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Abstract

This paper considers a group of drogues whose objectivedstimate the physical parameters that
determine the dynamics of ocean nonlinear internal wawstrial waves are important in oceanography
because, as they travel, they are capable of displacingl smimhals, such as plankton, larvae, and
fish. These waves are described by models that employ trigetric functions parameterized by a
set of constants such as amplitude, wavenumber, and tehfpayaency. While underwater, individual
drogues do not have access to absolute position informatidronly rely on inter-drogue measurements.
Building on this data and the study of the drogue dynamicsutite flow induced by the internal wave,
we design two strategies, termed ¥eni shi ng Derivati ve Met hod and thePassi ng Wave
Met hod, that are able to determine the wavenumber and the speed Edttier of these strategies can
be employed in thdPar anet er Det ermi nati on Strategy to determine all remaining wave
parameters. We analyze the correctness of the proposeegstisaand discuss their robustness against
different sources of error. Simulations illustrate theoaithm performance under noisy measurements

as well as the effect of different initial drogue configuoas.

. INTRODUCTION

Internal waves are waves that propagate within a fluid, raten on its surface. The type
that we consider here corresponds to a moving oscillatiahenboundary surface between two
layers of a stratified fluid. In the ocean, these two layer figeln occur at the mouth of large
rivers where brackish (low salinity) water sits above setewdor instance. Also, a continuously
stratified fluid can be modeled as a two-layer fluid, where titerface, called pycnocline, is
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the surface of constant density where the vertical rate @ihgh in density is largest. This
class of internal waves can be broadly categorized intatim@ad nonlinear. Linear waves have
amplitudes small relative to the depth of the water coluntmeyrare capable of moving around
plankton, animal larvae, and other organisms, as well agiogemixing between the upper and
lower layers. In contrast, nonlinear waves have larger aongas, allowing them to be an agent
of transport of small oceanic life. Here, we consider nadinwaves modeled as solitons, which
are stable, solitary peaks (or troughs) which propagategatbe pycnocline.

Traditional methods for studying internal waves have beatell#e observations, acoustic
tomography, conductance-temperature-depth (CTD) casds;@rent meters on moorings. How-
ever, these methods lack the capability of real-time addfita Here, we tackle this problem
using a group of drogues capable of drifting underwater tiearinternal wave’s interface to
determine the physical parameters that define its motiorro§ue is a robotic Lagrangian drifter
able to actuate its depth by changing its buoyancy. While wwater, drogues are subject to
the flow induced by the motion of the internal wave and do nethaccess to exact location
information. Figure 1 presents a pictorial illustrationtbé problem setup. The basic premise of
the paper is that the evolution of the inter-drogue distaaru distance derivative measurements
contains enough information for the drogues to be able ty ftlaracterize the internal wave.

Literature review: Internal waves are associated with high concentrationsanbus types of
planktonic organisms and small fishes [2], [3], as well as genaof larval transport [1]. This
makes their study important to oceanographers, see e,g5[4]6], [7]. In particular, striping
of low/high densities in plankton can be well explained byainamplitude, linear internal
waves [4]. However, nonlinear waves are needed to accoutihéoadvection required for larval
transport [1]. Many models exist for nonlinear waves [8], ® account for the wide variety of
conditions and bathymetries found in the ocean. Scientigtely use drogues drifting passively
as monitoring platforms to gather relevant ocean data [[IQ]}, [12]. The use of autonomous
underwater vehicles to detect and characterize internaesvas a relatively new approach.
Whereas previous works use ocean measurements such as tootyluemperature, pressure
data [13], [14] or vertical flow velocity [15] to detect andadyze internal waves, our approach
is unigue in using inter-vehicles measurements. Recent \M®Bk explores the possibility of
actively selecting tidal currents so that drogues can autmusly reach a desired destination.

An increasing body of work in the systems and control liter@atdeals with cooperative networks
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(@) Schematic of drogues and internal wave (b) Thermal fluctuations induced by an internal wave

Fig. 1. For an ocean nonlinear internal wave, (a) shows its spatiaksteuat a fixed instant of time whereas (b) shows its
temporal structure at a fixed horizontal location. In (a), one can sestial cross-section of the ocean perpendicular to the
wave propagation direction. A group of drogues float at constarthdejput not necessarily along a straight line) and do not
have access to exact location information. Our objective is to providgugsowith mechanisms that rely only on the relative
distances between them to determine the parameters that uniquely defiméethal wave. In (b), one can see temperature
and vertical/onshore-offshore current vectors data taken fromiradfanonlinear soliton internal waves about one kilometer off
the coast of La Jolla, CA on July 3, 1996. The bottom figure is a zoom-ith@ftop figure. Figure (b) i€ (1999) by the

Association for the Sciences of Limnology and Oceanography, Iee.[H for additional information.

of agents estimating spatial natural phenomena, includosgan [17], [18], [19], river [20], and
hurricane sampling [21]. This work builds off our previousnk [22], which considers a similar
estimation problem for linear internal waves. The nonlmeave case considered here presents
novel challenges of its own given the complexity and différeature of the induced drogue
dynamics.

