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Abstract

This paper considers the economic dispatch problem for a network of power generating units communicating over a strongly
connected, weight-balanced digraph. The collective aim is to meet a power demand while respecting individual generator
constraints and minimizing the total generation cost. We design a distributed coordination algorithm consisting of two
interconnected dynamical systems. One block uses dynamic average consensus to estimate the evolving mismatch in load
satisfaction given the generation levels of the units. The other block adjusts the generation levels based on the optimization
objective and the estimate of the load mismatch. Our convergence analysis shows that the resulting strategy provably converges
to the solution of the dispatch problem starting from any initial power allocation, and therefore does not require any specific
procedure for initialization. We also characterize the algorithm robustness properties against the addition and deletion of units
(capturing scenarios with intermittent power generation) and its ability to track time-varying loads. Our technical approach
employs a novel refinement of the LaSalle Invariance Principle for differential inclusions, that we also establish and is of
independent interest. Several simulations illustrate our results.
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1 Introduction

The advent of renewable energy sources and their inte-
gration into electricity grids is making power generation
and distribution an increasingly decentralized problem.
The large-scale and highly dynamic nature of the result-
ing grid optimization problems makes traditional cen-
tralized, top-down approaches impractical because they
rely on the assumption of a fixed, limited number of gen-
eration units. To solve these problems efficiently, there is
a need to design distributed algorithms that can handle
dynamic loads, provide plug-and-play capabilities, are
robust against transmission and generation failures, and
adequately preserve the privacy of the entities involved.
These considerations motivate us to consider here the de-
sign of distributed algorithmic solutions to the economic
dispatch (ED) problem, where a group of power gener-
ators aims to meet a power demand while minimizing
the total generation cost (the summation of individual
costs) and respecting the individual generators’ capacity
constraints. We are interested in the synthesis of strate-
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gies that solve the ED problem starting from any initial
power allocation, can handle time-varying loads, and are
robust against intermittent power generation caused by
unit addition and deletion.

Literature review: The ED problem has been tradition-
ally solved in a centralized manner, see e.g. [Chowd-
hury and Rahman, 1990] and references therein. Since
distributed algorithmic solutions to grid optimization
problems are envisioned as part of the future smart
grid [Farhangi, 2010], this has motivated the appearance
of a number of distributed strategies for the ED prob-
lem in the literature. While there exists a broad variety
in the assumptions made, a majority of the works rely
on the specific form of the solutions of the optimization
problem and propose consensus-based algorithms. Many
works consider convex, quadratic cost functions for the
power generators and perform consensus over their in-
cremental costs under undirected [Zhang and Chow,
2012, Kar and Hug, 2012] or directed [Dominguez-
Garcia et al., 2012, Binetti et al., 2014a] communica-
tion topologies. Some works consider general convex
cost functions, like we do here, but either do not con-
sider capacity constraints on the generators [Mudumbai
et al., 2012], assume the initial power allocation to meet
the total load [Cherukuri and Cortés, 2015, Pantoja
et al., 2014], or require feedback on the power mismatch
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from the shift in frequency due to primary droop con-
trol [Zhang et al., 2014]. Along with load and capacity
constraints, [Binetti et al., 2014a, Loia and Vaccaro,
2013] consider transmission losses, and [Binetti et al.,
2014b] additionally take into account valve-point load-
ing effects and prohibited operating zones. However,
these constraints make the problem nonconvex and pre-
vent these works from obtaining theoretical guarantees
on the algorithm convergence properties. In [Du et al.,
2012], the authors propose best-response dynamics for a
potential-game formulation of the nonconvex ED prob-
lem, but the implementation requires all-to-all commu-
nication among the generators. [Xiao and Boyd, 2006,
Johansson and Johansson, 2009] introduce distributed
methods to solve resource allocation problem very simi-
lar to the ED problem, but without taking into account
individual agent constraints. Instead, these are incorpo-
rated in the formulation of [Simonetto et al., 2012], but
the proposed algorithm arrives at suboptimal solutions
of the optimization problem. Our work is also related
with the literature on distributed optimal frequency
control in power networks [Zhao et al., 2014, Mallada
et al., 2015, Li et al., 2015] dealing with primary and
secondary control (tightly connected with the physical
network and its dynamics over short time horizons),
while we focus here on tertiary control (which allows for
longer time horizons and more flexibility in planning).
Our algorithm design and analysis rely on dynamic av-
erage consensus and differential inclusions. In dynamic
average consensus, see e.g. [Freeman et al., 2006, Kia
et al., 2015] and references therein, each agent has ac-
cess to a time-varying input signal and interacts with
its neighbors in order to track the average of the input
signals across the network. We build on our previous
work [Cherukuri and Cortés, 2015], which requires a
proper algorithm initialization, and employ tools from
dynamic average consensus to synthesize a coordina-
tion strategy that converges from any initial condition.
Regarding analysis, our technical approach builds on
Lyapunov stability tools for differential inclusions and
nonsmooth systems, see e.g. [Bacciotti and Ceragioli,
1999, Cortés, 2008] and references therein. Of particular
importance is the work [Arsie and Ebenbauer, 2010] for
differential equations, that provides a way to further
refine the description of omega-limit sets of trajectories
by employing more than one LaSalle-type function.

Statement of contributions: We start with the formal def-
inition of the ED problem for a network of power gener-
ators communicating over a strongly connected, weight-
balanced digraph. The optimization problem is convex
as the individual cost functions are smooth and convex,
the load satisfaction is a linear constraint, and the indi-
vidual generators’ capacities prescribe convex inequal-
ity constraints. Our formulation is a simplification of
the ED problem in its full generality, which in practice
may have additional constraints that make it noncon-
vex. However, our developments show that obtaining a
provably correct algorithmic solution for the formula-
tion here of the ED problem given the performance re-

quirements (distributed, convergent irrespective of ini-
tial condition, able to handle time-varying loads, and
robust to intermittent power generation) is challenging.
Our first contribution is the design of a centralized algo-
rithm, termed “load mismatch + Laplacian-nonsmooth-
gradient” dynamics, that solves the ED problem start-
ing from any initial power allocation. This strategy has
two components: one component seeks to optimize the
network generation cost while keeping constant the to-
tal power generated; the other component is a feed-
back correction term driven by the error between the
desired total load and the network generation. This lat-
ter term is responsible for ensuring that the algorithm
trajectories asymptotically satisfy the load satisfaction
constraint irrespective of the initial power allocation.
These observations set the basis for our second contri-
bution, which is the synthesis of a distributed coordi-
nation algorithm, termed “dynamic average consensus
+ Laplacian-nonsmooth-gradient” dynamics, with the
same convergence guarantees. Our design consists of two
coupled dynamical systems: a dynamic average consen-
sus algorithm to estimate the mismatch between gen-
eration and desired load in a distributed fashion and
distributed Laplacian-nonsmooth-gradient that employ
these estimates to dynamically allocate the unit genera-
tion levels. The convergence analysis of both the central-
ized and distributed algorithms relies on a combination
of tools from algebraic graph theory, nonsmooth anal-
ysis, set-valued dynamical systems, and dynamic aver-
age consensus, and most notably on a refined version
of the LaSalle Invariance Principle for differential inclu-
sions, which constitutes our third contribution. Roughly
speaking, the application of the known LaSalle Invari-
ance Principle would only establish asymptotic conver-
gence towards the network satisfaction of the total load.
Instead, the use of the refined version allows us, for each
algorithm, to establish global convergence of the trajec-
tories to the solutions of the ED problem. Our final con-
tribution is the formal characterization of the robustness
properties of the distributed algorithm. Building on the
observation that the mismatch dynamics between net-
work generation and total load are exponentially con-
vergent and input-to-state stable, we establish the al-
gorithm ability to track time-varying loads and its ro-
bustness in scenarios with intermittent power genera-
tion. The generality of our design and analysis makes
the proposed algorithm applicable to other resource al-
location problems with constraints beyond the area of
power systems.

2 Preliminaries

This section introduces basic concepts and preliminaries.
We begin with some notational conventions. Let R, R≥0,
R>0, Z≥1 denote the real, nonnegative real, positive real,
and positive integer numbers, resp. For r ∈ R we denote
Hr = {x ∈ Rn | 1>n x = r}. The 2- and ∞-norms on Rn
and their respective induced norms on Rn×n are denoted
with ‖·‖ and ‖·‖∞, resp. We letB(x, δ) = {y ∈ Rn | ‖y−
x‖ < δ}. ForD ⊂ Rn,D denotes its closure. For x ∈ Rn,
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xi ∈ R denotes its i-th component. Given vectors x, y ∈
Rn, x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . , n}.
We denote 1n = (1, . . . , 1) ∈ Rn.A set-valued map f :
Rn ⇒ Rm associates to each point in Rn a set in Rm. For
a symmetric matrix A ∈ Rn×n, λmin(A) and λmax(A)
denote the minimum and maximum eigenvalues of A.
Finally, we let [u]+ = max{0, u} for u ∈ R.

