at all times, we let each agentagent; at timet¢.

i€{l,...,N} keep an estimatg’ of the state of each of its

neighborsj € N/ (). Sincei always has access to its own stateRemark 111.2 (Computing reachable sets) Finding the

Th(t) = (zi(t), {T5(t)}jenr(s)) is the information available guaranteed or reachable sets (7) can be in general



computationally expensive. A common approach consists thiese promises are violated later (hence the connectidm wit
computing over-approximations to the actual reachableiset event-triggered control). With the extra information prad
convex polytopes or ellipsoids. There exist efficient allfpons by the availability of the promises, each agent computes the
to calculate and store these for various classes of systaas, next time that an update is required and requests informatio
e.g., [30], [31]. Furthermore, agents can deal with siareti from their neighbors accordingly to guarantee the monactoni
where they do not have exact knowledge about the dynamitysof the Lyapunov functior” introduced in Section Il (hence

of their neighbors (so that the guaranteed sets cannot the connection with self-triggered control).

computed exactly) by employing overapproximations of the

actual guaranteed sets. °
A. Promises
With the guaranteed sets in place, we can now provide a test ) . . .
that allows agents to determine when they should update thei”® Promisecan be either a time-varying set of states (state
current information and control signals. At tintg,, agent; P'OMIS€) or controls (control promise) that an agent seads t

computes the next timé > £, to acquire information via anther agent.
sup Viv(y./\/') (A’ixi (taext) + Biu?elf(téext)) =0. (8)

YA EX (ti) Definition 1V.1 (State promises and rules)A state promise

o , . , that agentj € {1,..., N} makes to agent at timet is a set-
By (4a) and the fact thaK’} (tj,s) = {x;(tj.s)}, at imetjog,  valued, continuous (with respect to the Hausdorff distance
i i function Xi[t] € CO([t,00); P*(X;)). A state promise rule
4 Aii(thas) + Biu®'(t ) o o
yNeig’w ) () (Aszi(tias) + Biii (tas) for agentj € {1,...,N} generated at time is a con-
- i i i tinuous (with respect to the distanck,,. defined in (1
= ViV (2 (tas) (Aii (ths) + Bius™ (ths)) < 0. ( ps 0 e . 1)
map of the formRs : C ([t,oo);HieN(j>u{j}P (Aﬁ)) —
If all agents use this triggering criterion for updatingdnha- -0 ([t, 00); P (X;)). o
tion, it is guaranteed thag V (z(t)) < 0 at all imes because, T !
for eachi € {1,... 71N}, th.e true stater; (t) is guaranteed t0  The notation X:[f](t') conveys the promiser;(t')
be inXj(t) for all j € V(i) andt >ty Xi[t](#) that agentj makes at timet to agenti about
The condition (8) is appealing because it can be evaluatggle /> + A state promise rule is simply a way of
by agenti with the information it possesses at timy. generating state promises. This means that if agentust
Once determined, agentschedules that, at tim&,, it will - seng information to agent at time ¢, it sends the state
request updated information from its neighbors. We refer [3omise xi[1] = RS(X3/[]jjt.00))- We require that, in the
i i : - . j j t,00) ) )
thext — liast @S theself-triggered request timéor agenti. Due  gpsence of communication delays or noise in the state
to the conservative way in whicky, is determined, it iS measurements, the promises generated by a rule have the
possible thatthe, = fig for somei, which would mean that property thatx![1](t) = {z;(t)}. For simplicity, when the
instantaneous information updates are necessary (ndtttba ime at which a promise is received is not relevant, we
cannot happen for afl € {1,..., N} unless the network state ;se the notationX‘[], or simply X‘. All promise infor-

is already inD). This can be dealt with by introducing a dwellnation available to agent € {1,..., N} at some timet
time such that a minimum amount of time must pass befogg given by Xirl o) = (@ijft.o0ys IXE 100 Hen ) €
an agent can request new information and using the safe-mog e ; .
controller while waiting for the new information. We do not” e<[t’ )i [Tjenugy F (Xj)>' To extract information
enter into details here and defer the discussion to Secdiah | from this about a specific timé, we useX}[-|(t') or simply

The problem with the self-triggered approach is that th&x(t") = (z:(t"), { X[ 1) env)) € I enyogiy PE(AS)-
resulting times are often conservative because the gesanthe generality of the above definitions allow promise sets to
sets can grow large quickly as they capture all possibhe arbitrarily complex but we restrict ourselves to pronsists
trajectories of neighboring agentsl It is conceivable ihat that can be described with a finite number of parameters.
provements can be made from tuning the guaranteed sets based

on what neighboring agenfslan to do rather than what they Remark IV.2 (Example promise and rule) Alternative to
cando. This observation is at the core of the team-triggerefirectly sending state promises, agents can share theiipes

approach proposed next. based on their control rather than their state. The notation
Ui[t)(t") conveys the promise;(t') € U[t](') that agentj
IV. TEAM-TRIGGERED COORDINATION makes at timet to agenti about timet > t. Given the

This section presents the team-triggered approach for @hgnamics of ageng and stater;(t) at time ¢, agenti can
real-time implementation of distributed controllers ont-necompute the state promise f6r> ¢,
worked cyber-physical systems. The team-triggered agproa
incorporates the reactive nature of event-triggered ampres ~ X;[t](t') = {z € &} | Fu; : [t,¥'] — U; with
and, at the same time, endows individual agents with thenauto u;(s) € Ul[t)(s) for s € [t,#] such that
omy characteristic of self-triggered approaches to determ ! W
when.and _what information js needed. Agents make prgmises o eAj(t’ft)wj(t) +/ eAJ(tLr)Bjuj(T)dT}. 9)
to their neighbors about their future states and inform tlifem t



As an example, giverj € {1,..., N}, a continuous control of the formw™* : [T,y ny P(X;) — R™ that satisfy
law w; : [L;enrjyugyy P(X:) — U, andd; > 0, the ball-
radius control promise ruldor agent; generated at time is ViV(z) (A;z; + Biul*({z})) <0, i€ {1,...,N}, (11a)

N
RP(X [ t.00)) (') = Bluy (X3:(1)),6;) nU; ¢ > t. (10) > ViV(x) (Aizi + Biug* ({2})) < 0. (11b)
i=1

Note that this promise is a ball of raditisin the control space |n other words, if exact, singleton-valued information Vg

