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Collective estimation of ocean nonlinear

internal waves using robotic underwater drifters

Michael Ouimet Jorge Cortés

Abstract

This paper considers a group of drogues whose objective is toestimate the physical parameters that

determine the dynamics of ocean nonlinear internal waves. Internal waves are important in oceanography

because, as they travel, they are capable of displacing small animals, such as plankton, larvae, and

fish. These waves are described by models that employ trigonometric functions parameterized by a

set of constants such as amplitude, wavenumber, and temporal frequency. While underwater, individual

drogues do not have access to absolute position informationand only rely on inter-drogue measurements.

Building on this data and the study of the drogue dynamics under the flow induced by the internal wave,

we design two strategies, termed theVanishing Derivative Method and thePassing Wave

Method, that are able to determine the wavenumber and the speed ratio. Either of these strategies can

be employed in theParameter Determination Strategy to determine all remaining wave

parameters. We analyze the correctness of the proposed strategies and discuss their robustness against

different sources of error. Simulations illustrate the algorithm performance under noisy measurements

as well as the effect of different initial drogue configurations.

I. I NTRODUCTION

Internal waves are waves that propagate within a fluid, rather than on its surface. The type

that we consider here corresponds to a moving oscillation inthe boundary surface between two

layers of a stratified fluid. In the ocean, these two layer fluids can occur at the mouth of large

rivers where brackish (low salinity) water sits above sea water, for instance. Also, a continuously

stratified fluid can be modeled as a two-layer fluid, where the interface, called pycnocline, is
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the surface of constant density where the vertical rate of change in density is largest. This

class of internal waves can be broadly categorized into linear and nonlinear. Linear waves have

amplitudes small relative to the depth of the water column. They are capable of moving around

plankton, animal larvae, and other organisms, as well as creating mixing between the upper and

lower layers. In contrast, nonlinear waves have larger amplitudes, allowing them to be an agent

of transport of small oceanic life. Here, we consider nonlinear waves modeled as solitons, which

are stable, solitary peaks (or troughs) which propagate along the pycnocline.

Traditional methods for studying internal waves have been satellite observations, acoustic

tomography, conductance-temperature-depth (CTD) casts, and current meters on moorings. How-

ever, these methods lack the capability of real-time adaptability. Here, we tackle this problem

using a group of drogues capable of drifting underwater nearthe internal wave’s interface to

determine the physical parameters that define its motion. A drogue is a robotic Lagrangian drifter

able to actuate its depth by changing its buoyancy. While underwater, drogues are subject to

the flow induced by the motion of the internal wave and do not have access to exact location

information. Figure 1 presents a pictorial illustration ofthe problem setup. The basic premise of

the paper is that the evolution of the inter-drogue distanceand distance derivative measurements

contains enough information for the drogues to be able to fully characterize the internal wave.

Literature review: Internal waves are associated with high concentrations of various types of

planktonic organisms and small fishes [2], [3], as well as an agent of larval transport [1]. This

makes their study important to oceanographers, see e.g. [4], [5], [6], [7]. In particular, striping

of low/high densities in plankton can be well explained by small amplitude, linear internal

waves [4]. However, nonlinear waves are needed to account for the advection required for larval

transport [1]. Many models exist for nonlinear waves [8], [9] to account for the wide variety of

conditions and bathymetries found in the ocean. Scientistswidely use drogues drifting passively

as monitoring platforms to gather relevant ocean data [10],[11], [12]. The use of autonomous

underwater vehicles to detect and characterize internal waves is a relatively new approach.

Whereas previous works use ocean measurements such as conductivity, temperature, pressure

data [13], [14] or vertical flow velocity [15] to detect and analyze internal waves, our approach

is unique in using inter-vehicles measurements. Recent work[16] explores the possibility of

actively selecting tidal currents so that drogues can autonomously reach a desired destination.

An increasing body of work in the systems and control literature deals with cooperative networks
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(a) Schematic of drogues and internal wave (b) Thermal fluctuations induced by an internal wave

Fig. 1. For an ocean nonlinear internal wave, (a) shows its spatial structure at a fixed instant of time whereas (b) shows its

temporal structure at a fixed horizontal location. In (a), one can see avertical cross-section of the ocean perpendicular to the

wave propagation direction. A group of drogues float at constant depths (but not necessarily along a straight line) and do not

have access to exact location information. Our objective is to provide drogues with mechanisms that rely only on the relative

distances between them to determine the parameters that uniquely define theinternal wave. In (b), one can see temperature

and vertical/onshore-offshore current vectors data taken from a train of nonlinear soliton internal waves about one kilometer off

the coast of La Jolla, CA on July 3, 1996. The bottom figure is a zoom-in ofthe top figure. Figure (b) isc© (1999) by the

Association for the Sciences of Limnology and Oceanography, Inc., see [1] for additional information.

of agents estimating spatial natural phenomena, includingocean [17], [18], [19], river [20], and

hurricane sampling [21]. This work builds off our previous work [22], which considers a similar

estimation problem for linear internal waves. The nonlinear wave case considered here presents

novel challenges of its own given the complexity and different nature of the induced drogue

dynamics.

