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Abstract— This paper considers the economic dispatch prob-
lem for a group of power generating units communicating over
an arbitrary strongly connected, weight-balanced digraph. The
goal of the group is to collectively meet a specified load while
respecting individual generation bounds and minimizing the
total generation cost, which corresponds to the sum of indi-
vidual arbitrary convex functions. We introduce a distributed
coordination algorithm, termed Laplacian-set-valued dynamics,
and establish its asymptotic convergence to the solutions of
the economic dispatch problem. In addition, we show that the
algorithm is anytime, meaning that its executions are feasible
solutions at all times and the total cost monotonically decreases
as time elapses. The technical approach combines notions
and tools from algebraic graph theory, nonsmooth analysis,
set-valued dynamical systems, and penalty functions. Several
simulations illustrate our results.

I. INTRODUCTION

In future electricity grids, the number of power generat-
ing units will increase considerably due to the increasing
availability of renewable energy sources, the construction of
smart buildings and homes, and a myriad of technological ad-
vances. This in turn will make the scale of optimization prob-
lems pertaining to power generation and distribution very
large and dynamic. In such scenarios, centralized approaches
might become impractical. Therefore, there is a need to
develop distributed algorithmic solutions that allow units to
coordinate with neighboring units to collectively find the
solution. Such distributed implementations have the potential
to be robust against generation and transmission failures in
the grid and can cater to dynamic demands. Motivated by this
vision, we study here distributed algorithmic solutions for the
economic dispatch (ED) problem. In this problem, a group
of power generating units with individual generation costs
described by smooth, convex functions seek to determine
the generation levels such that the total cost is collectively
minimized while satisfying the total load and respecting
individual power limits. Our aim is to synthesize distributed
algorithms that asymptotically converge to the solutions of
the ED problem and are anytime, i.e., its executions are
feasible solutions at any time before convergence and they
become better and better solutions as time elapses.

Literature review: Traditionally, solution methodologies
for the economic dispatch problem have been centralized in
nature [1]. Given the expected high density of the future
electricity grid [2], the focus has shifted in recent years
to distributed algorithmic solutions. Some of these use
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consensus-based algorithms for quadratic cost functions and
communication topologies defined by an undirected [3], [4],
[5] or a directed [6] graph. A limitation of these methods is
that, in general, they do not generate anytime executions.
Center-free algorithms [7], [8] instead, are anytime, and
solve an optimal resource allocation problem identical to
the ED problem for general convex functions, but they do
not consider individual generator constraints. In [9] general
convex functions and general local constraints for the units
are considered but the trajectories of the proposed distributed
algorithm only converge to suboptimal points by solving
a regularized version of the problem. Our work has also
connections with the emerging body of research on dis-
tributed optimization, see e.g., [10], [11], [12], [13] and
references therein, where network agents communicate and
update their individual estimates of the complete solution
vector. In contrast, in our setting, each unit communicates
and optimizes its own local variable, and all the local
variables are connected via a global constraint. We have
also studied the ED problem in the journal version [14]
of this work. However, the Laplacian set-valued dynamics
introduced here as well as the analysis of its asymptotic
correctness are novel and have not been presented elsewhere.

Statement of contributions: Our starting point is the
formulation of the ED problem for a group of power-
generator units that communicate over an arbitrary weight-
balanced, strongly connected digraph. Our main contribution
is the design of the Laplacian-set-valued dynamics and the
analysis of its asymptotic convergence to the set of solutions
of the ED problem. We establish the anytime nature of
the algorithm, i.e., the load constraint and capacity bounds
are satisfied at all times and the aggregate cost decreases
monotonically along the evolutions. The algorithm design is
based on an alternative, exact-penalty formulation of the ED
problem that, unlike the original problem, has no bounds
on the capacity of individual generators. In comparison
with the dynamics we presented in [14], the advantage of
the dynamics proposed here is that convergence can be
guaranteed under less stringent conditions, independent of
the network topology, on the parameter associated to the
exact penalty formulation. Our technical approach relies on
tools from nonsmooth analysis, constrained optimization, and
graph theory. Simulations illustrate our results.