Statement of contributionsWWe consider the problem of estimating the physical parammete
of a nonlinear internal wave that is propagating horizant® group of underwater Lagrangian
drifters are subjected to the flow induced by the internalevand can only measure inter-
drogue distances and distance derivatives. Because theedrogly have access to these relative
measurements, they must rely on the presence of other dyagueachieve their task. The
benefit obtained here by ‘the power of many’ in the estimatdrthe ocean flow field is a
key feature of our paper. Our first contribution is the esshibhent of an analytic expression for

the dynamic evolution of the drogues. We analyze the asyimgiehavior of the solutions, which
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corresponds to the drogue’s displacement after the wavpdss®d. Building on this analysis, and
specifically on the observation that when the crest of theewsexactly at the midpoint between
two drogues, their inter-drogue distance derivative bexomero, we design two strategies for
determining the spatial frequency and speed ratio of theeywawich we call thevani shi ng
Derivative Method and thePassi ng Wave Met hod. Either of these methods are used
as a component of th®araneter Determ nation Strategy, an algorithm run on
the drogues using only relative measurements which is dapzfbdetermining all the wave
parameters. We analyze the correctness of these algorithtise case of noiseless inter-drogue
measurements. We discuss the robustness properties d¢tathanmet er Det er m nati on

St r at egy to different sources of error such as noise in measureménit® sampling rate,
and model uncertainty, which arise in realistic implemgate. Finally, several simulations
compare the robustness performance to measurement ndise\&ni shi ng Deri vati ve
Met hod and thePassi ng Wave Met hod, as well as illustrate the effect of initial drogue
locations on the algorithm performance.

Organization: Section Il introduces some basic notation used throughloeitpaper. Sec-
tion Il introduces the internal wave and drogue models, &il ws describes the problem
statement. Section IV analyzes the dynamics of driftinggdes under the nonlinear internal
wave. Section V proposes and analyzes two strategies fermdigting the wavenumber and
speed ratio parameters. Section VI presentsPdieanet er Det erm nati on Strat egy,
analyzes its correctness under noiseless measuremendtgisousses its inherent robustness
to various sources of errors present in practical impleatents. Several simulations illustrate
the performance of the algorithm under measurement nois@lly; Section VII gathers our

conclusions and ideas for future work.

[1. NOTATIONAL CONVENTIONS

Here we present some notational conventions used in the.dageR, R-,, andR-, denote
the set of all, positive, and non-negative real numbergees/ely. A reference frame, in
R3 is composed of an origip,, € R? and a set of orthonormal vectofs,,, e, . e.,} C R®. A
point q and a vectow can be uniquely expressed with respect to the fraipand are denoted
by q andv¥, respectively. Next, leE, = (ps, {e,,, ey, €, }) be a reference frame fixed to a

moving body. The origin o}, is a pointp,, denoted ap{ when expressed with respect¥j.
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The orientation of, is characterized by the rotation matxi¥ whose columns are the vectors
{es,, ey, €.} expressed with respect ©,. With this notation, a change of reference frame is

given by
q’ = Qjd’ +pj, v =Qpv"

Finally, the Euclidean norm of vector is ||v||.

[1l. PROBLEM STATEMENT

This section contains the nonlinear internal wave moded ubee model for the drogue drifters

and their interaction with the internal wave, and a fornediproblem statement.

A. Nonlinear internal wave model

Let X, = (py. {es,.€y,,€:,}) be a global reference frame defined as follows: the orjgin
corresponds to an arbitrary point at the ocean surface;gbtre,, corresponds to the direction
of wave propagation, which is parallel to the ocean bottam,ea, is perpendicular to the ocean
bottom, pointing from bottom to surface. For convenienbe, toordinates induced by, are
denoted by{z,y, 2 }.

As shown in Figure 1, an internal wave is a wave with travelsela¢h the surface of the
ocean, along a surface of constant water density called aopline. When the amplitude of
the wave becomes a large enough fraction of the water coltimenwave begins to ‘feel’ the
surface and bottom of the ocean and nonlinear terms of thergimg PDE must be included.
One classical equation used to model weakly nonlinear lotgrnal waves is the Korteweg-de

Vries (KdV) equation, see e.g., [9]:

!
on _ Sz 00 2 S g 1
ot 2 hom Mox T g (1)

wheren is the distance that the internal wave is displacing the pglme, ¢ = g"”"p%“']fu"—flil,
pus by @nd py, hy are the density and depth of the upper and lower layers, ceégply, andg is
the acceleration due to gravity. In the absence of an intevage, the pycnocline is at depth,.

