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Abstract— This paper studies the robustness properties of a
class of saddle-point dynamics for linear programming. This
dynamics is distributed over a network in which every node
controls one component of the optimization variable. In this
multi-agent setting, communication noise, computation errors,
and mismatches in the agents’ knowledge about the problem
data all enter into the dynamics as unmodeled disturbances. We
show that the saddle-point dynamics is integral input-to-state
stable and hence robust to disturbances of finite energy. This
result also allows us to establish the robustness of the dynamics
when the communication graph is recurrently connected be-
cause of link failures. Several simulations illustrate our results.

I. INTRODUCTION

In this paper we establish some robustness properties for a
certain saddle-point dynamics (i.e., gradient descent in one
set of variables, gradient ascent in another). The trajectories
of this dynamics converge to solutions of linear programs.
In principle, the saddle-point dynamics in this paper can be
applied to general linear programs with compact solution
space. With regards to distributed implementation over a
network of processors we consider the specific case where
(i) each processor’s state corresponds to a component of the
decision vector and (ii) processors can communicate with
each other if their states appear in a common constraint.
Note that this setup differs from consensus-type optimization
problems where agents agree on the entire solution vector.
Literature review: This work is related to the literature on
linear programming, distributed optimization, and robustness
of nonlinear systems. Linear programs arise in many real-
world decision making scenarios, such as portfolio opti-
mization [1], operator placement [2], network flow [3],
perimeter patrolling [4], among others. Efficient algorithms
to solve linear programs, such as the simplex algorithm [5]
or interior point methods [6], are well-established in the
optimization literature. Lately, there has been interest in
the distributed implementation of such methods. Recent
advances in distributed optimization include [7], [8], [9],
[10] (and references therein), with linear programs specif-
ically considered in [11]. The saddle-point dynamics we
consider appear in [12] and bear some semblance to the
dynamics found in [13] (a major difference being that the
dual variable dynamics is smooth in the former reference).
All of the aforementioned methods can be applied to so-
called robust optimization problems [14] (incidentally, robust

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{drichert,cortes}@ucsd.edu

linear programs are a special case of the setup considered
in this paper). However, robust optimization problems only
account for uncertainty in the problem data and do not
study the effect of disturbances and communication failures
in the algorithms themselves. To this end, let us recall
various notions of robustness for nonlinear system dynamics.
In particular, under mild regularity conditions, asymptotic
stability of the dynamics imply a certain degree of qualitative
robustness to sufficiently small perturbations [15]. Towards
a more quantitative description of robustness, input-to-state
stability (ISS) [16] guarantees that small disturbances give
rise to small state deviations. Finally, integral input-to-state
stability (iISS) [17] is a weaker notion of robustness than
ISS, but stronger than asymptotic stability. In iISS, the state
deviations depend on the energy of the disturbance. The iISS
property can also be used to establish stability in supervisory
control setups [18] and cascade interconnections [19].
Statement of contributions: Our starting point is a class of
provably correct saddle-point dynamics for distributed linear
programming. We examine the robustness of this dynamics
against disturbances that may be due to communication
noise, computation errors, unmodeled dynamics, or mis-
matches in the agents’ knowledge about the problem data.
The main contributions of the paper are as follows. Our first
contribution is a general result showing that no dynamics
for linear programming is input-to-state stable. Our second
contribution is the characterization of the integral input-to-
state stability properties of the saddle-point dynamics. In
particular, this property implies the asymptotic convergence
to the solution set of the linear program when disturbance
have finite energy. Our analysis allows us to extend this
convergence result to the solution set of a perturbed linear
program when disturbances have finite variation. Our third
and final contribution is the analysis of the robustness prop-
erties of the saddle-point dynamics when communication
among the agents is subject to link failures. Specifically,
we establish its asymptotic correctness properties under
scenarios modeled via the notion of recurrently connected
graphs. Several simulations illustrate our results. For reasons
of space, all proofs will appear elsewhere.

II. PRELIMINARIES

This section introduces preliminaries on notation, nonsmooth
analysis, and set-valued dynamical systems.