Statement of contributions:We consider the problem of estimating the physical parameters

of a nonlinear internal wave that is propagating horizontally. A group of underwater Lagrangian

drifters are subjected to the flow induced by the internal wave and can only measure inter-

drogue distances and distance derivatives. Because the drogues only have access to these relative

measurements, they must rely on the presence of other drogues to achieve their task. The

benefit obtained here by ‘the power of many’ in the estimationof the ocean flow field is a

key feature of our paper. Our first contribution is the establishment of an analytic expression for

the dynamic evolution of the drogues. We analyze the asymptotic behavior of the solutions, which
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corresponds to the drogue’s displacement after the wave haspassed. Building on this analysis, and

specifically on the observation that when the crest of the wave is exactly at the midpoint between

two drogues, their inter-drogue distance derivative becomes zero, we design two strategies for

determining the spatial frequency and speed ratio of the wave, which we call theVanishing

Derivative Method and thePassing Wave Method. Either of these methods are used

as a component of theParameter Determination Strategy, an algorithm run on

the drogues using only relative measurements which is capable of determining all the wave

parameters. We analyze the correctness of these algorithmsfor the case of noiseless inter-drogue

measurements. We discuss the robustness properties of theParameter Determination

Strategy to different sources of error such as noise in measurements,finite sampling rate,

and model uncertainty, which arise in realistic implementations. Finally, several simulations

compare the robustness performance to measurement noise oftheVanishing Derivative

Method and thePassing Wave Method, as well as illustrate the effect of initial drogue

locations on the algorithm performance.

Organization: Section II introduces some basic notation used throughout the paper. Sec-

tion III introduces the internal wave and drogue models, as well as describes the problem

statement. Section IV analyzes the dynamics of drifting drogues under the nonlinear internal

wave. Section V proposes and analyzes two strategies for determining the wavenumber and

speed ratio parameters. Section VI presents theParameter Determination Strategy,

analyzes its correctness under noiseless measurements, and discusses its inherent robustness

to various sources of errors present in practical implementations. Several simulations illustrate

the performance of the algorithm under measurement noise. Finally, Section VII gathers our

conclusions and ideas for future work.

II. N OTATIONAL CONVENTIONS

Here we present some notational conventions used in the paper. Let R, R>0, andR≥0 denote

the set of all, positive, and non-negative real numbers, respectively. A reference frameΣg in

R
3 is composed of an originpg ∈ R

3 and a set of orthonormal vectors{exg
, eyg , ezg} ⊂ R

3. A

point q and a vectorv can be uniquely expressed with respect to the frameΣg and are denoted

by qg andvg, respectively. Next, letΣb = (pb, {exb
, eyb , ezb}) be a reference frame fixed to a

moving body. The origin ofΣb is a pointpb, denoted aspg
b when expressed with respect toΣg.
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The orientation ofΣb is characterized by the rotation matrixQg
b whose columns are the vectors

{exb
, eyb , ezb} expressed with respect toΣg. With this notation, a change of reference frame is

given by

qg = Qg
bq

b + p
g
b , vg = Qg

bv
b.

Finally, the Euclidean norm of vectorv is ‖v‖.

III. PROBLEM STATEMENT

This section contains the nonlinear internal wave model used, the model for the drogue drifters

and their interaction with the internal wave, and a formalized problem statement.

A. Nonlinear internal wave model

Let Σg = (pg, {exg
, eyg , ezg}) be a global reference frame defined as follows: the originpg

corresponds to an arbitrary point at the ocean surface; the vectorexg
corresponds to the direction

of wave propagation, which is parallel to the ocean bottom, and ezg is perpendicular to the ocean

bottom, pointing from bottom to surface. For convenience, the coordinates induced byΣg are

denoted by{x, y, z}.

As shown in Figure 1, an internal wave is a wave with travels beneath the surface of the

ocean, along a surface of constant water density called a pycnocline. When the amplitude of

the wave becomes a large enough fraction of the water column,the wave begins to ‘feel’ the

surface and bottom of the ocean and nonlinear terms of the governing PDE must be included.

One classical equation used to model weakly nonlinear long internal waves is the Korteweg-de

Vries (KdV) equation, see e.g., [9]:

∂η

∂t
− 3

2
c
hl − hu

huhl

η
∂η

∂x
+

1

6
chuhl

∂3η

∂x3
= 0, (1)

whereη is the distance that the internal wave is displacing the pycnocline,c =
√

g |ρl−Sρu|
ρl

huhl

hu+hl
,

ρu, hu andρl, hl are the density and depth of the upper and lower layers, respectively, andg is

the acceleration due to gravity. In the absence of an internal wave, the pycnocline is at depthhu.

The stable soliton solution to (1) is, cf. [8],

η(x, t) = −2Chuhl

hl − hu

sech2
(1

2

√

6C

chuhl

(x− Ct− χ0)
)

= A sech2
(

k(x− χ0)− ωt
)

,

May 13, 2013 DRAFT



6

where

A = −2Chuhl

hl − hu

k =
1

2

√

6C

chuhl

, ω =
1

2

√

6C

chuhl

C,

are wavenumber and temporal frequency, respectively,C = ω
k

is the celerity (speed) of the wave,

andχ0 is the initial location of the center of the wave. As the wave propagates, it induces motion

in the nearby water. The standard model assumes that the vertical velocity varies linearly with

depth. Coupled with the conservation of mass law for an incompressible fluid, one can derive

the following expressions for the horizontaluu and verticalvu velocities of the upper layer

uu(x, t) = −2CA

hu

sech2(k(x− χ0)− ωt),

vu(x, z, t) =
2ωAz

hu

sech2(k(x− χ0)− ωt) tanh(k(x− χ0)− ωt).