Organization: Section II contains basic preliminaries.
Section III presents the ED problem. Section IV introduces
the Laplacian-set-valued dynamics and establishes its conver-
gence properties. Section V presents simulations. Section VI
summarizes our conclusions and ideas for future work.



II. PRELIMINARIES

This section introduces basic concepts from graph the-
ory, nonsmooth analysis, discontinuous dynamics, and con-
strained optimization. We begin with some notational con-
ventions. Let R, R≥0, R>0, Z≥1 denote the set of real,
nonnegative real, positive real, and positive integer numbers,
respectively. We denote the 2-norm and ∞-norm on Rn by
‖ · ‖2 and ‖ · ‖∞, respectively. We let B(x, δ) = {y ∈
Rn | ‖y − x‖2 < δ} denote the open ball centered at
x ∈ Rn with radius δ > 0. The projection of a point
x ∈ Rn onto a closed and convex set D is denoted by πD(x),
where πD(x) satisfies ‖x − πD(x)‖2 = miny∈D ‖x − y‖2.
We use the shorthand notation 0n = (0, . . . , 0) ∈ Rn,
1n = (1, . . . , 1) ∈ Rn, and In ∈ Rn×n for the identity
matrix. Given x ∈ Rn, xi denotes the i-th component of x.
For x, y ∈ Rn, x ≤ y denotes xi ≤ yi for i ∈ {1, . . . , n}.
A set-valued map f : Rn ⇒ Rm associates to each point in
Rn a set in Rm. Given a set-valued map f : Rn ⇒ Rm and
a matrix A ∈ Rp×m, their composition h = Af : Rn ⇒ Rp
is the set-valued map defined by h(x) = {z ∈ Rp | z =
Ay with y ∈ f(x)}. We let [u]+ = max{0, u} for u ∈ R.

A. Graph theory

We present some basic notions from algebraic graph
theory following [15]. A directed graph, or simply digraph,
is a pair G = (V, E), where V is a finite set called
the vertex set and E ⊆ V × V is the edge set. A path
is an ordered sequence of vertices such that any ordered
pair of vertices appearing consecutively is an edge of the
digraph. A digraph is strongly connected if there is a path
between any pair of distinct vertices. For a digraph, Nout(vi)
and Nin(vi) are the sets of out- and in-neighbors of vi,
respectively, i.e., Nout(vi) = {vj ∈ V | (vi, vj) ∈ E} and
Nin(vi) = {vj ∈ V | (vj , vi) ∈ E}. A weighted digraph
is a triplet G = (V, E ,A), where (V, E) is a digraph and
A ∈ Rn×n≥0 is the adjacency matrix of G, with the property
that aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. The
weighted out-degree and in-degree of vi, i ∈ {1, . . . , n}, are
respectively, dout(vi) =

∑n
j=1 aij and din(vi) =

∑n
j=1 aji.

The weighted out-degree matrix Dout is the diagonal matrix
defined by (Dout)ii = dout(i), for all i ∈ {1, . . . , n}. The
Laplacian matrix is L = Dout − A. Note that L1n = 0. If
G is strongly connected, then zero is a simple eigenvalue
of L. G is undirected if L = L> and weight-balanced if
dout(v) = din(v), for all v ∈ V . Equivalently, G is weight-
balanced if and only if 1>n L = 0 if and only if L + L> is
positive semidefinite.

B. Nonsmooth analysis

Here, we introduce some key notions on nonsmooth anal-
ysis following [16]. A function f : Rn → Rm is locally
Lipschitz at x ∈ Rn if there exist Lx, ε ∈ (0,∞) such that

‖f(y)− f(y′)‖2 ≤ Lx‖y − y′‖2,

for all y, y′ ∈ B(x, ε). A function f : Rn → R is regular
at x ∈ Rn if, for all v ∈ Rn, the right directional derivative
of f at x in the direction of v exists, and coincides with the

generalized directional derivative of f at x in the direction
of v, see [17] for definitions of these notions. A function
that is continuously differentiable at x is regular at x. Also,
a convex function is regular.

