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Team-triggered coordination for real-time
control of networked cyber-physical systems

Cameron Nowzari Jorge Cortés

Abstract—This paper studies the real-time implementation of
distributed controllers on networked cyber-physical systems. We
build on the strengths of event- and self-triggered control to
synthesize a unified approach, termed team-triggered, where
agents make promises to one another about their future states
and are responsible for warning each other if they later decide
to break them. The information provided by these promises
allows individual agents to autonomously schedule information
requests in the future and sets the basis for maintaining desired
levels of performance at lower implementation cost. We establish
provably correct guarantees for the distributed strategies that
result from the proposed approach and examine their robustness
against delays, packet drops, and communication noise. The
results are illustrated in simulations of a multi-agent formation
control problem.

I. I NTRODUCTION

A growing body of work studies the design and real-time
implementation of distributed controllers to ensure the efficient
and robust operation of networked cyber-physical systems.In
multi-agent scenarios, energy consumption is correlated with
the rate at which sensors take samples, processors recompute
control inputs, actuator signals are transmitted, and receivers
are left on listening for potential incoming signals. Performing
these tasks periodically is costly, might lead to inefficient
implementations, or face hard physical constraints. To address
these issues, the goal of triggered control is to identify criteria
that allow agents to tune the implementation of controllersand
sampling schemes to the execution of the task at hand and
the desired level of performance. In event-triggered control,
the focus is on detecting events during the network execution
that are relevant from the point of view of task completion
and should trigger specific agent actions. In self-triggered
control, the emphasis is instead on developing tests that rely
only on current information available to individual agentsto
schedule future actions. Event-triggered strategies generally
result in less samples or controller updates but, when executed
over networked systems, may be costly to implement because
of the need for continuous availability of the information
required to check the triggers. Self-triggered strategiesare
more easily amenable to distributed implementation but result
in conservative executions because of the overapproximation
by individual agents about the state of the environment and the
network. These strategies might be also beneficial in scenarios
where leaving receivers on to listen to potential messages is
costly. Our objective in this paper is to build on the strengths
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of event- and self-triggered control to synthesize a unified
approach for controlling networked systems in real time that
combines the best of both worlds.

Literature review: The need for systems integration and
the importance of bridging the gap between computing, com-
munication, and control in the study of cyber-physical sys-
tems cannot be overemphasized [3], [4]. Real-time controller
implementation is an area of extensive research including
periodic [5], [6], event-triggered [7], [8], [9], [10], andself-
triggered [11], [12], [13] procedures. Our approach shares
with these works the aim of trading computation and decision
making for less communication, sensor, or actuator effort
while still guaranteeing a desired level of performance. Of
particular relevance to this paper are works that study self- and
event-triggered implementations of controllers for networked
cyber-physical systems. The predominant paradigm is that of
a single plant that is stabilized through a decentralized trig-
gered controller over a sensor-actuator network, see e.g. [14],
[15], [16]. Fewer works have considered scenarios where
multiple plants or agents together are the subject of the
overall control design. Exceptions include consensus via event-
triggered [17], [18], [19] or self-triggered control [17],[20],
rendezvous [21], model predictive control [22], and model-
based event-triggered control [23], [24]. The event-triggered
controller designed in [17] for a decentralized system with
multiple plants requires agents to have continuous information
about each others’ states. The works in [17], [25] implement
self-triggered communication schemes to perform distributed
control where agents assume worst-case conditions for other
agents when deciding when new information should be ob-
tained. Distributed strategies based on event-triggered commu-
nication and control are explored in [26], where each agent has
an a priori computed local error tolerance and once it violates
it, the agent broadcasts its updated state to its neighbors.The
same event-triggered approach is taken in [27] to implement
gradient control laws that achieve distributed optimization. The
works [23], [28], [29] are closer in spirit to the ideas presented
here. In the interconnected system considered in [23], each
subsystem helps neighboring subsystems by monitoring their
estimates and ensuring that they stay within some performance
bounds. The approach requires different subsystems to have
synchronized estimates of one another even though they do
not communicate at all times. In [28], [29], agents do not
have continuous availability of information from neighbors and
instead decide when to broadcast new information to them.

Statement of contributions:We propose a novel scheme
for the real-time control of networked cyber-physical systems
that combines ideas from event- and self-triggered control.
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Our approach is based on agents making promises to one
another about their future states and being responsible for
warning each other if they later decide to break them. This is
reminiscent of event-triggered implementations. Promises can
be broad, from tight state trajectories to loose descriptions of
reachability sets. With the information provided by promises,
individual agents can autonomously determine when in the
future fresh information will be needed to maintain a desired
level of performance. This is reminiscent of self-triggered
implementations. The benefits of the proposed scheme are
threefold. First, because of the availability of the promises,
agents do not require continuous state information about
neighbors, in contrast to event-triggered strategies imple-
mented over distributed systems that require the continuous
availability of the information necessary to check the relevant
triggers. Second, because of the extra information provided
by promises about what other agents plan to do, agents can
generally wait longer periods of time before requesting new
information and operate more efficiently than if only worst-
case scenarios are assumed, as is done in self-triggered control.
Less overall communication is beneficial in reducing the total
network load and decreasing chances of communication delays
or packet drops due to network congestion. Lastly, we provide
theoretical guarantees for the correctness and performance of
team-triggered strategies implemented over distributed net-
worked systems. Our technical approach makes use of set-
valued analysis, invariance sets, and Lyapunov stability.We
also show that, in the presence of physical sources of error
and under the assumption that 1-bit messages can be sent
reliably with negligible delay, the team-triggered approach
can be slightly modified to be robust to delays, packet drops,
and communication noise. Interestingly, the self-triggered ap-
proach can be seen as a particular case of the team-triggered
approach where promises among agents simply consist of their
reachability sets (and hence do not actually constrain their
state). We illustrate the convergence and robustness results
through simulation in a multi-agent formation control problem,
paying special attention to the implementation costs and the
role of the tightness of promises in the algorithm performance.

Organization: Section II lays out the problem of interest.
Section III briefly reviews current real-time implementation
approaches based on agent triggers. Section IV presents the
team-triggered approach for networked cyber-physical sys-
tems. Sections V and VI analyze the correctness and robust-
ness, respectively, of team-triggered strategies. Simulations
illustrate our results in Section VII. Finally, Section VIII
gathers our conclusions and ideas for future work.

Notation: We letR, R≥0, andZ≥0 denote the sets of real,
nonnegative real, and nonnegative integer numbers, respec-
tively. The two-norm of a vector is‖ · ‖2. Givenx ∈ R

d and
δ ∈ R≥0, B(x, δ) denotes the closed ball centered atx with
radiusδ. ForAi ∈ R

mi×ni with i ∈ {1, . . . , N}, we denote by
diag (A1, . . . , AN ) ∈ R

m×n the block-diagonal matrix with
A1 throughAN on the diagonal, wherem =

∑N
i=1 mi and

n =
∑N

i=1 ni. Given a setS, we denote by|S| its cardinality.
We let Pc(S), respectivelyPcc(S), denote the collection of
compact, respectively, compact and connected, subsets ofS.

The Hausdorff distance betweenS1, S2 ⊂ R
d is

dH(S1, S2) = max{ sup
x∈S1

inf
y∈S2

‖x− y‖2, sup
y∈S2

inf
x∈S1

‖x− y‖2}.

The Hausdorff distance is a metric on the set of all non-
empty compact subsets ofRd. Given two bounded set-valued
functionsC1, C2 ∈ C0(I ⊂ R;Pc(Rd)), its distance is

dfunc(C1, C2) = sup
t∈I

dH(C1(t), C2(t)). (1)

An undirected graphG = (V,E) is a pair consisting of a set of
verticesV = {1, . . . , N} and a set of edgesE ⊂ V ×V such
that if (i, j) ∈ E, then (j, i) ∈ E. The set of neighbors of a
vertexi isN (i) = {j ∈ V | (i, j) ∈ E}. Givenv ∈

∏N
i=1 R

ni ,
we letviN = (vi, {vj}j∈N (i)) denote the components ofv that
correspond to vertexi and its neighbors inG.

