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Abstract— This paper analyzes distributed algorithmic solutions
to dynamic average consensus implemented in continuous time
and relying on communication at discrete instants of time. Our
starting point is a distributed coordination strategy that, under
continuous-time communication, achieves practical asymptotic
tracking of the dynamic average of the time-varying agents’
inputs. We propose two different distributed event-triggered
communication laws, depending on whether the interaction
topology is described by a strongly connected and weight-
balanced digraph or an undirected connected graph. In both
cases, we establish positive lower bounds on the inter-event
times of each agent and characterize their dependence of
the algorithm design parameters. We build on this result
to rule out the presence of Zeno behavior and characterize
the asymptotic correctness of the resulting implementations.
Simulations illustrate the results.

I. I NTRODUCTION

Given a network of agents, each endowed with a time-
varying input signal, the dynamic average consensus problem
consists of designing a distributed algorithm that allows indi-
vidual agents to track the dynamic average of the inputs. This
problem has applications in numerous areas, including multi-
robot coordination [1], sensor fusion [2], [3], distributed
estimation [4], and distributed tracking [5]. Our aim is to
study algorithmic solutions to dynamic average consensus
which rely on agents autonomously deciding when to share
information with their neighbors in an opportunistic fashion
for greater efficiency and energy savings.

Literature review: Available algorithms focusing on dynamic
consensus in the literature are either continuous-time [6], [2],
[7], [8], [9] or discrete-time strategies with fixed periodic
stepsizes [10], [9]. The continuous-time algorithms converge
under the assumption of local continuous-time information
sharing among agents. Although discrete-time algorithms
are more amenable to practical implementation, they tie the
communication and computation stepsizes together, resulting
in a conservative stepsize for communication times. This
can result into a costly operation, as in networked sys-
tems communication requires more energy than computation.
Periodic communication is also unrealistic in the cyber-
physical world, as processors are subject to natural delays
and errors which deviate them from the perfect operational
conditions these strategies are designed for. Finally, as pe-
riodic implementations are designed to account for worst-
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case situations, they result into conservative schemes which
can lead to a wasteful use of resources. Event-triggered
communication can address this shortcomings by prescribing
the times for information sharing in an opportunistic way. In
recent years, an increasing body of work that seeks to trade
computation and decision-making for less communication,
sensing or actuation effort while guaranteeing a desired
level of performance has emerged, see e.g., [11], [12], [13].
Closest to the problem considered here are the works that
study event-triggered communication laws for static average
consensus, see e.g., [14], [15], [16] and references therein.

Statement of contributions: We propose novel algorithmic
solutions to the dynamic average consensus problem that
employ an opportunistic strategy for information sharing
among neighboring agents. The basic idea is that agents share
information with their neighbors when the uncertainty in the
outdated information is such that the monotonic convergent
behavior of the coordination algorithm can no longer be guar-
anteed. The benefits of this mode of operation are twofold.
First, because communication is triggered as needed, the
network operation is more efficient than with periodic com-
munication schemes that need to account for worst-case
scenarios. Second, as each agent decides autonomously its
communication times, the algorithm is more in line with
the practical challenges of real-time implementations. We
propose and characterize the correctness of two different
distributed event-triggered communication laws, depending
on whether the interaction topology is described by a strongly
connected and weight-balanced digraph or an undirected
connected graph. By establishing positive lower bounds on
the inter-event times of each agent, we also show that
the proposed distributed event-triggered communication laws
are free from Zeno behavior (i.e., an infinite amount of
communication rounds in a finite amount of time). Finally,
we analyze the dependence of the inter-event times to the al-
gorithm’s design parameters. Such characterization provides
guidelines on the trade-offs between the minimum inter-event
times for communication and the algorithms’ performance.
For reasons of space, we only present proof sketches of the
results. A full technical treatment will appear elsewhere.