U; centered at the control signal used at timeDepending able to the agents, then the controliér guarantees the mono-

on whetherd; is constant or changes with time, we refer t@onic evolution of the Lyapunov functiolr. We assume that

it as the static or dynamic ball-radius rule, respectiv@lye ** s distributed over the communication gra@hAs before,

promise can be sent with three parameters, the stat® this means that for eache {1,..., N}, the ith component

when the promise was sent, the control actigiiX?}.(¢)) at u?* can be computed with information F[je/\/(i)u{i} PC(X;)

that time, and the radiug; of the ball. The state promise canrather than in the full spacplje{l ) (X,

then be generated using (9). e  Controllers of the above form can be derived from the
availability of the controlleru* : X — U introduced in

Promises allow agents to predict the evolution of thefection Il. Specifically, lett : Hj\;l P(X;) — X be a

neighbors more accurately, which directly affects the oekw continuous map that is distributed ovgand satisfies, for each

behavior. In general, tight promises correspond to ageats hi € {1,..., N}, thatE;(Y) € Y; for eachY € va:l Pee(X;)

ing good information about their neighbors, which at the sanand E;({y}) = y; for eachy € X. Essentially, what the map

time may result in an increased communication effort (sindé does for each agent is select a point from the set-valued

the promises cannot be kept for long periods of time). Onformation that it possesses. Now, define

the other hand, loose promises correspond to agents having t

use more conservative controls due to the lack of informatio u™(Y) = u"(E(Y)). (12)

while at the same time potentially being able to operate

for longer periods of timepwithout Xommugnicating (begau ote .that this controller satisfies (11a) and (11b) becadse

promises are not violated). satisfies (4a) and (4b).

The availability of promises equips agents with set-valued

information models about the state of other agents. This fdexample V.3 (Controller definition with the ball-radius

makes it necessary to address the definition of distributBgPmise rules) Here we construct a controller™ using (12)

controllers that operate on sets, rather than points. Wausis for the case when promises are generated according to the bal

this in Section IV-B. The additional information that prses radius control rule described in Remark 1V.2. To do so, note

represent is beneficial to the agents because it decreasedhat it is sufficient to define the map : Hszl Pe(X;) — X

amount of uncertainty when making action plans. SectiogIv-only for tuples of sets of the form given in (9), where the

discusses this in detail. Finally, these advantages relshen corresponding control promise is defined by (10). With the

assumption that promises hold throughout the evolution. A¢tation of Remark IV.2, recall that the promise that an

the state of the network changes and the level of task coggent;j sends at time is conveyed through three parameters

pletion evolves, agents might decide to break former presis(v;, vj,d;), the statey; = z;(¢) when the promise was sent,

and make new ones. We examine this in Section IV-D.  the control actionv; = wu;(X}/(t)) at that time, and the
radiusd; of the ball. We can then define thgh component

of the mapFE as

B. Controllers on set-valued information models Ej(X1[])(t), ..., Xn[t](t") = et =0y,
Here we discuss the type of controllers that the team- n ! A= B v dr
triggered approach relies on. The underlying idea is that, . IR

since agents possess set-valued information about theaftat =~ ) )
other agents through promises, controllers themselvesighoVhich is guaranteed to be ”Xj[t](t/) for ¢ > ¢. This
be defined on sets, rather than on points. There are differ&Rgcification amounts to each agesalculating the evolution
ways of designing controllers that operate with set-valuél It neighborsj € N'(i) as if they were using a zero-order
information depending on the type of system, its dynamics, B0ld control.
the desired task, see e.g., [32]. For the problem of intéres,

we offer the following possible goals. One may be interesteé;l
in simply decreasing the value of a Lyapunov function as fast
as possible, at the cost of more communication or sensingHere we discuss how agents use the promises received from
Alternatively, one may be interested in choosing the stabd other agents to generate self-triggered information reigue
controller such that the amount of required information ithe future. Lett be some time at which agentreceives
minimal at a cost of slower convergence time. We considapdated information (i.e., promises) from its neighborstilJ
continuous (with respect to the Hausdorff distance) cdieti® the next time information is obtained, agenhas access to

Self-triggered information updates



the collection of functionsY}, describing its neighbors’ state Another example is given by an agent that made a promise
and can compute its evolution under the controll&r via that is not able to keep for as long as it anticipated. Conside
ANt i an agent € {1,..., N} that has sent a promisg; [tjas] t0 a
zi(t) = e =2 (Hasy neighboring agent at some timé,s:. If agent: ends up break-
ing its promise at timeg* > tjas;, i.€., ;(t*) ¢ X7 [tias](t*),
then it is responsible for sending a new promi&e [¢nexd
. . ) ) . to agentj at time tnext = max{tiast + Tuevens t*}, Where
Note.that this evolgtlon o_f aggmtcan be viewed as a pror.mser’event ~ 0 is an a priori chosen parameter that we discuss
that it makes to itself, i.e.X;[](t) = {zi(t)}. With this o0 This implies that agenitmust keep track of promises
in place, i can schedule the next timfe, at which it will o465 jts neighbors and monitor them in case they are
need updated information from its neighbors by computing ,ien Note that this mechanism is implementable because
the worst-case time evolution &f along its trajectory among gach agent only needs information about its own state and

all the possible evolutions of its neighbors given the imo'ﬁhe promises it has made to determine whether the trigger is
mation contained in their promises. Formally, we define, f%ratisfied

t
+ / eAi(th)BiUf*(in\/(T))dTa t> tliasr (13)
t

i
last

Yy € HjeN (i)u{i} PE(A;), The parametef’y event> 0 iS known as thesvent-triggered
L;V(Yy )= sup V,V Awi + B (Yy)), (14 dwell time We introduce it because, in general, the tithe-
) yNEI;)/N (o) (Aiy (), (14 tiast between when ageritmakes and breaks a promise to an

agentj might be arbitrarily small. The issue, however, is that if
t* < tiasttT4.evens 20€Nt] Operates under incorrect information
s;;gjout agent for ¢t € [t*, tiast + Td,even). We deal with this by
introducing a warning message WARN that agéentust send

to agentj when it breaks its promise at tinté < tjast+ 74 event

If agentj receives such a warning message, it redefines the
promise X’ using the guaranteed sets (7) as follows,

where y; is the element ofy, corresponding toi. Then,
the trigger for when agent needs new information from its
neighbors is similar to (8), where we now use the promi
sets instead of the guaranteed sets. Specifically, theadriti
time at which information is requested is given Hy,, =
max{tiq+ Tuser, t*}, WhereTyseir > 0 is an a priori chosen
parameter that we discuss below ahds implicitly defined by

