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Abstract— This paper considers the economic dispatch prob-
lem for a group of power generating units. The collective aim is
to meet a power demand while respecting individual generator
constraints and minimizing the total generation cost. Assuming
that the units communicate over a strongly connected, weight-
balanced digraph, we propose a distributed coordination algo-
rithm that provably converges to the solution of the dispatch
problem starting from any initial power allocation. Additionally,
we establish that the proposed strategy is robust against
mismatch between load and total generation (and thus able to
handle time-varying loads), and against intermittent generation
commitment, a plausible scenario due to the integration of
renewable energy sources into the grid. Our technical approach
uses notions and tools from algebraic graph theory, nonsmooth
analysis, set-valued dynamical systems, and dynamic average
consensus. Several simulations illustrate our results.

I. INTRODUCTION

Power generation and distribution in electricity grids is
becoming increasingly decentralized with the recent ad-
vances in renewable energy technologies and the attempts
of integrating them into the grid. As a consequence, grid
optimization problems are becoming large-scale and dynamic
in nature, in turn, making traditional centralized, top-down
solution approaches impractical. This motivates the design of
distributed algorithms that are efficient in handling dynamic
loads, robust against transmission and generation failures,
allow for plug-and-play, and adequately preserve the privacy
of the entities involved. In this paper, we consider the design
of distributed algorithmic solutions for the economic dispatch
(ED) problem, where a group of power generators aims to
meet a power demand while minimizing the total generation
cost (the summation of individual costs) and respecting the
individual generators’ capacity constraints. Our objective is
to synthesize solution strategies that find the solution to
the ED problem starting from any initial power allocation.
Further, we want these algorithms to handle time-varying
loads and be robust against intermittent power generation by
the units.

Literature review: Traditionally, solution algorithms for
the ED problem have been centralized in nature, see e.g. [1]
and references therein. As we move towards a smarter
electricity grid [2], distributed solution strategies are taking
the center stage when it comes to optimizing the power
grid. Along this transition, various distributed algorithmic
solutions have emerged in the literature for the ED problem.
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A majority of them leverage upon the specific form of the
solutions of the optimization problem and design consensus-
based algorithms. The predominant approach is to consider
convex, quadratic cost functions for the power generators
and perform consensus over their incremental costs under
undirected [3], [4] or directed [5], [6] communication topolo-
gies. Alternatively, some works consider general convex cost
functions as we do here, but they either assume the algorithm
to be initialized with a feasible power allocation [7], [8], need
feedback on the power mismatch from the shift in steady-
state frequency due to primary control [9], or do not consider
capacity constraints on the generators [10]. In addition to
load and capacity constraints, [6], [11] include transmission
losses in their formulation. [12] additionally considers valve-
point loading effects and prohibited operating zones. These
constraints make the problem nonconvex and prevent these
works from theoretically guaranteeing global convergence of
the algorithms. In [13], the authors propose best-response
dynamics for a potential-game formulation of the nonconvex
ED problem, but the implementation requires all-to-all com-
munication among the generators. In [14], [15] distributed
methods are proposed to solve a resource allocation problem
that is similar to the ED problem but without any individual
agent constraints. While these constraints are incorporated in
the formulation of [16], the proposed algorithm only arrives
at suboptimal solutions of the optimization problem. Our
algorithm design builds on our previous work [7], which
requires a proper algorithm initialization, and employs tools
from dynamic average consensus [17], [18] to synthesize a
coordination strategy that converges from any initial condi-
tion.

Statement of contributions: Our starting point is the formal
definition of the ED problem for a group of power generating
units that communicate over a strongly connected, weight-
balanced digraph. This optimization problem is convex as the
individual cost functions are smooth and convex, the load
satisfaction is a linear constraint, and the capacity bounds
of the generators are convex inequality constraints. Our first
contribution is the design of a centralized scheme, termed
“load mismatch + Laplacian-nonsmooth-gradient” dynamics,
that finds the solution of the ED problem starting from any
initial power allocation. This algorithm has two components.
The first component optimizes the total generation cost of
the network while keeping the total generation constant. The
second component uses the feedback on the error between
the desired load and total network generation and drives the
power allocations of the generators to load satisfaction at



an exponential rate starting from any initial point. These
observations set the basis for our second contribution, which
is the synthesis of a distributed coordination algorithm,
termed “dynamic average consensus + Laplacian-nonsmooth-
gradient” dynamics, with the same convergence guarantees.
Our design consists of two coupled dynamical systems: a dy-
namic average consensus algorithm to estimate the mismatch
between generation and desired load in a distributed fashion
and a distributed Laplacian-nonsmooth-gradient dynamics
that employs these estimates to dynamically allocate the
unit generation levels. Our final contribution is the formal
characterization of the robustness properties of the distributed
algorithm. Using the fact that the dynamics of mismatch
between network generation and total load is exponentially
convergent and input-to-state stable, we establish the algo-
rithm’s ability to track time-varying loads and its robustness
in scenarios with intermittent power generation. For reasons
of space, all proofs are omitted and will appear elsewhere.