A. Notation

The set of real numbers is R. For x ∈ Rn, x ≥ 0 means
that all components of x are nonnegative. For x ∈ Rn, we



define max{0, x} = (max{0, x1}, . . . ,max{0, xn}) ∈ Rn≥0.
We use ‖ · ‖ and ‖ · ‖∞ to denote the 2- and ∞-norms in
Rn. The Euclidean distance from a point x ∈ Rn to a set
X ⊂ Rn is denoted by ‖ · ‖X . The open ball around x
with radius δ > 0 is B(x, δ). The set X ⊂ Rn is convex
if it fully contains the segment connecting any two points
in X . Given a matrix A ∈ Rm×n, row`(A) ∈ Rn denotes
its `th row. The function L : X × Y → R defined on the
convex set X × Y ⊂ Rn × Rm is convex-concave if it is
convex on its first argument and concave on its second. A
point (x̄, ȳ) ∈ X × Y is a saddle point of L if L(x, ȳ) ≥
L(x̄, ȳ) ≥ L(x̄, y) for all (x, y) ∈ X × Y . K is the class
of functions [0,∞) → [0,∞) that are continuous, zero at
zero, and strictly increasing. The subset of class K functions
that are unbounded are called class K∞. L is the set of
functions [0,∞) → [0,∞) that are continuous, decreasing,
and converging to zero as its argument tends to ∞. A class
KL function [0,∞)× [0,∞)→ [0,∞) is class K in its first
argument and class L in its second. A function V : Rn → R
is positive definite with respect to X if V (x) = 0 for all
x ∈ X and V (x) > 0 for all x /∈ X . If X = {0}, we
simply say that V is positive definite. Finally, a set-valued
map F : Rn ⇒ Rn maps elements in Rn to subsets of Rn.

B. Nonsmooth analysis

Here we review some basic notions from nonsmooth analysis
following [20]. A function V : Rn → R is locally Lipschitz
if for every x ∈ Rn there exists a δ > 0 and L ≥ 0 such that
|V (y)−V (z)| ≤ L‖y−z‖ for y, z ∈ B(x, δ). The generalized
gradient of a locally Lipschitz function V at x ∈ Rn is

∂V (x) = co{limi→∞∇V (xi) : xi → x, xi /∈ S ∪ ΩV },
where co{·} is the convex hull, S ⊂ Rn is any set with zero
Lebesgue measure, and ΩV ⊂ Rn is the set of points where
V is not differentiable. If V : Rn × Rm → R, then we use
∂xV (x, y) and ∂yV (x, y) to denote the generalized gradients
of the maps x 7→ V (x, y) and y 7→ V (x, y), respectively. A
set-valued map F : X ⊂ Rn ⇒ Rn is upper semi-continuous
if for every x ∈ X and ε > 0 there exists δ > 0 such that
F (y) ⊆ F (x) + B(0, ε) for all y ∈ B(x, δ). F is locally
bounded if for every x ∈ X there exists an ε > 0 and M > 0
such that ‖z‖ ≤M for all z ∈ F (y) and all y ∈ B(x, ε).

C. Set-valued dynamical systems

Our exposition on set-valued dynamical systems fol-
lows [20]. A time-invariant set-valued dynamical system is
given by the differential inclusion

ẋ ∈ F (x), (1)

where F : X ⊂ Rn ⇒ Rn is a set valued map. If F is
locally bounded, upper semi-continuous and takes nonempty,
convex, and compact values, then from any initial condition
in X there exists an absolutely continuous curve x : R≥0 →
X , called a solution, satisfying (1) almost everywhere. The
set-valued Lie derivative of a differentiable function V :
Rn → R along the trajectories of (1) is defined as

LFV (x) = {∇V (x)T v : v ∈ F (x)}.

Differential inclusions are especially useful to handle dif-
ferential equations with discontinuities. Specifically, let f :
X ⊂ Rn → Rn be a piecewise continuous vector field and
consider the differential equation

ẋ = f(x). (2)

The classical notion of solution is not applicable to (2)
because of the discontinuities. Instead, consider the Filippov
set-valued map associated to f , defined by

F [f ](x) := co{limi→∞f(xi) : xi → x, xi /∈ Ωf}, (3)

where co{·} denotes the closed convex hull and Ωf are the
points where f is discontinuous. The set-valued map F [f ] is
locally bounded, upper semi-continuous and takes nonempty,
convex, and compact values, and hence solutions exist to

ẋ ∈ F [f ](x), (4)

starting from any initial condition. The solutions of (4) are,
by definition, the solutions of (2) in the sense of Filippov.