2.1 Graph theory

We present basic notions from algebraic graph theory fol-
lowing [Bullo et al., 2009]. A directed graph (or digraph)
is a pair G = (V, E), with V = {1, . . . , n} the vertex set
and E ⊆ V ×V the edge set. A path is a sequence of ver-
tices connected by edges. A digraph is strongly connected
if there is a path between any pair of vertices. The sets
of out- and in-neighbors of v are, resp., Nout(v) = {w ∈
V | (v, w) ∈ E} and N in(v) = {w ∈ V | (w, v) ∈ E}. A
weighted digraph G = (V, E ,A) is composed of a digraph
(V, E) and an adjacency matrix A ∈ Rn×n≥0 with aij > 0

iff (i, j) ∈ E . The weighted out- and in-degree of i are,
resp., dout(i) =

∑n
j=1 aij and din(i) =

∑n
j=1 aji. The

Laplacian matrix is L = Dout−A, where Dout is the diag-
onal matrix with (Dout)ii = dout(i), for all i ∈ {1, . . . , n}.
Note that L1n = 0. If G is strongly connected, then 0 is
a simple eigenvalue of L. G is undirected if L = L>. G
is weight-balanced if dout(v) = din(v), for all v ∈ V iff
1>n L = 0 iff L+ L> ≥ 0. Note that any undirected graph
is weight-balanced. If G is weight-balanced and strongly
connected, then 0 is a simple eigenvalue of L + L>. In
such case, one has for x ∈ Rn,

x>(L + L>)x ≥ λ2(L + L>)
∥∥∥x− 1

n
(1>n x)1n

∥∥∥2

, (1)

with λ2(L+L>) the smallest non-zero eigenvalue of L+L>.

2.2 Dynamic average consensus

Here, we introduce notions on dynamic average consen-
sus following [Kia et al., 2015]. Consider n ∈ Z≥1 agents
communicating over a strongly connected, weight-
balanced digraph G whose Laplacian is denoted as L.
Each agent is associated with a state xi ∈ R and an in-
put signal t 7→ ui(t) ⊂ R that is measurable and locally
essentially bounded. The aim is to provide distributed
dynamics such that the state of each agent xi(t) tracks
the average signal 1

n

∑n
i=1 ui(t) asymptotically. This

can be achieved via the dynamics Xdac : R2n → R2n,

ẋ = −αx− βLx− v + νu,

v̇ = αβLx,

where α, β, ν > 0 are design parameters and v ∈ Rn
is an auxiliary state. If the initial condition satis-
fies 1>n v(0) = 0 and the time-derivatives of the in-
put signals are bounded, then one can show, cf. [Kia
et al., 2015, Corollary 4.1], that the error signal
t 7→

∣∣xi(t)− 1
n

∑n
i=1 ui(t)

∣∣ is ultimately bounded for
each i ∈ {1, . . . , n}. Moreover, this error vanishes if the

input signal converges to a constant value.

2.3 Nonsmooth analysis and differential inclusions

We review here some notions from nonsmooth analy-
sis and differential inclusions following [Cortés, 2008]. A
function f : Rn → Rm is locally Lipschitz at x ∈ Rn
if there exist Lx, ε ∈ (0,∞) such that ‖f(y) − f(y′)‖ ≤
Lx‖y−y′‖, for all y, y′ ∈ B(x, ε). A function f : Rn → R
is regular at x ∈ Rn if, for all v ∈ Rn, the right and gen-
eralized directional derivatives of f at x in the direction
of v coincide, see [Cortés, 2008] for definitions of these
notions. A function that is continuously differentiable at
x is regular at x. Also, a convex function is regular. A
set-valued mapH : Rn ⇒ Rn is upper semicontinuous at
x ∈ Rn if, for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such
that H(y) ⊂ H(x) +B(0, ε) for all y ∈ B(x, δ). Also, H
is locally bounded at x ∈ Rn if there exist εx, δx ∈ (0,∞)
such that ‖z‖ ≤ εx for all z ∈ H(y) and y ∈ B(x, δx). H
is locally bounded if it is so at each point in Rn.

Given a locally Lipschitz function f : Rn → R, let Ωf
be the set (of measure zero) of points where f is not
differentiable. The generalized gradient ∂f : Rn ⇒ Rn is

∂f(x) = co{ lim
i→∞

∇f(xi) | x = lim
i→∞

xi andxi /∈ S ∪Ωf},

where co denotes convex hull and S ⊂ Rn can be any
set of measure zero. The map ∂f is locally bounded,
upper semicontinuous, and takes non-empty, compact,
and convex values. A critical point x of f satisfies 0 ∈
∂f(x).

Given a set-valued map H : Rn ⇒ Rn, a differential
inclusion on Rn is

ẋ ∈ H(x). (3)

A solution of (3) on [0, T ] ⊂ R is an absolutely continu-
ous map x : [0, T ] → Rn that satisfies (3) for almost all
t ∈ [0, T ]. IfH is locally bounded, upper semicontinuous,
and takes non-empty, compact, and convex values, then
existence of solutions is guaranteed. The set of equilibria
of (3) is Eq(H) = {x ∈ Rn | 0 ∈ H(x)}. A set S ⊂ Rn is
weakly (resp., strongly) positively invariant under (3) if,
for each x ∈ S, at least a solution (resp., all solutions)
starting from x is (resp., are) entirely contained in S.
For dynamics with uniqueness of solution, both notions
coincide and are referred as positively invariant. Given
a locally Lipschitz function f : Rn → R, the set-valued
Lie derivative LHf : Rn ⇒ R of f with respect to (3) is

LHf(x) = {a ∈ R | ∃v ∈ H(x) s.t. ζ>v = a for all

ζ ∈ ∂f(x)}.

For a trajectory t 7→ ϕ(t),ϕ(0) ∈ Rn of (3), the evolution
of f along it satisfies

d

dt
f(ϕ(t)) ∈ LHf(ϕ(t))

for almost all t ≥ 0. The omega-limit set of the trajec-
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tory, denoted Ω(ϕ), is the set of all points y ∈ Rn for
which there exists a sequence {tk}∞k=1 with tk →∞ and
limk→∞ ϕ(tk) = y. If the trajectory is bounded, then the
omega-limit set is nonempty, compact, connected, and
weakly invariant. These tools allow us to characterize
the asymptotic behavior of solutions of differential in-
clusions. In Appendix A we develop a novel refinement
of the LaSalle Invariance Principle for differential inclu-
sions, see e.g., [Cortés, 2008], which is suitable for the
analysis of the coordination algorithms.

3 Problem statement

This section presents the network model and the eco-
nomic dispatch problem we set out to solve in a dis-
tributed and robust fashion. Consider n ∈ Z≥1 power
generators communicating over a strongly connected
and weight-balanced digraph G = (V, E ,A). Each gen-
erator corresponds to a vertex in the digraph and an
edge (i, j) represents the ability of generator j to send
information to generator i. The cost of power genera-
tion for unit i is measured by fi : R→ R≥0, assumed to
be convex and continuously differentiable. Represent-
ing the power generated by unit i by Pi ∈ R, the total
cost incurred by the network with the power allocation
P = (P1, . . . , Pn) ∈ Rn is measured by f : Rn → R≥0 as

f(P ) =

n∑
i=1

fi(Pi).

Note that f is convex and continuously differentiable.
The generators aim to minimize the total cost f(P ) while
meeting the total power load Pl ∈ R>0, i.e.,

∑n
i=1 Pi =

Pl. Each generator has an upper and a lower limit on the
power it can produce, Pmi ≤ Pi ≤ PMi for i ∈ {1, . . . , n}.
Formally, the economic dispatch (ED) problem is

minimize f(P ), (4a)

subject to 1>nP = Pl, (4b)

Pm ≤ P ≤ PM . (4c)

The constraint (4b) is the load condition and (4c) are the
box constraints. The set of allocations satisfying the box
constraints is FB = {P ∈ Rn | Pm ≤ P ≤ PM}. Fur-
ther, we denote the feasibility set of (4) as FED = FB ∩
HPl = {P ∈ Rn | Pm ≤ P ≤ PM and 1>nP = Pl} and
the set of solutions as F∗ED. Since FED is compact, F∗ED

is compact. Note that PM ∈ FED implies FED = {PM}.
Similarly Pm ∈ FED implies FED = {Pm}. Therefore,
we assume PM and Pm are not feasible.

Our objective is to design a distributed coordination al-
gorithm that allows the team of generators to solve the
ED problem (4) starting from any initial condition, can
handle time-varying loads, and is robust to intermittent
power generation.