Organization: Section II gathers notation and basic con-
cepts. Section III defines formally the problem statement.
Section IV proposes a motivating centralized solution strat-
egy. Section V presents the distributed solution strategy along
with its convergence analysis and robustness properties. Sim-
ulation examples are provided in Section VI and Section VII
summarizes our conclusions and ideas for future work.

II. PRELIMINARIES

This section introduces basic concepts and preliminaries.
We begin with some notational conventions. Let R, R≥0,
R>0, Z≥1 denote the real, nonnegative real, positive real,
and positive integer numbers, resp. For r ∈ R we denote
Hr = {x ∈ Rn | 1>n x = r}. The 2- and∞-norms on Rn and
their respective induced norms on Rn×n are denoted with ‖·‖
and ‖ · ‖∞, resp. We let B(x, δ) = {y ∈ Rn | ‖y− x‖ < δ}.
For x ∈ Rn, xi ∈ R denotes its i-th component. Given
vectors x, y ∈ Rn, x ≤ y if and only if xi ≤ yi for all
i ∈ {1, . . . , n}. We denote 1n = (1, . . . , 1) ∈ Rn.A set-
valued map f : Rn ⇒ Rm associates to each point in Rn a
set in Rm. For a symmetric matrix A ∈ Rn×n, λmin(A) and
λmax(A) denote the minimum and maximum eigenvalues of
A. Finally, we let [u]+ = max{0, u} for u ∈ R.

A. Graph theory

We present basic notions from algebraic graph theory
following [19]. A directed graph (or digraph) is a pair G =
(V, E), with V = {1, . . . , n} the vertex set and E ⊆ V×V the
edge set. A path is a sequence of vertices connected by edges.
A digraph is strongly connected if there is a path between
any pair of vertices. The sets of out- and in-neighbors of v
are, resp., N out(v) = {w ∈ V | (v, w) ∈ E} and N in(v) =
{w ∈ V | (w, v) ∈ E}. A weighted digraph G = (V, E ,A)
is composed of a digraph (V, E) and an adjacency matrix
A ∈ Rn×n≥0 with aij > 0 iff (i, j) ∈ E . The weighted
out- and in-degree of i are, resp., dout(i) =

∑n
j=1 aij and

din(i) =
∑n
j=1 aji. The Laplacian matrix is L = Dout − A,

where Dout is the diagonal matrix with (Dout)ii = dout(i),
for all i ∈ {1, . . . , n}. Note that L1n = 0. If G is strongly
connected, then 0 is a simple eigenvalue of L. G is undirected
if L = L>. G is weight-balanced if dout(v) = din(v), for all
v ∈ V iff 1>n L = 0 iff L + L> ≥ 0.

B. Dynamic average consensus

Here, we introduce notions on dynamic average consensus
following [18]. Consider n ∈ Z≥1 agents communicating
over a strongly connected, weight-balanced digraph G whose
Laplacian is denoted as L. Each agent is associated with
a state xi ∈ R and an input signal t 7→ ui(t) ⊂ R that
is measurable and locally essentially bounded. The aim is
to provide a distributed dynamics such that the state of
each agent xi(t) tracks the average signal 1

n

∑n
i=1 ui(t)

asymptotically. This can be achieved via the dynamics Xdac :
R2n → R2n,

ẋ = −αx− βLx− v + νu,

v̇ = αβLx,

where α, β, ν > 0 are design parameters and v ∈ Rn is an
auxiliary state. If the initial condition satisfies 1>n v(0) = 0
and the time-derivatives of the input signals are bounded,
then one can show, cf. [18, Corollary 4.1], that the error
signal t 7→

∣∣xi(t)− 1
n

∑n
i=1 ui(t)

∣∣ is ultimately bounded for
each i ∈ {1, . . . , n}. Moreover, this error vanishes if the
input signal converges to a constant value.

