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Abstract— This paper analyzes distributed algorithmic solutions  case situations, they result into conservative schemeshwhi
to dynamic average consensus implemented in continuous time can lead to a wasteful use of resources. Event_triggered
and relying on communication at discrete instants of time. Our communication can address this shortcomings by presgribin

starting point is a distributed coordination strategy that, under the ti for inf i haring i tunisti |
continuous-time communication, achieves practical asymptotic € imes for information sharing in an opportunistic way.

tracking of the dynamic average of the time_varying agents’ recent yeal’S, an InCI’eaSIng body Of WOI’k that SeekS to tl’ade
inputs. We propose two different distributed event-triggered computation and decision-making for less communication,
communication laws, depending on whether the interaction sensing or actuation effort while guaranteeing a desired
topology is described by a strongly connected and weight- level of performance has emerged, see e.g., [11], [12], [13]

balanced digraph or an undirected connected graph. In both -
cases, we establish positive lower bounds on the inter-event Closest to the problem considered here are the works that

times of each agent and characterize their dependence of Study event-triggered communication laws for static ayera
the algorithm design parameters. We build on this result consensus, see e.g., [14], [15], [16] and references therei
to rule out the presence of Zeno behavior and characterize

the asymptotic correctness of the resulting implementations. Statement of contributionse propose novel algorithmic

Simulations illustrate the results. solutions to the dynamic average consensus problem that
employ an opportunistic strategy for information sharing
I. INTRODUCTION among neighboring agents. The basic idea is that agents shar

. ) _information with their neighbors when the uncertainty ie th
Given a network of agents, each endowed with & tim&igated information is such that the monotonic convergent
varying input signal, the dynamic average consensus proble,epayior of the coordination algorithm can no longer be guar
consists of designing a distributed algorithm that allondi+  gnteed. The benefits of this mode of operation are twofold.
vidual agents to track the dynamic average of the inputs Thi:irst, because communication is triggered as needed, the
problem has applications in numerous areas, includingimuliyenyork operation is more efficient than with periodic com-
robot coordination [1], sensor fusion [2], [3], distribdte nication schemes that need to account for worst-case
estimation [4], and distributed tracking [5]. Our aim is t0gcenarios. Second, as each agent decides autonomously its
study algorithmic solutions to dynamic average consensismmunication times, the algorithm is more in line with
which rely on agents autonomously deciding when to shakge practical challenges of real-time implementations. We
information with their neighbors in an opportunistic fasi  ,-on5se and characterize the correctness of two different
for greater efficiency and energy savings. distributed event-triggered communication laws, depeqdi
Literature review Available algorithms focusing on dynamic on whether the interaction topology is described by a styong
consensus in the literature are either continuous-timg2f] connected and weight-balanced digraph or an undirected
[71, [8], [9] or discrete-time strategies with fixed periodi connected graph. By establishing positive lower bounds on
stepsizes [10], [9]. The continuous-time algorithms cogee the inter-event times of each agent, we also show that
under the assumption of local continuous-time informatiothe proposed distributed event-triggered communicaters|
sharing among agents. Although discrete-time algorithmere free from Zeno behavior (i.e., an infinite amount of
are more amenable to practical implementation, they tie t®mmunication rounds in a finite amount of time). Finally,
communication and computation stepsizes together, negult we analyze the dependence of the inter-event times to the al-
in a conservative stepsize for communication times. Thigorithm’s design parameters. Such characterization gesvi
can result into a costly operation, as in networked sysuidelines on the trade-offs between the minimum intereve
tems communication requires more energy than computaticimes for communication and the algorithms’ performance.
Periodic communication is also unrealistic in the cyberFor reasons of space, we only present proof sketches of the
physical world, as processors are subject to natural delagassults. A full technical treatment will appear elsewhere.