A set-valued map H : Rn ⇒ Rn is upper semicontinuous
at x ∈ Rn if, for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such
that H(y) ⊂ H(x) +B(0, ε) for all y ∈ B(x, δ). Also, H is
locally bounded at x ∈ Rn if there exist ε, δ ∈ (0,∞) such
that ‖z‖2 ≤ ε for all z ∈ H(y), and all y ∈ B(x, δ).

Given a locally Lipschitz function f : Rn → R, let
Ωf be the set (of measure zero) of points where f is not
differentiable. The generalized gradient ∂f : Rn ⇒ Rn of f
is defined by

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co is the convex hull and S ⊂ Rn is any set of measure
zero. The set-valued map ∂f is locally bounded, upper
semicontinuous, and takes non-empty, compact, and convex
values. A critical point x ∈ Rn of f satisfies 0 ∈ ∂f(x).

C. Stability of differential inclusions

We gather here some useful tools to analyze the stability
properties of differential inclusions [16],

ẋ ∈ H(x), (1)

where H : Rn ⇒ Rn is a set-valued map. A solution of (1)
on [0, T ] ⊂ R is an absolutely continuous map x : [0, T ]→
Rn that satisfies (1) for almost all t ∈ [0, T ]. If the set-valued
map H is locally bounded, upper semicontinuous, and takes
non-empty, compact, and convex values, then the existence
of solutions is guaranteed. The set of equilibria of (1) is
denoted by Eq(H) = {x ∈ Rn | 0 ∈ H(x)}. A set S ⊂ Rn
is strongly positively invariant under (1) if, for each x ∈ S,
all solutions starting from x are entirely contained in S.

Given a locally Lipschitz function f : Rn → R, the set-
valued Lie derivative LHf : Rn ⇒ R of f with respect
to (1) at x is defined as

LHf = {a ∈ R | there exists v ∈ H(x) such that ζ>v = a

for all ζ ∈ ∂f(x)}.

The next result, see e.g., [16, Theorem 2], provides a way
to establish the asymptotic convergence of (1).

Theorem 2.1: (LaSalle Invariance Principle for differential
inclusions): Let H : Rn ⇒ Rn be locally bounded, upper
semicontinuous, with non-empty, compact, and convex val-
ues. Let f : Rn → R be locally Lipschitz and regular. If
S ⊂ Rn is compact and strongly invariant under (1) and
maxLHf(x) ≤ 0 for all x ∈ S, then the solutions of (1)
starting at S converge to the largest weakly invariant set M
contained in S ∩ {x ∈ Rn | 0 ∈ LHf(x)}. Moreover, if the
set M consists of a finite number of points, then the limit of
each solution starting in S exists and is an element of M .

D. Constrained optimization and exact penalty functions

Here, we introduce some notions on constrained optimiza-
tion problems and exact penalty functions following [18],



[19]. Consider the constrained optimization problem,

minimize f(x), (2a)
subject to g(x) ≤ 0m, h(x) = 0p, (2b)

where f : Rn → R, g : Rn → Rm, and h : Rn → Rp, with
p ≤ n, are continuously differentiable. The refined Slater
condition is satisfied by (2) if there exists x ∈ Rn such that
h(x) = 0p, g(x) ≤ 0m, and gi(x) < 0 for all nonaffine
functions gi. The optimization (2) is convex if f and g are
convex and h affine. For convex optimization problems, the
refined Slater condition implies that strong duality holds.

A point x ∈ Rn is a Karush-Kuhn-Tucker (KKT) point
of (2) if there exist Lagrange multipliers λ ∈ Rm≥0 and ν ∈
Rp such that

g(x) ≤ 0m, h(x) = 0p, λ>g(x) = 0,

∇f(x) +

m∑
i=1

λi∇gi(x) +

p∑
i=1

νi∇hi(x) = 0.