C. Nonsmooth analysis and differential inclusions

We review here some notions from nonsmooth analysis
and differential inclusions following [20]. A function f :
Rn → Rm is locally Lipschitz at x ∈ Rn if there exist
Lx, ε ∈ (0,∞) such that ‖f(y) − f(y′)‖ ≤ Lx‖y − y′‖,
for all y, y′ ∈ B(x, ε). A function f : Rn → R is regular
at x ∈ Rn if, for all v ∈ Rn, the right and generalized
directional derivatives of f at x in the direction of v coincide,
see [20] for definitions of these notions. A function that is
continuously differentiable at x is regular at x. Also, a convex
function is regular. A set-valued map H : Rn ⇒ Rn is
upper semicontinuous at x ∈ Rn if, for all ε ∈ (0,∞), there
exists δ ∈ (0,∞) such that H(y) ⊂ H(x) + B(0, ε) for all
y ∈ B(x, δ). Also, H is locally bounded at x ∈ Rn if there
exist ε, δ ∈ (0,∞) such that ‖z‖ ≤ ε for all z ∈ H(y) and
y ∈ B(x, δ).

Given a locally Lipschitz function f : Rn → R, let
Ωf be the set (of measure zero) of points where f is not
differentiable. The generalized gradient ∂f : Rn ⇒ Rn is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co denotes convex hull and S ⊂ Rn is any set
of measure zero. The map ∂f is locally bounded, upper
semicontinuous, and takes non-empty, compact, and convex
values. A critical point x of f satisfies 0 ∈ ∂f(x).



Given a set-valued map H : Rn ⇒ Rn, a differential
inclusion on Rn is

ẋ ∈ H(x). (2)

A solution of (2) on [0, T ] ⊂ R is an absolutely continuous
map x : [0, T ] → Rn that satisfies (2) for almost all t ∈
[0, T ]. If H is locally bounded, upper semicontinuous, and
takes non-empty, compact, and convex values, then existence
of solutions is guaranteed. The set of equilibria of (2) is
Eq(H) = {x ∈ Rn | 0 ∈ H(x)}.

III. PROBLEM STATEMENT

Consider n ∈ Z≥1 power generators communicating over
a strongly connected and weight-balanced digraph G =
(V, E ,A). Each generator corresponds to a vertex in the
digraph and an edge (i, j) represents the ability of gener-
ator j to send information to generator i. The cost of power
generation for unit i is measured by fi : R→ R≥0, assumed
to be convex and continuously differentiable. Representing
the power generated by unit i by Pi ∈ R, the total cost
incurred by the network with the power allocation P =
(P1, . . . , Pn) ∈ Rn is measured by f : Rn → R≥0 as

f(P ) =

n∑
i=1

fi(Pi).

Note that f is convex and continuously differentiable. The
generators aim to minimize the total cost f(P ) while meeting
the total power load Pl ∈ R>0, i.e.,

∑n
i=1 Pi = Pl. Each

generator has an upper and a lower limit on the power it can
produce, Pmi ≤ Pi ≤ PMi for i ∈ {1, . . . , n}. Formally, the
economic dispatch (ED) problem is

minimize f(P ), (3a)

subject to 1>nP = Pl, (3b)

Pm ≤ P ≤ PM . (3c)

The constraint (3b) is the load condition and (3c) are the box
constraints. We denote the feasibility set of (3) as FED =
{P ∈ Rn | Pm ≤ P ≤ PM and 1>nP = Pl} and the set of
solutions as F∗ED. Since FED is compact, F∗ED is compact.
Note that PM ∈ FED implies FED = {PM}. Similarly
Pm ∈ FED implies FED = {Pm}. Therefore, we assume
PM and Pm are not feasible.

Our objective is to design a distributed coordination al-
gorithm that allows the team of generators to solve the
ED problem (3) starting from any initial condition, can
handle time-varying loads, and is robust to intermittent power
generation.

Remark 3.1: (Additional practical constraints): We do not
consider here, for simplicity, other constraints on the ED
problem such as transmission losses, transmission line ca-
pacities, valve-point loading effects, ramp rate limits, and
prohibited operating zones. As our forthcoming treatment
will show, the design and analysis of algorithmic solutions
to the ED problem without these additional constraints is al-
ready quite challenging given our performance requirements.

Nevertheless, Remark 5.3 later comments on how to adapt
our algorithm to deal with more general scenarios. •

Our design strategy relies on the following reformulation
of the ED problem without inequality constraints. Consider
the modified ED problem

minimize f ε(P ), (4a)

subject to 1>nP = Pl, (4b)

where the objective function is

f ε(P ) =

n∑
i=1

fi(Pi) +
1

ε
(

n∑
i=1

([Pi − PMi ]+ + [Pmi − Pi]+)).