Organization: SectionII gathers basic notation and graph-
theoretic notions. SectionIII presents the network model and
the dynamic average consensus problem. SectionIV intro-
duces our continuous-time algorithmic solutions with event-
triggered communication. SectionV presents simulations and
SectionVI gathers our conclusions and ideas for future work.



II. PRELIMINARIES

In this section, we introduce basic notation and concepts
from graph theory used throughout the paper.

A. Notation

We let R, R>0, R≥0 andN denote the set of real, positive
real, nonnegative real and natural numbers, respectively.The
transpose of a matrixA is A⊤. We let1n (resp.0n) denote
the vector ofn ones (resp.n zeros), and denote byIn the
n×n identity matrix. We letΠn = In− 1

n
1n1

⊤
n . When clear

from the context, we do not specify the matrix dimensions.
For u ∈ R

d, ‖u‖ =
√
u⊤u denotes the standard Euclidean

norm. For vectorsu1, . . . ,um, we let u = (u1, . . . ,um)
represent the aggregated vector. In a networked system, we
distinguish the local variables at each agent by a superscript.
Forpi ∈ R

d, the aggregatedpi’s of the network ofN agents
is represented byp = (p1, . . . ,pN ) ∈ (Rd)N .

B. Graph theory

In the following, we review some basic concepts from
algebraic graph theory following [17]. Adirected graph,
or simply a digraph, is a pair G = (V, E), where V =
{1, . . . , N} is thenode setandE ⊆ V×V is theedge set. An
edge fromi to j, denoted by(i, j), means that agentj can
send information to agenti. For an edge(i, j) ∈ E , i is called
an in-neighborof j andj is called anout-neighborof i. We
denote the set of out-neighbors of an agenti ∈ {1, . . . , N}
by N i. A graph isundirectedif (i, j) ∈ E anytime(j, i) ∈ E .
A directed pathis a sequence of nodes connected by edges.
A digraph is calledstrongly connectedif for every pair of
vertices there is a directed path connecting them.

A weighted digraphis a tripletG = (V, E ,A), where(V, E)
is a digraph andA ∈ R

N×N is a weightedadjacencymatrix
with the property thataij > 0 if (i, j) ∈ E and aij = 0,
otherwise. A weighted digraph isundirected if aij = aji

for all i, j ∈ V. We refer to a strongly connected and
undirected graph as aconnected graph. The weighted out-
degreeandweighted in-degreeof a nodei, are respectively,
d
i
in =

∑N
j=1 aji anddiout =

∑N
j=1 aij . A digraph isweight-

balanced if at each nodei ∈ V, the weighted out-degree
and weighted in-degree coincide (although they might be
different across different nodes). The(out-) Laplacianmatrix
is L = D

out − A, whereD
out = Diag(d1out, · · · , dNout) ∈

R
N×N . Note thatL1N = 0. A digraph is weight-balanced

if and only if 1⊤
NL = 0 if and only if Sym(L) = (L+L⊤)/2

is positive semi-definite. Based on the structure ofL, at least
one of the eigenvalues ofL is zero and the rest of them have
nonnegative real parts. We denote the eigenvalues ofL and
Sym(L) by λi and λ̂i, i ∈ {1, . . . , N}, respectively. For a
strongly connected and weight-balanced digraph, zero is a
simple eigenvalue of bothL andSym(L). In this case, we
order the eigenvalues ofSym(L) as λ̂1 = 0 < λ̂2 ≤ λ̂3 ≤
· · · ≤ λ̂N . For connected graphs, we order the eigenvalues
of L asλ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λN .