Likewise, the horizontalul and verticalvl velocities of the lower layer are

ul(x, t) =
2CA

hl

sech2(k(x− χ0)− ωt),

vl(x, z, t) = 2ωA
hu + hl − z

hl

sech2(k(x− χ0)− ωt) tanh(k(x− χ0)− ωt).

For convenience, we define the upper and lower velocity amplitudes asBu = −2CA
hu

andBl =

2CA
hl

.

Remark III.1 (Bounds on wave parameters)We assume that, for each wave parameter, there

exists a closed and bounded interval inR>0 that the parameter is guaranteed to fall within. This

is reasonable because natural parameters, such as an object’s size or speed, cannot be arbitrarily

small or large. We refer to a parameter’s bounds with subscripts min and max. •

B. Drogue model

A drogue is a submersible buoy which can drift in the ocean, unattached to the ocean floor or a

boat, and is able to change its depth in the water by controlling its buoyancy. While underwater,

a drogue can measure the relative distance, distance derivative, and orientation in space to other

drogues through sensing (e.g., via acoustic or optical sensors and an onboard compass). A drogue

can also measure its depth. However, it does not have access to absolute position because GPS

is unavailable underwater.
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Consider a group ofN drogues, each with a reference frameΣi = (pi, {exi
, eyi , ezi}), i ∈

{1, . . . , N}, attached to it. The originpi corresponds to the location of the drogue. As in the

global coordinate frameΣg, ezi is perpendicular to the ocean bottom, pointing from bottom to

surface. The vectorsexi
andeyi are parallel to the ocean floor, but neither is necessarily oriented

in the direction of wave propagation. Thus, each droguei must determine the angle betweenexi

andex, which we denote byθi. We assume that each drogue maintains its own prescribed depth

by means of buoyancy control. Droguei senses inter-drogue measurements with theM closest

drogue neighbors. Then, for each neighborj, droguei has access to

di,j = (dxi

i,j, d
yi
i,j , d

zi
i,j) = xj − xj,

ḋi,j = (ḋxi

i,j, ḋ
yi
i,j , 0) = ẋj − ẋj.

Drogue i actually measures‖di,j‖ and ‖ḋi,j‖ and then uses the relative orientation sensing to

decompose the measurements into their components. For now,we assume the drogues have

continuous access to these quantities. Later in Section VI,we elaborate on the fact that a large

enough, finite sampling rate will produce parameter estimates which are unique and remain close

to the true values.

We make the simplifying assumption that the drogues’ dynamics are Lagrangian, i.e., the

drogue’s velocity is equal to ocean’s velocity at its current location. Thus, without loss of

generality, the dynamics of droguei ∈ {1, . . . , N} in the upper layer is

ṗi = (ẋi, ẏi, żi) = (uu(x, t), 0, 0)

and can be similarly defined for drogues in the lower layer.

Remark III.2 (Kinematic versus dynamical model)The Lagrangian dynamics is a simplification

of the second-order dynamical model, see e.g. [23],

mẍ = −cd |ẋ− uu(t, x)|(ẋ− uu(t, x)), (2a)

ẏ = 0, (2b)

mz̈ = −cd |ż − wu(t, x, z)|(ż − wu(t, x, z)) + f, (2c)

where m denotes the combined drogue mass and inertial added mass [24], cd is the drag

parameter, andf is the buoyancy control input. Following [4], [12], reasonable values for
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wave/ocean parameters arehu = 10 m, hl = 60 m, C = .1m
s , and |ρl−ρu|

ρl
= .002 and drogue

parameters arem = 1.5kg, andcd = 210Ns2

m2 . Figure 2 depicts the position, inter-drogue distance,

and velocity evolution for a pair of drogues initially at rest 50 m and55 m from the crest of the

internal wave. In these simulations, the spatial wavelength is about250 m. In Figure 2(a), one

can see that the Lagrangian model approximates well the second-order one, with the drogue’s

position error on the order of.1 m. In Figure 2(b), one can see that since drogues are close

relative to the spatial wavelength, their position errors are roughly the same, causing the errors

in distance to be of the order.01 m. This comparison provides a good justification for the use of

the simpler Lagrangian model. In Section VI, we revisit the effect of this approximation when

discussing the sources of errors present in realistic implementations. •
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(b) Inter-drogue distance evolution
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(c) Velocity evolution

Fig. 2. The plots show the position, inter-drogue distance, and velocity evolution for the Lagrangian and second-order dynamical

models. The closeness of the two models justifies the use of the simpler Lagrangian model. The wave/ocean parameters are

hu = 10 m, hl = 60 m, C = .1
m
s , and |ρl−ρu|

ρl
= .002 (implying a spatial wavelength of about250 m) and the drogue

parameters arem = 1.5kg, andcd = 210
Ns2

m2

C. Problem description

A team ofN drogues is deployed in the ocean and their motion is governedby an internal

wave. The drogues may control their depth through buoyancy changes, and each one can measure

the relative distance and orientation to the closestM drogues in their own coordinate frame. Our

objective is to design an algorithm that allows the drogues to collectively determine the physical

parametersC, |ρu−ρl|
ρl

, hu, andhl which define the internal wave.
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IV. A NALYSIS OF LAGRANGIAN DRIFTER MOTION DRIVEN BY NONLINEAR INTERNAL WAVE

In this section, we outline a method for the drogues to determine the direction that the internal

wave is propagating and derive equations for the motion of a depth-keeping drogue under

the influence of a nonlinear internal wave. Both of these are key ingredients for the ensuing

discussion.