) . Jr. - J N = St — s
Fominft >t | LVRXL@) —0p. @5 XHO= U Xte)= U Rt
) ) ] z e X [](t*) z e X7 [](t*)
This ensures that fot € [t} t*), agenti is guaranteed to (17)

be contributing positively to the desired task. We refer t]%“f > *, until the new message arrives at ity = fis+

tiox — T @S the self-triggered request time. The paramet I i
Tyset > 0 is the self-triggered dwell timeWe introduce .%'e"e”‘ By definition of the reachable *set, the promisgl(t)
is guaranteed to contaim;(¢) for ¢ > ¢*.

it because, in general, it is possible thet = ¢, im-
plying that instantaneous communication is required. TI}ge

o . . mark V.4 (Promise expiration times) It is also possible
dwell time is used to prevent this behavior as follows. Nott% set an expiration tim@.. > T for the validity of
that £,VS%(Xi,(#')) < 0 is only guaranteed while’ € P exp > Ldevent Y

. . X . : romises. If this in effect and a promise is madet g, it
[the t¥]- Therefore, in case thate, = tig + Ldselr 1-€., If b P &

; . . is only valid fort € [tjast, t Texp]. The expiration of the
t* < th+ Tuser, agenti uses the safe-mode control durin y [fast; tast + Texg] P

X . ) . . promise triggers the formulation of a new one.
t e (t*, g + Tuse| 10 leave its state fixed. This deS|gr§b g ¢

ensures the monotonicity of the evolution ®f along the  The combination of the self- and event-triggered informa-
network execution. The team-triggered controller is defibg tion updates described above together with the team-tégge
.l i , . controller u'*@™ as defined in (16) gives rise to thEEAM-
ufAMt) = uif (Xx (1), !f L=t (16) TRIGGERED LAW, which is formally presented in Algorithm 1.

us(zi(t)), if ¢ > 17, The self-triggered information request in Algorithm 1 is
executed by an agent anytime new information is received,
whether it was actively requested by the agent, or was redeiv
from some neighbor due to the breaking of a promise.

for t € [thep thex)» Wheret* is given by (15). Note that the
self-triggered dwell timely <o ONly limits the frequency at
which an agent canrequestinformation from its neighbors
and does not provide guarantees on inter-event times of when V. CONVERGENCE OF THE TEAMTRIGGERED LAW
its memory is updated or its control is recomputed. If a '

neighboring agent sends information to ageérefore this ~ Here we analyze the convergence properties oftihem-
dwell time has expired (because that agent has brokenTGGERED LAW. Our first result establishes the monotonic
promise), this triggers agent to update its memory and €volution of the Lyapunov function” along the network
potentially recompute its control law. trajectories.

Proposition V.1 Consider a networked cyber-physical system
as described in Section Il executing teEAM-TRIGGERED
Agent promises may need to be broken for a variety eiaw (cf. Algorithm 1) based on a continuous controller
reasons. For instance, an agent might receive new infoomati,™* : [[;c(y  ny P°(X;) — R™ that satisfies(11) and
from its neighbors, causing it to change its former plans distributed over the communication gragh Then, the

D. Event-triggered information updates



Algorithm 1 : TEAM-TRIGGERED LAW The requirements of uniformly bounded promises in Propo-
(Self-trigger information update) _ _ ' sition V.2 means that there exists a compact set that cantain
At any time ¢ agenti € {1,..., N} receives new promise(sXj[¢] from gl promise sets. Note that this is automatically guarahiée
neighbor(s)j € N'(i), agenti performs: . the network state space is compact. Alternatively, if the eé

1: compute own controk!®a™¢') for ¢’ > ¢ using (16) I bl | b ded b ded K trap

2: compute own state evolution;(t') for ¢’ > t using (13) alowa e antro_s are bounae . a _Oun ed networ tra]ye_cto
3: compute first time* > ¢ such thatl; VSU(X3,(¢*)) = 0 with expiration times for promises implemented as outlined
4: schedule information request to neighborsiax{t* —t, 7y seii} Seconds  jn Remark V.4 would result in uniformly bounded promises.

(Respond to information request) . . . .
At any time t a neighborj € N(i) requests information, agenit per- There are two main challenges in proving Proposition V.2,

forms: which we discuss next.

1: send new promis&? [t] = R3(X 4[]z, 0)) to agent; The first challenge is that agents operate asynchronously,

(Event-trigger information update) i.e., agents receive and send information, and update their

Altf‘,'f' ?:"est ‘f"gte,”ti f\?rf,orms:h ot e control laws possibly at different times. To model asynehro

5 ife;‘z]eerﬁ'is%Sesen(t’llsp”rcomis: t};gt)sfmei Ei%gasteen (t - Tyeenyq] MSM, We use a procedure called analytic synchronization,
then see e.g. [33]. Let the time schedule of ageérie given by

3 send warning message WARN to aggrt timet Tt = {t§,ti,...}, wheret, corresponds to theéth time

4 ;Cshigi”'e to send " pmm'ste’.(i].[t'aﬁ + T%e"e”] = that agenti receives information from one or more of its

Seic(on’(‘{s['}'“'“‘*T“'“e”*"")) 0 genty I fast + Haevent = T oiohbors (the time schedulg is not known a priori by

5. else o _ _ the agent). Note that this information can be received sxau

?f enj?f”d new promise(;/[t] = R§(X [ ]jr.00)) to agentj attimet  ; yequests it itself, or a neighbor sends it tbecause an

8 end if event is triggered. Analytic synchronization simply catsiof

(Respond to warning message) merging together the individual time schedules into a dloba

At any timet agent; € {1, ..., N} receives a warning message WARN fromtime schedul — {0t by settin
agentj € N (i) e = {to,t1,... } by 9

1: redefine promise s@(;ﬁ L1t = Uzjex‘;'_,[A](t>Rj (t' —t,zj) fort/ >t T = Ufil'ﬂ.

Note that more than one agent may receive information at

any given timet € 7. This synchronization is done for
functionV is monotonically nonincreasing along any networkanalysis purposes only. For convenience, we idei#ify with
trajectory. T via £ — ty.