III. N ETWORK MODEL AND PROBLEM STATEMENT

Here, we formalize the problem of interest. Consider a
network ofN agents with single-integrator dynamics,

ẋi = gi, i ∈ {1, . . . , N},

where xi ∈ R is the agreement stateand gi ∈ R is the
driving commandof agent i. Each agenti ∈ {1, . . . , N}
has access to a time-varying input signalu

i : R≥0 → R.
The network interaction topology is modeled by a weighted
digraphG that models the capability of agents to transmit
information to other agents through wireless communication.
Given that communication occurs at discrete instants of time,
we letx̂i denote the last known state of agenti ∈ {1, . . . , N}
transmitted to its in-neighbors. We let{tik} ⊂ R≥0 denote
the sequence of times at which agenti communicates with
its in-neighbors, so that̂xi(t) = xi(tik) for t∈ [tik, t

i
k+1). The

variablex̃i(t) = x̂i(t)−xi(t) denotes the mismatch between
the last transmitted state and the state of agenti at time t.

Under the network model described above, our goal is to
design a distributed algorithm that allows each agent to
asymptotically track the average of the inputs1

N
ΣN

j=1u
j(t)

across the group. The algorithm design amounts to speci-
fying, for each agenti ∈ {1, . . . , N}, a suitable distributed
driving commandgi : RN i → R together with a mechanism
for triggering communication with its in-neighbors in an op-
portunistic fashion. By distributed, we mean that each agent
only needs to receive information from its out-neighbors
to evaluategi and the communication triggering law. By
opportunistic, we mean that the transmission of information
to its in-neighbors should happen at times when it is needed
to preserve the stability and convergence of the coordination
algorithm. A key requirement on the communication trigger-
ing mechanism is that the resulting network evolution is free
from Zeno behavior, i.e., does not exhibit an infinite amount
of communication rounds in any finite amount of time.

IV. CONTINUOUS-TIME COMPUTATION WITH

DISTRIBUTED DISCRETE-TIME COMMUNICATION

Here, we present our solution to the problem stated in
SectionIII . Our starting point is the following continuous-
time algorithm for dynamic average consensus proposed in
our previous work [9],

v̇i=αβ
∑N

j=1 aij(x
i − xj),

ẋi= u̇
i−α(xi − u

i)−β
∑N

j=1 aij(x
i − xj)−vi,

(1)

for i ∈ {1, . . . , N}. Note that the execution of this algorithm
requires agents to continuously interchange state information
with their neighbors. The following result summarizes for
reference the asymptotic correctness guarantees of (1).

Theorem 4.1 (Convergence of (1) over strongly connected
and weight-balanced digraphs [9]):Assume the agent inputs
satisfy‖ΠN u̇‖ess=γ<∞. Then, for anyα, β>0, the trajec-
tories of the algorithm(1) executed on a strongly connected



and weight-balanced digraphG initialized atzi(0), vi(0)∈R

with
∑N

i=1 v
i(0)=0 are bounded and satisfy

lim
t→∞

∣

∣

∣
xi(t)− 1

N

N
∑

j=1

u
j(t)

∣

∣

∣
≤ γ

βλ̂2

, i ∈ {1, . . . , N}. (2)

Given the network model of SectionIII , where the transmis-
sion of information is limited to discrete instants of time,
we propose here the following implementation of (1) with
discrete-time communication,

v̇i=αβ
∑N

j=1 aij(x̂
i − x̂j),

ẋi= u̇
i−α(xi − u

i)−β
∑N

j=1 aij(x̂
i−x̂j)−vi,

(3)

for eachi ∈ {1, . . . , N}. Our remaining task is to provide
individual agents with triggers that allow them to determine
in an opportunistic fashion when to transmit information to
their in-neighbors. The design of such triggers is challenging
because of the following requirements: triggers need to
be distributed, so that agents can check them with the
information available to them from their out-neighbors, they
must guarantee the absence of Zeno behavior, and ensure the
network achieves dynamic average consensus even though
agents operate with outdated information about the state of
each other and the inputs may be changing with time.