The stable soliton solution to (1) is, cf. [8],
2Chyhy , (1 | 6C 9
= — h? (=4/ —Ct — — Asech —Xo) —
n(x,t) — sec <2 e (x —Ct Xo)) sech’ (k(z — xo) — wt),
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where

2Ch,hy 1 [6C 1 [6C
hi — ho o\ ehh © T 2\ chuny

are wavenumber and temporal frequency, respecticely, ¢ is the celerity (speed) of the wave,
andyy is the initial location of the center of the wave. As the wavegagates, it induces motion
in the nearby water. The standard model assumes that thealareélocity varies linearly with

depth. Coupled with the conservation of mass law for an ingesgible fluid, one can derive

the following expressions for the horizontal and verticalv, velocities of the upper layer

wy(x,t) = _2514 sech?(k(x — xo) — wt),
vz, 2,t) = 2(7;42 sech?(k(z — xo) — wt) tanh(k(z — xo) — wt).
Likewise, the horizontal;, and verticaly, velocities of the lower layer are
w(z,t) = ClA sech?(k(x — xo) — wt),
vz, z,t) = 2wAhU+h—fjl_Z sech?(k(x — xo) — wt) tanh(k(z — xo) — wt).
For convenience, we define the upper and lower velocity doggs asB, = —2¢4 and B, =

ha

2CA
h; *

Remark I11.1 (Bounds on wave parameterg)e assume that, for each wave parameter, there
exists a closed and bounded intervalln, that the parameter is guaranteed to fall within. This
is reasonable because natural parameters, such as arisobipeior speed, cannot be arbitrarily

small or large. We refer to a parameter’s bounds with suptcmin and max. o

B. Drogue model

A drogue is a submersible buoy which can drift in the oceaattanhed to the ocean floor or a
boat, and is able to change its depth in the water by comnigplis buoyancy. While underwater,
a drogue can measure the relative distance, distance thajvand orientation in space to other
drogues through sensing (e.g., via acoustic or opticalssrd an onboard compass). A drogue
can also measure its depth. However, it does not have aaedsolute position because GPS

is unavailable underwater.
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Consider a group ofV drogues, each with a reference frame= (p;,{e.,, ey €. }), i €
{1,..., N}, attached to it. The origip, corresponds to the location of the drogue. As in the
global coordinate frame,, e., is perpendicular to the ocean bottom, pointing from bottom t
surface. The vectors,, ande,, are parallel to the ocean floor, but neither is necessangnted
in the direction of wave propagation. Thus, each drogoeist determine the angle between
ande,, which we denote by,. We assume that each drogue maintains its own prescribet dep
by means of buoyancy control. Drogueenses inter-drogue measurements with/thelosest

drogue neighbors. Then, for each neighbpdrogue: has access to

di; = (dij, djy, d7y) = x5 — %5,

27‘77 1’7]’ Z?]

ZL]’ 1/7-7’

Droguei actually measurefid, ;|| and ||d, ;| and then uses the relative orientation sensing to
decompose the measurements into their components. Forwevgssume the drogues have
continuous access to these quantities. Later in Sectionv¥lelaborate on the fact that a large
enough, finite sampling rate will produce parameter esgmathich are unique and remain close
to the true values.

We make the simplifying assumption that the drogues’ dywcanare Lagrangian, i.e., the
drogue’s velocity is equal to ocean’s velocity at its cutréscation. Thus, without loss of

generality, the dynamics of drogues {1,..., N} in the upper layer is
and can be similarly defined for drogues in the lower layer.

Remark I11.2 (Kinematic versus dynamical modé&lpe Lagrangian dynamics is a simplification

of the second-order dynamical model, see e.g. [23],

mi = —cq |& — uy(t, )| (& — w(t, z)), (2a)
y=0, (2b)
mzZ = —cq |2 —wy(t,x, 2)|(2 —wy(t,z, 2)) + f, (20)

where m denotes the combined drogue mass and inertial added magscf2#& the drag

parameter, andf is the buoyancy control input. Following [4], [12], reasbiea values for
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wave/ocean parameters aig = 10 m, by = 60 m, C' = .17, and"’l;—l"“‘ = .002 and drogue
parameters arer = 1.5kg, andcy = 210':1—32. Figure 2 depicts the position, inter-drogue distance,
and velocity evolution for a pair of drogues initially at t&® m and55 m from the crest of the
internal wave. In these simulations, the spatial wavelemgtabout250 m. In Figure 2(a), one
can see that the Lagrangian model approximates well thendemaler one, with the drogue’s
position error on the order offt m. In Figure 2(b), one can see that since drogues are close
relative to the spatial wavelength, their position erramis @ughly the same, causing the errors
in distance to be of the ordebl m. This comparison provides a good justification for the use o
the simpler Lagrangian model. In Section VI, we revisit tifilee of this approximation when

discussing the sources of errors present in realistic imefgations. °

o
o

S I N
EN = o

Drogue position (m)

N
[}

—— Lagrangian model
- — - 2nd order dynamical modi

Fig. 2.