The second challenge is that a strategy resulting from the
Proof: We start by noting that the time evolution & team-triggered approach has a discontinuous dependence on

under Algorithm 1 is continuous and piecewise continuoustite network state and the agent promises. More precisaly, th
differentiable. Moreover, at the time instants when theetiminformation possessed by any given agent are trajectofies o

derivative is well-defined, one has sets for each of their neighbors, i.e., promises. For conve-
p N nience, we denote by
ZV®) =Y ViV(ah(®) (Aii(t) + BaiP™"t)) (18) N
t i—1 S = HSi7 where
N i=1
<Y swp ViV(yw) (Aii(t) + Buf(1)) < 0. Si = CO(RiPS(A) x - X PR(Xi1) X &
i=1 YN EX (1)

As we justify next, the last inequality follows by design of X PE(Xign) X - X PCC(XN))v

the TEAM-TRIGGERED LAW. For eachi € {1,...,N}, if ipe space that the state of the entire network lives in. Note
LiVER(X (1)) <0, thenu#Mt) = wi* (X} (1)) (cf. (16)).  that this set allows us to capture the fact that each ageas

In this case the corresponding summand of (18) is €ggrfect information about itself, as described in Sectibn |
actly £; V(X (), as defined in (14). IL;V*™(X-(#)) > Ajthough agents only have information about their neigsbor
0, then u®™t) = wf(x;(t)), for which the corresponding he apove space considers agents having promise informatio

summand of (18) is exactlf. B about all other agents to facilitate the analysis. This ity on
The next result characterizes the convergence properfiegigne to allow for a simpler technical presentation, and does
team-triggered coordination strategies. not impact the validity of the arguments made here. The

information possessed by all agents of the network at some
Proposition V.2 Consider a networked cyber-physical systimet is collected in

tem as described in Section Il executing th&EAM- (Xl['] XN )65

TRIGGERED LAW (cf. Algorithm 1) with dwell times I[t:00)2 -+ I[t,00) ’

Tusels Tu.event > 0 based on a continuous controllar :  where X [-];; o) = (Xi[]jit,00): - - - » Xy [jt,00)) € Si. Here,
[leq, v P(X;) — R™ that satisfies(11) and is dis- [] is shorthand notation to denote the fact that promises

tributed over the communication gragh Then, any bounded might have been made at different times, earlier than
network trajectory with uniformly bounded promises asymfhe TEAM-TRIGGERED LAW corresponds to a discontinuous
totically approaches the desired sbt map of the formS x Z>g — S x Z>o. This fact makes



it difficult to use standard stability methods to analyze thmaps is closed [34, E1.9]. Give{¥, /), the setM (Z,¢) is
convergence properties of the network. Our approach to tfiisitely comprised of all possible combinations of whether o
problem consists of defining a discrete-time set-valued mapt updates occur for every agent paif € {1,..., N}. In the
M : S xZsy = S x Z>y whose trajectories contain thecase that an agemntdoes not receive any information from its
trajectories of theTEAM-TRIGGERED LAW. Although this neighbors, it is trivial to show that (19) is continuous(if, ¢)
‘overapproximation procedure’ enlarges the set of trajées becauseZ’[ i is simply the restriction 0127 00) to the
to consider, the gained benefit is that of having a set-valugderval [t,, , ), for eachi € {1,...,N} andJ e N(i).
map with suitable continuity properties that is amenable i@ the case that an agehtdoes receive updated information,
set-valued stability analysis. We describe this in deteitn  the above argument still holds for agentshat did not send
We start by defining the set-valued maf Let (Z, () € Sx  information to agent. If an agentj sends a warning message
Z>o. We define thg N + 1)th component of all the elementstg agenti, WZ\[ |5 continuous in(Z, ¢) by continuity of
in M(Z,0) to be(+ 1. Theith component of the elements inte reachable Sets on their starting point. If an agesénds
M(Z,¢) is given by one of following possibilities. The firstg new promise to agerit Y/ is continuous in(Z, ¢)

possibility models the case when agénioes not receive any , gefinition of the functlonﬁé “Finally, one can see that
information from its neighbors. In this case, ttle component /Zl[tm,oc) is continuous in(Z, f) from '(.21a). -
of the elements i/ (Z, ¢) is simply theith component o7, We are now ready to prove Proposition V.2
7i 7i (19 Proof of Proposition V.2: Here we resort to the LaSalle
teq1,00)7 "2 ZN|[teq1,00) ; i _ ; _ti ;
Invariance Principle for set-valued discrete-time dyreahi

The second possibility models the case when agehts systems [34, Theorem 1.21]. L& = S x Z>, which is
received information (including a WARN message) from atlosed and strongly positively invariant with respectita A
least one neighbor: théth component of the elements insimilar argument to that in the proof of Proposition V.1 skow
M(Z,0) is that the functionl” is nonincreasing along//. Combining
, , this with the fact that the set-valued mayg is closed (cf.
(Yll\[tprl,oo)?'"’YIi/Ht(Jrl,oo)) ; (20) Lemma V.3), the application of the LaSalle Invariance Prin-
ciple implies that the trajectories af/ that are bounded in

where each agent has access to its own state at all times, i .
g the first V. components approach the largest weakly positively

Yi(t) = edilt—ter) Zit, ) invariant set contained in
t
Jr/ eAi(tf-r)Biugeam(T)dT? t> tog, (21a) S*={(Z,0) e S xZ>o | A2 b+1) e M(Z, L)
tet such thatV(Z') = V(Z)},
(here, with a slight abuse of notation, we us&™ to denote = {(Z,0) € S X Zso | LiV™(Zis) > 0 (22)
the controller evaluated &t*) and, foralli € {1,...,N}}.
Y = (21b) . . o
[[tes1,00) We now restrict our attention to those trajectories\ofthat
Z;\[tm,oo)v if i does not receive info from, correspond to theEAM-TRIGGERED LAW. For convenience,
i 7 if i receives a warning fromj, let IQF(Z,.K) DS X Lzo = X bg the map that extracts the true
J\[tm,oo) : position information in(Z, ¢), i.e