A. Compact-form algorithm representations

Here we present two equivalent compact-form representa-
tions of the algorithm (3) for analysis purposes. For the
first representation, let̄u = 1

N
ΣN

j=1u
j1N , and consider the

change of variables

y = x− ū, (4a)

w = v − αΠNu. (4b)

In these new variables, the dynamics looks like

ẏ = −αy − βLy − βLx̃+ΠN u̇−w, (5a)

ẇ = αβLy + αβLx̃− αΠN u̇, (5b)

where we have usedLx̂ = L(x + x̃) = Ly + Lx̃. Next,
consider the following change of variables,

q1 = r⊤w, q2:N = αR⊤y +R⊤w, z = T⊤y. (6)

We partition the new variablez as(z1, z2:N ), wherez1 ∈ R.
Then, if the network interaction topology is weight-balanced,
the algorithm (5) can be written as,

q̇1 = 0, (7a)

q̇2:N = −αq2:N , (7b)

ż1 = −αz1 − q1, (7c)

ż2:N =−βR⊤LRz2:N−βR⊤Lx̃+R⊤
u̇−q2:N . (7d)

We close this section by describing the relationship between
the initial conditions of the variables for each representation.
Note thatq2:N = R⊤(αy+w) = R⊤(α(x−u)+v). Then,

given x(0),v(0) ∈ R
N with

∑N
i=1 v

i(0) = 0, and using
r⊤ΠN = 0 andRR⊤ = ΠN = Π2

N ,

q1(0) = r⊤w(0) = r⊤v(0) = 0, (8a)

‖q2:N (0)‖ = ‖αΠN (x(0)− u(0)) + v(0)‖, (8b)

z1(0) = r⊤y(0) = r⊤(x(0)− ū(0)), (8c)

‖z2:N (0)‖ = ‖ΠN (x(0)− ū(0))‖. (8d)

B. Strongly connected and weight-balanced digraphs

In this section, for networks with strongly connected and
weight-balanced digraph interactions, we introduce a dis-
tributed event-trigger mechanism that agents can employ to
determine their sequence of communication times. For each
agent, the execution of this mechanism relies merely on local
variables. This naturally results in asynchronous schedules
of communication, which poses additional challenges for
analysis. Nevertheless, the following result states that the
closed-loop network execution is free from Zeno behavior
and guaranteed to achieve practical dynamic average con-
sensus. For brevity, we only provide an sketch of the proofs
here and the full technical treatment will appear elsewhere.

Theorem 4.2 (Convergence of (3) over strongly connected
and weight-balanced digraphs with asynchronous distributed
event-triggered communication):Assume that the input of
each agenti ∈ {1, . . . , N} satisfies|u̇i|ess = κi < ∞,
and the input differences satisfy‖ΠN u̇‖ess = γ < ∞. For
ǫ ∈ R

N
>0, consider an implementation of the algorithm(3)

over a strongly connected and weight-balanced digraphG,
where agenti ∈ {1, . . . , N} communicates with its neighbors
at times{tik}k∈N ⊂ R≥0, starting atti1 = 0, determined by

tik+1=argmax{t ∈ [tik,∞) | |xi(tik)−xi(t)| ≤ (ǫi)2}. (9)

Then, for anyα, β > 0, the algorithm evolution starting from
xi(0) ∈ R and vi(0) ∈ R with

∑N
i=1 v

i(0) = 0 satisfies

lim
t→∞

sup

∣

∣

∣

∣

∣

∣

xi(t)− 1

N

N
∑

j=1

u
j(t)

∣

∣

∣

∣

∣

∣

≤ (γ + β‖L‖‖ǫ‖2)
βλ̂2

, (10)

for i ∈ {1, . . . , N} with a exponential rate of convergence
of min{α, βλ̂2}. Furthermore the inter-execution times of
agenti ∈ {1, . . . , N} are lower bounded by

τ i =
1

α
ln

(

1 +
α(ǫi)2

ci

)

, (11)

where

ci = κi + (α+ 2βdiout)
√

η2 + |r⊤(x(0)− ū(0))|2

+ ‖ΠN (α(x(0)− u(0)) + v(0))‖+ αη, (12)

and

η =
(γ + β‖L‖‖ǫ‖2)

βλ̂2

+ ‖ΠN (x(0)− ū(0))‖+ ‖q2:N (0)‖×






1

α−βλ̂2

((βλ̂2

α
)

βλ̂2

α−βλ̂2 − (βλ̂2

α
)

α

α−βλ̂2 ), if βλ̂2 6= α,
1

βλ̂2e
, if βλ̂2 = α.