If the optimization (2) is convex and strong duality holds,
then a point is a solution of (2) if and only if it is a KKT
point.

In the presence of inequality constraints in (2), we are
interested in using exact penalty function methods to elim-
inate them while keeping the equality constraints intact. To
this end, we follow the exposition in [19] to construct a
nonsmooth exact penalty function f ε : Rn → R,

f ε(x) = f(x) +
1

ε

m∑
i=1

[gi(x)]+

with ε > 0, and define the minimization problem

minimize f ε(x), (3a)
subject to h(x) = 0p. (3b)

Note that, if f is convex, then f ε is convex because the
function t 7→ 1

ε [t]+ is convex. Therefore, if the problem (2) is
convex, then the problem (3) is convex as well. The following
result, see e.g. [19, Proposition 1], identifies conditions under
which the solutions of the problems (2) and (3) coincide.

Proposition 2.2: (Equivalence of problems (2) and (3)):
Assume that the optimization problem (2) is convex, has
nonempty and compact solution set, and satisfies the refined
Slater condition. Then, the problems (2) and (3) have exactly
the same solutions if

1

ε
> ‖λ‖∞,

for some Lagrange multiplier λ ∈ Rm≥0 of the problem (2).
Note that a Lagrange multiplier for (2) exists because, the

refined Slater condition is satisfied, and hence every solution
is a KKT point.

III. PROBLEM STATEMENT

Consider a network of n ∈ Z≥1 power generators whose
communication topology is represented by a strongly con-
nected and weight-balanced digraph G = (V, E ,A). Each
generator corresponds to a vertex of the digraph and an edge

of the form (i, j) represents the capability of generator j to
transmit information to generator i.

The power generated by the vertex i is denoted by Pi ∈ R.
Each generator i ∈ {1, . . . , n} has a cost function fi :
R→ R≥0, which is assumed to be convex and continuously
differentiable. The cost incurred by vertex i to generate
power Pi is then fi(Pi). The total cost incurred by the
network with the power allocation P = (P1, . . . , Pn) ∈ Rn
is given by f : Rn → R≥0 as

f(P ) =

n∑
i=1

fi(Pi).

Note that the function f is also convex and continuously
differentiable. The group of generators are given a total
power load Pl ∈ R>0 that must be met, i.e.,

∑n
i=1 Pi = Pl,

while at the same time minimizing the total incurred cost
f(P ). For each generator there exist an upper and a lower
limit on the power it can produce, i.e., Pmi ≤ Pi ≤ PMi for
each i ∈ {1, . . . , n}. Formally, the economic dispatch (ED)
problem is defined by

minimize f(P ), (4a)

subject to 1>nP = Pl, (4b)

Pm ≤ P ≤ PM . (4c)

We refer to (4b) as the load condition and to (4c) as the
box constraints. We let FED = {P ∈ Rn | Pm ≤
P ≤ PM and 1>nP = Pl} denote the feasibility set of (4).
Since the set FED is compact, the set of solutions of (4)
is compact. Moreover, since the constraints (4b) and (4c)
are affine, feasibility of the ED problem implies that the
refined Slater condition is satisfied and strong duality holds
for the problem (4). Note that if either PM ∈ FED or
Pm ∈ FED, then FED is a singleton. For this reason, and
without loss of generality, we assume that PM and Pm are
not feasible points for the ED problem. Our objective is to
design a distributed procedure that allows the network of
power-generators to solve the ED problem.

IV. DISTRIBUTED ALGORITHMIC SOLUTION TO THE
ECONOMIC DISPATCH PROBLEM

This section presents our main contribution: the design
and analysis of the Laplacian-set-valued dynamics as a
distributed algorithmic solution to the ED problem. The syn-
thesis of this strategy is based on an alternative formulation
of the ED problem proposed in [14] using an exact penalty
function approach. This formulation, which we review next,
sets the basis for the design of our Laplacian-based consensus
dynamics using the generalized gradients of the modified
local cost functions.