RS (Z3 N ltess OO)), otherwise

IOC(Z7 @) = (le (tg), ce. ,Z]]\\,/(tg)) .
for j # i, whereW;(t) = |, €Zi(ter1) X’ (t,z) corresponds _ _
to the redefined promise (17) for> tz+1 as a result of the Given a trajectoryy of the TEAM-TRIGGERED LAW that salis-
warning message. fies all the assur_nphons of th_e statement of Prop05|_t|ontldéz,
We emphasize two properties of the set-valued mdp bounded ev_olut|0ns_and uniformly bounded promises ensure
First, any trajectory of theEAM-TRIGGERED LAW is also a that the trajectoryy is bounded. Then, the omega limit set

trajectory of the nondeterministic dynamical system defind?(7) iS weakly positively invariant and hence is contained in
by M, S*. Our objective is to show that, for anyz, ¢) € Q(v), we

haveloc(Z, ¢) € D. We show this reasoning by contradiction.
(Z(tog1), 0+ 1) € M(Z(tg),L). Let (Z,¢) € Q(v) but supposdoc(Z,¢) ¢ D. This means
that £, VSU(Z},) > 0 for all i € {1,..., N}. Take any agent
i, by the SELFFTRIGGERED INFORMATION UPDATES agenti
will request new information from neighbors in at m@%tsei
seconds. This means there exists a state ¢ + (') € Q(v)
for which agenti has just received updated information from
its neighborsj € N(i). Since(Z',¢ + ') € S*, we know
L;VSP(Z5, > 0 We also know, since information was just
updated, thalZl loc;(Z', ¢+ (') is exact for allj € N (7).
Proof: To show this we appeal to the fact that a seBut, by (11a)£ VS”P(Z}'\/) < 0 becausédoc(Z', £+ ¢') ¢ D.
valued map composed of a finite collection of continuouBhis means that each time any agénpdates its information,

Second, although the map defined by ttEAM-TRIGGERED
LAW is discontinuous, the set-valued map is closed, as we
show next (a set-valued mdp: X = Y is closed ifx), — =z,
yr — y andyx € T'(xy) imply thaty € T'(z)).

Lemma V.3 (Set-valued map is closed)'he set-valued
mapM : S x Z>o = S x Zx Is closed.



we must have.CiVS”p(Z}'\/) = 0. However, by (11b), there controller some time in the future before new information is
must exist at least one agentsuch thatLiVS“P(Zj\/’) < 0 received again. The result follows from the fact th&t(¢)| is

sinceloc(Z’,¢ + (') ¢ D, which yields a contradiction. Thusfinite for eachi € {1,..., N}. [ |
for the trajectories of thEEAM-TRIGGERED LAW, (Z, () € S*
implies thatloc(Z,¢) € D. B  Remark V.6 (Adaptive self-triggered dwell time) Dwell

Given the convergence result of Proposition V.2, a termiimes play an important role in preventing Zeno behavior.
nation condition for theTEAM-TRIGGERED LAW could be However, a constant self-triggered dwell time throughdnet t
included via the implementation of a distributed algorittitat network evolution might result in wasted communication
employs tokens identifying what agents are using safe-inodsgfort because some agents might reach a state where their
controllers, see e.g., [35], [36]. Also, according to thegfrof effect on the evolution of the Lyapunov function is negligib
Proposition V.2, the actual value of the event-triggerealtiw compared to others. In such case, the former agents could
time Ty event does not affect the convergence property of thenplement larger dwell times, thus decreasing commurgaati
trajectories of the constructed discrete-time set-vaBystem. effort, without affecting the overall performance. Nexte w
However, the dwell time does affect the rate of convergengie an example of such an adaptive dwell time scheme. Let

of the actual continuous-time system (as a larger dwell timebe a time at which agente {1,..., N} has just received
corresponds to more time actually elapsing between eaph stew information from its neighborsV'(i). Then, the agent
of the constructed discrete-time system). sets its dwell time to

Té’se”(t) = max (23)

Remark V.4 (Availability of a safe-mode controller) The _
assumption on the availability of the safe-mode controller 5 1 g (Xae(8) — ' (25(8)) |2 A
plays an important role in the proof of Proposition V.2 d Z IN ()| JJur (X5 (2) — uff(xi(t))||2 ’ d}’
because it provides individual agents with a way of avoiding ’
having a negative impact on the monotonic evolution of tfer some a priori chose;, A; > 0. The intuition be-
Lyapunov function. We believe this assumption can be relaxgind this design is the following. The valqbq-*(Xj{[(t)) -
for dynamics that allow agents to execute maneuvers thﬁjf(g;j(t)))HQ can be interpreted as a measure of how far agent
bring them back to their current state. Under such manepuverss from reaching a point where it cannot no longer contribute
the Lyapunov function will not evolve monotonically butpositively to the global task. As agents are nearing thigipoi
at any given time, will always guarantee to be less than titley are more inclined to use the safe mode control to stay
equal to its current value at some future time. We have ngiit and hence do not require fresh information. Therefdre, i
pursued this approach here for simplicity and instead déferagent; is close to this point but its neighbors are not, (23) sets
for future work. e a larger self-triggered dwell time to avoid excessive retgie
for information. Conversely, if agentis far from this point
The next result states that, under MBAM-TRIGGERED pt jts neighbors are not, (23) sets a small dwell time to let
LAwW with positive dwell times, the system does not exhibifye self-triggered request mechanism be the driving faictor
Zeno behavior. determining when new information is needed. For agetat
implement this, in addition to current state informatiordan
Lemma V.5 (No Zeno behavior) Under the assumptions of promises, each neighbgre A/ (i) also needs to send the value

Proposition V.2, the network executions do not exhibit Zerms ||u;*(X/{/(t)) — uif(xj(t)))”Q at time ¢. In the case that

JEN(3)

behavior. information is not received from all neighbors, agesimply
) ) uses the last computed dwell time. Section VIl illustratas t
Proof: Due to the self-triggered dwell tinig; sei, the self- adaptive scheme in simulation. o

triggered information request steps in Algorithm 1 guasant
that the minimum time before an agentsks its neighbors
for new information isTg seif > 0. Similarly, due to the event-
triggered dwell timeTy evens agenti will never receive more
than two messages (one accounts for promise information,This section studies the robustness of the team-triggered
the other for the possibility of a WARN message) from approach in scenarios with packet drops, delays, and com-
neighborj in a period of Tgevent > 0 Seconds. This meansmunication noise. We start by introducing the possibilify o
that any given agent can never receive an infinite amount meicket drops in the network. For any given message an agent
information in finite time. When new information is receivedsends to another agent, assume there is an unknown praypabili
the control law (16) can only switch a maximum of two time® < p < 1 that the packet is dropped, and the message is
until new information is received again. Specifically, if amever received. We also consider an unknown (possibly time-
agent; is using the normal control law when new informatiorvarying) communication delay\(t) < A in the network for

is received, it may switch to the safe-mode controller attmaall t where A > 0 is known. In other words, if agent sends

one time until new information is received again. If insteadgent: a message at timg agenti will not receive it with

an agenti is using the safe-mode control controller whemprobability p or receive it at timet + A(¢) with probability

new information is received, it may immediately switch te th1 — p. We assume that small messages (i.e., 1-bit messages)
normal control law, and then switch back to the safe-modan be sent reliably with negligible delay. This assumpt®n