Sketch of the proof:Consider the equivalent representa-
tion (7) of (3). From (7a)-(7c), for t ∈ R≥0, for given initial
conditions, the system trajectories are given by, respectively,

q1(t)=q1(0), q2:N(t)=q2:N(0)e
−αt, z1(t)=z1(0)e

−αt. (13)

Now consider (7d). Given an initial condition, let[0, T ) be
the maximal interval on which there is no accumulation point
in the set of event times{tk}k∈N = ∪N

i=1 ∪k∈N tik. Note that
T > 0, since the number of agents is finite and, for each
i ∈ {1, . . . , N}, ǫi > 0 and x̃i(0) = x̂i(0) − xi(0) = 0.
The dynamics (7d), under the event-triggered communication
scheme (9), has a unique solution in the time interval[0, T ).
Consider the Lyapunov function

V =
1

2
z⊤2:Nz2:N . (14)

By upper-bounding the Lie derivative of (14) along the
trajectories of (7d) by an appropriate bound and applying
the Comparison Lemma (cf. [18]), we can establish

‖z2:N (t)‖ ≤ η, t ∈ [0, T ), (15)

where the constantη is given in the statement. Next, we
show thatT = ∞. We start by establishing a lower bound
on the inter-execution times of any agent by determining a
lower bound on the amount of time it takes for|x̂i − xi|
to evolve from0 to (ǫi)2 at each agenti ∈ {1, . . . , N}.
To this end, we first use (13) and (15) (recall (6) and (8))
to obtain ‖y‖ ≤

√

η2+|r⊤(x(0)− ū(0))|2 and ‖w‖ ≤
‖αΠN (x(0) − u(0)) + v(0)‖ + αη for t ∈ [0, T ). Then,
using (3) and (4b), |yi| ≤ ‖y‖ and |wi| ≤ ‖w‖, we obtain

d

dt
|x̂i − xi| ≤ α|x̂i − xi|+ ci, i ∈ {1, . . . , N},

whereci is given in (12). As a result, using the Comparison
Lemma and the fact that|x̂i − xi(tik)| = 0, we deduce

|x̂i − xi(t)| ≤ ci

α
(eα(t−tik) − 1), t ≥ tik. (16)

Then, the time it takes|x̂i − xi| to reach(ǫi)2 is lower
bounded byτ i > 0 given by (11). Next, to showT = ∞,
we proceed by contradiction. Suppose thatT < ∞. Then,
the sequence of events{tk}k∈N has an accumulation point
at T . Because we have a finite number of agents, this
means that there must be an agenti ∈ {1, . . . , N} for
which {tik}k∈N has an accumulation point atT , implying
that agenti transmits infinitely often in the time interval
[T − ∆, T ) for any ∆ ∈ (0, T ]. However, this is in
contradiction with the fact that inter-event times are lower
bounded byτ i > 0 on [0, T ). Having establishedT = ∞,
note that this fact implies that under the event-triggered
communication law (9), the algorithm (3) does not exhibit
Zeno behavior. Then, given (13) and (15), for t ∈ R≥0, from
|xi − 1

N
ΣN

j=1u
j | ≤ ‖x− ū‖ = ‖y‖ = ‖z‖ we can establish

the following bound, fori ∈ {1, . . . , N},

|xi(t)− 1

N
ΣN

j=1u
j(t)| ≤

√

η2 + |r⊤(x(0)− ū(0))|2.