Remark 3.1 (Additional practical constraints): We do
not consider here, for simplicity, other constraints on

the ED problem such as transmission losses, transmis-
sion line capacities, valve-point loading effects, ramp
rate limits, and prohibited operating zones. As our
forthcoming treatment will show, the design and analy-
sis of algorithmic solutions to the ED problem without
these additional constraints is already quite challenging
given our performance requirements. Nevertheless, Re-
mark 5.5 later comments on how to adapt our algorithm
to deal with more general scenarios. •
Our design strategy relies on the following reformula-
tion of the ED problem without inequality constraints.
Consider the modified ED problem

minimize f ε(P ), (5a)

subject to 1>nP = Pl, (5b)

where the objective function is

f ε(P ) =

n∑
i=1

fi(Pi) +
1

ε
(

n∑
i=1

([Pi − PMi ]+ + [Pmi − Pi]+)).

This corresponds to each generator i ∈ {1, . . . , n} having
the modified local cost

f εi (Pi) = fi(Pi) +
1

ε
([Pi − PMi ]+ + [Pmi − Pi]+).

Note that f εi is convex, locally Lipschitz, and contin-
uously differentiable on R except at Pi = Pmi and
Pi = PMi . Moreover, the total cost f ε is convex, lo-
cally Lipschitz, and regular. According to our previous
work [Cherukuri and Cortés, 2015, Proposition 5.2], the
solutions to the original (4) and the modified (5) ED
problems coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED ‖∇f(P )‖∞
. (6)

Throughout the paper, we assume the parameter ε sat-
isfies this condition. A useful fact is that P ∗ ∈ Rn is a
solution of (5) if and only if there exists µ ∈ R such that

µ1n ∈ ∂f ε(P ∗) and 1>nP
∗ = Pl. (7)

4 Robust centralized algorithmic solution

This section presents a robust strategy to make the
network power allocation converge to the solution set
of the ED problem starting from any initial condition.
Even though this algorithm is centralized, its design
provides enough insight to tackle later the design of
a distributed algorithmic solution. Consider the “load
mismatch + Laplacian-nonsmooth-gradient” (abbrevi-
ated lm+L∂) dynamics, represented by the set-valued
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map Xlm+L∂ : Rn ⇒ Rn,

Ṗ ∈ −L∂f ε(P ) +
1

n
(Pl − 1>nP )1n, (8)

where L is the Laplacian associated to the strongly con-
nected and weight-balanced communication digraph G.
For each generator, the first term seeks to minimize the
total cost while leaving unchanged the total generated
power. The second term is a feedback element that seeks
to drive the units towards the satisfaction of the load.
The first term is computable using information from its
neighbors but the second term requires them to know
the aggregated state of the whole network, which makes
it not directly implementable in a distributed manner.
The next result shows that the trajectories of (8) con-
verge to the set of solutions of the ED problem.

Theorem 4.1 (Convergence of the trajectories of
Xlm+L∂ to the solutions of the ED problem): The trajec-
tories of (8) starting from any point in Rn converge to
the set of solutions of (4).

PROOF. Our proof strategy proceeds by applying the
refined LaSalle Invariance Principle for differential in-
clusions established in Appendix A, cf. Proposition A.1.
Consider the following function V1 : Rn → R≥0,

V1(P ) =
1

2
(Pl − 1>nP )2.

The set-valued Lie derivative of V1 along Xlm+L∂ is

LXlm+L∂
V1(P ) = {−(Pl − 1>nP )2} = {−2V1(P )}.

Thus, starting at anyP (0) ∈ Rn, the trajectory ofXlm+L∂

satisfies V1(P (t)) = V1(P (0))e−2t and its omega-limit
set (provided the trajectory is bounded, a fact that we
assume is true for now and establish later) is contained
in HPl . In the notation of Proposition A.1, HPl plays
the role of the closed submanifold S of Rn. We next
show that the hypotheses of this result hold. In the
notation of the Lemma A.1, the function f ε, the map
(P, ζ) 7→ −Lζ, and the set-valued map P ⇒ −L∂f ε(P )
play the role of W , g, and F , respectively (our choice

of F is because Xlm+L∂ takes the form Ṗ ∈ −L∂f ε(P )
on S = HPl). Notice that ζ 7→ −Lζ is a continuous map
and, since G is strongly connected and weight-balanced,
we have ζ>(−Lζ) = − 1

2ζ
>(L + L>)ζ ≤ 0 for any ζ ∈

∂f ε(P ). Therefore, Lemma A.1(i) is satisfied. Moreover,
if ζ>(−Lζ) = 0 for some ζ ∈ ∂f ε(P ), then ζ ∈ span{1n}.
Since for P ∈ HPl , we have

LXlm+L∂
f ε(P ) = {−ζ>Lζ | ζ ∈ ∂f ε(P )},

we deduce 0 ∈ LXlm+L∂
f ε(P ), i.e., Lemma A.1(ii) holds.

The application of Lemma A.1 then yields that Proposi-
tion A.1(ii) holds too. In addition, from the above analy-
sis, note that if 0 ∈ LXlm+L∂

f ε(P ) for some P ∈ HPl , then

there exists µ ∈ R such that µ1n ∈ ∂f ε(P ) and, from (7),
P is a solution of (4). Therefore, {P ∈ HPl | 0 ∈
LXlm+L∂

f ε(P )} is the set of solutions of the ED problem
and belongs to a level set of f ε, which establishes that
Proposition A.1(i) also holds.

To be able to apply Proposition A.1 and conclude the
proof, it remains to show that the trajectories of Xlm+L∂

are bounded. We reason by contradiction, i.e., assume
there exists a trajectory t 7→ P (t), P (0) ∈ Rn of Xlm+L∂

such that ‖P (t)‖ → ∞. From the analysis above, we
know that along this trajectory 1>nP (t) → Pl and
f ε(P (t))→∞ (as f ε is radially unbounded). Therefore,
there exist a sequence of times {tk}∞k=1 with tk → ∞
such that for all k ∈ Z≥1,

∣∣1>nP (tk)− Pl
∣∣< 1

k
and maxLXlm+L∂

f ε(P (tk))>0. (9)

This implies that there exists a sequence {ζk}∞k=1 with
ζk ∈ ∂f ε(P (tk)) such that, for all k ∈ Z≥1,

− ζ>k Lζk +
1

n
(Pl − 1>nP (tk))(1>n ζk) > 0

⇒ −ζ>k
(L + L>

2

)
ζk +

1

nk

∣∣1>n ζk∣∣ > 0 (10)

⇒ −λ2(L + L>)

2

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥2

+
1

nk

∣∣1>n ζk∣∣ > 0,

where we have used (9) in the first implication and (1)
in the second. Next, we consider two cases depending on
whether (a)

∣∣1>n ζk∣∣ is bounded or (b)
∣∣1>n ζk∣∣ → ∞. In

case (a), taking the limit k → ∞ in the last inequality
of (10), we get

lim
k→∞

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥ = 0. (11)

Since, ‖P (t)‖ → ∞ and 1>nP (t)→ Pl, there exist i, j ∈
{1, . . . , n} such that Pi(tk) → ∞ and Pj(tk) → −∞.
Let P ∗ ∈ F∗ED and µ1n ∈ ∂f ε(P ∗) for some µ ∈ R.
Then, without loss of generality, we assume that P ∗i ≤
Pi(tk) ≤ Pi(tk+1) and P ∗j ≥ Pj(tk) ≥ Pj(tk+1) for all k.
This fact along with the expression of ∂f εi : R ⇒ R,

∂f εi (Pi) =



{∇fi(Pi)− 1
ε } if Pi < Pmi ,

[∇fi(Pi)− 1
ε ,∇fi(Pi)] if Pi = Pmi ,

{∇fi(Pi)} if Pmi < Pi < PMi ,

[∇fi(Pi),∇fi(Pi) + 1
ε ] if Pi = PMi ,

{∇fi(Pi) + 1
ε } if Pi > PMi .

gives us the following property for all k ∈ Z≥1,

min ∂f εi (Pi(tk)) ≥ µ, max ∂f εj (Pj(tk)) ≤ µ, (12a)

min ∂f εi (Pi(tk+1)) ≥ max ∂f εi (Pi(tk)), (12b)

max ∂f εj (Pj(tk+1)) ≤ min ∂f εj (Pj(tk)). (12c)
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Note that the limit (11) yields limk→∞ |(ζk)i − (ζk)j | =
0. On the other hand, from (12b)-(12c), we obtain
|(ζk)i − (ζk)j | ≤ |(ζk+1)i − (ζk+1)j | for all k. Therefore,
we obtain (ζk)i = (ζk)j for all k and from (12a), we
get µ = (ζk)i = (ζk)j for all k. From (12b)-(12c), this
further implies that µ ∈ ∂f εi (x) for all x ∈ [P ∗i ,∞) and
that µ ∈ ∂f εj (x) for all x ∈ (−∞, P ∗j ]. Using this fact,
one can construct an unbounded set of solutions to the
ED problem in the following manner. First, fix all the
components of P ∗ except i and j. Now pick any x ∈ R≥0

and consider P ∗i +x and P ∗j −x. From what we have rea-
soned so far, all such points that we obtain by varying
x are solutions to the ED problem as they satisfy (7).
This contradicts the fact that F∗ED is bounded.

