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Abstract— This paper studies the regret of a family of dis-
tributed algorithms for online convex unconstrained optimiza-
tion. A team of agents cooperate in a decision making process
enabled by local interactions and the knowledge of each agent
about the local cost functions associated with its decisions in
previous rounds. We propose a class of online, second-order
distributed coordination algorithms that combine subgradient
descent on the local objectives revealed in the previous round
and proportional-integral feedback on the disagreement among
neighboring agents. The communication network is given by
a time-varying sequence of connected graphs, and the local
objectives can be adversarially adaptive to the agents’ behavior.
The goal of each agent is to incur a cumulative cost over time
with respect to the sum of local objectives across the network
that is competitive with the best fixed and centralized decision
in hindsight. For this, we establish the classical logarithmic
regret bound under strong convexity of the local objectives.

I. INTRODUCTION

Networked multi-agent systems are being increasingly de-
ployed in scenarios where information is dynamic and in-
creasingly revealed over time as the interaction between
the network and the environment progresses. Given the
limited resources available to the network, such scenarios
bring to the forefront the need for optimizing network
behavior under uncertain and dynamic information. Moti-
vated by these observations, this paper combines distributed
and online optimization. On the one hand, distributed opti-
mization exploits cooperation, while maintaining privacy, to
solve optimization problems where computational and data-
collection capabilities are distributed across a network. On
the other hand, online optimization leverages streaming data
to produce adaptive solutions in scenarios where informa-
tion is increasingly revealed over time. Distributed online
optimization arises from the combination of these two areas
and allows the goal-directed fusion of information in both
space —across a network of agents— and time —incorporating
new information as it becomes available.

Literature review: Distributed optimization problems are
pervasive in distributed and parallel computation and multi-
agent systems [1], [2], [3], and in the convex case has
motivated a growing body of work, see e.g., [4], [5], [6],
[71, [8], [9], on the synthesis of distributed algorithms
with asymptotic convergence guarantees. Online learning,
on the other hand, is about sequential decision making
given historical observations of the cost functions associated
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with previous decisions, even when the cost functions are
adversarially adaptive to the behavior of the decision maker.
Interestingly, in online convex optimization [10], [11], [12],
[13] it is doable to compete with the best fixed decision in
hindsight, which means that the regret, i.e., the difference
between the cumulative cost over time and the cost of
the best fixed decision in hindsight, is sublinear in the
time horizon. This setup has applications in information
theory [11], game theory [14], and supervised online ma-
chine learning, including interactive learning [15], online
regression [12], instance ranking and AdaBoost [14], and
in fact these areas inform each other [11] and offer different
perspectives into problems like portfolio selection [13] and
online advertisement placement, among others. Algorithmic
approaches include online gradient descent [10], online New-
ton step [16], follow-the-approximate-leader [17], [16], and
online alternating directions [18]. A few recent works have
explored the combination of distributed and online convex
optimization. The work [19] proposes distributed online
strategies that rely on the computation and maintenance
of spanning trees for global vector-sum operations, and
makes statistical assumptions on the sequence of objectives.
[20] studies decentralized online convex programming for
groups of agents whose interaction topology is a chain.
The works [21], [22] extend online projected subgradient
descent and online dual averaging to scenarios similar to
ours, that is, they study the notion of agent regret, which
differs from the alternative notion of empirical risk [23, Th.
1], and make no statistical assumptions on the sequence of
objectives. [21] shows regret O(+/T') under convexity of the
cost functions and regret O(log7T) under strong convexity
(always under the standard Lipschitz assumption), but both
analyses require a projection step onto a compact convex set.
In contrast, [22] shows O(ﬁ ) regret under convexity using
a general regularized projection. Both works consider fixed
directed communication digraphs with doubly-stochastic ad-
jacency matrices, whereas here we consider the case of
switching undirected topologies. For this, we study a family
of distributed saddle-point subgradient algorithms [24], [8]
that in the static case converge with constant learning rates
and enjoy robust asymptotic behavior in the presence of
noise [25].