III. PROBLEM STATEMENT

This section recalls the dynamics developed in our previous
work [12] whose trajectories converge to solutions of a linear
program. In particular, we (i) introduce the set-valued saddle-
point dynamics and state a convergence property of it, (ii)
state a discontinuous version of the set-valued dynamics and
associated convergence result, and (iii) discuss the distributed
implementation of the discontinuous dynamics. In subse-
quent sections, we study the robustness properties of this
dynamics. The linear program we consider is,

min cTx (5a)
s.t. Ax = b, x ≥ 0, (5b)

where x, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. The set of all
solutions to (5) is X . The dual formulation of (5) is

max − bT z (6a)

s.t. AT z − λ+ c = 0, λ ≥ 0. (6b)

We denote by Z the set of solutions of (6). In this paper, we
only consider feasible linear programs with compact primal-
dual solution space (i.e., X × Z is compact).

A. Saddle-point and discontinuous saddle-point dynamics

The following result relates the solutions of (5) to the saddle
points of a modified Lagrangian function.

Proposition III.1 (Solutions of a linear program as sad-
dle points [12]). Consider L : Rn × Rm → R given by

L(x, z) = cTx+
1

2
(Ax− b)T (Ax− b) + zT (Ax− b)

+ κ1Tn max{0,−x}, (7)

where κ ∈ R>0 and 1n ∈ Rn is the vector of ones. Then,
L is convex in x and concave (in fact, linear) in z. Let
κ > ||AT z∗ + c||∞ for some z∗ ∈ Z . Then,



(i) if x∗ ∈ Rn is a solution of (5), then there exists z∗ ∈ Z
such that (x∗, z∗) is a saddle point of L,

(ii) if (x∗, z̄) ∈ Rn × Rm is a saddle point of L, then
x∗ ∈ Rn is a solution of (5).

According to the above result, finding saddle points of L is
an equivalent problem to finding a solution to (5). This fact
motivates the use of saddle-point dynamics (gradient descent
in x, gradient ascent in z) associated with L to solve (5),

ẋ+ c+AT (Ax− b+ z) ∈ −κ∂max{0,−x}, (8a)
ż = Ax− b. (8b)

For notational convenience, let Fκsdl : Rn ×Rm ⇒ Rn ×Rm
denote the dynamics (8). The following result characterizes
the asymptotic convergence of (8) to the solutions of (5)-(6).

Theorem III.2 (Asymptotic convergence of saddle-point
dynamics [12]). Let κ satisfy maxz∗∈Z ‖AT z∗ + c‖∞ <
κ < ∞. Then, the projection onto the first (resp. second)
component of any trajectory of (8) asymptotically converges
to a solution of (5) (resp. (6)).

Since the above convergence property requires κ to be suffi-
ciently large, and the lower bound on κ is unknown a priori
(since it depends on solutions to the dual), [12] proposes
a discontinuous dynamics which we formulate next. First,
define the nominal flow function fnom : Rn≥0×Rm → Rn by

fnom(x, z) := −c−AT (Ax− b+ z).

Then the discontinuous saddle-point dynamics is,

ẋi =

{
fnom
i (x, z), if xi > 0,

max{0, fnom
i (x, z)}, if xi = 0,

(9a)

ż = Ax− b, (9b)

for all i ∈ {1, . . . , n}. We use the discontinuous vector field
fdis : Rn≥0×Rm → Rn×Rm to denote the dynamics (9). The
solutions of (9) are understood in the Filippov sense and the
following result relates the Filippov set-valued map of fdis
to the saddle-point dynamics Fκsdl.

Proposition III.3 (Asymptotic convergence of the discon-
tinuous saddle-point dynamics [12]). For every compact
set X × Z ⊂ Rn≥0 × Rm, there exists a finite κ ∈ R such
that the inclusion F [fdis](x, z) ⊆ Fκsdl(x, z) holds for every
(x, z) ∈ X ×Z. As a consequence, for any initial condition
in Rn≥0 × Rm, the projection onto the first (resp. second)
component of any trajectory of (9) asymptotically converges
to a solution of (5) (resp. (6)).