and errors which deviate them from the perfect operation@ganization Section!l gathers basic notation and graph-
qonFiltlpns these strategies are_deS|gned for. Finally,eas Rpeoretic notions. Sectioi presents the network model and
riodic implementations are designed to account for worsjye dynamic average consensus problem. Sedtiommtro-
SSK is with the Department of Mechanical and Aerospace Eeging, dﬁices our Contmupusft'me alg_orlthm|c SOluF'OnS V\_”th gven
University of California Irvine, Irvine, CA 9269750l maz@ici . edu;  triggered communication. Sectidhpresents simulations and

JC and SM are with the Department of Mechanical and Aerospace ESectionV| gathers our conclusions and ideas for future work.
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Il. PRELIMINARIES IIl. NETWORK MODEL AND PROBLEM STATEMENT

In this section, we introduce basic notation and conceptdere, we formalize the problem of interest. Consider a
from graph theory used throughout the paper. network of NV agents with single-integrator dynamics,

i'=g', ie{l,...,N},

A. Notation where z° € R is the agreement statand ¢' € R is the

We letR, R, Rso andN denote the set of real, positive driving commandof agenti. Each agent ¢ {1,..., N}
real, nonnegative real and natural numbers, respectialy. Nas access to a time-varying input signal: R>o — R.
transpose of a matriA is A'. We let1, (resp.0,,) denote T_he network interaction topology is modeled by a we|ghte_d
the vector ofn ones (respn zeros), and denote b, the digraph G that models the capability of agents to transmit
n x n identity matrix. We leffl,, = I, — l]-nl;[- When clear information to other agents through wireless communicatio
from the context, we do not specify {F]e matrix dimensionsGiven that communication occurs at discrete instants o tim
Foru € R?, |ju/ = vVuTu denotes the standard EuclideanVe Iet:i:.’ denotg thg Iast. known state of ageént {1,..., N}
norm. For vectorsuy, ..., u,,, we letu = (uy,...,u,) ransmited to its in-neighbors. We Igt; } C R>o denote
represent the aggregated vector. In a networked system, ¥} Sequence of times at which agértommunicates with
distinguish the local variables at each agent by a supptscrilts in-neighbors, so that' (t) = z*(t}) for t& [t;., 3., ,). The
Forp’ € R?, the aggregateg’’s of the network ofN' agents variablez’ (t) :_il(t) —z'(t) denotes the m|smatch between
is represented bp = (p!,...,p") € (RY)V. the last transmitted state and the state of ageittimez.
Under the network model described above, our goal is to
design a distributed algorithm that allows each agent to
asymptotically track the average of the inpy¢salY v/ (1)

In the following, we review some basic concepts fronicross the group. The algorithm design amounts to speci-
algebraic graph theory following [17]. Alirected graph fving, for each agent € {1,..., N}, a suitable distributed

or simply adigraph is a pairG = (V,€), wherey = driving commandy’ : RN" — R together with a mechanism
{1,..., N} isthenode sednd& C VxV is theedge setAn  for triggering communication with its in-neighbors in an-op
edge fromi to j, denoted by(i, j), means that agentcan portunistic fashion. By distributed, we mean that each agen
send information to agerit For an edgéi, j) € £, iis called only needs to receive information from its out-neighbors
anin-neighborof j andj is called anout-neighborof i. We to evaluateg® and the communication triggering law. By
denote the set of out-neighbors of an ageat{1,..., N}  opportunistic, we mean that the transmission of infornmatio
by V. A graph isundirectedif (i, j) € £ anytime(j,i) € £.  to its in-neighbors should happen at times when it is needed
A directed pathis a sequence of nodes connected by edget® preserve the stability and convergence of the coordinati
A digraph is calledstrongly connectedf for every pair of algorithm. A key requirement on the communication trigger-
vertices there is a directed path connecting them. ing mechanism is that the resulting network evolution i fre

A weighted digraphis a tripletG — (V, €, A), where(V, £) from Zeno t_)ehgvior, ie., dpes not. exhibit an infinitg amount
is a digraph and\ € R¥*N is a weightecadjacencymatrix of communication rounds in any finite amount of time.