In case (b), assume without loss of generality that
1>n ζk →∞ (the argument for 1>n ζk → −∞ follows sim-
ilarly). As reasoned above, there exists j ∈ {1, . . . , n}
such that Pj(tk) → −∞ and there exists µ ∈ R such
that (ζk)j ≤ µ for all k ∈ Z≥1. Using this fact, we upper
bound the left hand side of the inequality (10) by

− λ2(L + L>)

2

∥∥∥ζk − 1

n
(1>n ζk)1n

∥∥∥2

+
1

nk
(1>n ζk)

≤ −λ2(L + L>)

2

(
(ζk)j −

1

n
(1>n ζk)

)2

+
1

nk
(1>n ζk)

≤ −λ2(L + L>)

2

(
µ− 1

n
(1>n ζk)

)2

+
1

nk
(1>n ζk), (13)

where the last inequality is valid for all but a finite
number of k. Hence, as 1>n ζk → ∞, there is k̄ ∈ Z≥1

such that the expression in (13) is negative for k ≥ k̄,
contradicting (10). Thus, we conclude the trajectories
are bounded. 2

From the proof above, it is interesting to note that the
feedback term (8) drives the mismatch between genera-
tion and load to zero at an exponential rate, no matter
what the initial power allocation. This is a good indica-
tion of its robustness properties: time-varying loads or
scenarios with generators going down and coming back
online can be handled as long as the rate of these changes
is lower than the exponential rate of convergence associ-
ated to the load satisfaction. We provide a formal char-
acterization of these properties for the distributed im-
plementation of this strategy in the next section.

5 Robust distributed algorithmic solution

This section presents a distributed strategy to solve
the ED problem starting from any initial power alloca-
tion. We build on the centralized design presented in
Section 4. We also formally characterize the robustness
properties against addition and deletion of generators
and time-varying loads.

Given the discussion on the centralized nature of the
dynamics (8), the core idea of our design is to employ a
dynamic average consensus algorithm that allows each
unit in the network to estimate the mismatch in load

satisfaction. To this end, we assume the total load Pl is
only known to one generator r ∈ {1, . . . , n} (its specific
identity is arbitrary). Following Section 2.2, consider the
dynamics,

ż = −αz − βLz − v + ν2(Pler − P ),

v̇ = αβLz,

where er ∈ Rn is the unit vector along the r-th di-
rection and α, β, ν2 > 0 are design parameters. Note
that this algorithm is distributed over the communi-
cation graph G. For each i ∈ {1, . . . , n}, zi plays the
role of an estimator associated to i which aims to track
the average signal t 7→ 1

n (Pl − 1>nP (t)). This observa-
tion justifies substituting the feedback term in (8) by
z ∈ Rn, giving rise to the “dynamic average consensus +
Laplacian-nonsmooth-gradient” dynamics, abbreviated
dac+L∂ for convenience, mathematically represented by
the set-valued map Xdac+L∂ : R3n ⇒ R3n,

Ṗ ∈ −L∂f ε(P ) + ν1z, (15a)

ż = −αz − βLz − v + ν2(Pler − P ), (15b)

v̇ = αβLz, (15c)

where ν1 > 0 is a design parameter. Unlike (8), this
algorithm is distributed, as each agent only needs to
interact with its neighbors to implement it.

Remark 5.1 (Comparison with finite-time initializa-
tion approach): Our previous distributed solution for
the ED problem [Cherukuri and Cortés, 2015] involves
initializing the generation levels inside the feasibility
set FED using a finite-time message passing algorithm.
This finite-time initialization approach is best suited for
scenarios with a fixed set of participating generators.
In the presence of intermittent generation, every time
a generator joins or leaves the network, the generators
have to stop the dynamics, execute the finite-time al-
gorithm, and then re-run the dynamics. This approach,
however, cannot deliver perfect tracking of continuously
time-varying loads. In contrast, the dac+L∂ dynamics
does not suffer from these limitations, as discussed later
in Section 5.2. •

5.1 Convergence analysis

Here we characterize the asymptotic convergence prop-
erties of the dac+L∂ dynamics. We start by establishing
an important fact on the omega-limit set of any trajec-
tory of (15) with initial condition in Rn × Rn ×H0.

Lemma 5.2 (Characterizing the omega-limit set of
the trajectories of the dac+L∂ dynamics): The omega-
limit set of any trajectory of (15) with initial condition
(P0, z0, v0) ∈ Rn×Rn×H0 is contained inHPl×H0×H0.

PROOF. From (15c), note that 1>n v̇ = 0. Since v0 ∈
H0, this implies that 1>n v(t) = 0 for all t ≥ 0. Now,
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define ζ(t) = 1>nP (t)− Pl and note that

ζ̇(t) = 1>n Ṗ (t) = ν11
>
n z(t),

where we have used (15a), and

ζ̈(t) = ν11
>
n ż(t)

= ν11
>
n (−αz(t)− βLz(t)− v(t) + ν2(Plek − P (t))

= −ν1α(1>n z(t))− ν1ν2ζ(t) = −αζ̇(t)− ν1ν2ζ(t),

where we have used (15b). We write this system as a

first-order one by defining x1 = ζ and x2 = ζ̇ to get[
ẋ1

ẋ2

]
=

[
0 1

−ν1ν2 −α

][
x1

x2

]
. (16)

Evaluating the Lie derivative of the positive definite,
radially unbounded function V2(x1, x2) = ν1ν2x

2
1 + x2

2
along the above dynamics and applying the LaSalle In-
variance Principle [Khalil, 2002], we deduce that x1(t)→
0 and x2(t) → 0 as t → ∞, that is, 1>nP (t) → Pl and
1>n z(t)→ 0. Since the system (16) is linear, the conver-
gence is exponential. 2

The next result builds on this fact and Proposition A.1
to establish that the trajectory of power allocations un-
der (15) converges to the solution set of the ED problem.

Theorem 5.3 (Convergence of the dac+L∂ dynamics to
the solutions of ED problem): For α, β, ν1, ν2 > 0 with

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α
< λ2(L + L>), (17)

the trajectories of (15) starting from any point in Rn ×
Rn ×H0 converge to the set F∗aug = {(P, z, v) ∈ F∗ED ×
{0} × Rn | v = ν2(Pler − P )}.

PROOF. Our proof strategy is based on the refined
LaSalle Invariance Principle for differential inclusions
established in Appendix A, cf. Proposition A.1. Before
justifying that all its hypotheses are satisfied, we refor-
mulate the expression for the dynamics to help simplify
the analysis. Consider first the change of coordinates,
(P, z, v) 7→ (P, z, v̄), with v̄ = v − ν2(Pler − P ). The
set-valued map Xdac+L∂ then takes the form

Xdac+L∂(P, z, v̄) = {(−Lζ + ν1z,−(α+ βL)z − v̄,
(αβL + ν1ν2)z − ν2Lζ) ∈ R3n | ζ ∈ ∂f ε(P )}.

The change of coordinates shifts the equilibrium of the
consensus dynamics to the origin. Under the additional

change of coordinates (P, z, v̄) 7→ (P, ξ1, ξ2), with[
ξ1

ξ2

]
=

[
I 0

αI I

][
z

v̄

]
, (18)

the set-valued map Xdac+L∂ takes the form

Xdac+L∂(P, ξ1, ξ2) = {(−Lζ + ν1ξ1,−βLξ1 − ξ2, (19)

ν1ν2ξ1 − αξ2 − ν2Lζ) ∈ R3n | ζ ∈ ∂f ε(P )}.

This extra change of coordinates makes it easier to iden-
tify the candidate Lyapunov function V3 : R3n → R≥0,

V3(P, ξ1, ξ2) = f ε(P ) +
1

2
(ν1ν2‖ξ1‖2 + ‖ξ2‖2).

For convenience, denote the overall change of coordi-
nates by D : R3n → R3n,

(P, ξ1, ξ2) = D(P, z, v) = (P, z, v + αz − ν2(Pler − P )).

Our analysis now focuses on proving that, in the new
coordinates, the trajectories of (15) converge to the set

Faug = D(F∗aug) = F∗ED × {0} × {0}.

Note thatD(HPl×H0×H0) = HPl×H0×H0 and there-
fore, from Lemma 5.2, the omega-limit set of a trajec-
tory t 7→ (P (t), ξ1(t), ξ2(t)) starting in D(Rn×Rn×H0)
belongs to HPl ×H0 ×H0.