Note that (9) and its convergence properties do not depend
on κ.

B. Distributed implementation

The motivation for implementing dynamics (9) rather than
other linear programming methods is that it is well-suited for
distributed implementation. We consider scenarios in which
each component of x ∈ Rn corresponds to an independent

decision maker or agent. The interconnection between them
is modeled by an undirected graph G = (V, E), where V =
{1, . . . , n} are vertices (which represent the agents) and E ⊆
V × V are edges. Agents i and j are called neighbors if
(i, j) ∈ E .
Let us express the dynamics (9) component-wise to see
under what conditions it can be implemented by an agent
using local information. First, the nominal flow function for
agent i is,

fnom
i (x, z) = −ci −

∑
{` : a`,i 6=0}

a`,i

[
z` +

∑
{k : a`,k 6=0}

a`,kxk − b`
]
,

and the z-dynamics for each ` ∈ {1, . . . ,m} is

ż` =
∑

{i : a`,i 6=0}
a`,ixi − b`. (10)

Then i can compute fnom
i (x, z) and any z` used therein if

(D1) for each i ∈ V , agent i knows xi as well as
a) ci ∈ R,
b) every b` ∈ R for which a`,i 6= 0,
c) the non-zero elements of every row`(A) ∈ Rn

for which a`,i 6= 0,
(D2) agent i ∈ V implements ẋi,
(D3) for each ` ∈ {1, . . . ,m} such that a`,i 6= 0 6= a`,j , it

holds that (i, j) ∈ E , and
(D4) agent i can measure every xj for which j is a neighbor

of i.
When we say that i can compute z`, we mean that i can
implement ż` if it so requires z` in computing fnom

i (x, z).
Dynamics (9) is distributed over G when (D1)-(D4) hold.

IV. ROBUSTNESS AGAINST DISTURBANCES AND NOISE

In this section we explore the robustness properties of the
distributed set-valued dynamics (8). Because the solutions of
the discontinuous saddle-point dynamics are solutions to (8)
for sufficiently large κ (cf. Proposition III.3), the robustness
properties of (8) translate equivalently to the discontinuous
saddle-point dynamics (9). Thus, throughout this section and
without loss of generality, we consider the dynamics (8).
We consider external disturbances to the saddle-point dy-
namics (8). Specifically,

ẋ+ c+AT (Ax− b+ z) + ux ∈ −κ∂max{0,−x}, (11a)
ż = Ax− b− uz, (11b)

where u = (ux, uz) takes values in Rn ×Rm and is locally
essentially bounded. For notational purposes, we use Fκ,usdl :
Rn+m ⇒ Rn+m to denote the dynamics (11). The asymp-
totic stability of (8), cf. Theorem III.2, ensures robustness in
the sense of [15]. This definition of robustness is a qualitative
statement of the form: there exists a perturbation small
enough such that the equilibria is still asymptotically stable.
Our objective here is to obtain a more precise quantitative
description of the robustness properties of (11).

Remark IV.1 (Noisy dynamics model). The disturbance u
in (11) captures unmodeled dynamics, and both measurement



and computation noise. In addition, any error in an agent’s
knowledge of the problem data (c, A, and b) can be inter-
preted as a specific manifestation of u. For example, if agent
i uses an estimate ĉi of ci when computing its dynamics, this
can be modeled in (11) by considering ux,i(t) = ci − ĉi. •

A. No linear programming dynamics is input-to-state stable

The first notion of robustness that we consider is input-to-
state stability (ISS). Essentially, ISS corresponds to the idea
that small disturbances give rise to small deviations from the
equilibrium set. We state this formally below.

Definition IV.2 (Input-to-state stability [16]). The sys-
tem (11) is ISS with respect to the set X × Z if there exist
functions β ∈ KL, and γ ∈ K such that, for any trajectory
t 7→ (x(t), z(t)) of (11), one has

‖(x(t), z(t))‖X×Z ≤ β(‖(x(0), z(0)‖X×Z , t) + γ(‖u‖∞),

for all t ≥ 0. Here, ‖u‖∞ := ess sups≥0 ‖u(s)‖ is the
essential supremum of u(t).