II. N ETWORK MODELING AND PROBLEM STATEMENT

We consider a distributed control problem carried out
over an unreliable wireless network. ConsiderN agents
whose communication topology is described by an undirected
graphG. The fact that(i, j) belongs toE models the ability of
agentsi andj to communicate with one another. The agentsi
can communicate with are its neighborsN (i) in G. The state
of i ∈ {1, . . . , N}, denotedxi, belongs to a closed setXi ⊂
R

ni . The network statex = (x1, . . . , xN ) therefore belongs
to X =

∏N
i=1 Xi. According to the discussion above, agenti

can accessxi
N when it communicates with its neighbors. By

assumption, each agent has access to its own state at all times.
We consider linear dynamics for eachi ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi +Biui, (2)

with Ai ∈ R
ni×ni , Bi ∈ R

ni×mi , andui ∈ Ui. Here,Ui ⊂
R

mi is a closed set of allowable controls for agenti. We
assume the existence of asafe-modecontrollerusf

i : Xi → Ui,

Aixi +Biu
sf
i (xi) = 0, for all xi ∈ Xi,

i.e., a controller able to keep agenti’s state fixed. The existence
of a safe-mode controller for a general controlled system
may seem restrictive, but there exist many cases, including
nonlinear systems, that admit one, such as single integrators or
vehicles with unicycle dynamics. Lettingu = (u1, . . . , uN ) ∈
U =

∏N
i=1 Ui, the dynamics can be described by

ẋ = Ax+Bu, (3)

with A = diag (A1, . . . , AN ) ∈ R
n×n and B =

diag (B1, . . . , BN ) ∈ R
n×m, wheren =

∑N
i=1 ni, andm =∑N

i=1 mi. We refer to the team of agents with communication
topology G and dynamics (3), where each agent has a safe-
mode controller and access to its own state at all times, as
a networked cyber-physical system. The goal is to drive the
agents’ states to some desired closed set of configurations
D ⊂ X and ensure that it stays there. Depending on howD is
defined, this objective can capture different coordinationtasks,
including deployment, rendezvous, and formation control.The
goal of the paper is not to design the controller that achieves
this but rather synthesize efficient strategies for the real-time
implementation of a given controller.
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Given the agent dynamics, the communication graphG, and
the setD, our starting point is the availability of a control
law that drives the system asymptotically toD. Formally, we
assume that a continuous mapu∗ : X → U and a continuously
differentiable functionV : X → R, bounded from below exist
such thatD is the set of minimizers ofV and, for allx /∈ D,

∇iV (x) (Aixi +Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (4a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗
i (x)) < 0. (4b)

We assume that both the control lawu∗ and the gradient
∇V are distributed overG. By this we mean that, for each
i ∈ {1, . . . , N}, the ith component of each of these objects
only depends onxi

N , rather than on the full network statex.
For simplicity, and with a slight abuse of notation, we write
u∗
i (x

i
N ) ∈ Ui and ∇iV (xi

N ) ∈ R
ni to emphasize this fact

when convenient. This property has the important consequence
that agenti can compute these quantities with the exact
information it can obtain through communication onG.

Remark II.1 (Assumption on non-negative contribution of
each agent to task completion)Note that (4b) simply states
that V is a Lyapunov function for the closed-loop system.
Instead, (4a) is a more restrictive assumption that essentially
states that each agent does not individually contribute in a
negative way to the evolution of the Lyapunov function. This
latter assumption can in turn be relaxed [14] by selecting
parametersα1, . . . , αN ∈ R with

∑N
i=1 αi = 0 (note that

someαi would be positive and others negative) and specifying
instead that, for eachi ∈ {1, . . . , N}, the left-hand side of (4a)
should be less than or equal toαi. Along these lines, one could
envision the design of distributed mechanisms to dynamically
adjust these parameters, but we do not go into details here for
space reasons. •

From an implementation viewpoint, the controlleru∗ re-
quires continuous agent-to-agent communication and continu-
ous updates of the actuator signals, making it unfeasible for
practical scenarios. In the next section we develop a self-
triggered communication and control strategy to address the
issue of selecting time instants for information sharing.

III. SELF-TRIGGERED COMMUNICATION AND CONTROL

This section provides an overview of the self-triggered
communication and control approach to solve the problem
described in Section II. In doing so, we also introduce several
concepts that play an important role in our discussion later.
The general idea is to guarantee that the time derivative of the
Lyapunov functionV along the trajectories of the networked
cyber-physical system (3) is less than or equal to0 at all times,
even when the information used by the agents is inexact.

To model the case that agents do not have perfect in-
formation about each other at all times, we let each agent
i ∈ {1, . . . , N} keep an estimatêxi

j of the state of each of its
neighborsj ∈ N (i). Sincei always has access to its own state,
x̂i
N (t) = (xi(t), {x̂

i
j(t)}j∈N (i)) is the information available

to agenti at time t. Since agents do not have access to exact
information at all times, they cannot implement the controller
u∗ exactly, but instead use the feedback law

uself
i (t) = u∗

i (x̂
i
N (t)).

We are now interested in designing a triggering method such
that agenti can decide when̂xi

N (t) needs to be updated.
Let tlast be the last time at which all agents have received
information from their neighbors. Then, the timetnext at which
the estimates should be updated is when

d

dt
V (x(tnext)) (5)

=

N∑

i=1

∇iV (x(tnext))
(
Aixi(tnext) +Biu

event
i (tlast)

)
= 0.

Unfortunately, (5) requires global information and cannotbe
checked in a distributed way. Instead, one can define a local
event that defines when a single agenti ∈ {1, . . . , N} should
update its information as any time that

∇iV (x(t))
(
Aixi(t) +Biu

self
i (t)

)
= 0. (6)

As long as each agenti can ensure the local event (6) has not
yet occurred, it is guaranteed that (5) has not yet occurred
either. The problem with this approach is that each agent
i ∈ {1, . . . , N} needs to have continuous access to information
about the state of its neighborsN (i) in order to evaluate
∇iV (x) = ∇iV (xi

N ) and check condition (6). The self-
triggered approach removes this requirement on continuous
availability of information by having each agent employ
instead the possibly inexact information about the state of
their neighbors. The notion of reachability set plays a key role
in achieving this. Giveny ∈ Xi, the reachable setof points
under (2) starting fromy in s seconds is,

Ri(s, y) = {z ∈ Xi | ∃ui : [0, s] → Ui such that

z = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Using this notion, if agents have exact knowledge about the
dynamics and control sets of its neighboring agents (but not
their controllers), each agent can construct, each time state
information is received, sets that are guaranteed to contain
their neighbors’ states.

Definition III.1 (Guaranteed sets) If tilast is the time at
which agent i receives state informationxj(t

i
last) from its

neighborj ∈ N (i), then theguaranteed setis given by

X
i
j(t, t

i
last, xj(t

i
last)) = Rj(t− tilast, xj(t

i
last)) ⊂ Xj , (7)

and is guaranteed to containxj(t) for t ≥ tilast.

We letXi
j(t) = X

i
j(t, t

i
last, xj(t

i
last)) when the starting state

xj(t
i
last) and timetilast do not need to be emphasized. We denote

by X
i
N (t) = (xi(t), {X

i
j(t)}j∈N (i)) the information available

to agenti at time t.

Remark III.2 (Computing reachable sets) Finding the
guaranteed or reachable sets (7) can be in general
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computationally expensive. A common approach consists of
computing over-approximations to the actual reachable setvia
convex polytopes or ellipsoids. There exist efficient algorithms
to calculate and store these for various classes of systems,see
e.g., [30], [31]. Furthermore, agents can deal with situations
where they do not have exact knowledge about the dynamics
of their neighbors (so that the guaranteed sets cannot be
computed exactly) by employing overapproximations of the
actual guaranteed sets. •

With the guaranteed sets in place, we can now provide a test
that allows agents to determine when they should update their
current information and control signals. At timetilast, agenti
computes the next timetinext ≥ tilast to acquire information via

sup
yN∈X

i
N
(tinext)

∇iV (yN )
(
Aixi(t

i
next) +Biu

self
i (tinext)

)
= 0. (8)

By (4a) and the fact thatXi
j(t

i
last) = {xj(t

i
last)}, at timetilast,

sup
yN∈X

i
N
(tilast)

∇iV (yN )
(
Aixi(t

i
last) +Biu

self
i (tilast)

)

= ∇iV (xi
N (tilast))

(
Aixi(t

i
last) +Biu

self
i (tilast)

)
≤ 0.

If all agents use this triggering criterion for updating informa-
tion, it is guaranteed thatd

dt
V (x(t)) ≤ 0 at all times because,

for eachi ∈ {1, . . . , N}, the true statexj(t) is guaranteed to
be inX

i
j(t) for all j ∈ N (i) and t ≥ tilast.

The condition (8) is appealing because it can be evaluated
by agent i with the information it possesses at timetilast.
Once determined, agenti schedules that, at timetinext, it will
request updated information from its neighbors. We refer to
tinext− tilast as theself-triggered request timefor agenti. Due
to the conservative way in whichtinext is determined, it is
possible thattinext = tilast for somei, which would mean that
instantaneous information updates are necessary (note that this
cannot happen for alli ∈ {1, . . . , N} unless the network state
is already inD). This can be dealt with by introducing a dwell
time such that a minimum amount of time must pass before
an agent can request new information and using the safe-mode
controller while waiting for the new information. We do not
enter into details here and defer the discussion to Section IV-C.