By studying the limiting behavior of the trajectories of
the algorithm (3), we can establish a tighter bound on the

limiting value of |xi − 1
N
ΣN

j=1u
j | as in (10) and show that

the convergence is exponential.

Not surprisingly, the ultimate convergence error bound (10)
obtained under event-triggered discrete-time communication
is worse than the bound (2) obtained when agents commu-
nicate continuously. The trigger (9) does not use the full
state of the agent and hence can be interpreted as an output
feedback event-triggered controller, see e.g., [19], for which
guaranteeing the existence of lower-bounded inter-execution
times is in general difficult.

Remark 4.1 (Inter-event times as a function of the design
parameters): The lower boundτ i in (11) on the inter-event
times allows a designer to compute bounds on the maximum
energy spent by each agenti ∈ {1, . . . , N} (and hence the
network) on communication during any given time interval.
It is interesting to analyze how this lower bound depends on
the various problem ingredients:τ i is an increasing function
of ǫi and a decreasing function ofα and ci. Through the
latter, the bound also depends on the graph topology and
the design parameterβ. Given the definition ofci, one can
deduce that the faster an input of an agent is changing
(larger κi) or the farther the agent initially starts from the
average of the inputs, the more often that agent would need to
trigger communication. The connection between the network
performance and the communication overhead can also be
observed here. Increasingβ or decreasingǫi to improve
the ultimate tracking error bound (10) results in smaller
inter-event times. Given that the rate of convergence of (3)
under (9) is min{α, βλ̂2}, decreasingα to increase the inter-
event times slows down the convergence. •

C. Connected undirected graphs

Here, we obtain an alternative distributed event-triggered
communication for the algorithm (3) over connected undi-
rected graphs. While the results of the previous section are of
course valid for these topologies, here we show that using the
structural properties of the Laplacian matrix in the undirected
case we can design an event-triggered law which allows
agents to have longer inter-event communication times with
almost the same tracking performance.

Theorem 4.3 (Convergence of (3) over connected graphs
with asynchronous distributed event-triggered communica-
tion): Assume that the input of each agenti ∈ {1, . . . , N}
satisfies|u̇i|ess= κi <∞, and the aggregated inputs satisfy
‖ΠN u̇‖ess= γ <∞. For ǫ∈R

N
>0, consider an implementa-

tion of the algorithm(3) over a connected graphG, where
agent i ∈ {1, . . . , N} communicates with its neighbors at
times{tik}k∈N ⊂ R≥0, starting atti1 = 0, determined by

tik+1 = argmax{t ∈ [tik,∞) | |x̂i(t)− xi(t)|2 (17)

≤ 1

4diout

N
∑

j=1

aij |x̂i(t)− x̂j(t)|2 + 1

4diout
(ǫi)2}.

Then, for anyα, β > 0, the algorithm evolution starting from
xi(0) ∈ R and vi(0) ∈ R with

∑N
i=1 v

i(0) = 0 satisfies



lim
t→∞

∣

∣

∣
xi(t)− 1

N

N
∑

j=1

u
j(t)

∣

∣

∣
≤ γ

βλ2
+

√

( γ

βλ2

)2

+
‖ǫ‖2
2λ2

, (18)

for i ∈ {1, . . . , N}. Furthermore, the inter-execution times
of agenti ∈ {1, . . . , N} are lower bounded by

τ i =
1

α
ln
(

1 +
αǫi

2ci
√

diout

)

, (19)

where ci is given in (12), now with η =
max{‖ΠN (x(0) − ū(0))‖, α‖ΠN (x(0)−u(0))+v(0)‖

2 +
γ

βλ2

+
√

(‖αΠN (x(0)−u(0))+v(0)‖
2 + γ

βλ2

)2 + 1
2λ2

‖ǫ‖2}.