This corresponds to each generator i ∈ {1, . . . , n} having
the modified local cost

f εi (Pi) = fi(Pi) +
1

ε
([Pi − PMi ]+ + [Pmi − Pi]+).

Note that f εi is convex, locally Lipschitz, and continuously
differentiable on R except at Pi = Pmi and Pi = PMi .
Moreover, the total cost f ε is convex, locally Lipschitz, and
regular. According to our previous work [7, Proposition 5.2],
the solutions to the original (3) and the modified (4) ED
problems coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED
‖∇f(P )‖∞

. (5)

Throughout the paper, we assume the parameter ε satisfies
this condition. A useful fact is that P ∗ ∈ Rn is a solution
of (4) if and only if there exists µ ∈ R such that

µ1n ∈ ∂f ε(P ∗) and 1>nP
∗ = Pl. (6)

IV. ROBUST CENTRALIZED ALGORITHMIC SOLUTION

This section presents a robust strategy to make the network
power allocation converge to the solution set of the ED
problem starting from any initial condition. Even though this
algorithm is centralized, its design provides enough insight
to tackle later the design of a distributed algorithmic solu-
tion. Consider the “load mismatch + Laplacian-nonsmooth-
gradient” (abbreviated lm+L∂) dynamics, represented by the
set-valued map Xlm+L∂ : Rn ⇒ Rn,

Ṗ ∈ −L∂f ε(P ) +
1

n
(Pl − 1>nP )1n, (7)

where L is the Laplacian associated to the strongly connected
and weight-balanced communication digraph G. For each
generator, the first term seeks to minimize the total cost while
leaving unchanged the total generated power. The second
term is a feedback element that seeks to drive the units
towards the satisfaction of the load. The first term is com-
putable using information from its neighbors but the second
term requires them to know the aggregated state of the whole
network, which makes it not directly implementable in a
distributed manner. The next result states the convergence
properties of (7).

Theorem 4.1: (Convergence of the trajectories of Xlm+L∂



to the solutions of ED problem): The trajectories of (7)
starting from any point in Rn converge to the set of solutions
of (3).

Interestingly, by computing the evolution of V1(P ) =
(Pl − 1>nP )2 along (7) one can deduce that the feedback
term in (7) drives the mismatch between generation and load
to zero at an exponential rate, no matter what the initial
power allocation. This is a good indication of its robustness
properties: time-varying loads or scenarios with generators
going down and coming back online can be handled as long
as the rate of these changes is lower than the exponential
rate of convergence associated to the load satisfaction. We
provide a formal characterization of these properties for
the distributed implementation of this strategy in the next
section.

V. ROBUST DISTRIBUTED ALGORITHMIC SOLUTION

This section presents a distributed strategy to solve the
ED problem starting from any initial power allocation. We
build on the centralized design presented in Section IV. We
also formally characterize the robustness properties against
addition and deletion of generators and time-varying loads.

Given the discussion on the centralized nature of the
dynamics (7), the core idea of our design is to employ a
dynamic average consensus algorithm that allows each unit
in the network to estimate the mismatch in load satisfaction.
To this end, we assume the total load Pl is only known to one
generator r ∈ {1, . . . , n} (its specific identity is arbitrary).
Following Section II-B, consider the dynamics,

ż = −αz − βLz − v + ν2(Pler − P ),

v̇ = αβLz,

where er ∈ Rn is the unit vector along the r-th direction
and α, β, ν2 > 0 are design parameters. Note that this
dynamics is distributed over the communication graph G.
For each i ∈ {1, . . . , n}, zi plays the role of an estimator
associated to i which aims to track the average signal t 7→
1
n (Pl − 1>nP (t)). This observation justifies substituting the
feedback term in (7) by z ∈ Rn, giving rise to the “dynamic
average consensus + Laplacian-nonsmooth-gradient” dynam-
ics, abbreviated dac+L∂ for convenience, mathematically
represented by the set-valued map Xdac+L∂ : R3n ⇒ R3n,

Ṗ ∈ −L∂f ε(P ) + ν1z, (9a)
ż = −αz − βLz − v + ν2(Pler − P ), (9b)
v̇ = αβLz, (9c)

where ν1 > 0 is a design parameter. Unlike (7), this
dynamics is distributed, as each agent only needs to interact
with its neighbors to implement it. The next result formalizes
the convergence properties of the dac+L∂ dynamics to the
set of solutions of the ED problem.