A. Determining the wave propagation direction

The first task a drogue must solve is to determine the direction in which the wave is propagat-

ing. For completeness, we briefly review here the method presented in our previous work [22]

to enable a droguei ∈ {1, . . . , N} to determineθi, the angle difference between the wave

propagation direction and its own local coordinate system.

For drogues undergoing motion purely caused by an internal wave, inter-drogue distances in

their local reference frame can be projected onto the globalreference framedg
i,j = Qg

idi,j via

the transformation matrixQg
i ,

Qg
i =











cos θi − sin θi 0

sin θi cos θi 0

0 0 1











.

The global coordinate frame is useful because the inter-drogue distance in theey direction is

constant, i.e.,ḋyi,j = 0. Sinceθi is constant, it can be found using the measurements available,

ḋyi,j = ḋxi

i,j sin θi + ḋyii,j cos θi = 0, and hence

θi = tan−1 (−ḋyii,j/ḋ
xi

i,j).

Once drogues knowθi, they can project all measurements onto the wave propagation direction,

where all the dynamics are occurring. Thus, to ease the presentation, we employ the simplified

notationdi,j to denotedxi,j from now on.

B. Analyzing the motion of the Lagrangian drifter

Here, we analyze the dynamics of a depth-maintaining droguethat moves under the influence

of an internal wave. We begin by defining the speed ratio

D =

√

∣

∣

∣

B

B − C

∣

∣

∣
,
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which measures the ratio of the maximum water velocity to thedifference between the wave

velocity and maximum water velocity. The following result describes the drogue’s trajectory in

implicit form.

Lemma IV.1 (Implicit expression of the drogue trajectory) LetB ∈ R, k, ω ∈ R>0, and t0 ∈
R≥0. The solution of

ẋ = B sech2(k(x− χ0)− ωt),

starting at timet0 can be implicitly described by

D
(

tan−1
(

D tanh(k(x(t)− χ0)− ωt)
)

− tan−1
(

D tanh(k(x(t0)− χ0)− ωt0)
))

= −k(x(t)− x(t0)), (3)

if 0 < kB < ω and otherwise by

D
(

tanh−1
(

D tanh(k(x(t)− χ0)− ωt)
)

− tanh−1
(

D tanh(k(x(t0)− χ0)− ωt0)
))

= k(x(t)− x(t0)). (4)

Proof: Let z = k(x− χ0)− ωt. In this new coordinate, the dynamics can be expressed as

ż = kB sech2(z)− ω.

Integrating both sides,
∫ z

z0

dβ

kB sech2(β)− ω
=

∫ t

t0

dτ.

yields

D tanh−1
(

D tanh(z)
)

−D tanh−1
(

D tanh(z0)
)

+ z0 − z = ω(t− t0).

The second case follows from substituting the definition ofz. From there, the first case follows

from the identity that
√
−1 tanh−1(

√
−1f(x)) = − tan−1(f(x)).

From Section III-A, note that the sign ofB is different for the upper and lower layer, and

the sign that each takes is dependent on the relative ocean layer thicknesses. Consequently the

form of the drogue trajectory is dependent on whether the drogue is in the upper or lower layer

as well as on the sign ofhu − hl. For the rest of this section, we assume that the drogues are
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in the ocean layer which makesB negative. Similar results hold in the opposite case which we

omit for the sake of clarity.

At most times, the position of the wave relative to the drogues is unknown. However, at times

when inter-drogue distance derivatives momentarily vanish, one can gain insight as the following

result shows.

Lemma IV.2 (Relative wave position when distance derivative vanishes) For two droguesi and

j at initial positionsxi(t0) 6= xj(t0), if xi(t0), xj(t0) > χ0, then there exists timetcr > 0 when

ḋi,j(tcr) = 0 and

k
(xj(tcr) + xi(tcr)

2
− χ0

)

= ωtcr. (5)

Proof: The proof follows from noticing that the inter-drogue distance derivative is zero

when the crest of the wave is exactly between the two drogues.Since the drogue’s maximum

speed is less than the wave’s constant speed, this can happenat most one time. The condition

that xi(t0), xj(t0) > χ0 ensures that it has not happened yet, but will. One determines (5) by

solving for the arguments that make inter-drogue distance derivative equal to zero, excluding the

degenerate case that the drogues are coincident.

Since absolute position information is unavailable, the following result expands on Lem-

mas IV.1 and IV.2 to only use inter-drogue distance information.