In the next result, we establish that any dynamics that
solve any feasible linear program and uncertainties in the
problem data (A, b, and c) enter as disturbances is not
ISS. In particular, this implies that the noisy saddle-point
dynamics (11) is not ISS either.

Theorem IV.3 (No dynamics for linear programming is
ISS). Consider the generic dynamics

(ẋ, ż) = Φ(x, z, v) (12)

with disturbance t 7→ v(t). Assume uncertainties in the
problem data are modeled by v. That is, there exists a
surjective function g = (g1, g2) : Rn+m → Rn × Rm with
g(0) = (0, 0) such that, for v̄ ∈ Rn+m, the primal-dual
solution set X (v̄)×Z(v̄) of the linear program

min (c+ g1(v̄))Tx (13a)
s.t. Ax = b+ g2(v̄), x ≥ 0. (13b)

is the stable equilibrium set of (ẋ, ż) = Φ(x, z, v̄) whenever
X (v̄) × Z(v̄) 6= ∅. Then, the dynamics (12) is not ISS with
respect to X × Z .

The above result holds because, for some finite uncertainty
in the problem data, the associated perturbed optimization
problem has an unbounded solution set. Since any point in
that unbounded set is an equilibrium, it is clear that the
dynamics is not ISS.

Remark IV.4 (Small-signal ISS). In [21], we show that
the discontinuous saddle-point dynamics satisfy the ISS
inequality when the disturbance u(t) is sufficiently small. •

In the subsequent section, we show that (11) satisfies a
weaker notion of robustness.

B. Saddle-point dynamics is integral input-to-state stable

Here we establish that the dynamics (11) is integral input-
to-state stable (iISS). Informally, iISS guarantees that distur-
bances with small energy give rise to small deviations from
the equilibria. The definition below states this formally.

Definition IV.5 (Integral input-to-state stability [17]). The
system (11) is iISS with respect to the set X ×Z if there exist
functions α ∈ K∞, β ∈ KL, and γ ∈ K such that, for any
trajectory t 7→ (x(t), z(t)) of (11) and all t ≥ 0, one has

α(‖(x(t), z(t))‖X×Z) ≤ β(‖(x(0), z(0)‖X×Z , t)

+

∫ t

0

γ(‖u(s)‖)ds. (14)

Our ensuing discussion is based on a suitable adaptation
of the exposition in [17] to the setup of asymptotically
stable sets for differential inclusions. A useful tool for
establishing iISS is the notion of iISS Lyapunov function,
whose definition we review next

Definition IV.6 (iISS Lyapunov function). A differentiable
function V : Rn+m → R≥0 is an iISS Lyapunov function
with respect to the set X × Z for system (11) if there exist
functions α1, α2 ∈ K∞, σ ∈ K, and a continuous positive
definite function α3 such that

α1(‖(x, z)‖X×Z) ≤ V (x, z) ≤ α2(‖(x, z)‖X×Z), (15a)
a ≤ −α3(‖(x, z)‖X×Z) + σ(‖u‖), (15b)

for all a ∈ LFκ,usdl
V (x, z) and x ∈ Rn, z ∈ Rm, u ∈ Rn+m.

The existence of a iISS Lyapunov function is critical in
establishing iISS, as the following result states.

Theorem IV.7 (iISS Lyapunov function implies iISS). If
there exists an iISS Lyapunov function with respect to X ×Z
for (11), then the system is iISS with respect to X × Z .

This result is stated in [17, Theorem 1] for differential equa-
tions with an asymptotically stable origin and can be trivially
extended to include differential inclusions and asymptotically
stable sets, as considered here. We use Theorem IV.7 next
to establish that (11) is iISS.

Theorem IV.8 (iISS of saddle-point dynamics). Assume
κ > λmax. Then the system (11) is iISS with respect to X×Z
with γ(s) = 4s.