Statement of contributions: We consider a network of agents
communicating over a sequence of time-dependent connected
graphs. The network is involved in an online optimization
scenario where each agent has access to a component of
the sum of objective functions increasingly revealed to



the network. We propose a class of distributed online al-
gorithms that build on subgradient saddle-point (discrete-
time) dynamics. Our algorithm design combines subgradient
descent on the local objectives revealed in the previous
round and proportional-integral distributed feedback on the
disagreement among neighboring agents in a time-dependent
communication network. We study the asymptotic conver-
gence properties of the proposed algorithms and establish
the classical logarithmic regret bound under strong convexity
of the local objectives. Our technical approach builds on a
concept that we term network regret, and on the cumulative
disagreement of the collective estimates via the input-to-state
stability properties of the second-order consensus component
of the algorithm.

Organization: The paper is organized as follows. Section II
introduces preliminary notions on matrix analysis, convex
functions and graph theory. Section III formulates the net-
worked online convex optimization problem. Section IV
introduces our distributed algorithmic solution and Section V
presents the convergence analysis leading up to the log-
arithmic regret bound. Finally, Section VI discusses our
conclusions and ideas for future work. The appendix gathers
auxiliary linear algebra results.

II. PRELIMINARIES

Here we introduce notational conventions and basic notions
on linear algebra, convex functions and graph theory.

Linear algebra: We denote by R" the n-dimensional Eu-
clidean space, by I,, € R"*" the identity matrix, by e;),, the
ith column of I,,, and by 1,, the column vector of ones in R”.
A subspace U C R"™ is a subset of R™ which is itself a vector
space. Two subspaces U/, V C R" are orthogonal, ULV, if
u'v =0 for any u € U, v € V. Given a matrix A € R™*",
we denote its nullspace by NV (A) := {z € R" : Az = 0}
and its column space by C(A). Given A € R™*", we let
spec(A) and p(A) denote the set of eigenvalues and the spec-
tral radius of A, respectively. The matrix A is diagonalizable
if it can be written as A = SADAS;1, where Dy € R™*"
is a diagonal matrix with the eigenvalues of A as entries,
and S4 € R™™™ contains in its columns the corresponding
eigenvectors. If the eigenvalues are real, then the eigenvectors
are real. Throughout the paper we use different labels for the
eigenvalues with the exception that, when they are real and
nonnegative, A%, denotes the minimum nonzero eigenvalue,
and Ap.x denotes the maximum eigenvalue. We let ||.||2
denote the Euclidean norm. For B € R™"*™_ we also denote
I1Bll2 := omax(B), the largest singular value of B, and
K(B) = ||Bll2||B7 |2 = Omax(B)/0min(B), the condition
number of B. The Kronecker product of B € R™*™ and
C € RP*1? is denoted by B ® C' € R"P*™4,

Convex functions: Given a convex set C C R"”, a function f :
C — Ris convex if f(az+(1—a)y) < af(z)+(1—a)f(y),
for all « € [0,1] and z,y € C. A vector &, € R” is called
a subgradient of f at x € C if f(y) — f(z) > & (y — z),
for all y € C, and we denote by df(x) the set of all such

subgradients. The characterization [26, Lemma 3.1.6] asserts
that a function f : C — R is convex if and only if 0f(x) is
nonempty for each x € C. Equivalently, note that f is convex
if 0f(x) is nonempty and for each z € C and £, € 0f(x),

Fly) = flx) > €1y — a) + 28|y — |3,

for all y € C, where the function p : C x C — Ry is
the modulus of strong convexity (whose value may be 0).
Furthermore, f is p-strongly convex in C, for some p > 0,
if p(x,y) = p for all z,y € C. Finally, a convex function
f :R™ — R has H-bounded subgradient sets if there exists
H € Ry such that ||&. ||z < H for all &, € 9f(x) and
r e R™

Graph theory: We follow the exposition in [27]. An (undi-
rected) graph G = (Z,€) is composed of a vertex set
Z ={1,...,N} and an edge set £ C Z x Z. The edge
(i,7) € & is considered unordered, meaning that ¢ is a
neighbor of j and vice versa. A weighted graph G =
(Z,E,A) is a graph together with a symmetric adjacency
matrix A € RYXN with the property that a;; > 0 if
and only if 7 and j are neighbors. The Laplacian matrix
L := diag(Aly) — A satisfies L1y = Oy and is symmetric
and positive semidefinite. The complete graph is the graph
where every vertex is a neighbor of every other vertex. For
convenience, we let L denote the Laplacian of the complete
graph with edge weights equal to 1/N, that is, L := Iy —M,
where M := %]l ~1}. We note that Lg is idempotent, i.e.,
L7 = Lk. A path is an ordered sequence of vertices such
that any pair of vertices appearing consecutively is an edge.
A graph is connected if there is a path between any pair
of distinct vertices. A weighted graph G is connected if and
only if rank(L) = NV — 1. Since the Laplacian is symmetric,
it can be factorized as L = SLDLS[l, where D; € RV*N
is a diagonal matrix with the eigenvalues of L in increasing
order and S| is an orthogonal matrix whose columns form
an orthonormal basis of the corresponding eigenvectors.