with the property that,;; > 0 if (i,5) € £ anda;; = 0,

otherwise. A weighted digraph isndirectedif a;; = aj; IV. CONTINUOUS-TIME COMPUTATION WITH

for all i,j € V. We refer to a strongly connected and  PISTRIBUTED DISCRETETIME COMMUNICATION
undirected graph as eonnected graphThe weighted out-
degreeandweighted in-degreef a nodei, are respectively,

B. Graph theory

Here, we present our solution to the problem stated in
di = Z;\; a;; anddi,, — Z;’V:I ai;. A digraph isweight- Sectionlll. Our starting point is the following continuous-

balancedif at each nodei €V, the weighted out-degree time aIg(_)nthm for dynamic average consensus proposed in
qur previous work [9],

and weighted in-degree coincide (although they might be
different across different nodes). Ttwut-) Laplacianmatrix v'=af ZN— ai; (¢t — 27)
is L = D — A, where D°* = Diag(dl,,, - ,dY,,) =ty ’
RN*N _Note thatL1ly = 0. A digraph is weight-balanced i i PR N i N
if and only if 1L = 0 if and only if Sym(L) = (L+L")/2 #=it—alel —u) =B ay(et —at) =0

is positive semi-definite. Based on the structurd.pht least for ; ¢ {1,...,N}. Note that the execution of this algorithm
one of the eigenvalues &f is zero and the rest of them haverequires agents to continuously interchange state inftioma
nonnegative real parts. We denote the eigenvaluds ahd \jth their neighbors. The following result summarizes for

Sym(L) by A; and ;, i € {1,...,N}, respectively. For a reference the asymptotic correctness guarantees)of (
strongly connected and weight-balanced digraph, zero is a

simple eigenvalue of both and Sym(L). In this case, we Theorem 4.1 (Convergence df)(over strongly connected
order the eigenvalues &ym(L) as\; = 0 < Ay < A3 < and weight-balanced digraphs [9Assume the agent inputs
... < An. For connected graphs, we order the eigenvaluesatisfy||TIy1i||ess=" < oc. Then, for anyy, 3> 0, the trajec-
of LasA\i =0< A < A3 < < AN tories of the algorithm(1) executed on a strongly connected

1)



and weight-balanced digrap@ initialized atz*(0), v*(0) e R
with Zf.vzl v*(0)=0 are bounded and satisfy

given x(0),v(0) € RN with > +#(0) = 0, and using
r' Iy =0andRR" = Iy =113,

S .y 5 q1(0) = r"w(0) = r"v(0) =0, (82)
. iy L j .
A |70~ 2 0] il N @ oo (0)]) = [aTTx (x(0) — u(0)) +v(0)],  (8b)
J= T T =
Given the network model of Sectidi , where the transmis- 2(0)=r y(0) =r (3((0) u(0)), (8c)
sion of information is limited to discrete instants of time, |Z2:n (0) ] = [[TIn(x(0) — u(0))][- (8d)

we propose here the following implementation @ (vith
discrete-time communication,

g N o
V=B 2@ —27),

B. Strongly connected and weight-balanced digraphs

In this section, for networks with strongly connected and

weight-balanced digraph interactions, we introduce a dis-
tributed event-trigger mechanism that agents can employ to
determine their sequence of communication times. For each
agent, the execution of this mechanism relies merely orl loca

for eachi € {1,..., V}. Our remaining task is to provide variables. This naturally results in asynchronous sclesdul
individual agents with triggers that allow them to deterenin T Y y!
of communication, which poses additional challenges for

in an opportunistic fashion when to transmit information toanal sis. Nevertheless. the following result states that t
their in-neighbors. The design of such triggers is chalilegg ysIS. ' 9

because of the following requirements: triggers need t%Ir?jEddfr?r)]tgggvgkagﬁi%gl0Taftilgale dfrr?;nmierxelr)aeheav(l:%rn-
be distributed, so that agents can check them with a9 P y 9

information available to them from their out-neighborsith sensus. For brevity, we only provide an sketch of the proofs
. hﬁre and the full technical treatment will appear elsewhere
must guarantee the absence of Zeno behavior, and ensure the

network achieves. dynamic average consensus even thou%eorem 4.2 (Convergence df)(over strongly connected
agents operate with outdated information about the state Qﬁd weight-balanced digraphs with asynchronous disgtbut

®3)

dl=ul—aat —u)—B Y0 ay (@l —a7) 0,

each other and the inputs may be changing with time.