Sketch of the proof:The proof is similar to the proof
of Theorem4.2 and for brevity, in the following, we only
outline the parts that are different. We use the same Lyapunov
function candidate (14) and taking its Lie derivative along
the trajectories of (7d) we can show that, fort ∈ [0, T ),

V̇ ≤‖z2:N‖‖q2:N (0)‖e−αt− βλ2

2
z2:N

⊤z2:N− β

2
s+γ‖z2:N‖,

wheres=−z⊤2:NR⊤LRz2:N−2z⊤2:NR⊤Lx̃. Usingx = x̂−
x̃, Dout+A ≥ 0, andx̂⊤

Lx̂ = 1
2Σ

N
i=1Σ

N
j=1aij |x̂i− x̂j |2, we

obtain
s =

1

2
ΣN

i=1

(

4diout|x̂i − xi|2 − ΣN
j=1aij |x̂i − x̂j |2

)

,

which, together with (17), impliess ≤ 1
2‖ǫ‖2 for t ∈ [0, T ).

As such, we can write

V̇≤ −βλ2

2
(1− θ)z⊤2:Nz2:N +

2

βλ2
r,

where0 < θ < 1 andr = ‖z2:N‖‖q2:N (0)‖ − θz⊤2:Nz2:N +
1

2λ2

‖ǫ‖2 + 2γ
βλ2

‖z2:N‖. Here we used‖q2:N (0)‖e−αt ≤
‖q2:N (0)‖ for all t ∈ R≥0. Notice thatr < 0 for

‖z2:N‖ ≥ 1

2θ
‖q2:N (0)‖+ γ

βλ2θ
+

√

(
1

2θ
‖q2:N (0)‖+ γ

βλ2θ
)2 +

1

2λ2θ
‖ǫ‖2 = η̄.

Therefore, fort ∈ [0, T ),

V̇ ≤− 1

2
βλ2(1− θ)z⊤2:Nz2:N , ‖z2:N‖ ≥ η̄. (20)

Recall the Lyapunov function candidate (14). Then, for any
given initial conditionz2:N (0) ∈ R

N−1, regardless of value
of T , from (20), for t ∈ [0, T ), we have

‖z2:N (t)‖ ≤ max{‖z2:N (0)‖, η̄} = η.

The rest of the proof follows the proof of Theorem4.2 to
establishT =∞ by establishing a lower bound (here (19)) on
the amount of time it takes|x̂i−xi| of agenti ∈ {1, . . . , N}
to evolve from 0 to ǫi/(2

√

diout), and using the same
argument to rule out the Zeno behavior. To establish (18),
we study the limiting behavior of the trajectories of the
algorithm (3) when t→∞ andθ→1.

We close this section by pointing out that the guaranteed
lower bound (19) on the inter-event-times is conservative
because to obtain it in the proof of Theorem4.3 we have ne-
glected the effect of the term 1

4di
out

∑N
j=1 aij |x̂i(t)− x̂j(t)|2
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Fig. 1: Executions of (3) usingα=1 andβ=4 over a ring
digraph of 5 agents with unit weights and inputsu1(t) =
0.5 sin(0.8t), u2(t) = 0.5 sin(0.7t)+0.5 cos(0.6t), u3(t) =
sin(0.2t)+1, u4(t)=atan(0.5t), u5(t)=0.1 cos(2t): the top
plot shows the tracking error and the bottom one shows the
communication times of each agent. Black (resp. gray) lines
correspond to the event-triggered communication law (9)
with (ǫi)2=0.1 (resp. continuous-time communication (1)).

in (17) (recall that τ i is an estimate on the time it takes
for |x̃i| to evolve from0 to ǫi/(2

√

diout)). The simulations
of SectionV show that the implementation of (17) results in
longer inter-event times in comparison to the ones associated
with the event-triggered law (9).