A. Exact penalty function formulation

In this section, we employ the exact penalty function
approach described in Section II-D to provide an equivalent
formulation of the ED problem without the box constraints.



Consider the nonsmooth objective function

f ε(P ) =

n∑
i=1

fi(Pi) +
1

ε
(

n∑
i=1

([Pi − PMi ]+ + [Pmi − Pi]+)).

Note that this corresponds to a scenario where generator i ∈
{1, . . . , n} has local cost given by

f εi (Pi) = fi(Pi) +
1

ε
([Pi − PMi ]+ + [Pmi − Pi]+). (5)

This function is convex, locally Lipschitz, and continuously
differentiable in R except at Pi = Pmi and Pi = PMi . Its
generalized gradient ∂f εi : R ⇒ R is given by

∂f εi (Pi) =



{∇fi(Pi)− 1
ε } Pi < Pmi ,

[∇fi(Pi)− 1
ε ,∇fi(Pi)] Pi = Pmi ,

{∇fi(Pi)} Pmi < Pi < PMi ,

[∇fi(Pi),∇fi(Pi) + 1
ε ] Pi = PMi ,

{∇fi(Pi) + 1
ε } Pi > PMi .

As a result, the total cost f ε is convex, locally Lipschitz, and
regular. Its generalized gradient at P = (P1, . . . , Pn) ∈ Rn is
given by ∂f ε(P ) = ∂f ε1(P1)×· · ·×∂f εn(Pn). Next, consider
the modified ED problem as

minimize f ε(P ), (6a)

subject to 1>nP = Pl. (6b)

The following result from [14] establishes the equivalence of
this optimization problem with the ED problem. The proof
follows using Proposition 2.2.

Proposition 4.1: (Equivalence between (4) and (6) [14]):
The solutions of (4) and (6) coincide for ε ∈ R>0 such that

ε <
1

2 maxP∈FED
‖∇f(P )‖∞

. (7)

B. Laplacian-set-valued dynamics

Here, we propose a continuous-time, distributed set-valued
dynamics to solve the ED problem. Our algorithm design is
based on the alternative formulation (6) of the problem, cf.
Proposition 4.1. Consider the Laplacian-set-valued dynamics

Ṗ ∈ −LH(P ), (8)

where H(P ) = H1(P1)× · · · × Hn(Pn), and,

Hi(Pi) =



{− 1
ε } Pi < Pmi ,

[− 1
ε ,∇fi(Pi)] Pi = Pmi ,

{∇fi(Pi)} Pmi < Pi < PMi ,

[∇fi(Pi), 1ε ] Pi = PMi ,

{ 1ε } Pi > PMi ,

(9)

with ε satisfying (7). Note that H does not exactly corre-
spond to the generalized gradient of f ε. Specifically, H and
∂f ε only coincide when evaluated at points in the interior
of FED, and are otherwise different. As we show below in
Lemma 4.2, the use of H makes the feasibility set FED

strongly invariant under the dynamics (8) without imposing
further conditions on the choice of parameter ε (in contrast

with the case when ∂f ε is used, which requires additional
constraints that depend on the network topology [14]).

When convenient, we use XL-sv : Rn ⇒ Rn to refer
to the Laplacian-set-valued dynamics (8). Note that for ε
satisfying (7), the set-valued mapH and hence, XL-sv, is non-
empty, locally bounded, upper semicontinuous, and takes
compact, convex values. Therefore, a solution is guaranteed
to exist starting from any point for the Laplacian-set-valued
dynamics (8). Moreover, this dynamics is distributed in the
sense that, to implement it, each generator i selects an
element from the set Hi(Pi) and communicates it to its in-
neighbors and at the same time it receives similar information
from its out-neighbors.

The following result establishes that the feasibility set FED

is strongly positively invariant for the dynamics (8).
Lemma 4.2: (Invariance of the constraint set under the

Laplacian-set-valued dynamics): The feasibility set FED is
strongly positively invariant under the Laplacian-set-valued
dynamics (8).