Our next step is to show that the hypotheses of Proposi-
tion A.1 are satisfied where HPl ×H0 ×H0 and V3 play
the role of the closed submanifold S of R3n and the func-
tion W , respectively. To do so, we resort to Lemma A.1.
Define the continuous function g : R3n ×R3n → R3n by

g(P, ξ1, ξ2, ζ̂) = (−Lζ̂1 + ν1ξ1,−βLξ1 − ξ2,
ν1ν2ξ1 − αξ2 − ν2Lζ̂1),

and note that the dynamics (19) can be expressed as

Xdac+L∂(P, ξ1, ξ2) = {g(P, ξ1, ξ2, ζ̂) | ζ̂ ∈ ∂V3(P, ξ1, ξ2)}.
For (P, ξ1, ξ2) ∈ HPl ×H0 ×H0 and ζ̂ ∈ ∂V3(P, ξ1, ξ2),

ζ̂>g(P, ξ1, ξ2, ζ̂) = −ζ>Lζ + ν1ζ
>ξ1 − βν1ν2ξ

>
1 Lξ1

− α‖ξ2‖2 − ν2ξ
>
2 Lζ, (20)

where we have used that ζ = ζ̂1 ∈ ∂f ε(P ), ζ̂2 = ν1ν2ξ1,

and ζ̂3 = ξ2. Since the digraph G is strongly connected
and weight-balanced, we apply (1) and the fact that
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1>n ξ1 = 0 to bound the above expression as

− 1

2
λ2(L+L>)‖η‖2+ν1η

>ξ1−
1

2
βν1ν2λ2(L+L>)‖ξ1‖2

− α‖ξ2‖2 − ν2ξ
>
2 Lη = γ>Mγ,

where η = ζ − 1
n (1>n ζ)1n, γ> = [η>, ξ>1 , ξ

>
2 ], and

M =


− 1

2λ2(L + L>)I 1
2ν1I − 1

2ν2L
>

1
2ν1I − 1

2βν1ν2λ2(L + L>)I 0

− 1
2ν2L 0 −αI

 .
Reasoning with the Schur complement [Boyd and Van-
denberghe, 2009], M ∈ R3n×3n is negative definite if

− 1

2
λ2(L + L>)I−

[
1
2ν1I − 1

2ν2L
>
] [− 1

2βν1ν2λ2(L + L>)I 0

0 −αI

]−1 [
1
2ν1I

− 1
2ν2L

]

= −1

2
λ2(L + L>)I +

ν1

2βν2λ2(L + L>)
I +

ν2
2

4α
L>L,

is negative definite. This latter fact is implied by (17).

As a consequence, ζ̂>g(P, ξ1, ξ2, ζ̂) ≤ 0 and so,

Lemma A.1(i) holds. Moreover, ζ̂>g(P, ξ1, ξ2, ζ̂) = 0 if
and only if η = ξ1 = ξ2 = 0, which means ζ ∈ span{1n}.
Using this fact along with the definition of the set-valued
Lie derivative and the characterization of optimiz-

ers (7), we deduce that ζ̂>g(P, ξ1, ξ2, ζ̂) = 0 if and only
if (a) 0 ∈ LXdac+L∂

V3(P, ξ1, ξ2) and (b) P is a solution of
the ED problem. Fact (a) implies that Lemma A.1(ii)
holds and hence, Proposition A.1(ii) holds too. Fact
(b) implies that over the set HPl × H0 × H0, we have
0 ∈ LXdac+L∂

V3(P, ξ1, ξ2) if and only if (P, ξ1, ξ2) ∈ Faug.

Since, Faug belongs to a level set of V3, we conclude
that Proposition A.1(i) holds too.

To be able to apply Proposition A.1 and conclude the
proof, it remains to show that the trajectories start-
ing from D(Rn × Rn × H0) are bounded. We reason
by contradiction, i.e., assume there exists a trajec-
tory t 7→ (P (t), ξ1(t), ξ2(t)), with initial condition
(P (0), ξ1(0), ξ2(0)) ∈ D(Rn × Rn × H0) of Xdac+L∂

such that ‖(P (t), ξ1(t), ξ2(t)‖ → ∞. Since V3 is radially
unbounded, this implies V3(P (t), ξ1(t), ξ2(t))→∞. Ad-
ditionally, from Lemma 5.2, we know that 1>nP (t)→ Pl
and 1>n ξ1(t)→ 0. Thus, there exists a sequence of times
{tk}∞k=1 with tk →∞ such that for all k ∈ Z≥1,∣∣1>n ξ1(tk)

∣∣ < 1/k, (21a)

maxLXdac+L∂
V3(P (tk), ξ1(tk), ξ2(tk)) > 0. (21b)

Note that (21b) implies that there exists a sequence
{ζk}∞k=1 with ζk ∈ ∂f ε(P (tk)) such that

− ζ>k Lζk + ν1ζ
>
k ξ1(tk)− βν1ν2ξ1(tk)>Lξ1(tk)

− α‖ξ1(tk)‖2 − ν2ξ2(tk)>Lζk > 0,

for all k ∈ Z≥1, where we have used the fact that an
element ofLXdac+L∂

V3(P, ξ1, ξ2) has the form given in (20).
Letting ηk = ζk− 1

n (1>n ζk)1n, we use (1) to deduce from
the above inequality that

− 1

2
λ2(L + L>)‖ηk‖2 + ν1η

>
k ξ1(tk) +

1

n
ν1(1>n ζk)(1>n ξ1(tk))

− 1

2
βν1ν2λ2(L + L>)‖ξ1(tk)− 1

n
(1>n ξ1(tk))1n‖2

− α‖ξ1(tk)‖2 − ν2ξ2(tk)>Lηk > 0.

Further, using the expression

‖ξ1(tk)− 1

n
(1>n ξ1(tk))1n‖2 = ‖ξ1(tk)‖2 − 1

n
(1>n ξ1(tk))2,

the inequality can be rewritten as

γ>k Mγk +
1

n
ν1(1>n ζk)(1>n ξ1(tk))

+
βν1ν2

2n
λ2(L + L>)(1>n ξ1(tk))2 > 0,

where γ>k = [η>k , ξ1(tk)>, ξ2(tk)>]. Using now the
bound (21a), we arrive at the inequality,

γ>k Mγk +
ν1

nk

∣∣1>n ζk∣∣+
βν1ν2

2nk2
λ2(L + L>) > 0. (22)

Next, we consider two cases, depending on whether the
sequence {P (tk)} is (a) bounded or (b) unbounded.
In case (a), the sequence {(ξ1(tk), ξ2(tk))} must be
unbounded. Since M is negative definite, we have
γ>k Mγk ≤ λmax(M)‖(ξ1(tk), ξ2(tk))‖2. Thus, (22) im-
plies that

λmax(M)‖(ξ1(tk), ξ2(tk))‖2 +
ν1

nk

∣∣1>n ζk∣∣
+
βν1ν2

2nk2
λ2(L + L>) > 0.

Now, from the expression of ∂f ε, since {P (tk)} is
bounded, the sequence {ζk} must be bounded. Combin-
ing these facts with λmax(M) < 0, one can find k̄ ∈ Z≥1

such that the above inequality is violated for all k ≥ k̄,
which is a contradiction. For case (b), we use the bound
γ>k Mγk ≤ λmax(M)‖ηk‖2 to deduce from (22) that

λmax(M)‖ηk‖2 +
ν1

nk

∣∣1>n ζk∣∣+
βν1ν2

2nk2
λ2(L + L>) > 0.

8



One can then use a similar argument as laid out in the
proof of Theorem 4.1, considering the two cases of

∣∣1>n ζk∣∣
being bounded or unbounded, arriving in both cases at
similar contradictions. This concludes the proof. 2

Note that as a consequence of the above result, the
dac+L∂ dynamics do not require any specific pre-
processing for the initialization of the power allocations.
Each generator can select any generation level, indepen-
dent of the other units, and the algorithm guarantees
convergence to the solutions of the ED problem.

Remark 5.4 (Distributed selection of algorithm design
parameters): The convergence of the dac+L∂ dynam-
ics relies on a selection of the parameters α, β, ν1 and
ν2 ∈ R>0 that satisfy (17). Checking this inequality re-
quires knowledge of the spectrum of matrices related
to the Laplacian matrix, and hence the entire network
structure. Here, we provide an alternative condition that
implies (17) and can be checked by the units in a dis-
tributed way. Let nmax be an upper bound on the number
of units, dout

max be an upper bound on the out-degree of
all units, and amin be a lower bound on the edge weights,

n ≤ nmax, max
i∈V

dout(i) ≤ dout
max, min

(i,j)∈E
aij ≥ amin. (23)

A straightforward generalization of [Mohar, 1991, The-
orem 4.2] for weighted graphs gives rise to the following
lower bound on λ2(L + L>),

4amin

n2
max

≤ λ2(L + L>). (24)

On the other hand, using properties of matrix norms [Bern-
stein, 2005, Chapter 9], one can deduce

λmax(L>L) = ‖L‖2 ≤ (
√
n‖L‖∞)2

≤ (2
√
ndout

max)2 ≤ 4nmax(dout
max)2. (25)

Using (24)-(25), the left-hand side of (17) can be upper
bounded by

ν1

βν2λ2(L + L>)
+
ν2

2λmax(L>L)

2α

≤ ν1n
2
max

4aminβν2
+

2ν2
2nmax(dout

max)2

α
.