V. SIMULATIONS

Here, we illustrate the performance of (3) under the event-
triggered communication laws (9) and (17) over a ring
digraph (cf. Figures1 and 2) and a ring graph (cf. Fig-
ure 3). Figure 1 shows a small degradation between the
tracking performance of the algorithm (3) with the event-
triggered law (9) or with continuous-time communication.
In the event-triggered implementation, the number of times
that agents{1, 2, 3, 4, 5} communicate during[0, 20] is
(42, 40, 42, 36, 38), respectively. Figure2 compares the per-
formance of (3) with the event-triggered communication
law (9) and the Euler discretization of (1). For the latter,
we choose the stepsizeδ = 0.19 (from [9], convergence is
guaranteed ifδ ∈ (0,min{α−1, β−1(dout

max)
−1}), which for

this example results inδ ∈ (0, 0.2)). The number of times
that agents{1, 2, 3, 4, 5} communicate in the time interval
[0, 20] is (54, 42, 46, 39, 45), respectively, when implement-
ing the event-triggered communication scheme. This is about
half the communication used by each agent in the Euler
discretization implementation. Figure3 shows the execution
of (3) with the event-triggered communication laws (9)
and (17). For each agenti ∈ {1, 2, 3, 4, 5}, we chooseǫi for
each law so that the summand in the right-hand side of the
trigger ((ǫi)2 for (9), ǫi/(2

√

diout) for (17)) amounts to the
same quantity. The plots show similar tracking performance
for both algorithms, with (17) inducing less communication
than (9). The number of times that agents{1, 2, 3, 4, 5} com-
municate during[0, 12] is (105, 139, 177, 148, 143) under (9)
and (50, 60, 66, 57, 53) under (17).
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Fig. 2: Comparison between the algorithm (3) with the event-
triggered communication law (9) and the Euler discretization
of the algorithm (1) with parametersα = 1 and β = 5
over a ring digraph of5 agents with unit weights and inputs
u1(t) = 0.5 sin(0.8t), u2(t) = 0.5 sin(0.7t)+0.5 cos(0.6t),
u3(t) = sin(0.2t)+1, u4(t)=atan(0.5t), u5(t)=0.1 cos(2t):
Black (resp. gray) lines correspond to the event-triggered
communication law (9) with (ǫi)2 = 0.1 (resp. the Euler
discretization with fixed stepsizeδ = 0.19).
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Fig. 3: Executions of (3) with parametersα = β = 1 over
a connected ring graph of5 agents with unit weights and
inputsu1(t)=0.5 sin(t)+1/(t+2)+2, u2(t)=0.5 sin(t)+
1/(t+ 2)2 + 4, u3(t)=0.5 sin(t) + 1/(t+ 2)3 + 5, u4(t)=
0.5 sin(t)+e−t+4, u5(t)=0.5 sin(t)+atan(t)−1.5. The top
plot shows the tracking error and the bottom one shows the
communication times of each agent. Black (resp. gray) lines
correspond to the event-triggered communication law (9)
with (ǫi)2=0.04 (resp. (17) with ǫi/(2

√

diout)=0.04).
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VI. CONCLUSIONS

We have studied the multi-agent dynamic average consen-
sus problem over strongly connected and weight-balanced
digraphs where inter-agent communication takes place at
discrete instants of time in an opportunistic fashion. Our
starting point has been a continuous-time dynamic average
consensus algorithm which is known to converge expo-

nentially to a small neighborhood of the network’s inputs
average. We have proposed two different distributed event-
triggered laws to trigger communication with neighbors,
depending on whether the interaction topology is described
by a strongly connected and weight-balanced digraph or an
undirected connected graph. In both cases, we established
the correctness of the algorithm and showed that a positive
lower bound on the inter-event times of each agent exists,
ruling out the presence of Zeno behavior. Future work will
focus on the exploration of abstractions about other agents’
behaviors to develop self-triggered communication laws and
the extension of the results to dynamic network topologies.
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