III. PROBLEM STATEMENT

This section introduces the problem of interest. We begin
by describing the online convex optimization problem for
one player and then present the networked version, which is
the focus of the paper. In online convex optimization, given a
time horizon T' € Z>1, in eachround ¢ € {1,...,T} a player
chooses a point z; € R%. After committing to this choice, a
convex cost function f; : R? — R is revealed. Consequently,
the ‘cost’ incurred by the player is f;(z). Given the temporal
sequence of objectives { f;}7_,, the regret of the player using
{x;}I_, with respect to a competing choice u € R? over a
time horizon 7T is defined by

T T
Rlu {fi}ion) ==Y filw) =Y filw), (D

i.e., the difference between the total cost and the cost of
the fixed decision u. A common selection of u is the best



decision had all the information been available a priori, i.e.,
T
u= a7 € argmingpa Z fi(x).
t=1
In the case when no information is available about the
evolution of the functions {f;}7_,, one is interested in de-
signing algorithms whose worst-case regret is upper bounded
sublinearly in the time horizon 7. This implies that, on the
average, the algorithm performs as well as the best fixed
decision in hindsight.

In this paper, we are interested in a distributed version of the
online convex optimization problem described above where
the online player is replaced by a network of N agents. In
the round t € {1,...,T}, agent i € {1,..., N} chooses a
point z¢ corresponding to what it thinks the network as a
whole should have chosen. After committing to this choice,
the agent has access to a convex cost function f; : RY — R,
and the network cost is then given by the evaluation of

N .
fe(@) = Z fi (). )

Since information is now distributed across the network as
opposed to centralized, agents must collaborate with each
other to determine their choices for the next round. Assume
that the network communication topology is time-dependent
and described by a sequence of connected weighted
graphs {G ), = {({1,..., N}, &, A)}L . Through com-
munication, agents become aware of the choices made by
their neighbors in the previous round. In this scenario, the
regret of agent j € {1,..., N} using {z]}~ ; with respect
to a competing choice u € R? over a time horizon T is

T N
Fiad) =D ) fiu).

t=1 i=1

T N
R {fiy) =

t=1 i=
Note that this regret is not directly computable by agent j
even in hindsight, because it does not know the local cost
functions of the other agents in the network. The complex-
ity of this problem formulation stems from combining the
distributed computation aspect and the online optimization
aspect. That is, information is distributed across the agents
(who act as decision makers) and is not known a priori but
incrementally revealed to the agents.

IV. SADDLE-POINT DYNAMICS FOR ONLINE
DISTRIBUTED OPTIMIZATION

In this section we introduce a distributed coordination al-
gorithm to solve the networked online convex optimiza-
tion problem described in Section III. In each round ¢ €
{1,...,T}, agent i € {1,..., N} performs

N N
P J i J i ,
Tip1 = xt+0(a E aij (@ — ) +§ 2yt (2 _Zt)> —MtGyi

=1 =1

N
s =2—0 Y gzl —1)), 3)
j=1

where g,: € Ofi(xi) and a;;¢ := (At)i;. Here 0 € Rso
and a € R are design parameters and 7, € R+ is the
learning rate. Agent i is responsible for the variables z,
2%, and shares their values with its neighbors according to
the time-dependent communication graph G;. Note that (3)
is consistent with the incremental access to information of
individual agents (in the round ¢+ 1, agent i is aware of f;)
and is distributed over G;.