Based on the discussion in Section IV-A, we believe that
the iISS property of (11) is an accurate representation of
the overall robustness of the dynamics when considering
general linear programs, and not a weakness of our analysis.
A consequence of iISS is that the asymptotic convergence of
the system is preserved under finite energy disturbances [22,
Proposition 6]. In the case of (11), a stronger convergence
property is true under finite variation disturbances (u(t) has
finite variation if there exists a ū ∈ R s.t.

∫∞
0
‖u(s)− ū‖ <

∞). The following formalizes this idea.



Corollary IV.9 (Finite variation disturbances). Suppose
t 7→ u(t) ∈ Rn+m is such that

∫∞
0
‖u(s)−(ūx, ūz)‖ds <∞

for some (ūx, ūz) ∈ Rn × Rm and that

min (c+ ūx +AT ūz)
Tx (16a)

s.t. Ax = b+ ūz, x ≥ 0, (16b)

is feasible. Denote the set of solutions to (16) (resp. the dual
of (16)) as X ū (resp. Z ū). Assume X ū×Z ū is compact, and
let κ > maxz∗∈Zū ‖AT z∗+ c+ ūx−AT ūz‖∞. Then (11) is
iISS with respect to X ū×Z ū. In this case, solutions to (11)
converge asymptotically to a point in X ū ×Z ū.

We simulate (11) for the following linear program

min
x≥0

x1 + x3 + x5 + x7

s.t. x1 − x2 + x3 = 4, (17)
x3 − x4 + x5 = 3,

x5 − x6 + x7 = 2.

The primal-dual solution set to (17) is X sim ×Zsim where,

X sim = {x ≥ 0 : x2 = x6 = 0, x1 + x3 = 4,

x3 − x4 + x5 = 3, and x5 + x7 = 2},
Zsim = {(−1, 0,−1)}.

In Figure 1(a) asymptotic convergence is achieved under
a finite energy signal (i.e.,

∫∞
0
‖u(s)‖ < ∞), which sup-

ports Corollary IV.9. Even under a finite power signal
(i.e., limT→∞ 1

T

∫ T
0
‖u(s)‖ < ∞) the trajectories are well-

behaved (see Figure 1(b)), verifying the small-signal ISS
property (see Remark IV.4). This simulation may also sug-
gest a noise-to-state stability property for the dynamics.

V. ROBUSTNESS IN RECURRENTLY CONNECTED GRAPHS

Here we study the convergence properties of the saddle-
point dynamics (8) when agents do not receive updated state
information from their neighbors at all times because of
communication link failures. As such, agents use the last
known value of neighbor states to compute their dynamics.
The type of link failures we consider are characterized by
recurrently connected graphs (RCG), which we define next.

Definition V.1 (Recurrently connected graphs). Given a
strictly increasing sequence {tk}∞k=0 ⊂ R≥0 and a base
graph Gb = (V, Eb), we call G(t) = (V, E(t)) recurrently
connected with respect to Gb and {tk}∞k=0 if E(t) = Eb for
all t ∈ [t2k+1, t2k+2), k ∈ Z≥0.

In a RCG, no assumption is made on edges during the
intervals [t2k, t2k+1). In what follows and for simplicity
of presentation, we only consider the worst-case scenario
where edges in the base graph fail over the entire intervals
[t2k, t2k+1). The results stated here also apply to the more
general scenario where edges may fail and reconnect multiple
times during the intervals [t2k, t2k+1). We start by noting
that, under link failures, the implementation of (10) across
different agents would yield in general different outcomes

(given that different agents have access to different informa-
tion at different times). To avoid this problem, we assume
that, for each ` ∈ {1, . . . ,m}, the agent

j = S(`) := min{i ∈ {1, . . . , n} : a`,i 6= 0},
implements the z`-dynamics and communicates this value
to its neighbors (incidentally, only neighbors of j = S(`)
need to know z`). Next, we are ready to describe the
network dynamics under link failures. With the notation of
Definition V.1, let F(k) be the set of failing communication
edges for t ∈ [tk, tk+1). In other words, if (i, j) ∈ F(k) then
agents i and j do not receive updated state information from
each other during the whole interval [tk, tk+1). The nominal
flow function of i on a RCG for t ∈ [tk, tk+1) is

fnom,RCG
i (x, z) = −ci −

m∑
`=1

(i,S(`))/∈F(k)

a`,iz` −
m∑
`=1

(i,S(`))∈F(k)

a`,iz`(tk)

−
m∑
`=1

a`,i

[ n∑
j=1

(i,j)/∈F(k)

a`,jxj +

n∑
j=1

(i,j)∈F(k)

a`,jxj(tk)− b`
]
.