Further, the right-hand side of (17) can be lower
bounded using (24). Putting the two together, we obtain
the new condition

ν1n
2
max

4aminβν2
+

2ν2
2nmax(dout

max)2

α
<

4amin

n2
max

, (26)

which implies (17). The network can ensure that this
condition is met in various ways. For instance, if the

bounds nmax, dout
max, and amin are not available, the net-

work can implement distributed algorithms for max- and
min-consensus [Ren and Beard, 2008] to compute them
in finite time. Once known, any generator can select α,
β, ν1 and ν2 satisfying (26) and broadcast its choice. Al-
ternatively, the computation of the design parameters
can be implemented concurrently with the determina-
tion of the bounds via consensus by specifying a specific
formula to select them that is guaranteed to satisfy (26).
Note that the units necessarily need to agree on the pa-
rameters, otherwise if each unit selects a different set of
parameters, the dynamic average consensus would not
track the average input signal. •
Remark 5.5 (Distributed loads and transmission
losses): Here we expand on our observations in Re-
mark 3.1 regarding the inclusion of additional con-
straints on the ED problem. Our algorithmic solution
can be easily modified to deal with the alternative sce-
narios studied in [Zhang et al., 2011, Kar and Hug, 2012,
Binetti et al., 2014a, Loia and Vaccaro, 2013], where
each generator has the knowledge of the load at the cor-
responding bus that it is connected to and the total load
is the aggregate of these individual loads. Mathemati-
cally, denoting the load demanded at generator bus i by
PLi ∈ R, the total load is given by Pl =

∑n
i=1 P

L
i . For

this case, replacing the vector Pler by PL in the dac+L∂
dynamics (15b) gives an algorithm that solves the ED
problem for the load Pl. Our solution strategy can also
handle transmission losses as modeled in [Binetti et al.,
2014a], where it is assumed that each generator i can
estimate the power loss in the transmission lines adja-
cent to it. With those values available, the generator
could add them to the quantity PLi , which would make
the network find a power allocation that takes care of
the transmission losses. •

5.2 Robustness analysis

In this section, we study the robustness properties of
the dac+L∂ dynamics in the presence of time-varying
load signals and intermittent power unit generation. Our
analysis relies on the exponential stability of the mis-
match dynamics between total generation and load es-
tablished in Lemma 5.2, which implies that (16) is input-
to-state stable (ISS) [Khalil, 2002, Lemma 4.6], and con-
sequently robust against arbitrary bounded perturba-
tions. The following result provides an explicit, exponen-
tially decaying, bound for the evolution of any trajectory
of (16). While the rate of decay can also be determined
by computing the eigenvalues of matrix defining the dy-
namics, here we employ a Lyapunov argument to obtain
also the value of the gain associated to the rate.

Lemma 5.6 (Convergence rate of the mismatch dy-
namics (16)): Let R ∈ R2×2 be defined by

R =
1

2αν1ν2

[
α2 + ν1ν2 + (ν1ν2)2 α

α 1 + ν1ν2

]
.
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Then R � 0 and any trajectory t 7→ x(t) of the dynam-
ics (16) satisfies ‖x(t)‖ ≤ c1e

−c2t‖x(0)‖, where c1 =√
λmax(R)/λmin(R) and c2 = 1/2λmax(R).

PROOF. Let A ∈ R2×2 be the system matrix of (16).
Then, one can see that A>R + RA = −I, i.e., V4(x) =
x>Rx is a Lyapunov function for (16). Note that

λmin(R)‖x‖2 ≤ V4(x) ≤ λmax(R)‖x‖2. (27)

From the Lyapunov equation, we have LAxV4(x) =
−‖x‖2 ≤ − 1

λmax(R)V4(x), which implies V4(x(t)) ≤
e−1/λmax(R)V4(x(0)) along any trajectory t 7→ x(t)
of (16). Again using (27), we get

‖x(t)‖2 ≤ λmax(R)

λmin(R)
e−1/λmax(R)‖x(0)‖2,

which concludes the claim. 2

In the above result, it is interesting to note that the con-
vergence rate is independent of the specific communica-
tion digraph (as long as it is weight-balanced). We use
next the exponentially decaying bound obtained above
to illustrate the extent to which the network can col-
lectively track a dynamic load (which corresponds to a
time-varying perturbation in the mismatch dynamics)
and is robust to intermittent power generation (which
corresponds to perturbations in the state of the mis-
match dynamics).

5.2.1 Tracking dynamic loads

Here we consider a time-varying total load given by a
twice continuously differentiable trajectory R≥0 3 t 7→
Pl(t) and show how the total generation of the network
under the dac+L∂ dynamics tracks it. We assume the
signal is known to an arbitrary unit r ∈ {1, . . . , n}. In
this case, the dynamics (16) take the following form[

ẋ1

ẋ2

]
=

[
0 1

−ν1ν2 −α

][
x1

x2

]
+

[
0

−αṖl − P̈l

]
.

Using Lemma 5.6, one can compute the following bound
on any trajectory of the above system

‖x(t)‖ ≤ c1e−c2t‖x(0)‖+
c1
c2

sup
s∈[0,t]

∣∣∣αṖl(s) + P̈l(s)
∣∣∣ .

In particular, for a signal with bounded Ṗl and P̈l, the
mismatch between generation and load, i.e., x1(t) is
bounded. Also, the mismatch has an ultimate bound
as t → ∞. The following result summarizes this notion
formally. The proof is straightforward application of
Lemma 5.6 following the exposition of input-to-state
stability in [Khalil, 2002].

Proposition 5.7 (Power mismatch is ultimately
bounded for dynamic load under the dac+L∂ dynamics):
Let R≥0 3 t 7→ Pl(t) be twice continuously differentiable
and such that

sup
t≥0

∣∣∣Ṗl(t)∣∣∣ ≤ d1, sup
t≥0

∣∣∣P̈l(t)∣∣∣ ≤ d2,

for some d1, d2 > 0. Then, the mismatch 1>nP (t)−Pl(t)
between load and generation is bounded along the trajec-
tories of (15) and has ultimate bound c1

c2
(αd1 +d2), with

c1, c2 given in Lemma 5.6. Moreover, if Ṗl(t) → 0 and

P̈l(t)→ 0 as t→∞, then 1>nP (t)→ Pl(t) as t→∞.

5.2.2 Robustness to intermittent power generation

Here, we characterize the algorithm robustness against
unit addition and deletion to capture scenarios with
intermittent power generation. Addition and deletion
events are modeled via a time-varying communication
digraph, which we assume remains strongly connected
and weight-balanced at all times. When a unit stops gen-
erating power (deletion event), the corresponding ver-
tex and its adjacent edges are removed. When a unit
starts providing power (addition event), the correspond-
ing node is added to the digraph along with a set of
edges. Given the intricacies of the convergence analysis
for the dac+L∂ dynamics, cf. Theorem 5.3, it is impor-
tant to make sure that the state v remains in the setH0,
irrespectively of the discontinuities caused by the events.
The following routine makes sure that this is the case.

trajectory invariance: When a unit i joins the
network at time t, it starts with vi(t) = 0. When a
unit i leaves the network at time t, it passes a token
with value vi(t) to one of its in-neighbors j ∈ N in(i),
who resets its value to vj(t) + vi(t).

The trajectory invariance routine ensures that
the dynamics (16) are the appropriate description
for the evolution of the load satisfaction mismatch.
This, together with the ISS property established in
Lemma 5.6, implies that the mismatch effect in power
generation caused by addition/deletion events vanishes
exponentially fast. In particular, if the number of addi-
tion/deletion events is finite, then the set of generators
converge to the solution of the ED problem. We formal-
ize this next.