A. Compact-form algorithm representations

event-triggered communicationpssume that the input of
each agenti € {1,...,N} satisfies|i’|ess = K' < 00,
and the input differences satisfflIy|less= 7 < 0. For
e € RY,, consider an implementation of the algorith(®)

Here we present two equivalent compact-form representgyer a strongly connected and weight-balanced digrgph
tions of the algorithm ) f?f %nalyss purposes. For the where agent € {1,..., N} communicates with its neighbors
first representation, lei = 5 ¥;2,u’1y, and consider the gt times{ti }xen C R, Starting att! = 0, determined by

change of variables

y=x-—u, (4a)
w =v —allyu. (4b)
In these new variables, the dynamics looks like
y = —ay — fLy — BLx + IIyu — w, (5a)
w = afLy + afLx — oIl yu, (5b)

where we have uselix = L(x + x) = Ly + Lx. Next,
consider the following change of variables,

@y =oR'y +R'w, z=T"y. (6)
We partition the new variable as(z1, z2.x), Wherez; € R.
Then, if the network interaction topology is weight-balad¢c

the algorithm %) can be written as,

LT
g1 =r w,

th 1 =argmax{t € [t} 00)|[a" (t}) —2" ()] < (¢')*}. (9)

Then, for any, 8 > 0, the algorithm evolution starting from
#(0) € R andv(0) € R with YV | v7(0) = 0 satisfies

N

: ; 1 : (v + BIL[€]*)
2 _ J <
Jimsup o (8) = 5 > /()] < a0
j=1
for i € {1,..., N} with a exponential rate of convergence

of min{a, BA,}. Furthermore the inter-execution times of
agenti € {1,..., N} are lower bounded by
) 1 1\2
ri=tm (1+ﬂ), (11)
« c'

where
¢ =k +(a+ 2Bdéut)\/772 + |r T (x(0) — u(0))[?
\

i1 =0, (7a) + |ITTx (a(x(0) — u(0)) + v(0))|| + an, (12)

qQ:{V = —Qaqa. N, ((;b; and

zZ1 = —az1 —qi, c ( 2
7 + BIL][le]|) =

oy AR LRty —RTLE ARy, (7d) 1= ITINGO) 0]+ (0]
We close this section by describing the relationship betwee L ((%5‘2)1‘1622;\2 — (B2)aTim), i BA, £«
the initial conditions of the variables for each represgéoita aIﬁ 2 if Bl = a
Note thatqy,y = R' (ay+w) = R (a(x —u)+v). Then, BAze’ 2=



Sketch of the proofConsider the equivalent representadimiting value of |z* — %E]N:luﬂ as in (L0) and show that
tion (7) of (3). From (7&)-(7¢), for t € R>¢, for given initial  the convergence is exponential. L]

conditions, the system trajectories are given by, re i . .
y J g Y respeigl Not surprisingly, the ultimate convergence error bouhd) (

_ _ —at _ —at
71(t)=q1(0), Q. n{t) =qa.i{(0)e", 21(t) =21(0)e™* (13)  [pirined under event-triggered discrete-time commuioicat
Now consider d). Given an initial condition, lefo,7) be IS Worse than the bound) obtained when agents commu-
the maximal interval on which there is no accumulation poinficate continuously. The trigge) does not use the full
in the set of event timest; }ren = UY. | Uren t. Note that state of the agent and hence can be interpreted as an output
T > 0, since the number of agents is finite and, for eacfgedback event-triggered controller, see e.g., [19], foici
ie{l,...,N}, € > 0 and#(0) = #(0) — 2(0) = 0. 9guaranteeing the existence of lower-bounded inter-ej@tut
The dynamics{d), under the event-triggered communicatiorfimes is in general difficult.

scheme §), has a unique solution in the time interyal 7). . . .
Consider the Lyapunov function Remark 4.1 (Inter-event times as a function of the design