Proof: We start by defining two sets

FB = {P ∈ Rn | Pm ≤ P ≤ PM},
FL = {P ∈ Rn | 1>nP = Pl}.

Note that FED = FL∩FB . Therefore, to prove our claim, it
is sufficient to show that each set is strongly positively invari-
ant under XL-sv. First, consider the set-valued Lie derivative
of the total power generated by the network along XL-sv

LXL-sv(1
>
nP ) = {−1>n Lζ | ζ ∈ H(P )}.

Since G is weight-balanced, LXL-sv(1
>
nP ) = {0}. Therefore,

the total power generated by the network is conserved along
all evolutions of XL-sv and hence, FL is strongly positively
invariant. To establish the strong invariance of FB , using [20,
Proposition 1, pp 234], it is sufficient to show that for
P 6∈ FB , (P − πFB

(P ))>v ≤ 0 for all v ∈ −LH(P ).
Let P 6∈ FB , and define the sets of indices Im(P ) = {i ∈
{1, . . . , n} | Pi < Pmi }, II(P ) = {i ∈ {1, . . . , n} | Pmi ≤
Pi ≤ PMi }, and IM (P ) = {i ∈ {1, . . . , n} | Pi > PMi }.
The projection of P on the set FB , πFB

(P ) is

(πFB
(P ))i =


Pmi i ∈ Im(P ),

Pi i ∈ II(P ),

PMi i ∈ IM (P ),

and hence P − πFB
(P ) is

(P − πFB
(P ))i =


Pi − Pmi i ∈ Im(P ),

0 i ∈ II(P ),

Pi − PMi i ∈ IM (P ).

Now consider an element v ∈ −LH(P ). Let ξ ∈ H(P ) be
such that v = −Lξ. Then, by definition of the Laplacian
matrix, vi = −

∑
j∈Nout(i)

aij(ξi − ξj). Moreover, from (9),
we observe that for i ∈ Im(P ), ξi = − 1

ε and ξj ≥ − 1
ε

for all j ∈ Nout(i). Thus, we obtain vi ≥ 0 for i ∈ Im(P ).
Similarly, vi ≤ 0 for i ∈ IM (P ). With this property of v and
the form of P − πFB

(P ), we deduce that for all P 6∈ FB ,
(P − πFB

(P ))>v ≤ 0 for all v ∈ −LH(P ), as claimed.



Lemma 4.2 implies that all evolutions of (8) from a point
P0 ∈ FED are contained in FED. The next result establishes
some important properties of the evolution of the function
f ε along the Laplacian-set-valued dynamics.

Lemma 4.3: (Nonsmooth objective function is nonincreas-
ing along the Laplacian-set-valued dynamics): For P ∈ FED,

(i) If a ∈ LXL-svf
ε(P ), then a = −ξ>Lξ for a ξ ∈ H(P ).

(ii) maxLXL-svf
ε(P )≤0 (f ε is nonincreasing along XL-sv).

(iii) If 0 ∈ LXL-svf
ε(P ) then there exists µ ∈ R such that

µ1n ∈ H(P ) ∩ ∂f ε(P ).
Proof: For convenience we define the following sets

of indices for P ∈ FED: I0(P ) = {i ∈ {1, . . . , n} | Pmi <
P < PMi }, I+(P ) = {i ∈ {1, . . . , n} | Pi = PMi }, and
I−(P ) = {i ∈ {1, . . . , n} | Pi = Pmi }. Re (i), for P ∈ FED,
let a ∈ LXL-svf

ε(P ). For a, let ξ ∈ H(P ) and XL-sv(P ) 3
v = −Lξ be such that ζ>v = a for all ζ ∈ ∂f ε(P ). Since
ζ>v = a for all ζ ∈ ∂f ε(P ) and ∂f εi (Pi) is not a singleton
set for i ∈ (I+(P ) ∪ I−(P )), we deduce that vi = 0 for
all i ∈ (I+(P ) ∪ I−(P )). Next, from the definition of sets
∂f ε(P ) and H(P ), ζi − ξi = 0 for all i ∈ I0(P ) and for
all ζ ∈ ∂f ε(P ). With these properties of v and (ζ − ξ) we
obtain that (ζ − ξ)>v = 0 for all ζ ∈ ∂f ε. Which implies
that a = ζ>v = ξ>v = −ξ>Lξ. Fact (ii) follows from (i)
and the fact that G is weight-balanced. Re (iii), from (i), if
0 ∈ LXL-svf