VI. ROBUSTNESS AGAINST UNRELIABLE
COMMUNICATION
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similar to the “acknowledgments” and “permission” messagéimes ¢’ and ¢ are both monitored by the receiving agent
used in other works, see [28], [37] and references thereln. other words, it is not necessary for the message sent by
Lastly, we also account for the possibility of communicatioagent; to be timestamped. By definition of reachable set, the
noise or quantization. We assume that messages among agplrumlseXl[ |(t') is guaranteed to containy (¢') for ¢ > ¢. If
are corrupted with an error which is upper bounded by somaetimet + A, agent; has still not received the prom@él[ ]
@ > 0 known to the agents. from j, it can send agent a request REQ for a new message

With this model, theTEAM-TRIGGERED LAW as described at which pointj would sendi a new promiseX;f[t + Al
in Algorithm 1 does not guarantee convergence because Mete that WARN is not sent in this case because the message
monotonic behavior of the Lyapunov function no longer holdsvas requested fromi by ¢ and not a cause of breaking a
The problem occurs when an aggrtireaks a promise to agentpromise toi. The ROBUST TEAM-TRIGGERED LAW, formally
1 at some time. If this occurs, agenitwill operate with invalid presented in Algorithm 2, ensures the monotonic evolution o
information (due to the sources of error described abovd) atihe Lyapunov functior’” even in the presence of packet drops,
computeL; VSUP(X},(t')) (as defined in (14)) incorrectly for communication delays, and communication noise.
t' > t.

Next, we discuss how th@EAM-TRIGGERED LAW can Algorithm 2 : ROBUST TEAM-TRIGGERED LAW
be modified in scenarios with unreliable communication. T@ejt.rigger information update)
deal with communication noise, when an agémeceives an At any time¢ agenti € {1,...,N} receives new promlse(sX [t] from
estimated promlsé( ¢ from another agent, it must be able to neighbor(s)j € N (i), agent: performs
create a promise se’f i that contains the actual promise thatl: create valid promise&;[t] with respect ta

. . . . 2: compute own control*a™(¢") for t' > t using (16)

agentj intended to sénd. We refer to this action as making & compute own state evolution (/) for ¢/ > ¢ using (13)
promise set valid. The following example shows how it cani: compute first time* > ¢ such thatC; VSU(X - (t*)) = 0

be done for the promlses described in Remark 1V.2. 5: schedule information request to nelghbormax{t —t, Ty sei} S€CONdS
6: while message from has not been receivetb

7. if current time equalg + max{t* — t, Ty e} + kA for k € Z>0

Example VI.1 (Ball-radius promise rule with communi- then _ _
cation noise) In the scenario with bounded communication?: n;?f”d agenj a request REQ for new information

noise, agentj sends the control promise conveyed throug{b end while

xj(t), u, (XJ (t)), and ¢;, to agent: at time ¢ as defined in (Respond to information request)

Remark IV.2, but receives msteaﬁ ( ) u; (XN( )) and5 ?t any time ¢ a neighborj € N'(:) requests information, agent per-
. orms:

V/\{her? It knowsithamxj( )~ xJ( )”2 < o [l (XN( ) — 1: send new promis# [t] = R3(X}[]|[1.00)) t0 agent;

(X ())]l2 < w, and |0 — 5 | <4, given thatw and§ are (Event-trigger information update)

known a priori. To ensure that the promise agémiperates At all timest, agent: performs:

with about agenf contains the true promise made pyagent 1 if there existgi € NV (i) such thatz;(t) ¢ Y7 [](t) then
i can set 2:  send warning message WARN to agegnt

3: if agent: has sent a promise tpat some timejast € (t — Ty,evens t]

i S i j = o then
UJl‘ [t](t') = B(“; (X/J\/(t))v 6j +w+06)NU; >t 4: schedule to send new promis&’; [tiast + Taevenl =
. . R3(X o)) o agentj in tjast + 1o —t
To create the state promise from thiswould need the true seéon/&/ ittaser Taguemoe)) 10 208NET 1N fst + T cven
statex;(t) of j at timet. However, since only the estimate 5:  else ;
—~ . . . . 1 S
i (t) is available, we modify (9) by ?; ends‘?f”d new promise’’ [t] = R§(Xj[j(t.0)) to agent)
; , 8: end if
X (t)(t') = Uy, eB@E i) w){z € Xj | Juy: [t, '] = U; (Respond to warning message)
, At any timet agent; € {1,..., N} receives a warning message WARN from
with u;(s) € U/[t](s) for s € [t, '] agentj € N (3)

1: redefine promise set’i[](t') = U Qe Xil- R —t,29) fort' > ¢
J

t’
such thatz = ¢4 (" Dy, + / A=) Biu,(r)dr}. e 2 while message from has not been receivetb
t 3: if current time equals + kA for k € Z>¢ then