5
o

1000 2000 3000 4000 5000 6000
Time (s)

(a) Position evolution

o
3

—— Lagrangian model
- - - 2nd order dynamical mod

o
)

5.15

o
i

Inter-drogue distance (m)
o
o
R

0 1000 2000 3000 4000 5000 6000
Time (s)

(b) Inter-drogue distance evolution

Drogue velocity (m/s)

X 10°

-6

" | —— Lagrangian model
- - -2nd order dynamical model

\
0 1000 2000 3000 4000 5000 6000

Time (s)
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The plots show the position, inter-drogue distance, and velocitytewofor the Lagrangian and second-order dynamical

models. The closeness of the two models justifies the use of the simplearigggm model. The wave/ocean parameters are

hy =10 m, by = 60 m, C = .17, and % = .002 (implying a spatial wavelength of aboat0 m) and the drogue

parameters arev = 1.5kg, andcq = 210

C. Problem description

Ns?
o3

A team of N drogues is deployed in the ocean and their motion is govebyean internal

wave. The drogues may control their depth through buoyahapges, and each one can measure

the relative distance and orientation to the clogéstirogues in their own coordinate frame. Our

objective is to design an algorithm that allows the drogwesdllectively determine the physical

parameters’, ")“p—:”', h,, and h; which define the internal wave.
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IV. ANALYSIS OF LAGRANGIAN DRIFTER MOTION DRIVEN BY NONLINEAR INTERNAL WAVE

In this section, we outline a method for the drogues to detegrtihe direction that the internal
wave is propagating and derive equations for the motion ofepttdkeeping drogue under
the influence of a nonlinear internal wave. Both of these akeikgredients for the ensuing

discussion.

A. Determining the wave propagation direction

The first task a drogue must solve is to determine the dinedtiavhich the wave is propagat-
ing. For completeness, we briefly review here the methodepted in our previous work [22]
to enable a drogue € {1,..., N} to determined;, the angle difference between the wave
propagation direction and its own local coordinate system.

For drogues undergoing motion purely caused by an interaakewinter-drogue distances in
their local reference frame can be projected onto the gloifarence framel!; = Q7d; ; via

the transformation matrix)?,

cosf; —sinf; 0
Q7 = |sin6;, cosh;, O
0 0 1

The global coordinate frame is useful because the integtradistance in the, direction is
constant, i.e.df’d = 0. Sinced; is constant, it can be found using the measurements awailabl

d!; = d! sin; + d; cos 0; = 0, and hence

0; = tan™" (—d¥ /d}".).

17]

Once drogues know;, they can project all measurements onto the wave propagdiiection,
where all the dynamics are occurring. Thus, to ease the mtagmn, we employ the simplified

notationd; ; to denoted;; from now on.

B. Analyzing the motion of the Lagrangian drifter

Here, we analyze the dynamics of a depth-maintaining drdigaiemoves under the influence
of an internal wave. We begin by defining the speed ratio

&
B—-CV

D:‘
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which measures the ratio of the maximum water velocity todtierence between the wave
velocity and maximum water velocity. The following resustgribes the drogue’s trajectory in

implicit form.

Lemma V.1 (Implicit expression of the drogue trajectory) LBt€ R, k,w € R.g, andt, €
R>. The solution of

& = Bsech?(k(z — xo) — wt),
starting at timet, can be implicitly described by
D(’can_1 (D tanh(k(z(t) — xo0) — wt)) — tan™! (D tanh(k(x(to) — xo0) — wt0)>)
= —k(x(t) = z(to)), ()
if 0 < kB < w and otherwise by
D(temh_1 (D tanh(k(z(t) — xo) — wt)) — tanh™* (D tanh(k(z(to) — xo) — wt0)>>
= k(z(t) — z(t)). (4)
Proof: Let z = k(x — xo) — wt. In this new coordinate, the dynamics can be expressed as

¢ = kBsech®(z) — w.

/ kB secffm . / o

Dtanh™* (D tanh(z)) — Dtanh™! <D tanh(zo)) + 20 — 2 = w(t — tg).

Integrating both sides,

yields

The second case follows from substituting the definitionr.ofrom there, the first case follows
from the identity thaty/—1 tanh™'(v/—1f(z)) = — tan~'(f(z)). ]
From Section 1lI-A, note that the sign d8 is different for the upper and lower layer, and
the sign that each takes is dependent on the relative ocgantlicknesses. Consequently the
form of the drogue trajectory is dependent on whether thguias in the upper or lower layer

as well as on the sign of, — h;. For the rest of this section, we assume that the drogues are
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in the ocean layer which make$ negative. Similar results hold in the opposite case which we
omit for the sake of clarity.

At most times, the position of the wave relative to the dragiseunknown. However, at times
when inter-drogue distance derivatives momentarily \grosie can gain insight as the following

result shows.