Corollary IV.3 (Change in inter-drogue distance after wave passes) For any droguesi, j and

B < 0, the following holds

di,j(∞)− di,j(tcr) = −2D

k
tanh−1

(

D tanh(k
di,j(tcr)

2
)
)

. (6)

Proof: Note that for anyxi(t0) finite, xi(∞) is finite, as well. Lettingt0 = tcr, t = ∞ in

(4), and applying (5) one gets the following equation for drogue i:

D
(

tanh−1
(

−D
)

− tanh−1
(

D tanh(
−kdi,j(tcr)

2
)
)

)

= k(xi(∞)− xi(tcr)). (7)

One can create a similar equation to (7) for droguej. Subtracting the two yields the result.
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V. STRATEGIES TO DETERMINE THE WAVENUMBER AND SPEED RATIO

In this section, we introduce two methods to determine the spatial wavenumberk and the

speed ratioD. Both methods rely on the same rationale which we informally describe next.

[Informal description of rationale]: Our strategies for determining the physical param-

eters which define the internal wave are based on first determining the phase of the

wave relative to the drogues at some time. In general, one cannot detect the phase:

however, our methods leverage the fact that, when the crest of the wave is exactly

between two drogues, their inter-drogue distance derivativebecomes zero. When this

happens, the drogues can determine the phase. Using this insight, one can create

equations between inter-drogue measurements and the parameters of interest. The crux

of the analysis is to ensure that only the true set of parameters solve the constructed

set of equations.

Before introducing the algorithms, we briefly mention an assumption on the drogue locations

that simplifies the presentation. The algorithms are written for a generic drogue which requires

inter-drogue measurements with respect to other agents, and we assume that they all are in the

ocean layer where the flow amplitudeB is negative (which itself depends on the relative layer

thicknesses).

A. Vanishing derivative method

The first method, called theVanishing Derivative Method, requires the capability

for measuring both inter-drogue distance and its derivative. It is written in terms of droguei

using measured inter-drogue data between itself and nearest neighbors with identitiesj1, j2,

and j3.

From the Lagrangian drogue model, the dynamics of an inter-drogue distance between drogues

i and j in the wave propagation direction is described by

ḋi,j = B(sech2(k(xj − χ0)− ωt)− sech2(k(xi − χ0)− ωt)).

Note thatB, k, χ0, andω are all unknown parameters. However, using Lemma IV.2 to write

the ratio of two of the above equations fori, j2 and i, j3, specifically at the timetcr when
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ḋi,j1(tcr) = 0, one gets

ḋi,j2

ḋi,j3
− sech2(k(di,j2 −

di,j1
2
))− sech2(k

di,j1
2
)

sech2(k(di,j3 −
di,j1
2
))− sech2(k

di,j1
2
)
= 0,

which becomes a function only of the unknown parameterk. We now wish to show that only

the true value ofk satisfies this equation. With this in mind, we define the function f as

f(k , di,j1 , di,j2 , di,j3 , ḋi,j2 , ḋi,j3) =
ḋi,j2

ḋi,j3
− sech2(k (di,j2 −

di,j1
2
))− sech2(k

di,j1
2
)

sech2(k (di,j3 −
di,j1
2
))− sech2(k

di,j1
2
)
. (8)

The next result examines the number of roots off.

Lemma V.1 (Uniqueness of spatial wavenumber) Given noiseless measurements ofdi,j(tcr), for

j ∈ {j1, j2, j3}, and of ḋi,j(tcr) for j ∈ {j2, j3}, where tcr is the time whenḋi,j1(tcr) = 0, if

di,j1(tcr) is sufficiently small, thenk = k is the only root to(8).

Proof: Note that whendi,j1 = 0, f reduces to

f̃(k , di,j2 , di,j3 , ḋi,j2 , ḋi,j3) = f(k , 0, di,j2 , di,j3 , ḋi,j2 , ḋi,j3) =
ḋi,j2

ḋi,j3
− sech2(k (di,j2))− 1

sech2(k (di,j3))− 1
.

Showing that∂ f̃
∂k

is either strictly positive or strictly negative ensures that only k = k is a root

of (8). Note that

∂ f̃

∂k
= tanh(k di,j2) sech

2(k di,j2) coth(k di,j3)·

csch2(k di,j3)(di,j2 sinh(2k di,j3)− di,j3 sinh(2k di,j2)),

is strictly positive ifdi,j2 < di,j3 and strictly negative ifdi,j2 > di,j3, for all k > 0. This shows

that k = k is the unique root of (8) whendi,j1(tcr) = 0. By continuity of ∂ f
∂k

, for di,j1(tcr) close

enough to0, the above argument guarantees that∂ f
∂k

is either strictly positive or strictly negative

(depending on the sign ofdi,j2 − di,j3), which completes the result.

This result ensures that one can findk by determining the root of (8). Oncek has been

determined, we wish leverage it to calculate other parameters. Building on (6), we defineg as

follows,

g(k ,D, di,j1(tcr), di,j1(∞)) = di,j1(∞)− di,j1(tcr) +
2D

k
tanh−1

(

D tanh(k
di,j1(tcr)

2
)
)

. (9)

The next result states that given knowledge ofk, one can solve forD using the functiong. Its

proof follows from noting thatg is increasing inD.
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Lemma V.2 (Uniqueness of speed ratio) Given noiseless measurements of k, di,j1(tcr), and

di,j1(∞), wheretcr is such thatḋi,j1(tcr) = 0, thenD = D is the only root to(9).

Algorithm 1 Vanishing Derivative Method

1: Set tcr such thatḋi,j1(tcr) = 0

2: k uniquely solvesf(k , di,j1(tcr), di,j2(tcr), di,j3(tcr), ḋi,j2(tcr), ḋi,j3(tcr)) = 0

3: D uniquely solvesg(D, k, di,j1(tcr), di,j1(∞)) = 0

Based on the above discussion, we present formally theVanishing Derivative Method

as Algorithm 1. The following result, whose proof follows from Lemmas V.1 and V.2, states its

correctness.