The problem with the self-triggered approach is that the
resulting times are often conservative because the guaranteed
sets can grow large quickly as they capture all possible
trajectories of neighboring agents. It is conceivable thatim-
provements can be made from tuning the guaranteed sets based
on what neighboring agentsplan to do rather than what they
can do. This observation is at the core of the team-triggered
approach proposed next.

IV. T EAM-TRIGGERED COORDINATION

This section presents the team-triggered approach for the
real-time implementation of distributed controllers on net-
worked cyber-physical systems. The team-triggered approach
incorporates the reactive nature of event-triggered approaches
and, at the same time, endows individual agents with the auton-
omy characteristic of self-triggered approaches to determine
when and what information is needed. Agents make promises
to their neighbors about their future states and inform themif

these promises are violated later (hence the connection with
event-triggered control). With the extra information provided
by the availability of the promises, each agent computes the
next time that an update is required and requests information
from their neighbors accordingly to guarantee the monotonic-
ity of the Lyapunov functionV introduced in Section II (hence
the connection with self-triggered control).

A. Promises

A promisecan be either a time-varying set of states (state
promise) or controls (control promise) that an agent sends to
another agent.

Definition IV.1 (State promises and rules)A state promise
that agentj ∈ {1, . . . , N} makes to agenti at timet is a set-
valued, continuous (with respect to the Hausdorff distance)
function Xi

j [t] ∈ C0([t,∞);Pcc(Xj)). A state promise rule
for agent j ∈ {1, . . . , N} generated at timet is a con-
tinuous (with respect to the distancedfunc defined in (1))
map of the formRs

j : C0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)

→

C0 ([t,∞);Pcc (Xj)).

The notation Xi
j [t](t

′) conveys the promisexj(t
′) ∈

Xi
j [t](t

′) that agentj makes at timet to agent i about
time t′ ≥ t. A state promise rule is simply a way of
generating state promises. This means that if agentj must
send information to agenti at time t, it sends the state
promiseXi

j [t] = Rs
j(X

j
N [·]|[t,∞)). We require that, in the

absence of communication delays or noise in the state
measurements, the promises generated by a rule have the
property thatXi

j [t](t) = {xj(t)}. For simplicity, when the
time at which a promise is received is not relevant, we
use the notationXi

j [·], or simply Xi
j . All promise infor-

mation available to agenti ∈ {1, . . . , N} at some timet
is given by Xi

N [·]|[t,∞) = (xi|[t,∞), {X
i
j [·]|[t,∞)}j∈N (i)) ∈

C0
(
[t,∞);

∏
j∈N (i)∪{i} P

cc(Xj)
)

. To extract information

from this about a specific timet′, we useXi
N [·](t′) or simply

Xi
N (t′) = (xi(t

′), {Xi
j [·](t

′)}j∈N (i)) ∈
∏

j∈N (i)∪{i} P
cc(Xj).

The generality of the above definitions allow promise sets to
be arbitrarily complex but we restrict ourselves to promisesets
that can be described with a finite number of parameters.

Remark IV.2 (Example promise and rule) Alternative to
directly sending state promises, agents can share their promises
based on their control rather than their state. The notation
U i
j [t](t

′) conveys the promiseuj(t
′) ∈ U i

j [t](t
′) that agentj

makes at timet to agent i about time t′ ≥ t. Given the
dynamics of agentj and statexj(t) at time t, agenti can
compute the state promise fort′ ≥ t,

Xi
j [t](t

′) = {z ∈ Xj | ∃uj : [t, t
′] → Uj with

uj(s) ∈ U i
j [t](s) for s ∈ [t, t′] such that

z = eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. (9)
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As an example, givenj ∈ {1, . . . , N}, a continuous control
law uj :

∏
i∈N (j)∪{j} P

cc(Xi) → Uj , and δj > 0, the ball-
radius control promise rulefor agentj generated at timet is

Rcb
j (Xj

N [·]|[t,∞))(t
′) = B(uj(X

j
N (t)), δj) ∩ Uj t

′ ≥ t. (10)

Note that this promise is a ball of radiusδj in the control space
Uj centered at the control signal used at timet. Depending
on whetherδj is constant or changes with time, we refer to
it as the static or dynamic ball-radius rule, respectively.The
promise can be sent with three parameters, the statexj(t)
when the promise was sent, the control actionuj(X

j
N (t)) at

that time, and the radiusδj of the ball. The state promise can
then be generated using (9). •

Promises allow agents to predict the evolution of their
neighbors more accurately, which directly affects the network
behavior. In general, tight promises correspond to agents hav-
ing good information about their neighbors, which at the same
time may result in an increased communication effort (since
the promises cannot be kept for long periods of time). On
the other hand, loose promises correspond to agents having to
use more conservative controls due to the lack of information,
while at the same time potentially being able to operate
for longer periods of time without communicating (because
promises are not violated).

The availability of promises equips agents with set-valued
information models about the state of other agents. This fact
makes it necessary to address the definition of distributed
controllers that operate on sets, rather than points. We discuss
this in Section IV-B. The additional information that promises
represent is beneficial to the agents because it decreases the
amount of uncertainty when making action plans. Section IV-C
discusses this in detail. Finally, these advantages rely onthe
assumption that promises hold throughout the evolution. As
the state of the network changes and the level of task com-
pletion evolves, agents might decide to break former promises
and make new ones. We examine this in Section IV-D.

B. Controllers on set-valued information models

Here we discuss the type of controllers that the team-
triggered approach relies on. The underlying idea is that,
since agents possess set-valued information about the state of
other agents through promises, controllers themselves should
be defined on sets, rather than on points. There are different
ways of designing controllers that operate with set-valued
information depending on the type of system, its dynamics, or
the desired task, see e.g., [32]. For the problem of interesthere,
we offer the following possible goals. One may be interested
in simply decreasing the value of a Lyapunov function as fast
as possible, at the cost of more communication or sensing.
Alternatively, one may be interested in choosing the stabilizing
controller such that the amount of required information is
minimal at a cost of slower convergence time. We consider
continuous (with respect to the Hausdorff distance) controllers

of the formu∗∗ :
∏

j∈{1,...,N} P
cc(Xj) → R

m that satisfy

∇iV (x) (Aixi +Biu
∗∗
i ({x})) ≤ 0, i ∈ {1, . . . , N}, (11a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗∗
i ({x})) < 0. (11b)

In other words, if exact, singleton-valued information is avail-
able to the agents, then the controlleru∗∗ guarantees the mono-
tonic evolution of the Lyapunov functionV . We assume that
u∗∗ is distributed over the communication graphG. As before,
this means that for eachi ∈ {1, . . . , N}, the ith component
u∗∗
i can be computed with information in

∏
j∈N (i)∪{i} P

cc(Xj)
rather than in the full space

∏
j∈{1,...,N} P

cc(Xj).
Controllers of the above form can be derived from the

availability of the controlleru∗ : X → U introduced in
Section II. Specifically, letE :

∏N
j=1 P

cc(Xj) → X be a
continuous map that is distributed overG and satisfies, for each
i ∈ {1, . . . , N}, thatEi(Y ) ∈ Yi for eachY ∈

∏N
j=1 P

cc(Xj)
andEi({y}) = yi for eachy ∈ X . Essentially, what the map
E does for each agent is select a point from the set-valued
information that it possesses. Now, define

u∗∗(Y ) = u∗(E(Y )). (12)

Note that this controller satisfies (11a) and (11b) becauseu∗

satisfies (4a) and (4b).