. .. 4: send agenj a request REQ for new information
We deal with the packet drops and communication delays  enq it geny areq Q

with warning messages similar to the ones introduced if: end while

Section IV-D. Let an agenj break its promise to ageritat

time ¢, then ageny sendsi a new promise seX]’i [t] fort >t The next result establishes the asymptotic correctness gua
and warning message WARN. Since ageénonly receives antees on th&®OBUST TEAM-TRIGGERED LAW. In the pres-
WARN at timet, the promise seK;ﬁ [t] may not be available ence of communication noise or delays, convergence can be
to agent for ¢ > ¢. If the packet is dropped, then the messagguaranteed only to a set that contains the desiredset

never comes through, if the packet is successfully tratsdit

thenX’[t](¢) is only available for’ > t+A(t). In either case, Corollary V1.2 Consider a networked cyber-physical system
we need a promise seX;[-|(¥') for ¢’ > ¢ that is guaranteed as described in Section Il with packet drops occurring with
to containz;(t'). We do this by redefining the promise usingsome unknown probability < p < 1, messages being delayed
the reachable set, similarly to (17). Note that this does nby some known maximum deldy and communication noise
require the agents to have a synchronized global clock,es Hounded byo, executing th&@OBUST TEAM-TRIGGERED LAW
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(cf. Algorithm 2) with dwell timedq sei; Tgevent > 0 based From the proof of Corollary VI.2, one can see that the
on a continuous controllet™ : [ . ny P(A;) — R™  modifications made to th@OoBUST TEAM-TRIGGERED LAW
that satisfieq11) and is distributed over the communicationrmake the omega limit sets of its trajectories larger thagehaf
graph g. Let the TEAM-TRIGGERED LAW, resulting inD c D’. The setD’

P . sup depends on the Lyapunov functiéh However, the difference
Di(A,w) ={z e x| o ,E%n(fﬂ @)Eiv ({xi} betweenD’(A,@) and D vanishes as and A vanish.
N TN
< I ijeﬁ(r;’,w)Rj(A’yj)) =0 (24 VIl. SIMULATIONS

JEND In this section we present simulations of coordinationtstra
gies derived from the team- and self-triggered approaches i
Then, any bounded network trajectory with uniformly bowhdea planar multi-agent formation control problem. Our start-
promises asymptotically converges ¥(A,@) > D with ing point is the distributed coordination algorithm based o
probability 1. graph rigidity analyzed in [38], [39] which makes the dedire
network formation locally (but not globally) asymptotibal
Stable. In this regard, the state spateof Section Il corre-
sponds to the domain of attraction of the desired equilibria
. N , and, as long as the network trajectories do not leave this
D'(0,0) ={z € X | Y ViV(x)(Aiz; + Biuj"({x\r})) > 0}. set, the convergence results still hold. The local converge
i=1 result of the team-triggered approach here is only an attifa
One can see thab c D’(A,@) by noticing that, for any of the specific example and, in fact, if the assumptions () ar
x € D, @, A >0, no matter which pointzj\/ € B(z),,w) is satisfied globally, then the system is globally asymptdiica
taken, one has’, € {z;} x [Lienva ijeg(ziv,@)Rj(ij). stabilized. The interested reader is referred to [2] fomailar
To show that the bounded trajectories of #@BUST TEAM-  Study in a optimal networked deployment problem where the
TRIGGERED LAW converge taD’, we begin by noting that all assumptions hold globally.
properties of}/ used in the proof of Proposition V.2 still hold ~Consider4 agents communicating over a graph which is
in the presence of packet drops, delays, and communicat@ty missing the edgégl,3) from the complete graph. The
noise as long as the time sched(é is unbounded for each agents seek to attain a rectangle formation of side lengths

forall i e {1,...,N}},

Proof: We begin by noting that by equation (11b), th
definition (14), and the continuity af**, D can be written as

agenti € {1,...,N}. In order for the time schedulg’ to be and2. Each agent has unicycle dynamics,
unbounded, each agentmust receive an infinite number of .0,

; . - . cos t;
messages, antj — oo. Since packet drops have probability Ti = Ui [sin@}

0 < p < 1, the probability that there is a finite number of .
updates for any given agemtover an infinite time horizon 0; = vi,
is 0. Thus, with probabilityl, there are an infinite number of\\hare( < 1, < uya = 5 and |v;| < vmax = 3 are the control

information updates for each agent. Using a similar argUquputS_ The safe-mode controller is then simplj = 0. To

to that of Lemma V.5, one can show that the positive dwelbmpyte the distributed control law, each agent computes a
times Tq seir, Tu.event > 0 ensure that Zeno behavior does ”Oéoal point

occur, meaning that, — oo. Then, by the analysis in the
proof of Proposition V.2, the bounded trajectoriesdf still pi(x) =z + Z (lxj — a;l|2 — dij) unit(x; — x;),
converge toS* as defined in (22). FEN(4)

For a bounded evolutionry of the ROBUST TEAM-
TRIGGERED LAW, we have that)(y) C S* is weakly pos-
itively invariant. Note that, since agents may never hawacex
information about their neighbors, we can no longer leverag
properties (11a) and (11b) to precisely charactefize). We  u}
now show that for anyZ, ¢) € Q(v), we haveloc(Z, () € D’. x _ ; ) o) — B _
Let (Z.0) € (). This means thatiV¥(Z,) > 0 for vy = max {min{k(Z(p; (z) — x;) — 0;), Vmax}> —VUmax} ,
all i € {1,...,N}. Take any agenti, by the rRoBusT Wherek > 0 is a design parameter. For our simulations we set
TEAM-TRIGGERED LAW, agenti will request new information & = 150. This continuous control law essentially ensures that
from neighbors in at mosTy s Seconds. This means therghe positionz; moves towardg; (z) when possible while the
exists a stateZ',¢ 4+ ') € Q(v) for which agenti has unicycle rotates its orientation towards this goal. Thistoal
just received updated, possibly delayed, information fitsn law ensures that : (RQ) — R>( given by

whered;; is the pre-specified desired distance between agents
andyj, andunit(x; —2;) denotes the unit vector in the direction
x; — x;. Then, the control law is then given by

= max {min{k[cos§; sin®;]" - (p} () — 2;), Umax},0} .

neighborsj € N(i). Since (Z',¢ + ¢') € S*, we know 1 )
EiVS”p(Zf\/) Z‘O/ We a!so know, since information was just V(z) = 3 Z (llzj — z:i|l3 — dfj) ;
updated, thatZj, C {Z; } x [[cn Uy, eB (1.0 R(D, 5).- (i.5)€EE

Since(Z', ¢+ ') € §*, we know thatL‘,LvVS”p(Zjv') >0, for is a nonincreasing function for the closed-loop system to
alli € {1,..., N}. This means thaibc(Z’, ¢+ ¢') C D', thus establish the asymptotic convergence to the desired faymat
loc(Z,¢) € S* C D'. m For the team-triggered approach, we use both static and