Lemma V.2 (Relative wave position when distance derivative vanishesj#o drogues and

J at initial positionsz;(ty) # z;(to), if x;(to), z;(to) > xo, then there exists timg, > 0 when

di,j(tcr) - O and

k($j (ter) ;xi(tcr) _ XO) = Wt (5)

Proof: The proof follows from noticing that the inter-drogue dista derivative is zero
when the crest of the wave is exactly between the two drogbiese the drogue’s maximum
speed is less than the wave’s constant speed, this can happeost one time. The condition
that x;(to), z;(to) > xo ensures that it has not happened yet, but will. One detesr(@Beby
solving for the arguments that make inter-drogue distamcative equal to zero, excluding the
degenerate case that the drogues are coincident. [ |

Since absolute position information is unavailable, thi#ofang result expands on Lem-

mas IV.1 and V.2 to only use inter-drogue distance infororat

Corollary 1V.3 (Change in inter-drogue distance after wave passes) For anguw#si, j; and
B < 0, the following holds

d; j(00) — dij(te) = —% tanh~' (D tanh(k%)). (6)

Proof: Note that for anyz;(t,) finite, z;(co) is finite, as well. Lettingty = ¢, t = oo In

(4), and applying (5) one gets the following equation forglreq:
_kdz, tcr
Ml ))) — ko) —mfte)). (@)

One can create a similar equation to (7) for drogu&ubtracting the two yields the resulm

D(tanh*1 (= D) —tanh™' (D tanh(

May 13, 2013 DRAFT



12

V. STRATEGIES TO DETERMINE THE WAVENUMBER AND SPEED RATIO

In this section, we introduce two methods to determine thaispwavenumbetr and the

speed ratioD. Both methods rely on the same rationale which we informadigctibe next.

[Informal description of rationale]: Our strategies for teymining the physical param-

eters which define the internal wave are based on first detemgitiie phase of the

wave relative to the drogues at some time. In general, one atatietect the phase:

however, our methods leverage the fact that, when the cresteofvave is exactly

between two drogues, their inter-drogue distance derivab®eomes zero. When this
happens, the drogues can determine the phase. Using thghin®ne can create

equations between inter-drogue measurements and the ptaenod interest. The crux

of the analysis is to ensure that only the true set of parareetelve the constructed
set of equations.

Before introducing the algorithms, we briefly mention an agstion on the drogue locations
that simplifies the presentation. The algorithms are writtg a generic drogue which requires
inter-drogue measurements with respect to other agerdsywarassume that they all are in the
ocean layer where the flow amplitude is negative (which itself depends on the relative layer

thicknesses).

A. Vanishing derivative method

The first method, called th¥ani shi ng Deri vati ve Met hod, requires the capability
for measuring both inter-drogue distance and its derigatit/ is written in terms of drogue
using measured inter-drogue data between itself and neaegghbors with identitieg, j,
and js.

From the Lagrangian drogue model, the dynamics of an imeage distance between drogues

i andj in the wave propagation direction is described by
d; ; = B(sech?(k(z; — x0) — wt) — sech?(k(z; — xo) — wt)).

Note thatB, k, yo, andw are all unknown parameters. However, using Lemma V.2 tdewri

the ratio of two of the above equations farj, and i, js;, specifically at the time. when
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d; j, (t:) = 0, One gets

dim sech®(k(d; ;, — di;l ) — SeChZ(kdi’le)

igs  sech®(k(diz, = %54)) = sech®(k%5)

which becomes a function only of the unknown paraméte¥We now wish to show that only

=0,

the true value of: satisfies this equation. With this in mind, we define the fiorct as

dij, B sech®(K(d; ;, — diéjl ) — sechQ(&di’le)

digs  sech®(K(di — %)) — sech®(R75")
The next result examines the number of rootd.of

(K, dijrs digoy iy dijor digy) =

.8

2 2

Lemma V.1 (Uniqueness of spatial wavenumber) Given noiseless measuts ofd; ;(t..), for
j € {ji, 72,73}, and of d; ;(te;) for j € {j,js}, Wheret,, is the time wheni, j (t,) = 0, if
d; j, (ter) is sufficiently small, thek = & is the only root to(8).

Proof: Note that when; ;, = 0, f reduces to

< s S di;, sech?(k(d;;,)) — 1
f k‘a di, j2 di, 39 d’i, 2 di7 ) =1 k‘, 0, di7 io s di, iay d@ oy di, ) = — J2 )2 .
( J2 J3 J2 ]3) ( J2 J3 J2 ]3) di7j3 SeChQ(K(dZ7]3)) . 1

Showing thatg—z is either strictly positive or strictly negative ensureattbonly £ = k is a root
of (8). Note that

% = tanh(&dmz) SeChz(Kdi,jz) COth<k-di:j3).

csch?(kd; j, ) (d; j, sinh(2kd; j,) — d; j, sinh(2kd; j,)),

is strictly positive ifd; ;, < d; ;, and strictly negative it/; ;, > d; ;,, for all £ > 0. This shows
that K = & is the unique root of (8) whed, ;, (t.,) = 0. By continuity ofg—é, for d, j, (t.:) close
enough ta), the above argument guarantees t%@ts either strictly positive or strictly negative
(depending on the sign af; ;, — d; ;,), which completes the result. [ |
This result ensures that one can fikdby determining the root of (8). Onck has been
determined, we wish leverage it to calculate other parammeRuilding on (6), we defing as

follows,

2@ dz 1 tcr
g(k, D, d; j, (ter), dijy, (00)) = di j, (00) — di 5y (ter) + a tanh™" (D tanh(ﬁ%))- 9

The next result states that given knowledgetpbne can solve foD using the functionz. Its
proof follows from noting thag is increasing ino.
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Lemma V.2 (Uniqueness of speed ratio) Given noiseless measureménts @ j, (t..), and
d; ;, (00), wheret,, is such tha’rd'i,j1 (ter) = 0, thenD = D is the only root to(9).