1 parameters): The lower bound in (11) on the inter-event

V ==2J NyZo.N. (14) times allows a designer to compute bounds on the maximum
2 energy spent by each agent {1,..., N} (and hence the

By upper-bounding the Lie derivative ofl4) along the network) on communication during any given time interval.

trajectories of {d) by an appropriate bound and applyinglt is interesting to analyze how this lower bound depends on
the Comparison Lemma (cf. [18]), we can establish the various problem ingredients® is an increasing function
of ¢ and a decreasing function ef and ¢¢. Through the

1z ()] <, € [0,T), (15) latter, the bound also depends on the graph topology and

where the constang is given in the statement. Next, we the design parametet. Given the definition of*, one can
show thatT = co. We start by establishing a lower boundgdéduce that the faster an input of an agent is changing

on the inter-execution times of any agent by determining darger k') or the farther the agent initially starts from the
lower bound on the amount of time it takes fa — »i|  @verage of the inputs, the more often that agent would need to

to evolve from0 to (¢)2 at each ageni € {1,...,N}. trigger communication. The connection between the network

To this end, we first usel@) and (L5) (recall ) and @)) Performance and the communication overhead can also be
to obtain ||y| < /m?+|r' (x(0) —u(0))]> and ||w| < observed here. Increasing or decreasing’ to improve
|oILy (x(0) — u(0)) + v(0)|| + an for ¢t € [0,T). Then, the ultimate tracking error boundl@ results in smaller
using @) and @b), |y’| < |ly|| and|w’| < ||w]||, we obtain  inter-event times. Given that the rate of convergencespf (
d ’ 4 . . under Q) is min{«, A2}, decreasingy to increase the inter-
ﬁ\:&l —2'| <ol -2+, ie{l,...,N}, event times slows down the convergence. .

wherec' is given in (L2). As a result, using the ComparisonC. Connected undirected graphs

Lemma and the fact thdg’ — z?(¢})| = 0, we deduce ) ) o _
. Here, we obtain an alternative distributed event-trigdere

|20 — 2'(t)] < Ci(ea(t—ti) —1), t>th. (16) communication for the algorithm3) over connected undi-
o rected graphs. While the results of the previous sectionfare o
Then, the time it takesi’ — x| to reach(¢?)? is lower course valid for these topologies, here we show that usiag th
bounded byr¢ > 0 given by (L1). Next, to showI' = oo, Structural properties of the Laplacian matrix in the unctiee
we proceed by contradiction. Suppose tiak co. Then, case we can design an event-triggered law which allows
the sequence of even{s, }rcn has an accumulation point agents to have longer inter-event communication times with
at 7. Because we have a finite number of agents, thiglmost the same tracking performance.
means that there must be an agente {1,...,N} for
which {ti}.en has an accumulation point &, implying Theorem 4.3 (Convgrggnce 08)(over 'connected graph_s
that agenti transmits infinitely often in the time interval With asynchronous distributed event-triggered communica
[T — A,T) for any A € (0,T]. However, this is in t|or}):.Ass.ume that the input of each agent .{1,...,N}.
contradiction with the fact that inter-event times are loweSaisfies|u’|ess= " < oo, and ;,he aggregated inputs satisfy
bounded byr? > 0 on [0,T). Having established” = oo, [TIn11[|ess=y < oo. For e RZ, consider an implementa-
note that this fact implies that under the event-triggereion Of the algorithm(3) over a connected grapli, where
communication law 9, the algorithm 8) does not exhibit agenti € {1,..., N} communicates with its neighbors at
Zeno behavior. Then, giverig) and (L5), for ¢ € Rso, from  iMes{t} tren C R>o, starting att; = 0, determined by
2t — 53N u| < |lx —ul| = |ly[| = [|z]| we can establish ¢}, = argmax{t € [t},00) | |2°(t) — 2'(t)[? a7
the following bound, fori € {1,..., N}, 1 X 1
. . < _ 3t _ 4 2 :
() = F R O] < /77 + 57 (x(0) — a0 2 S 2O g
By studying the limiting behavior of the trajectories of Then, for any, 5 > 0, the algorithm evolution starting from
the algorithm ), we can establish a tighter bound on ther?(0) € R and v*(0) € R with 3" +*(0) = 0 satisfies