12

dynamic ball-radius promise rules. The controli&¥™is then Next, we illustrate the role that the tightness of promisas h
defined by (16), where controllex** is given by (12) as on the network performance. With the notation of Remark IV.2
described in Example IV.3. Note that although the agent hés the static ball-radius rule, lex = 2— Note that when

no forward velocity when using the safe controller, it wiills A = 0, the promise generated by (10) Is a singleton, i.e., an
rotate in place. The initial conditions arg (0) = (6,10)”, exact promise. On the other hand, when= 1, the promise
22(0) = (7,3)T, 23(0) = (14,8)T, and z4(0) = (7,13)T generated by (10) contains the reachable set, corresmpndin
and#,(0) = =/2 for all i. We begin by simulating the team-to no actual commitment being made (i.e., the self-trigdere
triggered approach using fixed dwell times Bfser = 0.3 approach). Figure 3 compares the value of the Lyapunov
and Tyevent = 0.003 and the static ball-radius promise offunction after a fixed amount of time (30 seconds) and the
Remark IV.2 with the same radius = 1 for all agents. total number of messages seM.,mm between agents by
Figure 1 shows the trajectories of theAM-TRIGGERED LAW. this time for varying tightness of promises. The dwell times
here are fixed aflgser = 0.3 and Tyevent = 0.003. Note
that a suitable choice ok helps greatly reduce the amount

2 \ of communication compared to the self-triggered approach

. N (A = 1) while maintaining a similar convergence rate.

: B\X Finally, we demonstrate the added benefits of using adap-
’ [ ~Agent 1 tive promises and dwell times. Figure 4(a) compares the

. / L Ao 3 total number of messages sent in the self-triggered approac

‘ / x Agent 4 and the team-triggered approaches with fixed promises and

dwell times (FPFD), fixed promises and adaptive dwell times
(FPAD), adaptive promises and fixed dwell times (APFD), and
Fig. 1. Trajectories of an execution of HTEAM-TRIGGERED LAW With — 4qantive promises and dwell times (APAD). The parameters
fixed dwell times and promises. The initial and final conditidreach agent . . .
is denoted by an ‘x’ and an ‘o', respectively. of the adaptive dwell time used in (23) adg = 0.15
and A; = 0.3. For agentj € {1,...,4}, the radius/;,
To compare the team- and self-triggered approaches, wedetthe dynamic ball-radius rule of Remark V.2 &(t) —
N{ be the number of times has requested new informa-(. 5Q||u**(XJ (t)) — uS f(;(t))||2 + 10~5. This plot shows the
tion and thus has received a message from each one Ofd@ﬁ/antage of the team tr|ggered approach in terms of r@d]u”'
neighbors andVj, be the number of messageias sent 0 communication over the self-triggered one and also shows
a neighboring agent because it decided to break its promigge additional benefits of implementing the adaptive premis
The total number of messages for an executioVismm = and dwell time. This is because by using the adaptive dwell
Siii W(i)|NE + Ni. Figure 2 compares the number ofime, agents decide to wait longer periods for new inforomti
required communications in both approaches. Remarkatly, {vhile their neighbors are still moving. By using the adagtiv
this specific example, the team-triggered approach owipes promises, as agents near convergence, they are able to make
the self-triggered approach in terms of required communiccreasingly tighter promises, which allows them to reques
tion without sacrificing any performance in terms of time tehformation from each other less frequently. As Figure 4(b)

convergence (the latter is depicted through the evolutibn ghows, the network performance is not compromised despite
the Lyapunov function in Figure 4(b) below). Less overathe reduction in communication.

communication has an important impact on reducing network
load. In Figure 2(a), we see that very quickly all agents areloo ——— —

— Team FPFD 70 —
requesting information as often as they can (as restrlc;eg b ?88 Jeam £BFD vV e Team EPFD
the self-triggered dwell time), due to the conservativeureat — gq5 -~ Team APED - Team APFD
of the self-triggered time computations. In the executibthe 500 —~ Team APAD

TEAM-TRIGGERED LAW in Figure 2(b), we see that the agents 300
are requesting information from one another less frequentl 5887
Figure 2(c) shows that agents were required to break a fev 5 10 _15 20 25 30 5 10 15 20 25 30

promises early on in the execution. I;Te It')r)ne

05 Fig. 4. Plots of (a) the total number of messages sent and (Bviblation
1200 of the Lyapunov functiorl/ for executions of self-triggered approach and the
0.4f V(30) N.1000 team-triggered approaches with fixed promises and dwell tifFRED), fixed

03 800 ' promises and adaptive dwell times (FPAD), adaptive promisddired dwell
' 600 times (APFD), and adaptive promises and dwell times (APAD).

0. e

400

200
02 04,06 08 1 02 04,06 08 1 VIIl. CONCLUSIONS

0.1

) () We have proposed a novel approach, termed team-triggered,
that combines ideas from event- and self-triggered control

Fig. 3. Plots of (a) the value of the Lyapunov function at aditene (30 for the implementation of distributed coordination Stepes
sec) and (b) the total number of messages exchanged in therkdiywahis P

time for the team-triggered approach with varying tightnefspromisesa. for networked cyber—physical systems. Our approach ischase
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30
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Fig. 2. Number of self-triggered requests made by each ageart execution of the (a) self-triggered approach and (b) temgered approach with fixed
dwell times and promises. For the latter execution, (c) degle number of event-triggered messages sent (broken prorhisesch agent.

on agents making promises to each other about their futurg
states. If a promise is broken, this triggers an event where
the corresponding agent provides a new commitment. As
result, the information available to the agents is seteglu

and can be used to schedule when

@

in the future further

updates are needed. We have provided a formal descriptib‘ﬂ

and analysis of team-triggered coordination strategied an

have also established robustness guarantees in scenagos w11]
communication is unreliable. The proposed approach opens

up numerous venues for future research. Among them,

highlight the robustness under disturbances and sensse,noi
more general models for individual agents, the design of

team-triggered implementations that guarantee the awee

ik

(13]

of a desired set in distributed scenarios, the relaxation of
the availability of the safe-mode control via controlleratt [14]
allow agents to execute maneuvers that bring them back to
their current state, relaxing the requirement on the negati[15
semidefiniteness of the derivative of the Lyapunov function
along the evolution of each individual agent, methods fer th
systematic design of controllers that operate on set-dalul®!
information models, understanding the implementatiodera
offs in the design of promise rules, analytic guarantees on
the performance improvements with respect to self-trigder(17]
strategies, and the impact of evolving topologies on the

generation of promises.
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