Example IV.3 (Controller definition with the ball-radius
promise rules) Here we construct a controlleru∗∗ using (12)
for the case when promises are generated according to the ball-
radius control rule described in Remark IV.2. To do so, note
that it is sufficient to define the mapE :

∏N
j=1 P

cc(Xj) → X
only for tuples of sets of the form given in (9), where the
corresponding control promise is defined by (10). With the
notation of Remark IV.2, recall that the promise that an
agentj sends at timet is conveyed through three parameters
(yj , vj , δj), the stateyj = xj(t) when the promise was sent,
the control actionvj = uj(X

j
N (t)) at that time, and the

radiusδj of the ball. We can then define thejth component
of the mapE as

Ej(X1[t](t
′), . . . , XN [t](t′)) = eAj(t

′−t)yj

+

∫ t′

t

eAj(t
′−τ)Bjvjdτ,

which is guaranteed to be inXj [t](t
′) for t′ ≥ t. This

specification amounts to each agenti calculating the evolution
of its neighborsj ∈ N (i) as if they were using a zero-order
hold control. •

C. Self-triggered information updates

Here we discuss how agents use the promises received from
other agents to generate self-triggered information requests in
the future. Lettilast be some time at which agenti receives
updated information (i.e., promises) from its neighbors. Until
the next time information is obtained, agenti has access to
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the collection of functionsXi
N describing its neighbors’ state

and can compute its evolution under the controlleru∗∗ via

xi(t) = eAi(t−tilast)xi(t
i
last)

+

∫ t

tilast

eAi(t−τ)Biu
∗∗
i (Xi

N (τ))dτ, t ≥ tilast. (13)

Note that this evolution of agenti can be viewed as a promise
that it makes to itself, i.e.,Xi

i [·](t) = {xi(t)}. With this
in place, i can schedule the next timetinext at which it will
need updated information from its neighbors by computing
the worst-case time evolution ofV along its trajectory among
all the possible evolutions of its neighbors given the infor-
mation contained in their promises. Formally, we define, for
YN ∈

∏
j∈N (i)∪{i} P

cc(Xj),

LiV
sup(YN )= sup

yN∈YN

∇iV (yN ) (Aiyi +Biu
∗∗
i (YN )) , (14)

where yi is the element ofyN corresponding toi. Then,
the trigger for when agenti needs new information from its
neighbors is similar to (8), where we now use the promise
sets instead of the guaranteed sets. Specifically, the critical
time at which information is requested is given bytinext =
max{tilast+ Td,self, t

∗}, whereTd,self > 0 is an a priori chosen
parameter that we discuss below andt∗ is implicitly defined by

t∗ = min{t ≥ tilast | LiV
sup(Xi

N (t)) = 0}. (15)

This ensures that fort ∈ [tilast, t
∗), agenti is guaranteed to

be contributing positively to the desired task. We refer to
tinext − tilast as the self-triggered request time. The parameter
Td,self > 0 is the self-triggered dwell time. We introduce
it because, in general, it is possible thatt∗ = tilast, im-
plying that instantaneous communication is required. The
dwell time is used to prevent this behavior as follows. Note
that LiV

sup(Xi
N (t′)) ≤ 0 is only guaranteed whilet′ ∈

[tilast, t
∗]. Therefore, in case thattinext = tilast + Td,self, i.e., if

t∗ ≤ tilast + Td,self, agenti uses the safe-mode control during
t′ ∈ (t∗, tilast + Td,self] to leave its state fixed. This design
ensures the monotonicity of the evolution ofV along the
network execution. The team-triggered controller is defined by

uteam
i (t) =

{
u∗∗
i (Xi

N (t)), if t ≤ t∗,

usf
i (xi(t)), if t > t∗,

(16)

for t ∈ [tilast, t
i
next), where t∗ is given by (15). Note that the

self-triggered dwell timeTd,self only limits the frequency at
which an agenti can requestinformation from its neighbors
and does not provide guarantees on inter-event times of when
its memory is updated or its control is recomputed. If a
neighboring agent sends information to agenti before this
dwell time has expired (because that agent has broken a
promise), this triggers agenti to update its memory and
potentially recompute its control law.

D. Event-triggered information updates

Agent promises may need to be broken for a variety of
reasons. For instance, an agent might receive new information
from its neighbors, causing it to change its former plans.

Another example is given by an agent that made a promise
that is not able to keep for as long as it anticipated. Consider
an agenti ∈ {1, . . . , N} that has sent a promiseXj

i [tlast] to a
neighboring agentj at some timetlast. If agenti ends up break-
ing its promise at timet∗ ≥ tlast, i.e., xi(t

∗) /∈ Xj
i [tlast](t

∗),
then it is responsible for sending a new promiseXj

i [tnext]
to agent j at time tnext = max{tlast + Td,event, t

∗}, where
Td,event > 0 is an a priori chosen parameter that we discuss
below. This implies that agenti must keep track of promises
made to its neighbors and monitor them in case they are
broken. Note that this mechanism is implementable because
each agent only needs information about its own state and
the promises it has made to determine whether the trigger is
satisfied.

The parameterTd,event> 0 is known as theevent-triggered
dwell time. We introduce it because, in general, the timet∗ −
tlast between when agenti makes and breaks a promise to an
agentj might be arbitrarily small. The issue, however, is that if
t∗ < tlast+Td,event, agentj operates under incorrect information
about agenti for t ∈ [t∗, tlast+ Td,event). We deal with this by
introducing a warning message WARN that agenti must send
to agentj when it breaks its promise at timet∗ < tlast+Td,event.
If agent j receives such a warning message, it redefines the
promiseXj

i using the guaranteed sets (7) as follows,

Xj
i [·](t) =

⋃

xi∈X
j
i
[·](t∗)

X
j
i (t, xi) =

⋃

xi∈X
j
i
[·](t∗)

Ri(t− t∗, xi)

(17)

for t ≥ t∗, until the new message arrives at timetnext = tlast+
Td,event. By definition of the reachable set, the promiseXj

i [·](t)
is guaranteed to containxi(t) for t ≥ t∗.

Remark IV.4 (Promise expiration times) It is also possible
to set an expiration timeTexp > Td,event for the validity of
promises. If this in effect and a promise is made attlast, it
is only valid for t ∈ [tlast, tlast + Texp]. The expiration of the
promise triggers the formulation of a new one. •

The combination of the self- and event-triggered informa-
tion updates described above together with the team-triggered
controller uteam as defined in (16) gives rise to theTEAM-
TRIGGERED LAW, which is formally presented in Algorithm 1.
The self-triggered information request in Algorithm 1 is
executed by an agent anytime new information is received,
whether it was actively requested by the agent, or was received
from some neighbor due to the breaking of a promise.

V. CONVERGENCE OF THE TEAM-TRIGGERED LAW

Here we analyze the convergence properties of theTEAM-
TRIGGERED LAW. Our first result establishes the monotonic
evolution of the Lyapunov functionV along the network
trajectories.

Proposition V.1 Consider a networked cyber-physical system
as described in Section II executing theTEAM-TRIGGERED

LAW (cf. Algorithm 1) based on a continuous controller
u∗∗ :

∏
j∈{1,...,N} P

cc(Xj) → R
m that satisfies(11) and

is distributed over the communication graphG. Then, the
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Algorithm 1 : TEAM-TRIGGERED LAW

(Self-trigger information update)
At any time t agenti ∈ {1, . . . , N} receives new promise(s)Xi

j [t] from
neighbor(s)j ∈ N (i), agenti performs:
1: compute own controluteam

i (t′) for t′ ≥ t using (16)
2: compute own state evolutionxi(t

′) for t′ ≥ t using (13)
3: compute first timet∗ ≥ t such thatLiV

sup(Xi
N (t∗)) = 0

4: schedule information request to neighbors inmax{t∗−t, Td,self} seconds
(Respond to information request)
At any time t a neighborj ∈ N (i) requests information, agenti per-
forms:
1: send new promiseXj

i [t] = Rs
i(X

i
N [·][t,∞)) to agentj

(Event-trigger information update)
At all times t, agenti performs:

1: if there existsj ∈ N (i) such thatxi(t) /∈ Xj
i [·](t) then

2: if agenti has sent a promise toj at some timetlast ∈ (t− Td,event, t]
then

3: send warning message WARN to agentj at time t
4: schedule to send new promiseXj

i [tlast + Td,event] =
Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to agent j in tlast + Td,event − t

seconds
5: else
6: send new promiseXj

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agentj at time t

7: end if
8: end if

(Respond to warning message)
At any timet agenti ∈ {1, . . . , N} receives a warning message WARN from
agentj ∈ N (i)

1: redefine promise setXi
j [·](t

′) = ∪xj∈Xi
j
[·](t)Rj(t

′ − t, xj) for t′ ≥ t

functionV is monotonically nonincreasing along any network
trajectory.

Proof: We start by noting that the time evolution ofV
under Algorithm 1 is continuous and piecewise continuously
differentiable. Moreover, at the time instants when the time
derivative is well-defined, one has

d

dt
V (x(t)) =

N∑

i=1

∇iV (xi
N (t))

(
Aixi(t) +Biu

team
i (t)

)
(18)

≤
N∑

i=1

sup
yN∈Xi

N
(t)

∇iV (yN )
(
Aixi(t) +Biu

team
i (t)

)
≤ 0.