ε(P ) then −ξ>Lξ = 0 for some ξ ∈ H(P ). Since
G is weight-balanced, ξ = µ1n for some µ ∈ R and hence
µ1n ∈ H(P ). To prove µ1n ∈ ∂f ε(P ) we first show that
|µ| ≤ ‖∇f(P )‖∞. From (9) we have

− 1
ε ≤ µ ≤ ∇fi(Pi), i ∈ I−(P ),

µ = ∇fi(Pi), i ∈ I0(P ),

∇fi(Pi) ≤ µ ≤ 1
ε , i ∈ I+(P ).

(10)

If I0(P ) is non-empty, then from (10), |µ| ≤ ‖∇f(P )‖∞.
If I0(P ) is empty, (10) yields, ∇fj(Pj) ≤ µ ≤ ∇fk(Pk)
for all j ∈ I+(P ) and k ∈ I−(P ). In this case, I−(P ) and
I+(P ) are non-empty because otherwise either Pm ∈ FED

or PM ∈ FED which we assume not to be true. Therefore,
we get |µ| ≤ ‖∇f(P )‖∞. This establishes that if µ1n ∈
H(P ) then |µ| ≤ ‖∇f(P )‖∞. By choice, ε satisfies (7),
hence 1

ε ≥ 2‖∇f(P )‖∞. This, along with the derived bound
on |µ| gives us ∇fi(Pi)− 1

ε ≤ µ ≤ ∇fi(Pi) + 1
ε for all i ∈

{1, . . . , n}. Finally, this condition and (10) together imply
that µ1n ∈ ∂f ε(P ).

Next, we show the convergence of the Laplacian-set-
valued dynamics to the solutions of the ED problem.

Theorem 4.4: (Convergence of the Laplacian-set-valued
dynamics to the solutions of ED problem): The evolution
of the Laplacian-set-valued dynamics XL-sv from any point
P0 ∈ FED converges to the solutions of the ED problem (4).

Proof: Recall that, with the choice of ε satisfying (7),
XL-sv is locally bounded, upper semicontinuous and takes
non-empty, compact and convex values. To establish con-
vergence, we study the behavior of the function f ε along
XL-sv. Recall that f ε is locally Lipschitz and regular. From
Lemma 4.2, FED is strongly positively invariant under the
dynamics XL-sv and from Lemma 4.3, maxLXL-svf

ε(P ) ≤

0 for all P ∈ FED. Therefore, from LaSalle Invariance
Principle, cf. Theorem 2.1, all evolutions of (8) starting
at P0 ∈ FED converge to the largest weakly invariant set
M contained in FED ∩ {P ∈ Rn|0 ∈ LXL-svf

ε(P )}. For
P ∈ FED with 0 ∈ LXL-svf

ε(P ), Lemma 4.3 implies that
there exists µ ∈ R such that µ1n ∈ ∂f ε(P ). This fact,
together with 1>nP = Pl, implies that P is a solution of (6).
Therefore, M corresponds to the set of solutions of (6).
Finally, since ε satisfies (7), from Proposition 4.1, the set
M is also the set of solutions of (4).

Since, FED is strongly positively invariant under XL-sv,
and f ε is nonincreasing along XL-sv (Lemma 4.3), we deduce
that f is nonincreasing along XL-sv. This follows from
the fact that f ε(P ) = f(P ) for P ∈ FED. From these,
we conclude that the Laplacian-set-valued dynamics is an
anytime algorithm, i.e., starting from FED its trajectories are
feasible solutions at any time before convergence, and they
become better and better solutions as time elapses. Also, as
the total power generated by the units is conserved along
the trajectories, any initial error in load satisfaction does not
grow while the system evolves.