Theorem 5.1: (Convergence of the dac+L∂ dynamics to

the solutions of ED problem): For α, β, ν1, ν2 > 0 with

ν1
βν2λ2(L + L>)

+
ν22λmax(L>L)

2α
< λ2(L + L>), (10)

the trajectories of (9) starting from any point in Rn ×Rn ×
H0 converge to the set F∗aug = {(P, z, v) ∈ F∗ED × {0} ×
Rn | v = ν2(Pler − P )}.

Note that as a consequence of the above result, the
dac+L∂ dynamics does not require any specific pre-
processing for the initialization of the power allocations.
Each generator can select any generation level, independent
of the other units, and the algorithm guarantees convergence
to the solutions of the ED problem.

Remark 5.2: (Distributed selection of algorithm design pa-
rameters): The convergence of the dac+L∂ dynamics relies
on a selection of the parameters α, β, ν1 and ν2 ∈ R>0 that
satisfy (10). Checking this inequality requires knowledge of
the spectrum of matrices related to the Laplacian matrix,
and hence the entire network structure. Here, we provide an
alternative condition that implies (10) and can be checked by
the units in a distributed way. Let nmax be an upper bound
on the number of units, dout,max be an upper bound on the
out-degree of all units, and amin be a lower bound on the
edge weights,

n ≤ nmax, max
i∈V

dout(i) ≤ dout,max, min
(i,j)∈E

aij ≥ amin. (11)

A straightforward generalization of [21, Theorem 4.2] for
weighted graphs gives rise to the following lower bound on
λ2(L + L>),

4amin

n2max
≤ λ2(L + L>). (12)

On the other hand, using properties of matrix norms [22,
Chapter 9], one can deduce

λmax(L>L) = ‖L‖2 ≤ (
√
n‖L‖∞)2

≤ (2
√
ndout,max)2 ≤ 4nmax(dout,max)2. (13)

Using (12)-(13), the left-hand side of (10) can be upper
bounded by

ν1
βν2λ2(L + L>)

+
ν22λmax(L>L)

2α

≤ ν1n
2
max

4aminβν2
+

2ν22nmax(dout,max)2

α
.

Further, the right-hand side of (10) can be lower bounded
using (12). Putting the two together, we obtain the new
condition

ν1n
2
max

4aminβν2
+

2ν22nmax(dout,max)2

α
<

4amin

n2max
, (14)

which implies (10). The network can ensure that this condi-
tion is met in various ways. For instance, if the bounds nmax,
dout,max, and amin are not available, the network can imple-
ment distributed algorithms for max- and min-consensus [23]
to compute them in finite time. Once known, any generator
can select α, β, ν1 and ν2 satisfying (14) and broadcast its



choice. Alternatively, the computation of the design parame-
ters can be implemented concurrently with the determination
of the bounds via consensus by providing a specific formula
to select them that is guaranteed to satisfy (14). Note that the
units necessarily need to agree on the parameters, otherwise
if each unit selects a different set of parameters, the dynamic
average consensus would not track the average input signal.
•

Remark 5.3: (Distributed loads and transmission losses):
Here we expand on our observations in Remark 3.1 regarding
the inclusion of additional constraints on the ED problem.
Our algorithmic solution can be easily modified to deal with
the alternative scenarios studied in [24], [4], [6], [11], where
each generator has the knowledge of the load at the corre-
sponding bus that it is connected to and the total load is the
aggregate of these individual loads. Mathematically, denoting
the load demanded at generator bus i by PLi ∈ R, the total
load is given by Pl =

∑n
i=1 P

L
i . For this case, replacing

the vector Pler by PL in the dac+L∂ dynamics (9b) gives
an algorithm that solves the ED problem for the load Pl.
Our solution strategy can also handle transmission losses as
modeled in [6], where it is assumed that each generator i can
estimate the power loss in the transmission lines adjacent to
it. With those values available, the generator could add them
to the quantity PLi , which would make the network find a
power allocation that takes care of the transmission losses.
•

A. Robustness analysis

In this section, we study the robustness properties of the
dac+L∂ dynamics in the presence of time-varying loads
and intermittent power generation. Our analysis relies on the
exponential stability of the mismatch dynamics between total
generation and load, a fact that is established next. Define
x1(t) = 1>nP (t)−Pl and x2(t) = ẋ1(t). Then, the dynamics
of x under (9) can be written as a first-order system[

ẋ1
ẋ2

]
=

[
0 1

−ν1ν2 −α

] [
x1
x2

]
. (15)

Evaluating the Lie derivative of the positive definite, radially
unbounded function V2(x1, x2) = ν1ν2x

2
1 + x22 along the

above dynamics and applying the LaSalle Invariance Prin-
ciple [25], we deduce that x1(t) → 0 and x2(t) → 0 as
t → ∞, that is, 1>nP (t) → Pl and 1>n z(t) → 0. Since the
system (15) is linear, the convergence is exponential. This
implies that (15) is input-to-state stable (ISS) [25, Lemma
4.6], and consequently robust against arbitrary bounded per-
turbations. The following result provides an explicit, expo-
nentially decaying, bound for the evolution of any trajectory
of (15).