As we justify next, the last inequality follows by design of
the TEAM-TRIGGERED LAW. For eachi ∈ {1, . . . , N}, if
LiV

sup(Xi
N (t)) ≤ 0, thenuteam

i (t) = u∗∗
i (Xi

N (t)) (cf. (16)).
In this case the corresponding summand of (18) is ex-
actlyLiV

sup(Xi
N (t)), as defined in (14). IfLiV

sup(Xi
N (t)) >

0, then uteam
i (t) = usf

i (xi(t)), for which the corresponding
summand of (18) is exactly0.

The next result characterizes the convergence properties of
team-triggered coordination strategies.

Proposition V.2 Consider a networked cyber-physical sys-
tem as described in Section II executing theTEAM-
TRIGGERED LAW (cf. Algorithm 1) with dwell times
Td,self, Td,event > 0 based on a continuous controlleru∗∗ :∏

j∈{1,...,N} P
cc(Xj) → R

m that satisfies(11) and is dis-
tributed over the communication graphG. Then, any bounded
network trajectory with uniformly bounded promises asymp-
totically approaches the desired setD.

The requirements of uniformly bounded promises in Propo-
sition V.2 means that there exists a compact set that contains
all promise sets. Note that this is automatically guaranteed if
the network state space is compact. Alternatively, if the sets of
allowable controls are bounded, a bounded network trajectory
with expiration times for promises implemented as outlined
in Remark IV.4 would result in uniformly bounded promises.
There are two main challenges in proving Proposition V.2,
which we discuss next.

The first challenge is that agents operate asynchronously,
i.e., agents receive and send information, and update their
control laws possibly at different times. To model asynchro-
nism, we use a procedure called analytic synchronization,
see e.g. [33]. Let the time schedule of agenti be given by
T i = {ti0, t

i
1, . . . }, where tiℓ corresponds to theℓth time

that agenti receives information from one or more of its
neighbors (the time scheduleT i is not known a priori by
the agent). Note that this information can be received because
i requests it itself, or a neighbor sends it toi because an
event is triggered. Analytic synchronization simply consists of
merging together the individual time schedules into a global
time scheduleT = {t0, t1, . . . } by setting

T = ∪N
i=1T

i.

Note that more than one agent may receive information at
any given time t ∈ T . This synchronization is done for
analysis purposes only. For convenience, we identifyZ≥0 with
T via ℓ 7→ tℓ.

The second challenge is that a strategy resulting from the
team-triggered approach has a discontinuous dependence on
the network state and the agent promises. More precisely, the
information possessed by any given agent are trajectories of
sets for each of their neighbors, i.e., promises. For conve-
nience, we denote by

S =

N∏

i=1

Si, where

Si = C0
(
R;Pcc(X1)× · · · × P

cc(Xi−1)×Xi

× P
cc(Xi+1)× · · · × P

cc(XN )
)
,

the space that the state of the entire network lives in. Note
that this set allows us to capture the fact that each agenti has
perfect information about itself, as described in Section II.
Although agents only have information about their neighbors,
the above space considers agents having promise information
about all other agents to facilitate the analysis. This is only
done to allow for a simpler technical presentation, and does
not impact the validity of the arguments made here. The
information possessed by all agents of the network at some
time t is collected in

(
X1[·]|[t,∞), . . . , X

N [·]|[t,∞)

)
∈ S,

whereXi[·]|[t,∞) =
(
Xi

1[·]|[t,∞), . . . , X
i
N [·]|[t,∞)

)
∈ Si. Here,

[·] is shorthand notation to denote the fact that promises
might have been made at different times, earlier thant.
The TEAM-TRIGGERED LAW corresponds to a discontinuous
map of the formS × Z≥0 → S × Z≥0. This fact makes
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it difficult to use standard stability methods to analyze the
convergence properties of the network. Our approach to this
problem consists of defining a discrete-time set-valued map
M : S × Z≥0 ⇒ S × Z≥0 whose trajectories contain the
trajectories of theTEAM-TRIGGERED LAW. Although this
‘overapproximation procedure’ enlarges the set of trajectories
to consider, the gained benefit is that of having a set-valued
map with suitable continuity properties that is amenable to
set-valued stability analysis. We describe this in detail next.

We start by defining the set-valued mapM . Let (Z, ℓ) ∈ S×
Z≥0. We define the(N + 1)th component of all the elements
in M(Z, ℓ) to beℓ+1. The ith component of the elements in
M(Z, ℓ) is given by one of following possibilities. The first
possibility models the case when agenti does not receive any
information from its neighbors. In this case, theith component
of the elements inM(Z, ℓ) is simply theith component ofZ,

(
Zi
1|[tℓ+1,∞), . . . , Z

i
N |[tℓ+1,∞)

)
, (19)

The second possibility models the case when agenti has
received information (including a WARN message) from at
least one neighbor: theith component of the elements in
M(Z, ℓ) is

(
Y i
1 |[tℓ+1,∞), . . . , Y

i
N |[tℓ+1,∞)

)
, (20)

where each agent has access to its own state at all times,

Y i
i (t) = eAi(t−tℓ+1)Zi

i (tℓ+1)

+

∫ t

tℓ+1

eAi(t−τ)Biu
team
i (τ)dτ, t ≥ tℓ+1, (21a)

(here, with a slight abuse of notation, we useuteam to denote
the controller evaluated atY i) and,

Y i
j |[tℓ+1,∞)

= (21b)




Zi
j |[tℓ+1,∞)

, if i does not receive info fromj,

W i
j |[tℓ+1,∞)

, if i receives a warning fromj,

Rs
j(Z

j
N |[tℓ+1,∞)), otherwise,

for j 6= i, whereW i
j (t) =

⋃
zi∈Zi

j
(tℓ+1)

X
i
j(t, zi) corresponds

to the redefined promise (17) fort ≥ tℓ+1 as a result of the
warning message.

We emphasize two properties of the set-valued mapM .
First, any trajectory of theTEAM-TRIGGERED LAW is also a
trajectory of the nondeterministic dynamical system defined
by M ,

(Z(tℓ+1), ℓ+ 1) ∈ M(Z(tℓ), ℓ).

Second, although the map defined by theTEAM-TRIGGERED

LAW is discontinuous, the set-valued mapM is closed, as we
show next (a set-valued mapT : X ⇒ Y is closed ifxk → x,
yk → y andyk ∈ T (xk) imply that y ∈ T (x)).

Lemma V.3 (Set-valued map is closed)The set-valued
mapM : S × Z≥0 ⇒ S × Z≥0 is closed.

Proof: To show this we appeal to the fact that a set-
valued map composed of a finite collection of continuous

maps is closed [34, E1.9]. Given(Z, ℓ), the setM(Z, ℓ) is
finitely comprised of all possible combinations of whether or
not updates occur for every agent pairi, j ∈ {1, . . . , N}. In the
case that an agenti does not receive any information from its
neighbors, it is trivial to show that (19) is continuous in(Z, ℓ)
becauseZi

j [tℓ+1,∞)
is simply the restriction ofZi

j [tℓ,∞)
to the

interval [tℓ+1,∞), for eachi ∈ {1, . . . , N} and j ∈ N (i).
In the case that an agenti does receive updated information,
the above argument still holds for agentsj that did not send
information to agenti. If an agentj sends a warning message
to agenti, W i

j |[tℓ+1,∞)
is continuous in(Z, ℓ) by continuity of

the reachable sets on their starting point. If an agentj sends
a new promise to agenti, Y i

j |[tℓ+1,∞)
is continuous in(Z, ℓ)

by definition of the functionRs
j . Finally, one can see that

Y i
i |[tℓ+1,∞) is continuous in(Z, ℓ) from (21a).
We are now ready to prove Proposition V.2.

Proof of Proposition V.2: Here we resort to the LaSalle
Invariance Principle for set-valued discrete-time dynamical
systems [34, Theorem 1.21]. LetW = S × Z≥0, which is
closed and strongly positively invariant with respect toM . A
similar argument to that in the proof of Proposition V.1 shows
that the functionV is nonincreasing alongM . Combining
this with the fact that the set-valued mapM is closed (cf.
Lemma V.3), the application of the LaSalle Invariance Prin-
ciple implies that the trajectories ofM that are bounded in
the firstN components approach the largest weakly positively
invariant set contained in

S∗ = {(Z, ℓ) ∈ S × Z≥0 | ∃(Z ′, ℓ+ 1) ∈ M(Z, ℓ)

such thatV (Z ′) = V (Z)},

= {(Z, ℓ) ∈ S × Z≥0 | LiV
sup(Zi

N ) ≥ 0 (22)

for all i ∈ {1, . . . , N}}.

We now restrict our attention to those trajectories ofM that
correspond to theTEAM-TRIGGERED LAW. For convenience,
let loc(Z, ℓ) : S×Z≥0 → X be the map that extracts the true
position information in(Z, ℓ), i.e.,

loc(Z, ℓ) =
(
Z1
1 (tℓ), . . . , Z

N
N (tℓ)

)
.