Proposition 5.8 (Convergence of the dac+L∂ dynam-
ics under intermittent power generation): Let nmax be the
maximum number of generators that can contribute to
the power generation at any time. Let Σnmax be the set of
digraphs that are strongly connected and weight-balanced
and whose vertex set is included in {1, . . . , nmax}. Let σ :
[0,∞)→ Σnmax

be a piecewise constant, right-continuous
switching signal described by the set of switching times
{t1, t2, . . . } ⊂ R≥0, with tk ≤ tk+1, each correspond-
ing to either an addition or a deletion event. Denote by
Xσ

dac+L∂ the switching dac+L∂ dynamics corresponding
to σ, defined by (15) with L replaced by L(σ(t)) for all
t ≥ 0, and assume agents execute the trajectory in-
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variance routine when they leave or join the network.
Then,

(i) at any time t ∈ {0} ∪ {t1, t2, . . . }, if the vari-
ables (P (t), z(t)) for the generators in σ(t) satisfy∣∣1>nP (t)− Pl

∣∣ ≤ M1 and
∣∣1>n z(t)∣∣ ≤ M2 for some

M1,M2 > 0, then the magnitude of the mismatch
between generation and load becomes less than or
equal to ρ > 0 in time

tρ =
1

c2
ln
(c1(M1 + ν1M2)

ρ

)
,

provided no event occurs in the interval (t, t+ tρ);
(ii) if the number of events is finite, say N , then the

trajectories of Xσ
dac+L∂ converge to the set of solu-

tions of the ED problem for the group of generators
in σ(tN ) provided (17) is met for σ(tN ).

Note that the generators can ensure that the condi-
tion (17), required for the convergence of the dac+L∂ dy-
namics, holds at all times even under addition and dele-
tion events, if they rely on verifying that (26) holds and
the bounds (23) are valid for all the topologies in Σnmax .

6 Simulations in a IEEE 118 bus system

This section illustrates the convergence of the dac+L∂
dynamics to the solutions of the ED problem (4) start-
ing from any initial power allocation and its robust-
ness properties. We consider the IEEE 118 bus sys-
tem [IEEE 118 bus], that consists of 54 generators.
The cost function of each generator i is quadratic,
fi(Pi) = ai + biPi + ciP

2
i , with coefficients belonging to

the ranges ai ∈ [6.78, 74.33], bi ∈ [8.3391, 37.6968], and
ci ∈ [0.0024, 0.0697]. The communication topology is the
digraph G described in Table 1. We choose the design pa-
rameters as ν1 = 1, ν2 = 1.3, α = 10, β = 40, ε = 0.0086,
which satisfy the conditions (6) and (17) for G. The to-
tal load is 4600 for the first 150 seconds and 4200 for the
next 150 seconds, and is known to unit 3. Figure 1(a)-(c)
depicts the evolution of the power allocation, total cost,
and the mismatch between the total generation and
load under the dac+L∂ dynamics starting at the initial
condition (P (0), z(0), v(0)) = (0.5 ∗ (Pm + PM ), 0, 0).
Note that the generators initially converge to a power
allocation that meets the load 4600 and minimizes the
total cost of generation. Later, with the decrease in
desired load to 4200, the network decreases the total
generation while minimizing the total cost.

Next, we consider a time-varying total load given by a
constant plus a sinusoid, Pl(t) = 4300 + 100 sin(0.05t).
With the same communication topology, design param-
eters, and initial condition as above, Figure 1 (d)-(f) il-
lustrates the behavior of the network under the dac+L∂
dynamics. As established in Proposition 5.7, the total
generation tracks the time-varying load signal and the
mismatch between these values has an ultimate bound.
Additionally, to illustrate how that the mismatch van-
ishes if the load becomes constant, we show in Figure 2
a load signal that consists of short bursts of sinusoidal

0 150 300 450 600 750 900
3900

4100

4300

4500

4700

 

 
total generation
total load

Fig. 2. Evolution of the total power generation for the IEEE
118 bus example under the dac+L∂ dynamics for the com-
munication digraph G, design parameters ν1 = 1, ν2 = 1.3,
α = 10, β = 40 and ε = 0.0086, and time-varying total load.
The example depicts the input-to-state stability of the mis-
match dynamics.

variation that decay exponentially. The difference be-
tween generation and load becomes smaller and smaller
as the load tends towards a constant signal.

Our final scenario considers addition and deletion of gen-
erators. The initial communication topology is the undi-
rected graph Ĝ described in Table 1. The design parame-
ters and the initial condition are the same as above. The
total load is 4200 and is same at all times. For the first 100
seconds, the power allocations converge to a neighbor-
hood of a solution of the ED problem for the set of gen-
erators in Ĝ. At time t = 100s, the units {4, 11, 25, 45}
stop generating power and leave the network. We se-
lect these generators because of their substantial im-
pact in the total power generation. After this event, the
resulting communication graph is Ĝ\{4,11,25,45}, cf. Ta-
ble 1. The generators implement the trajectory in-
variance routine, after which the dac+L∂ algorithm
drives the mismatch to zero and minimizes the total cost.
At t2 = 200s, another event occurs, the units {11, 45}
get added to the network while the generator 27 leaves.
The resulting communication topology is Ĝ\{4,25,27}, cf.
Table 1. After executing the trajectory invariance
routine, the algorithm converges eventually to the op-
timizers of the ED problem for the set of generators in
Ĝ\{4,25,27}, as shown in Figure 1(g)-(i). This example il-
lustrates the robustness of the dac+L∂ dynamics against
intermittent generation by the units, as formally estab-
lished in Proposition 5.8. In addition to the presented
examples, we also successfully simulated scenarios of the
kind described in Remark 5.5, where the total load is
not known to a single generator and is instead the aggre-
gate of the local loads connected to each of the generator
buses, but we do not report them here for space reasons.
We have also observed in multiple simulations that the
dac+L∂ dynamics respects the box constraints along its
trajectories if they are satisfied at the initial condition.

7 Conclusions

We have designed a novel provably-correct distributed
strategy that allows a group of generators to solve the
economic dispatch problem starting from any initial
power allocation. Our algorithm design combines ele-
ments from average consensus to dynamically estimate
the mismatch between generation and desired load

11



G digraph over 54 vertices consisting of a directed cycle through vertices 1, . . . , 54 and bi-directional edges
{(i, id54(i+ 5)), (i, id54(i+ 10)), (i, id54(i+ 15)), (i, id54(i+ 20))} for each i ∈ {1, . . . , 54}, where
id54(x) = x if x ∈ {1, . . . , 54} and x− 54 otherwise. All edge weights are 0.1.

Ĝ obtained from G by replacing the directed cycle with an undirected one keeping the edge weights same

Ĝ\{4,11,25,45} obtained from Ĝ by removing the vertices {4, 11, 25, 45} and the edges adjacent to them

Ĝ\{4,25,27} obtained from Ĝ by removing the vertices {4, 25, 27} and the edges adjacent to them

Table 1
Definition of the digraphs G, Ĝ, Ĝ\{4,11,25,45}, and Ĝ\{4,25,27}.
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Fig. 1. Evolution of the power allocation, the total cost, and the total mismatch between generation and load under the dac+L∂
dynamics for the IEEE 118 bus example in different scenarios. In the first case (a)-(c), the communication topology is G, the
load is initially 4600 and later 4200, and parameters are ν1 = 1, ν2 = 1.3, α = 10, β = 40, and ε = 0.0086. In the second scenario
(d)-(f), the digraph and the parameters remain the same but the load is time-varying given by Pl(t) = 4300 + 100 sin(0.05t).

In the last case (g)-(i), the parameters remain the same, the communication graph is initially the graph Ĝ. At t = 100s,

units {4, 11, 25, 45} leave the network, resulting in the communication topology Ĝ\{4,11,25,45}, and the remaining agents run
the trajectory invariance routine. Later, at t = 200s, units {11, 45} join the network while unit 27 leaves it, resulting

in the communication topology Ĝ\{4,25,27}. After implementing the trajectory invariance routine, the dac+L∂ algorithm

eventually converges to an optimizer of the ED problem for the network Ĝ\{4,25,27}.

and ideas from distributed optimization to dynami-
cally allocate the unit generation levels. Our analysis
has shown that the mismatch dynamics between total
generation and load are input-to-state stable and, as a
consequence, the coordination algorithm is robust to
initialization errors, time-varying load signals, and in-
termittent power generation. Our technical approach
relies on tools from algebraic graph theory, dynamic
average consensus, set-valued dynamical systems, and
nonsmooth analysis, including a novel refinement of the
LaSalle Invariance Principle for differential inclusions

that we have stated and proved. We see the results ob-
tained here as a step upon which one can build towards
synthezising solutions for increasingly complex and re-
alistic scenarios. Future work will explore the study of
the preservation of the generator box constraints un-
der the proposed coordination strategy, the extension
to scenarios that involve additional constraints, such
as transmission losses, transmission line capacity con-
straints, ramp rate limits, prohibited operating zones,
and valve-point loading effects, and the study of the
stability and convergence properties of algorithm de-

12



signs that combine our approach here with traditional
primary and secondary generator controllers.
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A Refined LaSalle Invariance Principle for dif-
ferential inclusions

In this section we provide a refinement of the LaSalle
Invariance Principle for differential inclusions, see
e.g., [Cortés, 2008], by extending the results of [Arsie
and Ebenbauer, 2010] for differential equations. Our
motivation for developing this refinement comes from
the need to provide the necessary tools to tackle the
convergence analysis of the coordination algorithms
presented in Sections 4 and 5. Nevertheless, the results
stated here are of independent interest.
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Proposition A.1 (Refined LaSalle Invariance Princi-
ple for differential inclusions): Let F : Rn ⇒ Rn be upper
semicontinuous, taking nonempty, convex, and compact
values at every point x ∈ Rn. Consider the differential
inclusion ẋ ∈ F (x) and let t 7→ ϕ(t) be a bounded solu-
tion whose omega-limit set Ω(ϕ) is contained in S ⊂ Rn,
a closed embedded submanifold of Rn. Let O be an open
neighborhood of S where a locally Lipschitz, regular func-
tion W : O → R is defined. Assume the following holds,

(i) the set E = {x ∈ S | 0 ∈ LFW (x)} belongs to a
level set of W ,

(ii) for any compact setM⊂ S withM∩ E = ∅, there
exists a compact neighborhoodMc ofM in Rn and
δ < 0 such that supx∈Mc

maxLFW (x) ≤ δ.
Then, Ω(ϕ) ⊂ E.