Lemma 5.4: (Convergence rate of the mismatch dynam-
ics (15)): Let R ∈ R2×2 be defined by

R =
1

2αν1ν2

[
α2 + ν1ν2 + (ν1ν2)2 α

α 1 + ν1ν2

]
.

Then R � 0 and any trajectory t 7→ x(t) of the dynam-
ics (15) satisfies ‖x(t)‖ ≤ c1e

−c2t‖x(0)‖, where c1 =√
λmax(R)/λmin(R) and c2 = 1/2λmax(R).

In the above result, it is interesting to note that the con-
vergence rate is independent of the specific communication
digraph (as long as it is weight-balanced). We use next the
exponentially decaying bound obtained above to illustrate the
extent to which the network can collectively track a dynamic
load (which corresponds to a time-varying perturbation in
the mismatch dynamics) and is robust to intermittent power
generation (which corresponds to perturbations in the state
of the mismatch dynamics).

1) Tracking dynamic loads: Here we consider a time-
varying total load given by a twice continuously differen-
tiable trajectory R≥0 3 t 7→ Pl(t) and show how the
total generation of the network under the dac+L∂ dynamics
tracks it. We assume the signal is known to an arbitrary unit
r ∈ {1, . . . , n}. In this case, the dynamics (15) takes the
following form[

ẋ1
ẋ2

]
=

[
0 1

−ν1ν2 −α

] [
x1
x2

]
+

[
0

−αṖl − P̈l

]
.

Using Lemma 5.4, one can compute the following bound on
any trajectory of the above system

‖x(t)‖ ≤ c1e−c2t‖x(0)‖+
c1
c2

sup
s∈[0,t]

∣∣∣αṖl(s) + P̈l(s)
∣∣∣ .

In particular, for a signal with bounded Ṗl and P̈l, the mis-
match between generation and load, i.e., x1(t) is bounded.
Also, the mismatch has an ultimate bound as t → ∞. The
following result summarizes this notion formally. The proof
is straightforward application of Lemma 5.4 following the
exposition of input-to-state stability in [25].

Proposition 5.5: (Power mismatch is ultimately bounded
for dynamic load under dac+L∂ dynamics): Let R≥0 3 t 7→
Pl(t) be twice continuously differentiable such that

sup
t≥0

∣∣∣Ṗl(t)∣∣∣ ≤ d1, sup
t≥0

∣∣∣P̈l(t)∣∣∣ ≤ d2,
for some d1, d2 > 0. Then, the mismatch 1>nP (t) − Pl(t)
between load and generation is bounded along the trajectories
of (9) and has ultimate bound c1

c2
(αd1+d2), with c1, c2 given

in Lemma 5.4. Moreover, if Ṗl(t) → 0 and P̈l(t) → 0 as
t→∞, then 1>nP (t)→ Pl(t) as t→∞.

2) Robustness to intermittent power generation: Here, we
characterize the algorithm robustness against unit addition
and deletion to capture scenarios with intermittent power
generation. Addition and deletion events are modeled via
a time-varying communication digraph, which we assume
remains strongly connected and weight-balanced at all times.
When a unit stops generating power (deletion event), the
corresponding vertex and its adjacent edges are removed.
When a unit starts providing power (addition event), the
corresponding node is added to the digraph along with
a set of edges. Given the intricacies of the convergence



analysis for the dac+L∂ dynamics, cf. Theorem 5.1, it is
important to make sure that the state v remains in the set
H0, irrespectively of the discontinuities caused by the events.
The following routine makes sure that this is the case.

TRAJECTORY INVARIANCE: When a unit i joins
the network at time t, it starts with vi(t) = 0. When
a unit i leaves the network at time t, it passes a
token with value vi(t) to one of its in-neighbors
j ∈ N in(i), who resets its value to vj(t) + vi(t).

The TRAJECTORY INVARIANCE routine ensures that the
dynamics (15) is the appropriate description for the evolution
of the load satisfaction mismatch. This, together with the ISS
property established in Lemma 5.4, implies that the mismatch
effect in power generation caused by addition/deletion events
vanishes exponentially fast. In particular, if the number of
addition/deletion events is finite, then the set of generators
converge to the solution of the ED problem. We formalize
this next.