(€)%}



N

le ||2

I H < 18
e Z:I =B’ (5/\2) T (19
for i € {1,..., N}. Furthermore, the inter-execution times
of agenti € {1,..., N} are lower bounded by
. 1 ae’
T'=—In(l+ —, (19)
a ( 2¢t \% d(l)ut)

where ¢ is given in (12?, now with =
max{|[TIy(x(0) — a(0))], aIHN(X(O)—ZU(O)HV(O Il +

ally (x(0)—u(0 v (0
ﬁ‘*‘\/(” N(()Qu( ))+()H+ﬁ)2+i”6”2}'

Sketch of the proofThe proof is similar to the proof
of Theorem4.2 and for brevity, in the following, we only

outline the parts that are different. We use the same Lyapung 5 sin(0.8¢),
function candidate I(4) and taking its Lie derivative along sin(0.2¢)+1, u*(t) =atar(0.5t),

the trajectories of {d) we can show that, for € [0,7),

. - B B
V <||z2. v [l[laz. v (0)]le g0 2, N—§S+VHZ2 ~lls
wheres=—z] yR' LI%zz:N—2z2:NRTL5<. Usingx = % —
X, Do+ A >0, andx ' Lk = 33V, BN a;;|2" — 272, we
obtain

§= §E£1(4déut|£i - Ii|2 - Zj'vzlaij@i - £j|2)’
which, together with 17), implies s <
As such, we can write

BAa
V< _ e
5

Llle|| for t € [0,T).

2
Q)Z;NZQ:N -+ BTT7
2
Where()2 <60 <1andr = ||za.n|||az.n(0)]| — OZ;sz:i;v +
o ll€l® + Z%llzon]|. Here we used|ay,y(0)]e™" <
llas.x(0)]| for all ¢ € R>(. Notice thatr < 0 for

1
. >— -

1
- 2 2
wwuqm Ol + 7+ pgllel =7
Therefore, fort € [0,T),
. 1
14 < - §ﬁ>\2(1 - G)Z;:NZQ:N7 ||Z2:N|| > 7. (20)

Recall the Lyapunov function candidate4). Then, for any
given initial conditionz,.(0) € RNV ~1, regardless of value
of T, from (20), for t € [0,T"), we have

[ z2:n ()] < max{|[z2.n (0)1], 77} = -

The rest of the proof follows the proof of Theoref?2 to
establishl"’= oo by establishing a lower bound (hered}) on
the amount of time it takeg’ — z’| of agenti € {1,..., N}
to evolve from0 to €'/(2v/d ),
argument to rule out the Zeno behavior. To establis§), (

we study the limiting behavior of the trajectories of the

algorithm @) whent— oo andf—1.

and using the same
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Fig. 1: Executions of3) usinga=1 and =4 over a ring
digraph of 5 agents with unit weights and inputs (t) =
u?(t) = 0.5sin(0.7t) +0.5 cos(0.6t), u(t) =
u’(t)=0.1cos(2t): the top

plot shows the tracking error and the bottom one shows the
communication times of each agent. Black (resp. gray) lines
correspond to the event-triggered communication 18y (
with (¢/)2=0.1 (resp. continuous-time communicatiof));

in (17) (recall that7’ is an estimate on the time it takes
for || to evolve from0 to €'/(21/d? ;). The simulations
of SectionV show that the implementation of7) results in
longer inter-event times in comparison to the ones assatiat
with the event-triggered lawsj.