Before proceeding with the proof of the result, we estab-
lish an auxiliary result.

Lemma A.2 Under the hypotheses of Proposition A.1,
the sets Ω(ϕ) and E have nonempty intersection.

PROOF. By contradiction, assume Ω(ϕ) ∩ E = ∅.
Then, using the hypothesis (ii) in Proposition A.1, there
exists δ < 0 such that supx∈Ω(ϕ) maxLFW (x) ≤ δ. Let

x ∈ Ω(ϕ). Since this set is weakly positively invariant,
there exists a trajectory t 7→ ϕ̃(t) of the differential
inclusion with ϕ̃(0) = x such that ϕ̃(t) ∈ Ω(ϕ). Since
d
dtW (ϕ̃(t)) ∈ LFW (ϕ̃(t)) for almost all t ≥ 0, we get
W (ϕ̃(t))−W (x) ≤ δt. This is in contradiction with the
fact that t 7→ ϕ̃(t) belongs to the compact set Ω(ϕ),
where W is lower bounded. 2

We are now ready to prove Proposition A.1.

PROOF. [Proof of Proposition A.1] We consider two
cases, depending on whether the set Ω(ϕ) (a) is or (b)
is not contained in a level set of W . In case (a), given
any x ∈ Ω(ϕ), there exists a trajectory of F starting at
x that remains in Ω(ϕ) (because of the weak positive
invariance of the omega-limit set). If x 6∈ E , then by
the hypotheses (ii), there exists a compact neighborhood
Mx of x in Rn and δ < 0 such that supy∈Mx

LFW (y) ≤
δ. Since Ω(ϕ) ⊂ S, the trajectory of F starting at x
remains in the setMx ∩S for a finite time, say t1. Over
the time interval [0, t1], we have W (t) − W (0) ≤ δt.
This, however, is in contradiction with the fact that the
trajectory belongs to Ω(ϕ) which is contained in a level
set ofW . Therefore, x ∈ E , and since this point is generic,
we conclude Ω(ϕ) ⊂ E .

Next, we consider case (b) and reason by contradic-
tion, i.e., assume that Ω(ϕ) is not contained in E (see
Figure A.1). Given ε > 0, let Bε ⊂ O be a compact
neighborhood of Ω(ϕ) in Rn such that d(Bε,Ω(ϕ)) ≤ ε.
Let U be an open neighborhood of E in Rn and define
Uε = U ∩Bε. Note that Uε is nonempty because Ω(ϕ)∩E
is nonempty by Lemma A.2. Since Ω(ϕ) is not contained
in a level set of W but E is by hypotheses (i), we can

bPM

bm

P

E

Ω(ϕ)

U

UP

W

S

P

E

Ω(ϕ)

Bε

S

UP

U

Fig. A.1. Illustration (adapted from [Arsie and Ebenbauer,
2010, Figure 1]) depicting various elements involved in the
case (b) of the proof of Proposition A.1.

choose P ∈ Ω(ϕ) \ E such that W (P ) 6= W (E). Without
loss of generality, assume W (P ) < W (E) (the reasoning
is analogous for the other case). Select an open neigh-
borhood UP of P in Rn and define UPε = UP ∩Bε. Define
the following quantities

bm = inf
x∈Uε

W (x), bPM = sup
x∈UPε

W (x).

Note that the neighborhoods U and UP can be chosen
such that the set Ω(ϕ)\ (U ∪UP ) is nonempty, compact,
and its intersection with E is empty. Along with this,
one can select ε in such a way that bm > bPM and from
assumption (ii) we get

sup
x∈Bε\(U∪UP )

maxLFW (x) ≤ δ < 0, (A.1)

(in the case W (P ) > W (E), we would reason with the
quantities bM = supx∈UεW (x) and bPm = infx∈UPε W (x)).
Since Ω(ϕ) is the omega-limit set of ϕ and Bε is a com-
pact neighborhood of Ω(ϕ), there exists t1 > 0 such
that ϕ(t1) ∈ UPε and ϕ(t) ∈ Bε for all t ≥ t1. Moreover,
since Ω(ϕ)∩E is nonempty, there must also exist t2 > t1
such that ϕ(t2) ∈ Uε. From continuity of the trajectory
we deduce that there exist times t∗1, t

∗
2 ∈ (t1, t2), t∗1 < t∗2

such that ϕ(t∗1) and ϕ(t∗2) lie on the boundary of the
compact set Bε \ (Uε ∪ UPε ), with ϕ(t∗1) belonging to the
closure of UPε and ϕ(t∗2) to the closure of Uε. However,
this is not possible as W (ϕ(t∗2)) ≥ bm > bPM ≥W (ϕ(t∗1))
and, in the interval [t∗1, t

∗
2], the trajectory belongs to

Bε \ (Uε ∪UPε ), where the function W can only decrease
due to (A.1), which is a contradiction. 2

B Continuity properties of set-valued Lie
derivatives

Here we present an auxiliary result for the convergence
analysis of the algorithms of Sections 4 and 5.

Lemma A.1 (Continuity property of set-valued Lie
derivatives): Let W : Rn → R be a locally Lipschitz and
regular function. Let g : Rn × Rn → Rn be a continuous
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function and define the set-valued map F : Rn ⇒ Rn by
F (x) = {g(x, ζ) | ζ ∈ ∂W (x)}. Assume that

(i) S is an embedded submanifold of Rn such that
ζ>g(x, ζ) ≤ 0 for all x ∈ S and all ζ ∈ ∂W (x),

(ii) for any x ∈ S, if ζ>g(x, ζ) = 0 for some ζ ∈ ∂W (x),
then x ∈ E = {z ∈ S | 0 ∈ LFW (z)}.

Then, for any compact setM⊂ S withM∩E = ∅, there
exists a compact neighborhoodMc ofM in Rn and δ < 0
such that supx∈Mc

maxLFW (x) ≤ δ.

PROOF. We reason by contradiction, i.e., assume that
for all compact neighborhoods Mc of M in Rn and all
δ < 0, we have

sup
x∈Mc

maxLFW (x) > δ.

Note that this implies that supx∈Mc
maxLFW (x) ≥ 0.

Now, for each k ∈ Z≥1, consider the compact neighbor-

hoodMk =M+B(0, 1
k ) ofM. From the above, we de-

duce the existence of a sequence {xk}∞k=1 with xk ∈Mk

such that

lim
k→∞

maxLFW (xk) = ` ≥ 0. (A.1)

Since the whole sequence belongs to the compact set
M1, there exists a subsequence, which we denote with
the same indices for simplicity, such that

lim
k→∞

xk = x̃ ∈M. (A.2)

From (A.1), there exists a sequence ζk ∈ ∂W (xk) such
that

lim
k→∞

ζ>k g(xk, ζk) ≥ 0. (A.3)

Since ∂W is upper semicontinuous with compact val-
ues, the set ∂W (M1) is compact, cf. [Aubin and Cel-
lina, 1984, Proposition 3, p. 42]. This implies that the
sequence {ζk} belongs to the compact set ∂W (M1) and
hence, there exists a subsequence, denoted again by the
same indices for simplicity, such that ζk → ζ̃. Now since
∂W is upper semicontinuous and takes closed values,
we deduce from [Aubin and Cellina, 1984, Proposition

2, p. 41] that ζ̃ ∈ ∂W (x̃). From (A.2) and (A.3), since

g is continuous, we obtain ζ̃>g(x̃, ζ̃) ≥ 0. By assump-

tion (i), this implies ζ̃>g(x̃, ζ̃) = 0. Assumption (ii)
then implies x̃ ∈ E , which together with (A.2) contra-
dictsM∩ E = ∅. 2
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