Proposition 5.6: (Convergence of dac+L∂ dynamics un-
der intermittent power generation): Let nmax be the maximum
number of generators that can contribute to the power gen-
eration at any time. Let Σnmax be the set of digraphs that are
strongly connected and weight-balanced and whose vertex
set is included in {1, . . . , nmax}. Let σ : [0,∞) → Σnmax

be a piecewise constant, right-continuous switching signal
described by the set of switching times {t1, t2, . . . } ⊂ R≥0,
with tk ≤ tk+1, each corresponding to either an addition or
a deletion event. Denote by Xσ

dac+L∂ the switching dac+L∂
dynamics corresponding to σ, defined by (9) with L replaced
by L(σ(t)) for all t ≥ 0, and assume agents execute the
TRAJECTORY INVARIANCE routine when they leave or join
the network. Then,

(i) at any time t ∈ {0} ∪ {t1, t2, . . . }, if the vari-
ables (P (t), z(t)) for the generators in σ(t) satisfy∣∣1>nP (t)− Pl

∣∣ ≤ M1 and
∣∣1>n z(t)∣∣ ≤ M2 for some

M1,M2 > 0, then the magnitude of the mismatch
between generation and load becomes less than or
equal to ρ > 0 in time

tρ =
1

c2
ln
(c1(M1 + ν1M2)

ρ

)
,

provided no event occurs in the interval (t, t+ tρ);
(ii) if the number of events is finite, say N , then the

trajectories of Xσ
dac+L∂ converge to the set of solutions

of the ED problem for the group of generators in σ(tN )
provided (10) is met for σ(tN ).

Note that the generators can ensure that the condition (10),
required for the convergence of the dac+L∂ dynamics, holds
at all times even under addition and deletion events, if they
rely on verifying that (14) holds and the bounds (11) are
valid for all the topologies in Σnmax .

Unit ai bi ci Pm
i PM

i
1 671 10.1 0.000299 150 455
2 574 10.2 0.000183 150 455
3 374 8.8 0.001126 20 130
4 374 8.8 0.001126 20 130
5 461 10.4 0.000205 150 470
6 630 10.1 0.000301 135 460
7 548 9.8 0.000364 135 465
8 227 11.2 0.000338 60 300
9 173 11.2 0.000807 25 162
10 175 10.7 0.001203 25 160
11 186 10.2 0.003586 20 80
12 230 9.9 0.005513 20 80
13 225 13.1 0.000371 25 85
14 309 12.1 0.001929 15 55
15 323 12.4 0.004447 15 55

TABLE I
COEFFICIENTS OF THE QUADRATIC COST FUNCTION

fi(Pi) = ai + biPi + ciP
2
i AND LOWER Pm

i AND UPPER PM
i

GENERATION LIMITS FOR EACH UNIT i.

VI. SIMULATIONS

Here, we illustrate the convergence of the dac+L∂ dynam-
ics to the solutions of the ED problem (3) starting from any
initial power allocation. We consider a 15 bus system [26].
Table I gives the cost function of each generator and its ca-
pacity bounds. For all the scenarios considered, we select the
initial condition for the dynamics to be (P (0), z(0), v(0)) =
(0.5 ∗ (Pm + PM ), 0, 0) and the design parameters to be
ν1 = 1, ν2 = 2, α = 5, β = 20, and ε = 0.0253, which
satisfy the conditions (5) and (10).

For the first case, the communication topology is G, as
described in Table II. The total load is 2630 for the first
300 seconds, and 2550 for the next 300 seconds, and is
known to unit 3. Figure 1(a)-(c) shows the evolution of the
power allocation, total cost, and the mismatch between the
total generation and load under the dac+L∂ dynamics. The
generators initially converge to an optimal allocation that
meets the load 2630. Later, with the decrease in desired load
to 2550, the network decreases the total generation while
minimizing the total cost.

Next, we consider a time-varying total load given by a
constant plus a sinusoid, Pl(t) = 2300 + 70 sin(0.05t).
With the same communication topology G among the units,
Figure 1 (d)-(f) depicts the evolutiong of the network under
the dac+L∂ dynamics. As established in Proposition 5.5,
the total generation tracks the time-varying load signal and
the mismatch between these values is ultimately bounded.
Additionally, to illustrate how that the mismatch vanishes if
the load becomes constant, we show in Figure 2 a load signal
that consists of short bursts of sinusoidal variation that decay
exponentially. As the load tends towards a constant signal,
the mismatch between generation and load becomes smaller
and smaller.