V. SIMULATIONS

Here, we illustrate the performance &) (under the event-
triggered communication laws9)Y and (7) over a ring
digraph (cf. Figuresl and 2) and a ring graph (cf. Fig-
ure 3). Figure 1 shows a small degradation between the
tracking performance of the algorithn3)(with the event-
triggered law 9) or with continuous-time communication.
In the event-triggered implementation, the number of times
that agents{1,2,3,4,5} communicate during[0,20] is
(42,40, 42, 36, 38), respectively. Figur& compares the per-
formance of B) with the event-triggered communication
law (9) and the Euler discretization ofl), For the latter,
we choose the stepsize= 0.19 (from [9], convergence is
guaranteed i € (0, min{a~", =1 (d® )~1}), which for
this example results id € (0,0.2)). The number of times
that agents{1,2,3,4,5} communicate in the time interval
[0,20] is (54,42, 46,39, 45), respectively, when implement-
ing the event-triggered communication scheme. This is abou
half the communication used by each agent in the Euler
discretization implementation. Figufeshows the execution
of (3) with the event-triggered communication laws) (
and (L7). For each agente {1,2,3,4,5}, we choose* for
each law so that the summand in the right-hand side of the

trlgger (€%)? for (9), €/(24/di,,) for (17)) amounts to the
same quantity. The plots show similar tracking performance

We close this section by pointing out that the guarantee@r both algorithms, with 17) inducing less communication
lower bound {9) on the inter-event-times is conservativethan ). The number of times that agen{ts, 2,3, 4,5} com-

because to obtain it in the proof of Theorérﬁ we have ne-
glected the effect of the ten% Z Laij| () — 29 (¢))?

municate durind0, 12] is (105,139,177, 148, 143) under 0)
and (50, 60, 66, 57,53) under (7).
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nentially to a small neighborhood of the network’s inputs
average. We have proposed two different distributed event-
triggered laws to trigger communication with neighbors,
depending on whether the interaction topology is described
by a strongly connected and weight-balanced digraph or an
undirected connected graph. In both cases, we established
the correctness of the algorithm and showed that a positive
lower bound on the inter-event times of each agent exists,
ruling out the presence of Zeno behavior. Future work will
focus on the exploration of abstractions about other agents

5 10 15 20

behaviors to develop self-triggered communication lawsg an

t the extension of the results to dynamic network topologies.

Fig. 2: Comparison between the algorith&) With the event-
triggered communication lavd) and the Euler discretization

of the algorithm {) with parametersx = 1 and 8 = 5 [1]
over a ring digraph ob agents with unit weights and inputs
ul(t) = 0.5sin(0.8¢), u?(t) = 0.5sin(0.7t) + 0.5 cos(0.6t), 2]

u(t) = sin(0.2t)+1, ut(t) =atar(0.5t), u®(t) =0.1 cos(2t):
Black (resp. gray) lines correspond to the event-triggered

communication law §) with (¢)*> = 0.1 (resp. the Euler [3)
discretization with fixed stepsizé= 0.19).
1 [4]
1 (5]
5 1o (e
t
ﬂ 4 X X X ><>< X ><><><><>)2 X ><><X><>< ><>< XX X ><X>><<’
é O Dommaeroc XX X XX ><><><><><><;<< X: ><><X>< ><X><>< ><><><>2< ><>><<>o? [8]
T Mmoo xR xR e KX Ko
0 5 10 o]
t
Fig. 3: Executions ofJ) with parametersyx = 5 = 1 over [10]
a connected ring graph df agents with unit weights and
inputsut () =0.5sin(t) + 1/(t +2) + 2, u?(t)=0.5sin(t) + [11
1/(t+2)% +4, u?(t)=05sin(t) + 1/(t + 2)% + 5, u*(t) =
0.5sin(t)+e~+4, u®(t)=0.5sin(t)+atan(t)—1.5. The top  [12]

plot shows the tracking error and the bottom one shows the
communication times of each agent. Black (resp. gray) Iimﬁg]
correspond to the event-triggered communication 18y (
with (e9)2=0.04 (resp. (7) with €'/(2+/d? ;) =0.04). (141
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VI. CONCLUSIONS (17l

We have studied the multi-agent dynamic average consens]
sus problem over strongly connected and Weight-balancéjc?]
digraphs where inter-agent communication takes place at
discrete instants of time in an opportunistic fashion. Our
starting point has been a continuous-time dynamic average
consensus algorithm which is known to converge expo-
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