Thus the x-dynamics during [tk, tk+1) for i ∈ {1, . . . , n} is

ẋi =

{
fnom,RCG
i (x, z), if xi > 0,

max{0, fnom,RCG
i (x, z)}, if xi = 0.

(18a)

Likewise, the z-dynamics for ` ∈ {1, . . . ,m} is

ż` =

n∑
i=1

(i,S(`))/∈F(k)

a`,ixi +

n∑
i=1

(i,S(`))∈F(k)

a`,ixi(tk)− b`. (18b)

It is worth noting that (18) and (9) coincide when F(k) = ∅.

Proposition V.2 (Convergence of saddle-point dynamics
under recurrently connected graphs). Let G(t) = (V, E(t))
be recurrently connected with respect to Gb = (V, Eb)
and {tk}∞k=0. Suppose that (18) is distributed over Gb
and Tmax

disconnected := supk∈Z≥0
(t2k+1 − t2k) < ∞. Let

(x(t), z(t)) be a trajectory of (18). Then there exists a
Tmin

connected > 0 (depending on Tmax
disconnected, x(t0), and z(t0))

such that infk∈Z≥0
(t2k+2− t2k+1) > Tmin

connected implies that
‖(x(t2k), z(t2k))‖X×Z → 0 as k →∞.

Figure 2 illustrates the result of Proposition V.2.

VI. CONCLUSIONS

We have studied the robustness properties of a saddle-
point dynamics for distributed linear programming against
disturbances induced by communication noise, computation
errors, and mismatches in the agents’ knowledge about
the problem data. We stated that no dynamics for linear
programming is input-to-state stable when uncertainty in the
problem data is modeled as a disturbance. We show instead
that the dynamics is integral input-to-state stable, and hence
robust against disturbances of finite energy. In addition,
we also showed that asymptotic convergence is achieved
under disturbances of finite variation. Finally, we have also



−2

−1

0

1

2

3

4

5
x∗ = (0 .20 , 0 , 3 .79 , 2 .60 ,

1 .82 , 0 , 0 .18)

z ∗ = (−1 .00 , 0 .00 , −1 .00)

t ime,t

(x
(t
),

z
(t
))

(a) Trajectories subject to finite energy noise.

−10

−5

0

5

10

fi
n
it
e
e
n
e
rg

y

t ime , t

−5

0

5

fi
n
it
e
p
o
w
e
r

t ime , t

(b) Noise used in simulations.
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(c) Trajectories subject to finite power noise.

Fig. 1. Trajectories of the saddle-point dynamics under disturbances (11) for the linear program (17) with two types of noise: finite energy and finite
power. In (a) and (c), the solid lines are x-trajectories and the dotted lines are z-trajectories. The final values of the state are indicated on each plot. In
(b) we provide a sample of the noise affecting the x1-dynamics in both cases. Asymptotic convergence to the primal-dual solution set X sim × Zsim is
achieved when the noise has finite energy, as expected (cf. Corollary IV.9). Even when the noise has finite power (white Gaussian noise at 2dBW in this
simulation), trajectories remain close to the primal-dual solution set (see Remark IV.4).
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Fig. 2. Trajectories of (18) for linear program (17) under a recurrently
connected graph. In (a), the solid lines are x-trajectories and the dotted lines
are z-trajectories. (b) shows the base graph. A random number of random
links fail in recurring intervals of time. The time ratio of link failures to
no-link failures is 100 : 1. Convergence to X sim × Zsim is achieved,
suggesting that in this example Tmin

connected ≤ Tmax
disconnected/100.

established the robustness of the saddle-point dynamics un-
der link failures modeled by a recurrently connected graph.
Future work will include a constructive characterization of
the bound Tmin

connected, the study of more general link failure
scenarios, the analysis of noise-to-state stability properties of
the saddle-point dynamics, and the design of event-triggered
implementations of the saddle-point dynamics.
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