Algorithm 1 Vani shi ng Derivative Method
1: Sett., such thatd; ;, (t,) =0
2: k uniquely solves (£, d; j, (te), di gy (ter), di gy (ter), digy (ter), digy (tex)) = 0
3: D uniquely solvesg (D, k. d; j, (ter), d; j, (00)) =0

Based on the above discussion, we present formally#me shi ng Deri vative Met hod
as Algorithm 1. The following result, whose proof followfn Lemmas V.1 and V.2, states its

correctness.

Proposition V.3 (Correctness o¥ani shi ng Deri vati ve Met hod) Givend, ;(t.,), for j €
{j1,72,js}, dij, (00), and dm(tcr), for j € {j2,js}, with d, ;, (t.;) sufficiently small andt.,
satisfyingdml(tcr) =0, thenVani shi ng Derivative Mt hod determines: and D.

Note that Steps and4 can be solved using a variety of root-finding methods. Sinardg

are monotonic functions, a gradient descent method, fompile would suffice.

B. Passing wave method

This section defines another method for determining the wasgatial wavenumber and
speed ratio. It requires inter-drogue distance measuresnaard the ability to detect when a
distance derivative is zero, but does not need distanceati®g values, unlike th&ani shi ng
Derivative Method. It is written in terms of drogue using measured inter-drogue data
between itself and drogues and j,.

Equation (9) containg unknowns:k and D. It is unclear how manyk, ) roots there are to
two equations of that form. With this in mind, the next reduinsforms those equations into a

more easily analyzable form.

Lemma V.4 (1-1 correspondence for change of variables) tet andt. . be the times when

dij, (ten) = 0 @and d; j, (ter2) = 0, respectively. Fork € Ry, 0 < D < 1 and measurements
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dijy (tern), di j, (00), d; jy (ter2), di g, (00), the (k, D) pairs which solve

2D tanh™! (D tanh(kW)) 4 k(dij, (00) — dyjy (ters)) = 0, (10a)
2D tanh™! (D tanh(k:W)) + E(di gy (00) — dij, (terz)) = 0. (10b)

have al — 1 correspondence to theX,Y') roots of

X tanh(X) — YR, tanh(Y) = 0, (11a)
X tanh(RyX) — Y Ry tanh(R3Y) = 0, (11b)
where
di jy (ter 1) dijs (ter2)

R, = Ry =

di gy (tern) — dijy (00) dijy(tern)’

The correspondence is defined Ry—= kw andY = 25 (d; ;, (teen) — dijy (00)).

Proof: We begin using trigonometric identities to put (10) into arengalatable form.
Noting that

tanh(A) 4 tanh(B)

tanh(A + B) = 1 + tanh(A) tanh(B)’

(10) is equivalent to
D tanh (km> + tanh (%(dul( —d;j, (tern >
1+ D tanh (k iy (ler1) )tanh o (dy jy (00) — dijy (¢ crl)))

=0,

D tanh (kM) + tanh (%(dzm( - 132 Cr2

|+ Dtanh <k+> tan h(k (dy 1, (00) — ”2(@2))

Since0 < D < 1, the denominators of these equations are strictly pos#ive hence its roots

=0.

are the same as those of

d; j, (ter k

D tanh (k%) — tanh (55 (dij, (fer1) = digy (o)) ) =0, (13a)
d; jy (ter k

D tanh (k%) — tanh (E<di’j2 (tcr,Z) — di,j2<oo))) =0. (13b)

The result follows by substituting fok andY" and noting that th€k, D) to (X,Y") transfor-
mation is1 — 1 for k&, D > 0. [ |

The next result identifies conditions for when there existe anique solution to (11).
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Lemma V.5 (Uniqueness for smalt’) For fixed R, > 1, RS > R, > Rz > 1 and for a small

enough interval inY’, there exists at most one paiX,Y’) which solveq11).

Proof: For each equation of (11), there exists a positive impligitction for X as a function
of Y, which we termX; and X,. SinceX; and X, are only implicitly defined, we determine
a Taylor series expansion aroulid= 0. Given thatX; corresponds tX, with Ry, = R3 =1,

we consider the Taylor series approximationXof,

XQ(Y) = (IIY + CL2Y2 + CL3Y3 + (I5Y5 + O(Y7), (14)
where

RiR R; |R\R

ap = ;{237 az =0, az = Fg ]1%23(1%132—33)-

A sufficient condition to guarantee the existence of at mog vnique solution paifX,Y’) is
that £ X2 X1 > . Looking at the third order expansion &, — Xj,

RiR RiR 1
Xo(Y) - X, (V) = ( LS R)Y ( (R = Ry) = v/ Ri(R - )y,

2

one can se&X, — X, is convex for smallY’, given the assumptions of;, R, and i3, which

completes the result. [ |

Algorithm 2 Passi ng Wave Met hod
1. Let t; such thatd, , (te1) = 0
2: Let te5 such thatd; ;, (teo) = 0
3 Sethy = g, Ry = A, and Ry = Gt
4: Solve for the uniqué X, Y") that satisfies
X tanh(X) + Y Ry tanh(Y') = 0,

X tanh(ReX) + Y Ry tanh(R3Y") = 0.