Given a trajectoryγ of the TEAM-TRIGGERED LAW that satis-
fies all the assumptions of the statement of Proposition V.2,the
bounded evolutions and uniformly bounded promises ensure
that the trajectoryγ is bounded. Then, the omega limit set
Ω(γ) is weakly positively invariant and hence is contained in
S∗. Our objective is to show that, for any(Z, ℓ) ∈ Ω(γ), we
haveloc(Z, ℓ) ∈ D. We show this reasoning by contradiction.
Let (Z, ℓ) ∈ Ω(γ) but supposeloc(Z, ℓ) /∈ D. This means
that LiV

sup(Zi
N ) ≥ 0 for all i ∈ {1, . . . , N}. Take any agent

i, by the SELF-TRIGGERED INFORMATION UPDATES, agenti
will request new information from neighbors in at mostTd,self

seconds. This means there exists a state(Z ′, ℓ + ℓ′) ∈ Ω(γ)
for which agenti has just received updated information from
its neighborsj ∈ N (i). Since (Z ′, ℓ + ℓ′) ∈ S∗, we know
LiV

sup(Zi
N

′
) ≥ 0. We also know, since information was just

updated, thatZi
j

′
= locj(Z

′, ℓ+ ℓ′) is exact for allj ∈ N (i).
But, by (11a),LiV

sup(Zi
N

′
) ≤ 0 becauseloc(Z ′, ℓ+ ℓ′) /∈ D.

This means that each time any agenti updates its information,
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we must haveLiV
sup(Zi

N
′
) = 0. However, by (11b), there

must exist at least one agenti such thatLiV
sup(Zi

N
′
) < 0

sinceloc(Z ′, ℓ+ ℓ′) /∈ D, which yields a contradiction. Thus
for the trajectories of theTEAM-TRIGGERED LAW, (Z, ℓ) ∈ S∗

implies thatloc(Z, ℓ) ∈ D.
Given the convergence result of Proposition V.2, a termi-

nation condition for theTEAM-TRIGGERED LAW could be
included via the implementation of a distributed algorithmthat
employs tokens identifying what agents are using safe-model
controllers, see e.g., [35], [36]. Also, according to the proof of
Proposition V.2, the actual value of the event-triggered dwell
time Td,event does not affect the convergence property of the
trajectories of the constructed discrete-time set-valuedsystem.
However, the dwell time does affect the rate of convergence
of the actual continuous-time system (as a larger dwell time
corresponds to more time actually elapsing between each step
of the constructed discrete-time system).

Remark V.4 (Availability of a safe-mode controller) The
assumption on the availability of the safe-mode controller
plays an important role in the proof of Proposition V.2
because it provides individual agents with a way of avoiding
having a negative impact on the monotonic evolution of the
Lyapunov function. We believe this assumption can be relaxed
for dynamics that allow agents to execute maneuvers that
bring them back to their current state. Under such maneuvers,
the Lyapunov function will not evolve monotonically but,
at any given time, will always guarantee to be less than or
equal to its current value at some future time. We have not
pursued this approach here for simplicity and instead deferit
for future work. •

The next result states that, under theTEAM-TRIGGERED

LAW with positive dwell times, the system does not exhibit
Zeno behavior.

Lemma V.5 (No Zeno behavior) Under the assumptions of
Proposition V.2, the network executions do not exhibit Zeno
behavior.

Proof: Due to the self-triggered dwell timeTd,self, the self-
triggered information request steps in Algorithm 1 guarantee
that the minimum time before an agenti asks its neighbors
for new information isTd,self > 0. Similarly, due to the event-
triggered dwell timeTd,event, agenti will never receive more
than two messages (one accounts for promise information,
the other for the possibility of a WARN message) from a
neighborj in a period ofTd,event > 0 seconds. This means
that any given agent can never receive an infinite amount of
information in finite time. When new information is received,
the control law (16) can only switch a maximum of two times
until new information is received again. Specifically, if an
agenti is using the normal control law when new information
is received, it may switch to the safe-mode controller at most
one time until new information is received again. If instead
an agenti is using the safe-mode control controller when
new information is received, it may immediately switch to the
normal control law, and then switch back to the safe-mode

controller some time in the future before new information is
received again. The result follows from the fact that|N (i)| is
finite for eachi ∈ {1, . . . , N}.

Remark V.6 (Adaptive self-triggered dwell time) Dwell
times play an important role in preventing Zeno behavior.
However, a constant self-triggered dwell time throughout the
network evolution might result in wasted communication
effort because some agents might reach a state where their
effect on the evolution of the Lyapunov function is negligible
compared to others. In such case, the former agents could
implement larger dwell times, thus decreasing communication
effort, without affecting the overall performance. Next, we
give an example of such an adaptive dwell time scheme. Let
t be a time at which agenti ∈ {1, . . . , N} has just received
new information from its neighborsN (i). Then, the agent
sets its dwell time to

T i
d,self(t) = max (23)

{
δd

∑

j∈N (i)

1

|N (i)|

‖u∗∗
j (Xj

N (t))− usf
j (xj(t)))‖2

‖u∗∗
i (Xi

N (t))− usf
i (xi(t))‖2

,∆d

}
,

for some a priori chosenδd, ∆d > 0. The intuition be-
hind this design is the following. The value‖u∗∗

j (Xj
N (t)) −

usf
j (xj(t)))‖2 can be interpreted as a measure of how far agent

j is from reaching a point where it cannot no longer contribute
positively to the global task. As agents are nearing this point,
they are more inclined to use the safe mode control to stay
put and hence do not require fresh information. Therefore, if
agenti is close to this point but its neighbors are not, (23) sets
a larger self-triggered dwell time to avoid excessive requests
for information. Conversely, if agenti is far from this point
but its neighbors are not, (23) sets a small dwell time to let
the self-triggered request mechanism be the driving factorin
determining when new information is needed. For agenti to
implement this, in addition to current state information and
promises, each neighborj ∈ N (i) also needs to send the value
of ‖u∗∗

j (Xj
N (t)) − usf

j (xj(t)))‖2 at time t. In the case that
information is not received from all neighbors, agenti simply
uses the last computed dwell time. Section VII illustrates this
adaptive scheme in simulation. •

VI. ROBUSTNESS AGAINST UNRELIABLE

COMMUNICATION

This section studies the robustness of the team-triggered
approach in scenarios with packet drops, delays, and com-
munication noise. We start by introducing the possibility of
packet drops in the network. For any given message an agent
sends to another agent, assume there is an unknown probability
0 ≤ p < 1 that the packet is dropped, and the message is
never received. We also consider an unknown (possibly time-
varying) communication delay∆(t) ≤ ∆̄ in the network for
all t where∆̄ ≥ 0 is known. In other words, if agentj sends
agenti a message at timet, agenti will not receive it with
probability p or receive it at timet + ∆(t) with probability
1 − p. We assume that small messages (i.e., 1-bit messages)
can be sent reliably with negligible delay. This assumptionis
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similar to the “acknowledgments” and “permission” messages
used in other works, see [28], [37] and references therein.
Lastly, we also account for the possibility of communication
noise or quantization. We assume that messages among agents
are corrupted with an error which is upper bounded by some
ω̄ ≥ 0 known to the agents.

With this model, theTEAM-TRIGGERED LAW as described
in Algorithm 1 does not guarantee convergence because the
monotonic behavior of the Lyapunov function no longer holds.
The problem occurs when an agentj breaks a promise to agent
i at some timet. If this occurs, agenti will operate with invalid
information (due to the sources of error described above) and
computeLiV

sup(Xi
N (t′)) (as defined in (14)) incorrectly for

t′ ≥ t.
Next, we discuss how theTEAM-TRIGGERED LAW can

be modified in scenarios with unreliable communication. To
deal with communication noise, when an agenti receives an
estimated promisêXi

j from another agentj, it must be able to
create a promise setXi

j that contains the actual promise that
agentj intended to send. We refer to this action as making a
promise set valid. The following example shows how it can
be done for the promises described in Remark IV.2.

Example VI.1 (Ball-radius promise rule with communi-
cation noise) In the scenario with bounded communication
noise, agentj sends the control promise conveyed through
xj(t), uj(X

j
N (t)), and δj , to agenti at time t as defined in

Remark IV.2, buti receives instead̂xj(t), ûj(X
j
N (t)), and δ̂j ,

where it knows that‖xj(t) − x̂j(t)‖2 ≤ ω̄, ‖uj(X
j
N (t)) −

ûj(X
j
N (t))‖2 ≤ ω̄, and |δj − δ̂j | ≤ δ̄, given thatω̄ and δ̄ are

known a priori. To ensure that the promise agenti operates
with about agentj contains the true promise made byj, agent
i can set

U i
j [t](t

′) = B(ûi
j(X

j
N (t)), δ̂j + ω̄ + δ̄) ∩ Uj t′ ≥ t.