Proposition V.3 (Correctness ofVanishing Derivative Method) Givendi,j(tcr), for j ∈
{j1, j2, j3}, di,j1(∞), and ḋi,j(tcr), for j ∈ {j2, j3}, with di,j1(tcr) sufficiently small andtcr

satisfyingḋi,j1(tcr) = 0, thenVanishing Derivative Method determinesk andD.

Note that Steps3 and4 can be solved using a variety of root-finding methods. Sincef andg

are monotonic functions, a gradient descent method, for example, would suffice.

B. Passing wave method

This section defines another method for determining the wave’s spatial wavenumber and

speed ratio. It requires inter-drogue distance measurements and the ability to detect when a

distance derivative is zero, but does not need distance derivative values, unlike theVanishing

Derivative Method. It is written in terms of droguei using measured inter-drogue data

between itself and droguesj1 and j2.

Equation (9) contains2 unknowns:k andD. It is unclear how many(k ,D) roots there are to

two equations of that form. With this in mind, the next resulttransforms those equations into a

more easily analyzable form.

Lemma V.4 (1-1 correspondence for change of variables) Lettcr,1 and tcr,2 be the times when

ḋi,j1(tcr,1) = 0 and ḋi,j2(tcr,2) = 0, respectively. Fork ∈ R>0, 0 < D < 1 and measurements
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di,j1(tcr,1), di,j1(∞), di,j2(tcr,2), di,j2(∞), the (k,D) pairs which solve

2D tanh−1
(

D tanh(k
di,j1(tcr,1)

2
)
)

+ k(di,j1(∞)− di,j1(tcr,1)) = 0, (10a)

2D tanh−1
(

D tanh(k
di,j2(tcr,2)

2
)
)

+ k(di,j2(∞)− di,j2(tcr,2)) = 0. (10b)

have a1− 1 correspondence to the(X, Y ) roots of

X tanh(X)− Y R1 tanh(Y ) = 0, (11a)

X tanh(R2X)− Y R1 tanh(R3Y ) = 0, (11b)

where

R1 =
di,j1(tcr,1)

di,j1(tcr,1)− di,j1(∞)
, R2 =

di,j2(tcr,2)

di,j1(tcr,1)
, R3 =

di,j2(tcr,2)− di,j2(∞)

di,j1(tcr,1)− di,j1(∞)
.

The correspondence is defined byX = k
di,j1 (tcr,1)

2
and Y = k

2D
(di,j1(tcr,1)− di,j1(∞)).

Proof: We begin using trigonometric identities to put (10) into a more palatable form.

Noting that

tanh(A+B) =
tanh(A) + tanh(B)

1 + tanh(A) tanh(B)
,

(10) is equivalent to

D tanh
(

k
di,j1 (tcr,1)

2

)

+ tanh
(

k
2D

(di,j1(∞)− di,j1(tcr,1))
)

1 +D tanh
(

k
di,j1 (tcr,1)

2

)

tanh
(

k
2D

(di,j1(∞)− di,j1(tcr,1))
) = 0,

D tanh
(

k
di,j2 (tcr,2)

2

)

+ tanh
(

k
2D

(di,j2(∞)− di,j2(tcr,2))
)

1 +D tanh
(

k
di,j2 (tcr,2)

2

)

tanh
(

k
2D

(di,j2(∞)− di,j2(tcr,2))
) = 0.

Since0 < D < 1, the denominators of these equations are strictly positiveand hence its roots

are the same as those of

D tanh
(

k
di,j1(tcr,1)

2

)

− tanh
( k

2D
(di,j1(tcr,1)− di,j1(∞))

)

= 0, (13a)

D tanh
(

k
di,j2(tcr,2)

2

)

− tanh
( k

2D
(di,j2(tcr,2)− di,j2(∞))

)

= 0. (13b)

The result follows by substituting forX andY and noting that the(k,D) to (X, Y ) transfor-

mation is1− 1 for k,D > 0.

The next result identifies conditions for when there exists one unique solution to (11).
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Lemma V.5 (Uniqueness for smallY ) For fixedR1 > 1, R3
3 > R2 > R3 > 1 and for a small

enough interval inY , there exists at most one pair(X, Y ) which solves(11).

Proof: For each equation of (11), there exists a positive implicit function forX as a function

of Y , which we termX1 andX2. SinceX1 andX2 are only implicitly defined, we determine

a Taylor series expansion aroundY = 0. Given thatX1 corresponds toX2 with R2 = R3 = 1,

we consider the Taylor series approximation ofX2,

X2(Y ) = a1Y + a2Y
2 + a3Y

3 + a5Y
5 +O(Y 7), (14)

where

a1 =

√

R1R3

R2

, a2 = 0, a3 =
R3

6

√

R1R3

R2

(R1R2 −R3).

A sufficient condition to guarantee the existence of at most one unique solution pair(X, Y ) is

that d2X2−X1

dY 2 > 0. Looking at the third order expansion ofX2 −X1,

X2(Y )−X1(Y ) =
(

√

R1R3

R2

−
√

R1

)

Y +
(R3

6

√

R1R3

R2

(R1R2 −R3)−
1

6

√

R1(R1 − 1)
)

Y 3,

one can seeX2 −X1 is convex for smallY , given the assumptions onR1, R2, andR3, which

completes the result.