. _ 2X
5. Setk = (o)

6. SetD = %(di,jl (tcr,l) - di,jl (OO>>

Based on the above discussion, we present formallyPtssi ng Wave Met hod as Algo-

rithm 2. The following remark provides a justification fos itlesign rationale.
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Remark V.6 (Justification forPassi ng Wave Met hod) From Lemma V.4, given knowl-

edge ofd; ;, (te1) — d; j,(00), one must only search for roots to (11) in the interval of

0, ’[“)Tnai: d; j, (ter1)—d; 4, (00)]. By controlling where the drogues are deployed, one has ajpppate
control overd, ;, (t..1), and thereforel, j, (t..1) — d; j,(c0). By Lemma V.5, for small enough
Y and fixed coefficients?;, R,, and R3 there exists a uniquéX,Y’). Thus a reasonable to
strategy is to choosé€, j, (t..;) small so that the tru¢.X,Y") root is within the range where
there is at most one root. However, the coefficieRts Ry, and Rs; are themselves functions of
d; ;, (ter,1), and so one cannot easily guarantee that the true root isimatige of at most one

root. Nevertheless, simulations appear to show that tlseadwiays one unique root. °

VI. PARAMETER DETERMI NATI ON STRATEGY

This section introduces thear anet er Det ermi nati on Str at egy to allow the drogues
to find all the physical parameters of the internal wave. Qgor&éhm design builds on the
strategies presented in Section V to determine the waveeuarid the speed ratio. The strategy
is formally presented in Algorithm 3. We recall the assuimptihat drogues, j;, j», andjs are
in the ocean layer that makes the flow amplitUglenegative as well as introduce an additional
one that at least one drogue is in the lower layer and one itsemupper layer. For concreteness
we label these drogues asand js, respectively. These assumptions help make the presantati
of the algorithm concrete.

The following result establishes the correctness of therdtlyn. Its proof follows from the
discussion in Section V, as well as the form of the inter-deoglistance derivative equation,

and algebraic relations between parameters in the nonls@#on model in Section IlI-A.

Proposition VI.1 (Correctness oPar anet er Determ nati on Strategy) Given noise-
less knowledge ot and D from eitherVani shing Derivative Method or Passi ng
Wave Met hod, d; (te) for j € {ji,j2, 7, s}, dij(te) fOr j € {42,753}, the Par anmet er

Det erm nati on Strategy determines all the internal wave physical parameters.

Having established the correctness of the algorithm unddegt measurements, let us briefly
comment on its performance when errors are present. Theéhaicall the functions that appear
in the equations employed in Algorithms 1-3 have a contiisudapendence on the variables

makes thePar amet er Det erm nati on Strat egy naturally robust against errors, in the
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Algorithm 3 Paraneter Determ nati on Strategy

1

2:

3:

10:

11:

Setd; = tan™! (—d, /d7,)

Z?jl
Use either Algorithm 1 or 2 to determirieand D
Let .. such thatd; ;, (to) = 0

dijy (ter)
SetB = — )
sech? (k(d; j, (ter) ——25—))—sech?(k

. d; . (ter)
di7j5 (tcr)-‘rBl SeChQ(kmlf)

di,jl (ter) )
2

SetBu — a; - (ter)
scchz(lc(di,j5 (tcr)—l’hf))
Setw = kBi(1 — 25)
SetC' = 7
Seth, = e
By
Set hl = hocean_ hu
_ 3C

Setc = ST

‘Pl*Pu‘ _ C2hocean
Set o ghuly

sense that the estimated parameters are still unique aralrreose to the true parameters for

small enough errors. For completeness, we discuss theesoofcerror that arise in practical

implementations of the algorithm.

Noise in measurements. In practice one can expect noise in the measurements @uldéam

sensors. We assume that this noise is unbiased, additideGGanssian with variance pro-

portional to the measured quantities, and that the noiséffateht time instances and for

different measurements are uncorrelated.

Measurements at ¢t = oo: The proposed algorithm requires knowledge of inter-dragjag@nces

after the wave has completely passed by, i.e., nominalty=ato. However, in practice one

only needs to wait until the wave is sufficiently far away. fuwstance, when the distance

between the drogue and the crest of the wavespatial wavelengths apart, the effect of the

wave is reduced to .02% of its maximum. Not waiting umt# oo induces a non-random

error in the measurements.

Finite ssmpling: The algorithm assumes measurements at the exact time wkewabe is

situated exactly between two drogues. However, with fingen@ling, the measurements

will never be taken at the correct moment, which can be vieag@& nonrandom error in
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them. A large enough but finite sampling rate would still @llthe algorithm to compute
parameter estimates.