Remark 4.5: (Initialization of the Laplacian-set-valued dy-
namics): The asymptotic convergence result of Theorem 4.4
requires a initial network configuration that is feasible, i.e.,
that satisfies the load and the box constraints. The linear-
iterative algorithms suggested in [21] can be used for initial-
ization purposes, but they only guarantee convergence to a
feasible point P0 ∈ FED asymptotically. We have proposed
in [14] the DETERMINE FEASIBLE ALLOCATION algorithm,
that can find a network configuration in FED in finite time
and works over undirected communication topologies. •

V. SIMULATIONS

Here, we provide simulation results illustrating the appli-
cation of Laplacian-set-valued dynamics (8) for solving the
economic dispatch problem. As an example, we consider
the dispatch problem for a standard system of 6 generating
units [22]. The cost function and generation limits for each
unit is given in Table I. The cost for each generator is a
quadratic function of the power it generates. The total load
on the system of generators is 1263 MW, i.e., Pl = 1263.
To employ the set-valued dynamics, we consider the units
to have a communication topology of a strongly connected
weight-balanced digraph with adjacency matrix as

A =


0 2 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 . (11)

We choose ε = 1
30 that satisfies (7) for the current system.

The simulation results for this system are presented in Fig-
ure 1(a)-(b). The power allocation of the system satisfies the
load condition and the box constraints at all time instances
and converges to the optimal solution. To illustrate the
invariance property of the Laplacian-set-valued dynamics, we



repeated the simulation with the generation limits for unit 1
modified from [100, 500] to [100, 400]. This is depicted in
Figure 1(c)-(d). In this case, unit 1 reaches its upper limit
400 MW and stays there (cf. red line in Figure 1(c)) while
the other units converge. As expected, the more restrictive
box constraints on generator 1 result in a higher final cost.

Unit a($) b($/MW) c($/MW.MW) Pm
i (MW) PM

i (MW)
1 240 7.0 0.0070 100 500
2 200 10.0 0.0095 50 200
3 220 8.5 0.0090 80 300
4 200 11.0 0.0090 50 150
5 220 10.5 0.0080 50 200
6 190 12.0 0.0075 50 120

TABLE I
COST FUNCTION COEFFICIENTS (a, b, c) AND GENERATION LIMITS PM

i ,
Pm
i . THE COST FUNCTION FOR EACH UNIT IS fi(Pi) = a+ bPi + cP 2

i .
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Fig. 1. Simulation results depicting the application of the Laplacian-set-
valued dynamics to solve the economic dispatch problem for a system of
6 generation units. The cost function and the generation limits are given
in Table I. The communication topology is defined by (11), ε = 1

30
,

and Pl = 1263. (a) and (b) show the evolution of power allocations
and total cost for the system starting from the feasible power alloca-
tion (363, 150, 300, 150, 180, 120). The system converges to the optimal
solution (448, 172, 262, 124, 172, 85) and total cost is $15276. (c) and
(d) show the results for the same example with the constraints on unit
1 changed from [100, 500] to [100, 400]. The system now converges to
(400, 179, 272, 134, 183, 95), with total cost $15295.

VI. CONCLUSIONS

We have proposed the Laplacian-set-valued dynamics to
solve the economic dispatch problem over a group of power-
generators with arbitrary convex cost functions and capacity
bounds. We have shown that, when the communication topol-
ogy among the generators is described by a weight-balanced,
strongly connected digraph, this distributed dynamics prov-
ably converges to the solutions of the economic dispatch
problem. Our analysis, based on tools from algebraic graph
theory, nonsmooth analysis, and optimization, has also es-
tablished that the algorithm is anytime. Future work will
study the characterization of the rate of convergence of the
Laplacian-set-valued dynamics and the analysis of dynamic
communication topologies, losses over the transmission lines,
and generator dynamics with ramp constraints.
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