Algorithm 2 Passing Wave Method

1: Let tcr,1 such thatḋi,j1(tcr,1) = 0

2: Let tcr,2 such thatḋi,j2(tcr,2) = 0

3: SetR1 =
di,j1 (tcr,1)

di,j1 (tcr,1)−di,j1 (∞)
, R2 =

di,j2 (tcr,2)

di,j1 (tcr,1)
, andR3 =

di,j2 (tcr,2)−di,j2 (∞)

di,j1 (tcr,1)−di,j1 (∞)

4: Solve for the unique(X, Y ) that satisfies

X tanh(X) + Y R1 tanh(Y ) = 0,

X tanh(R2X) + Y R1 tanh(R3Y ) = 0.

5: Setk = 2X
di,j1 (tcr,1)

6: SetD = k
2Y

(di,j1(tcr,1)− di,j1(∞))

Based on the above discussion, we present formally thePassing Wave Method as Algo-

rithm 2. The following remark provides a justification for its design rationale.
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Remark V.6 (Justification forPassing Wave Method) From Lemma V.4, given knowl-

edge of di,j1(tcr,1) − di,j1(∞), one must only search for roots to (11) in theY interval of

[0, kmax
Dmin

di,j1(tcr,1)−di,j1(∞)]. By controlling where the drogues are deployed, one has approximate

control overdi,j1(tcr,1), and thereforedi,j1(tcr,1) − di,j1(∞). By Lemma V.5, for small enough

Y and fixed coefficientsR1, R2, andR3 there exists a unique(X, Y ). Thus a reasonable to

strategy is to choosedi,j1(tcr,1) small so that the true(X, Y ) root is within the range where

there is at most one root. However, the coefficientsR1, R2, andR3 are themselves functions of

di,j1(tcr,1), and so one cannot easily guarantee that the true root is in the range of at most one

root. Nevertheless, simulations appear to show that there is always one unique root. •

VI. PARAMETER DETERMINATION STRATEGY

This section introduces theParameter Determination Strategy to allow the drogues

to find all the physical parameters of the internal wave. Our algorithm design builds on the

strategies presented in Section V to determine the wavenumber and the speed ratio. The strategy

is formally presented in Algorithm 3. We recall the assumption that droguesi, j1, j2, andj3 are

in the ocean layer that makes the flow amplitudeB negative as well as introduce an additional

one that at least one drogue is in the lower layer and one is in the upper layer. For concreteness

we label these drogues asj4 andj5, respectively. These assumptions help make the presentation

of the algorithm concrete.

The following result establishes the correctness of the algorithm. Its proof follows from the

discussion in Section V, as well as the form of the inter-drogue distance derivative equation,

and algebraic relations between parameters in the nonlinear soliton model in Section III-A.

Proposition VI.1 (Correctness ofParameter Determination Strategy) Given noise-

less knowledge ofk and D from eitherVanishing Derivative Method or Passing

Wave Method, di,j(tcr) for j ∈ {j1, j2, j3, j4}, ḋi,j(tcr) for j ∈ {j2, j3}, the Parameter

Determination Strategy determines all the internal wave physical parameters.

Having established the correctness of the algorithm under perfect measurements, let us briefly

comment on its performance when errors are present. The factthat all the functions that appear

in the equations employed in Algorithms 1-3 have a continuous dependence on the variables

makes theParameter Determination Strategy naturally robust against errors, in the
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Algorithm 3 Parameter Determination Strategy

1: Setθi = tan−1 (−ḋyii,j1/ḋ
xi

i,j1
)

2: Use either Algorithm 1 or 2 to determinek andD

3: Let tcr such thatḋi,j1(tcr) = 0

4: SetBl =
ḋi,j4 (tcr)

sech2(k(di,j4 (tcr)−
di,j1

(tcr)

2
))−sech2(k

di,j1
(tcr)

2
)

5: SetBu =
ḋi,j5 (tcr)+Bl sech

2(k
di,j1

(tcr)

2
)

sech2(k(di,j5 (tcr)−
di,j1

(tcr)

2
))

6: Setω = kBl(1− 1
D2 )

7: SetC = ω
k

8: Sethu = hocean

1−Bu
Bl

9: Sethl = hocean− hu

10: Set c = 3C
2k2huhl

11: Set |ρl−ρu|
ρl

= c2hocean
ghuhl

sense that the estimated parameters are still unique and remain close to the true parameters for

small enough errors. For completeness, we discuss the sources of error that arise in practical

implementations of the algorithm.

Noise in measurements: In practice one can expect noise in the measurements collected from

sensors. We assume that this noise is unbiased, additive, and Gaussian with variance pro-

portional to the measured quantities, and that the noise at different time instances and for

different measurements are uncorrelated.

Measurements at t = ∞: The proposed algorithm requires knowledge of inter-droguedistances

after the wave has completely passed by, i.e., nominally att = ∞. However, in practice one

only needs to wait until the wave is sufficiently far away. Forinstance, when the distance

between the drogue and the crest of the wave is5 spatial wavelengths apart, the effect of the

wave is reduced to .02% of its maximum. Not waiting untilt = ∞ induces a non-random

error in the measurements.