Model uncertainty: The problem setup described in Section IlI-B assumes thagudis are
Lagrangian. In practice, drogues have a finite mass and dreffictent making them not
perfectly Lagrangian, leading to a difference between ttitaad drogue’s velocity and the
ocean velocity. One can treat this mismatch as an unknowmdatandom error in the
measurements of inter-drogue distances and distanceatiess.

Drogues not maintaining depth: We assume that the drogues have a controller that uses feed-
back on depth measurements to maintain a desired depth.oDhesy depth measurements
and a desire to minimize actuation cost, instead we assuateéhé drogues will be within
an interval around the desired depth. Although depth is retcty used by the proposed
algorithm, this inaccuracy affects inter-drogue distantwasurements. As above, one can
treat this as an unknown but nonrandom error in the integuleadistance measurements.

As noted above, théar anet er Determ nation Strategy is robust against these

sources of error independently of their random or detestimnature. Figure 3 illustrates in sim-
ulation this robustness. Figure 3(a) compares the relatia in estimates of the wavenumber
as a function of the relative errors in the inter-drogueattise and its derivative measurements for
theVani shing Derivative Method and thePassi ng Wave Met hod. Note that both
methods have a polynomial relationship between relativergnn measurements and relative
errors in the wavenumber. However, tiani shi ng Deri vati ve Met hod is significantly
more robust. Figure 3(b) investigates the effect that thgekt inter-drogue distance has in the
execution of thevani shi ng Deri vative Mt hod. Three drogues are located(atl, and
2 meters and the fourth drogue’s position varies; in thresddrit is located at0, 100, and200
meters. One can see that as the largest inter-drogue distapws, the algorithm robustness
improves. It is also worth noticing that these plots are #sits of a single drogue’s estimation
of the wavenumber from one set of measurements. Drogued amtead aggregate individual
estimates, as well as use multiple sets of data from mangrdiit waves, to improve estimates
of the parameters.

Figure 4 depicts an actual Lagrangian drogue trajectomycaluith trajectories generated from
the parameters estimated from tWani shi ng Deri vative Method with measurement

error of 1% and.1%. As the error in measurements decreases, the algorithmates the wave
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(a) Comparison of methods for determining wavenumber (b) Effect of inter-drogue spacings on relative error

Fig. 3. (&) plots the relative error in estimates of the spatial wavenunser fanction of the relative errors in the inter-
drogue distance and its derivative measurements for the folVé#me shi ng Derivative Method and thePassi ng
Wave Met hod. The true value of the wavenumberkis= .0178 = and the four drogues were locateddatl, 2, and10 meters
from the origin. Each point plotted is the average560 runs. Both methods have a polynomial relationship between relative
errors in measurements and relative errors in the spatial wavenuhdeever, theVani shi ng Deri vative Method is
significantly more robust. (b) shows the effect of changing the laigéstdrogue distance on the performancé/ahi shi ng
Derivative Method. The true value of the wavenumberis= .0178% and the first three drogues were always located at
0, 1, 2 meters. The fourth drogue was ®t25, and 150 meters. Here, each point is the average@j0 runs. One can see that

as the largest inter-drogue distance grows, the robustness improves.

parameters more accurately, which produces trajectolisgrcto the true trajectory. The spatial
Wavelength%r in this case is abou290 m, and therefore, the trajectory errors relative to the

wave’s scale is really small.

VIl. CONCLUSIONS

We have considered the problem of estimating the physicelnpaters of a horizontally-
propagating nonlinear internal wave. Because of the lackbsblate position information, a
group of underwater drogues subject to the flow induced byriteznal wave only have access
to relative measurements (inter-drogue distances andndistderivatives) with respect to each
other to achieve their task. We began by establishing any@maixpression for the dynamic
evolution of the drogues and their inter-drogue distandéss analysis set the basis for the

design of two strategies, term&@ni shi ng Deri vative Method andPassi ng Wave
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Drogue trajectories occuring from estimated wave parameters
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Fig. 4. True Lagrangian drogue trajectory and two trajectories genkfrai® using the parameters estimated byaai shi ng
Derivative Method with 1% and.1% measurement error. As the measurement error decreases jelotias more closely

match the true one. The wave/ocean parameters used,are10 m, oy = 60 m, C' = .05%, and% =.002.

Met hod, which determine the wavenumber and speed ratio of the viatreer of these methods
can be used by th@ar aneter Determi nation Strategy to determine all the wave
parameters. We analyzed the correctness of these stategiadiscussed their robustness against
several sources of error arising in realistic implemeaotsi Finally, several simulations have
illustrated the algorithmic performance of the two methadsler noisy measurements, as well
as investigated the effect of initial drogue locations. Vdeehseveral ideas for future work. The
first is to include analytic results regarding the robusinefsthe algorithm. For instance, it is
conceivable that a scheme for aggregating many noisy paeamstimates could be designed to
reduce the effect of noise and produce better results. Andihe of work is the extension to
scenarios involving multiple nonlinear waves whose patamseare unknown. More generally,
we plan to explore the design of distributed coordinatiagoethms run on sensing Lagrangian

drifters to study ocean phenomena.
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