Our final scenario considers addition and deletion of gen-
erators. The initial communication topology is the undirected
graph Ĝ described in Table II. The total load is 2630 and is
the same at all times. For the first 50 seconds, the power



G digraph over 15 vertices consisting of a directed cycle through vertices 1, . . . , 15 and bi-directional edges
{(i, id15(i+ 3)), (i, id15(i+ 6))} for each i ∈ {1, . . . , 15}, where id15(x) = x if x ∈ {1, . . . , 15} and
x− 15 otherwise. All edge weights are 0.1.

Ĝ obtained from G by replacing the directed cycle with an undirected one keeping the edge weights same
Ĝ\{8} obtained from Ĝ by removing the vertex {8} and the edges adjacent to it
Ĝ\{12} obtained from Ĝ by removing the vertex {12} and the edges adjacent to it

TABLE II
DEFINITION OF THE DIGRAPHS G , Ĝ , Ĝ\{8} , AND Ĝ\{12} .
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Fig. 1. Evolution of the power allocation, the total cost, and the total mismatch between generation and load under the dac+L∂ dynamics for the 15 bus
example in different scenarios. The design parameters remain the same for all the cases and are set as ν1 = 1, ν2 = 2, α = 5, β = 20, and ε = 0.0253.
In the first case (a)-(c), the communication topology is G. The load is initially 2630 and later 2550. In the second scenario (d)-(f), the digraph remains the
same but the load is time-varying, Pl(t) = 2300 + 70 sin(0.05t). In the last case (g)-(i), the communication graph is initially the graph Ĝ. At t = 50s,
unit 8 leaves the network, resulting in the communication topology Ĝ\{8}, and the remaining agents run the TRAJECTORY INVARIANCE routine. Later,
at t = 150s, unit 8 joins the network while unit 12 leaves it, resulting in the communication topology Ĝ\{12}. After implementing the TRAJECTORY

INVARIANCE routine, the dac+L∂ dynamics eventually converges to an optimizer of the ED problem for the network Ĝ\{12}.

allocations converge to a neighborhood of a solution of the
ED problem for the set of generators in Ĝ. At time t = 50s,
the units 8 stops generating power and leaves the network.
We select this generator because of its substantial impact in
the total power generation. After this event, the resulting
communication graph is Ĝ\{8}, cf. Table II. The genera-
tors implement the TRAJECTORY INVARIANCE routine, after
which the dac+L∂ dynamics drives the mismatch to zero and
minimizes the total cost. At t2 = 150s, another event occurs,
the unit 8 gets added back to the network while the unit 12
leaves. The resulting communication topology is Ĝ\{12}, cf.
Table II. After executing the TRAJECTORY INVARIANCE rou-
tine, the dynamics converges eventually to the optimizers of
the ED problem for the set of generators in Ĝ\{12}, as shown
in Figure 1(g)-(i). This example illustrates the robustness of
the dac+L∂ dynamics against intermittent generation by the

units, as formally established in Proposition 5.6. In addition
to the presented examples, we also successfully simulated
scenarios of the kind described in Remark 5.3, where the
total load is not known to a single generator and is instead
the aggregate of the local loads connected to each of the
generator buses, but we do not report here for space reasons.

VII. CONCLUSIONS

We have designed a novel provably-correct distributed
strategy that allows a group of generators to solve the
economic dispatch problem starting from any initial power
allocation. Our algorithm design combines elements from
average consensus to dynamically estimate the mismatch be-
tween generation and desired load and ideas from distributed
optimization to dynamically allocate the unit generation
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Fig. 2. Evolution of the total power generation for the 15 bus example under
the dac+L∂ dynamics for the communication digraph G, design parameters
ν1 = 1, ν2 = 2, α = 5, β = 20 and ε = 0.0253, and time-varying total
load. The plot depicts the input-to-state stability of the mismatch dynamics.

levels. Our analysis has shown that the mismatch dynamics
between total generation and load is input-to-state stable and,
as a consequence, the coordination algorithm is robust to
initialization errors, dynamic load signals, and intermittent
power generation. Future work will explore the study of the
preservation of the generator box constraints under the pro-
posed coordination strategy, the extension to scenarios that
involve additional constraints, such as transmission losses,
transmission line capacity constraints, ramp rate limits, pro-
hibited operating zones, and valve-point loading effects,
and the study of the stability and convergence properties
of algorithm designs that combine our approach here with
traditional primary and secondary generator controllers.
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