Finite sampling: The algorithm assumes measurements at the exact time when the wave is

situated exactly between two drogues. However, with finite sampling, the measurements

will never be taken at the correct moment, which can be viewedas a nonrandom error in
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them. A large enough but finite sampling rate would still allow the algorithm to compute

parameter estimates.

Model uncertainty: The problem setup described in Section III-B assumes that drogues are

Lagrangian. In practice, drogues have a finite mass and drag coefficient making them not

perfectly Lagrangian, leading to a difference between the actual drogue’s velocity and the

ocean velocity. One can treat this mismatch as an unknown butnonrandom error in the

measurements of inter-drogue distances and distance derivatives.

Drogues not maintaining depth: We assume that the drogues have a controller that uses feed-

back on depth measurements to maintain a desired depth. Due to noisy depth measurements

and a desire to minimize actuation cost, instead we assume that the drogues will be within

an interval around the desired depth. Although depth is not directly used by the proposed

algorithm, this inaccuracy affects inter-drogue distancemeasurements. As above, one can

treat this as an unknown but nonrandom error in the inter-drogue distance measurements.

As noted above, theParameter Determination Strategy is robust against these

sources of error independently of their random or deterministic nature. Figure 3 illustrates in sim-

ulation this robustness. Figure 3(a) compares the relativeerror in estimates of the wavenumberk

as a function of the relative errors in the inter-drogue distance and its derivative measurements for

theVanishing Derivative Method and thePassing Wave Method. Note that both

methods have a polynomial relationship between relative errors in measurements and relative

errors in the wavenumber. However, theVanishing Derivative Method is significantly

more robust. Figure 3(b) investigates the effect that the largest inter-drogue distance has in the

execution of theVanishing Derivative Method. Three drogues are located at0, 1, and

2 meters and the fourth drogue’s position varies; in three trials it is located at10, 100, and200

meters. One can see that as the largest inter-drogue distance grows, the algorithm robustness

improves. It is also worth noticing that these plots are the results of a single drogue’s estimation

of the wavenumber from one set of measurements. Drogues could instead aggregate individual

estimates, as well as use multiple sets of data from many different waves, to improve estimates

of the parameters.

Figure 4 depicts an actual Lagrangian drogue trajectory along with trajectories generated from

the parameters estimated from theVanishing Derivative Method with measurement

error of 1% and .1%. As the error in measurements decreases, the algorithm estimates the wave
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(b) Effect of inter-drogue spacings on relative error

Fig. 3. (a) plots the relative error in estimates of the spatial wavenumber as a function of the relative errors in the inter-

drogue distance and its derivative measurements for the for theVanishing Derivative Method and thePassing

Wave Method. The true value of the wavenumber isk = .0178
1
m

and the four drogues were located at0, 1, 2, and10 meters

from the origin. Each point plotted is the average of500 runs. Both methods have a polynomial relationship between relative

errors in measurements and relative errors in the spatial wavenumber, however, theVanishing Derivative Method is

significantly more robust. (b) shows the effect of changing the largestinter-drogue distance on the performance ofVanishing

Derivative Method. The true value of the wavenumber isk = .0178
1
m

and the first three drogues were always located at

0, 1, 2 meters. The fourth drogue was at5, 25, and150 meters. Here, each point is the average of2000 runs. One can see that

as the largest inter-drogue distance grows, the robustness improves.

parameters more accurately, which produces trajectories closer to the true trajectory. The spatial

wavelength2π
k

in this case is about290 m, and therefore, the trajectory errors relative to the

wave’s scale is really small.

VII. C ONCLUSIONS

We have considered the problem of estimating the physical parameters of a horizontally-

propagating nonlinear internal wave. Because of the lack of absolute position information, a

group of underwater drogues subject to the flow induced by theinternal wave only have access

to relative measurements (inter-drogue distances and distance derivatives) with respect to each

other to achieve their task. We began by establishing an analytic expression for the dynamic

evolution of the drogues and their inter-drogue distances.This analysis set the basis for the

design of two strategies, termedVanishing Derivative Method andPassing Wave
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Fig. 4. True Lagrangian drogue trajectory and two trajectories generated from using the parameters estimated by theVanishing

Derivative Method with 1% and.1% measurement error. As the measurement error decreases, the trajectories more closely

match the true one. The wave/ocean parameters used arehu = 10 m, hl = 60 m, C = .05
m
s , and |ρl−ρu|

ρl
= .002.

Method, which determine the wavenumber and speed ratio of the wave.Either of these methods

can be used by theParameter Determination Strategy to determine all the wave

parameters. We analyzed the correctness of these strategies and discussed their robustness against

several sources of error arising in realistic implementations. Finally, several simulations have

illustrated the algorithmic performance of the two methodsunder noisy measurements, as well

as investigated the effect of initial drogue locations. We have several ideas for future work. The

first is to include analytic results regarding the robustness of the algorithm. For instance, it is

conceivable that a scheme for aggregating many noisy parameter estimates could be designed to

reduce the effect of noise and produce better results. Another line of work is the extension to

scenarios involving multiple nonlinear waves whose parameters are unknown. More generally,

we plan to explore the design of distributed coordination algorithms run on sensing Lagrangian

drifters to study ocean phenomena.
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