To create the state promise from this,i would need the true
statexj(t) of j at time t. However, since only the estimate
x̂i
j(t) is available, we modify (9) by

Xi
j [t](t

′) = ∪yj∈B(x̂i
j
(t),ω̄){z ∈ Xj | ∃uj : [t, t

′] → Uj

with uj(s) ∈ U i
j [t](s) for s ∈ [t, t′]

such thatz = eAj(t
′−t)yj +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. •

We deal with the packet drops and communication delays
with warning messages similar to the ones introduced in
Section IV-D. Let an agentj break its promise to agenti at
time t, then agentj sendsi a new promise setXi

j [t] for t′ ≥ t
and warning message WARN. Since agenti only receives
WARN at time t, the promise setXi

j [t] may not be available
to agenti for t′ ≥ t. If the packet is dropped, then the message
never comes through, if the packet is successfully transmitted,
thenXi

j [t](t
′) is only available fort′ ≥ t+∆(t). In either case,

we need a promise setXi
j [·](t

′) for t′ ≥ t that is guaranteed
to containxj(t

′). We do this by redefining the promise using
the reachable set, similarly to (17). Note that this does not
require the agents to have a synchronized global clock, as the

times t′ and t are both monitored by the receiving agenti.
In other words, it is not necessary for the message sent by
agentj to be timestamped. By definition of reachable set, the
promiseXi

j [·](t
′) is guaranteed to containxj(t

′) for t′ ≥ t. If
at timet+∆̄, agenti has still not received the promiseXi

j [t]
from j, it can send agentj a request REQ for a new message
at which point j would sendi a new promiseXi

j [t + ∆̄].
Note that WARN is not sent in this case because the message
was requested fromj by i and not a cause ofj breaking a
promise toi. The ROBUST TEAM-TRIGGERED LAW, formally
presented in Algorithm 2, ensures the monotonic evolution of
the Lyapunov functionV even in the presence of packet drops,
communication delays, and communication noise.

Algorithm 2 : ROBUST TEAM-TRIGGERED LAW

(Self-trigger information update)
At any time t agenti ∈ {1, . . . , N} receives new promise(s)̂Xi

j [t] from
neighbor(s)j ∈ N (i), agenti performs:
1: create valid promiseXi

j [t] with respect toω̄
2: compute own controluteam

i (t′) for t′ ≥ t using (16)
3: compute own state evolutionxi(t

′) for t′ ≥ t using (13)
4: compute first timet∗ ≥ t such thatLiV

sup(Xi
N (t∗)) = 0

5: schedule information request to neighbors inmax{t∗−t, Td,self} seconds
6: while message fromj has not been receiveddo
7: if current time equalst + max{t∗ − t, Td,self} + k∆̄ for k ∈ Z≥0

then
8: send agentj a request REQ for new information
9: end if

10: end while
(Respond to information request)
At any time t a neighborj ∈ N (i) requests information, agenti per-
forms:
1: send new promiseY j

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agentj

(Event-trigger information update)
At all times t, agenti performs:

1: if there existsj ∈ N (i) such thatxi(t) /∈ Y j
i [·](t) then

2: send warning message WARN to agentj
3: if agenti has sent a promise toj at some timetlast ∈ (t− Td,event, t]

then
4: schedule to send new promiseY j

i [tlast + Td,event] =
Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to agent j in tlast + Td,event − t

seconds
5: else
6: send new promiseY j

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agentj

7: end if
8: end if

(Respond to warning message)
At any timet agenti ∈ {1, . . . , N} receives a warning message WARN from
agentj ∈ N (i)

1: redefine promise setXi
j [·](t

′) = ∪x0
j
∈Xi

j
[·](t)Rj(t

′ − t, x0
j ) for t′ ≥ t

2: while message fromj has not been receiveddo
3: if current time equalst+ k∆̄ for k ∈ Z≥0 then
4: send agentj a request REQ for new information
5: end if
6: end while

The next result establishes the asymptotic correctness guar-
antees on theROBUST TEAM-TRIGGERED LAW. In the pres-
ence of communication noise or delays, convergence can be
guaranteed only to a set that contains the desired setD.

Corollary VI.2 Consider a networked cyber-physical system
as described in Section II with packet drops occurring with
some unknown probability0 ≤ p < 1, messages being delayed
by some known maximum delay∆̄, and communication noise
bounded bȳω, executing theROBUST TEAM-TRIGGERED LAW
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(cf. Algorithm 2) with dwell timesTd,self, Td,event > 0 based
on a continuous controlleru∗∗ :

∏
j∈{1,...,N} P

cc(Xj) → R
m

that satisfies(11) and is distributed over the communication
graph G. Let

D′(∆̄, ω̄) = {x ∈ X | inf
xi
N

′∈B(xi
N
,ω̄)

LiV
sup

(
{xi}

×
∏

j∈N (i)

∪yj∈B(xi
j
′
,ω̄)Rj(∆̄, yj)

)
≥ 0 (24)

for all i ∈ {1, . . . , N}},

Then, any bounded network trajectory with uniformly bounded
promises asymptotically converges toD′(∆̄, ω̄) ⊃ D with
probability 1.

Proof: We begin by noting that by equation (11b), the
definition (14), and the continuity ofu∗∗, D can be written as

D′(0, 0) = {x ∈ X |
N∑

i=1

∇iV (x)(Aixi +Biu
∗∗
i ({xi

N })) ≥ 0}.

One can see thatD ⊂ D′(∆̄, ω̄) by noticing that, for any
x ∈ D, ω̄, ∆̄ ≥ 0, no matter which pointxi

N
′
∈ B(xi

N , ω̄) is
taken, one hasxi

N ∈ {xi}×
∏

j∈N (i) ∪yj∈B(xi
j
′
,ω̄)Rj(∆̄, yj).

To show that the bounded trajectories of theROBUST TEAM-
TRIGGERED LAW converge toD′, we begin by noting that all
properties ofM used in the proof of Proposition V.2 still hold
in the presence of packet drops, delays, and communication
noise as long as the time scheduleT i is unbounded for each
agenti ∈ {1, . . . , N}. In order for the time scheduleT i to be
unbounded, each agenti must receive an infinite number of
messages, andtiℓ → ∞. Since packet drops have probability
0 ≤ p < 1, the probability that there is a finite number of
updates for any given agenti over an infinite time horizon
is 0. Thus, with probability1, there are an infinite number of
information updates for each agent. Using a similar argument
to that of Lemma V.5, one can show that the positive dwell
times Td,self, Td,event > 0 ensure that Zeno behavior does not
occur, meaning thattiℓ → ∞. Then, by the analysis in the
proof of Proposition V.2, the bounded trajectories ofM still
converge toS∗ as defined in (22).

For a bounded evolutionγ of the ROBUST TEAM-
TRIGGERED LAW, we have thatΩ(γ) ⊂ S∗ is weakly pos-
itively invariant. Note that, since agents may never have exact
information about their neighbors, we can no longer leverage
properties (11a) and (11b) to precisely characterizeΩ(γ). We
now show that for any(Z, ℓ) ∈ Ω(γ), we haveloc(Z, ℓ) ∈ D′.
Let (Z, ℓ) ∈ Ω(γ). This means thatLiV

sup(Zi
N ) ≥ 0 for

all i ∈ {1, . . . , N}. Take any agenti, by the ROBUST

TEAM-TRIGGERED LAW, agenti will request new information
from neighbors in at mostTd,self seconds. This means there
exists a state(Z ′, ℓ + ℓ′) ∈ Ω(γ) for which agenti has
just received updated, possibly delayed, information fromits
neighborsj ∈ N (i). Since (Z ′, ℓ + ℓ′) ∈ S∗, we know
LiV

sup(Zi
N

′
) ≥ 0. We also know, since information was just

updated, thatZi
N

′
⊂ {Zi

i

′
} ×

∏
j∈N (i) ∪yj∈B(zi

j
′
,ω̄)R(∆̄, yj).

Since(Z ′, ℓ+ ℓ′) ∈ S∗, we know thatLiV
sup(Zi

N
′
) ≥ 0, for

all i ∈ {1, . . . , N}. This means thatloc(Z ′, ℓ+ ℓ′) ⊂ D′, thus
loc(Z, ℓ) ∈ S∗ ⊂ D′.

From the proof of Corollary VI.2, one can see that the
modifications made to theROBUST TEAM-TRIGGERED LAW

make the omega limit sets of its trajectories larger than those of
the TEAM-TRIGGERED LAW, resulting inD ⊂ D′. The setD′

depends on the Lyapunov functionV . However, the difference
betweenD′(∆̄, ω̄) andD vanishes as̄ω and ∆̄ vanish.

VII. S IMULATIONS

In this section we present simulations of coordination strate-
gies derived from the team- and self-triggered approaches in
a planar multi-agent formation control problem. Our start-
ing point is the distributed coordination algorithm based on
graph rigidity analyzed in [38], [39] which makes the desired
network formation locally (but not globally) asymptotically
stable. In this regard, the state spaceX of Section II corre-
sponds to the domain of attraction of the desired equilibria
and, as long as the network trajectories do not leave this
set, the convergence results still hold. The local convergence
result of the team-triggered approach here is only an artifact
of the specific example and, in fact, if the assumptions (4) are
satisfied globally, then the system is globally asymptotically
stabilized. The interested reader is referred to [2] for a similar
study in a optimal networked deployment problem where the
assumptions hold globally.

Consider4 agents communicating over a graph which is
only missing the edge(1, 3) from the complete graph. The
agents seek to attain a rectangle formation of side lengths1
and2. Each agent has unicycle dynamics,

ẋi = ui

[
cos θi
sin θi

]

θ̇i = vi,

where0 ≤ ui ≤ umax = 5 and |vi| ≤ vmax = 3 are the control
inputs. The safe-mode controller is then simplyusf

i ≡ 0. To
compute the distributed control law, each agent computes a
goal point

p∗i (x) = xi +
∑

j∈N (i)

(‖xj − xi‖2 − dij) unit(xj − xi),

wheredij is the pre-specified desired distance between agentsi
andj, andunit(xj−xi) denotes the unit vector in the direction
of xj − xi. Then, the control law is then given by

u∗
i = max

{
min{k[cos θi sin θi]

T · (p∗i (x)− xi), umax}, 0
}
,

v∗i = max {min{k(∠(p∗i (x)− xi)− θi), vmax},−vmax} ,

wherek > 0 is a design parameter. For our simulations we set
k = 150. This continuous control law essentially ensures that
the positionxi moves towardsp∗i (x) when possible while the
unicycle rotates its orientation towards this goal. This control
law ensures thatV :

(
R

2
)N

→ R≥0 given by

V (x) =
1

2

∑

(i,j)∈E

(
‖xj − xi‖

2
2 − d2ij

)2
,

is a nonincreasing function for the closed-loop system to
establish the asymptotic convergence to the desired formation.
For the team-triggered approach, we use both static and
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dynamic ball-radius promise rules. The controlleruteam is then
defined by (16), where controlleru∗∗ is given by (12) as
described in Example IV.3. Note that although the agent has
no forward velocity when using the safe controller, it will still
rotate in place. The initial conditions arex1(0) = (6, 10)T ,
x2(0) = (7, 3)T , x3(0) = (14, 8)T , and x4(0) = (7, 13)T

and θi(0) = π/2 for all i. We begin by simulating the team-
triggered approach using fixed dwell times ofTd,self = 0.3
and Td,event = 0.003 and the static ball-radius promise of
Remark IV.2 with the same radiusδ = 1 for all agents.
Figure 1 shows the trajectories of theTEAM-TRIGGERED LAW.

4 6 8 10 12 14 16
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13

Agent 1
Agent 2
Agent 3
Agent 4

Fig. 1. Trajectories of an execution of theTEAM-TRIGGERED LAW with
fixed dwell times and promises. The initial and final condition of each agent
is denoted by an ‘x’ and an ‘o’, respectively.

To compare the team- and self-triggered approaches, we let
N i

S be the number of timesi has requested new informa-
tion and thus has received a message from each one of its
neighbors andN i

E be the number of messagesi has sent to
a neighboring agent because it decided to break its promise.
The total number of messages for an execution isNcomm =∑4

i=1 |N (i)|N i
S + N i

E . Figure 2 compares the number of
required communications in both approaches. Remarkably, for
this specific example, the team-triggered approach outperforms
the self-triggered approach in terms of required communica-
tion without sacrificing any performance in terms of time to
convergence (the latter is depicted through the evolution of
the Lyapunov function in Figure 4(b) below). Less overall
communication has an important impact on reducing network
load. In Figure 2(a), we see that very quickly all agents are
requesting information as often as they can (as restricted by
the self-triggered dwell time), due to the conservative nature
of the self-triggered time computations. In the execution of the
TEAM-TRIGGERED LAW in Figure 2(b), we see that the agents
are requesting information from one another less frequently.
Figure 2(c) shows that agents were required to break a few
promises early on in the execution.
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Fig. 3. Plots of (a) the value of the Lyapunov function at a fixed time (30
sec) and (b) the total number of messages exchanged in the network by this
time for the team-triggered approach with varying tightness of promisesλ.

Next, we illustrate the role that the tightness of promises has
on the network performance. With the notation of Remark IV.2
for the static ball-radius rule, letλ = δ

2umax
. Note that when

λ = 0, the promise generated by (10) is a singleton, i.e., an
exact promise. On the other hand, whenλ = 1, the promise
generated by (10) contains the reachable set, corresponding
to no actual commitment being made (i.e., the self-triggered
approach). Figure 3 compares the value of the Lyapunov
function after a fixed amount of time (30 seconds) and the
total number of messages sentNcomm between agents by
this time for varying tightness of promises. The dwell times
here are fixed atTd,self = 0.3 and Td,event = 0.003. Note
that a suitable choice ofλ helps greatly reduce the amount
of communication compared to the self-triggered approach
(λ = 1) while maintaining a similar convergence rate.

Finally, we demonstrate the added benefits of using adap-
tive promises and dwell times. Figure 4(a) compares the
total number of messages sent in the self-triggered approach
and the team-triggered approaches with fixed promises and
dwell times (FPFD), fixed promises and adaptive dwell times
(FPAD), adaptive promises and fixed dwell times (APFD), and
adaptive promises and dwell times (APAD). The parameters
of the adaptive dwell time used in (23) areδd = 0.15
and ∆d = 0.3. For agentj ∈ {1, . . . , 4}, the radiusδj
of the dynamic ball-radius rule of Remark IV.2 isδj(t) =
0.50‖u∗∗

j (Xj
N (t))− usf

j (xj(t))‖2 +10−6. This plot shows the
advantage of the team-triggered approach in terms of required
communication over the self-triggered one and also shows
the additional benefits of implementing the adaptive promises
and dwell time. This is because by using the adaptive dwell
time, agents decide to wait longer periods for new information
while their neighbors are still moving. By using the adaptive
promises, as agents near convergence, they are able to make
increasingly tighter promises, which allows them to request
information from each other less frequently. As Figure 4(b)
shows, the network performance is not compromised despite
the reduction in communication.
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Fig. 4. Plots of (a) the total number of messages sent and (b) theevolution
of the Lyapunov functionV for executions of self-triggered approach and the
team-triggered approaches with fixed promises and dwell times (FPFD), fixed
promises and adaptive dwell times (FPAD), adaptive promises and fixed dwell
times (APFD), and adaptive promises and dwell times (APAD).

VIII. C ONCLUSIONS

We have proposed a novel approach, termed team-triggered,
that combines ideas from event- and self-triggered control
for the implementation of distributed coordination strategies
for networked cyber-physical systems. Our approach is based
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Fig. 2. Number of self-triggered requests made by each agent inan execution of the (a) self-triggered approach and (b) team-triggered approach with fixed
dwell times and promises. For the latter execution, (c) depicts the number of event-triggered messages sent (broken promises) by each agent.

on agents making promises to each other about their future
states. If a promise is broken, this triggers an event where
the corresponding agent provides a new commitment. As a
result, the information available to the agents is set-valued
and can be used to schedule when in the future further
updates are needed. We have provided a formal description
and analysis of team-triggered coordination strategies and
have also established robustness guarantees in scenarios where
communication is unreliable. The proposed approach opens
up numerous venues for future research. Among them, we
highlight the robustness under disturbances and sensor noise,
more general models for individual agents, the design of
team-triggered implementations that guarantee the invariance
of a desired set in distributed scenarios, the relaxation of
the availability of the safe-mode control via controllers that
allow agents to execute maneuvers that bring them back to
their current state, relaxing the requirement on the negative
semidefiniteness of the derivative of the Lyapunov function
along the evolution of each individual agent, methods for the
systematic design of controllers that operate on set-valued
information models, understanding the implementation trade-
offs in the design of promise rules, analytic guarantees on
the performance improvements with respect to self-triggered
strategies, and the impact of evolving topologies on the
generation of promises.
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