The role of the auxiliary states z!, ..., 2" is best understood
examining the rationale behind the synthesis of the coordi-
nation algorithm (3). Our design builds upon the strategy
for distributed optimization of a sum of convex functions
studied in [24], [8]. Consider the collective network state
xz = (z,...,2)) € RY)N. For t € {1,...,T}, let the
convex function f; : (R4)Y — R be defined by

~ N . .
flm) =" fi(a). (4)
=1

Note that f,(1y ®x) = f,(z), i.e., when all agents agree on
the same choice, we recover the value of the network cost
function (2). Given the connectivity of G, this agreement
constraint can be expressed, in each round ¢, in terms of
the Laplacian, (L; ® I;)x = 04n. Motivated by these obser-
vations, consider the time-dependent augmented Lagrangian
Li: (RHN x (RHN = R,

Li(x,z) = %ft(:c) + ¢’ Lix + 2 Ly,

where L; is shorthand notation for L; ®I;. The network aux-
iliary state z := (z',...,2"V) corresponds to the Lagrange
multipliers associated to the agreement constraint, and the
coordination algorithm (3) corresponds to a first-order Euler
discretization of the saddle-point dynamics associated to the

Lagrangian function L;.

In compact form, the dynamics (3) can be expressed as
LTi41| |2t —al; —L;| |2 - gmt
wol el R ] e

where Ju, = (9z1,.--,9.n) € df,(x,). This representation

shows that the coordination algorithm (3) is a combination
of a second-order linear consensus algorithm together with

a subgradient descent. We will build on this interpretation
later in our convergence analysis.

Our main result states that, under (3), the agent regret is
logarithmic in the time horizon.

Theorem IV.1. (Logarithmic agent regret under (3)): For
T € Zs1, let {f},...,fN}L, be convex functions on
R? with H-bounded subgradient sets and nonempty sets of
minimizers. Assume that the sets of minimizers are bounded
uniformly in 7' and the functions {f},..., fN}L, are p-
strongly convex in a sufficiently large set. Let {G;}]_; be a
sequence of connected weighted graphs such that

0< A < IISI}SISHT{)\min(Lt)}’ lI%ltaéXT{AmaX(Lt)} < A7 (6)



a € (2,00) and o € (0,0*), where
2
(52 -1)A
Then the sequence {x; = (z},...,2))}_, generated by

the coordination algorithm (3) satisfies the following regret
bound:

and let n; = 1%

*
g =

an )
2

R (U> {ft}thl) < C(||u||§ +1+log T)7 (®)

for any j € {1,..., N} and u € R?, for some C > 0.

The proof of this result is in the following section and
provides an explicit characterization of the constant C' in
terms of the initial conditions and the network parameters.

V. REGRET ANALYSIS

This section presents our technical approach to establish the
O(logT) regret stated in Theorem IV.1. Our proof strategy
uses the following auxiliary notion. For any sequence (of
network states) {z;}7._; C (RY)YN, we define the network
regret [19], [23] with respect to a competing choice u € R?
over the time horizon 7" as

R (u, {fe}iz1) - thivt Z fi(ly @ u).

Based on this concept, our proof strategy to establish Theo-
rem IV.1 consists of the following steps.

o in Section V-A, we bound the difference between net-
work and agent regret as a function of the cumulative
disagreement of the collective estimates over time, and
then we similarly bound the network regret;

o in Section V-B, we bound the cumulative disagreement
in terms of the learning rates and the size of the
subgradients.

« Finally, combining the previous bounds with a bound
on the trajectories independent of the time horizon, we
make a choice of learning rates that yields O(logT)
regret under local strong convexity.

A. Bounds on network and agent regret

We start with a result that is independent of the algorithm.
Lemma V.1. (Bound on the difference between agent and
network regret): For T € Z>1, let {f},...,fN}L, be
convex functions on R¢ with H-bounded subgradient sets.
Then, any sequence {x;}7 ; C (RN satisfies

T
R (u, { fi}ioy) < R, {fi}oy) + V2NH Y |[Lica o,

t=1

where L := Lx ® Iy, for any j € {1,..., N} and u € R9,

The proof is omitted and will appear elsewhere.

Next, we bound the network regret in terms of the learning
rates and the cumulative disagreement. The bound holds
regardless of the connectivity of the communication network.

Lemma V.2. (Bound on network regret): For T' € Z>,
let {f},...,fN}L, be convex functions on R? with H-
bounded subgradient sets. Let the sequence {x;}7_; be
generated by the coordination algorithm (3) over a sequence
of arbitrary weighted graphs {G;}7_,. Then, for any u € R?
and any sequence of learning rates {n;}7_; C Rxo,

2R (u, {Fe}i=1) <Z||th—UI| (5

t=2

- pt(uv xt))

nt 77f1

+2\FHZ | L, |2 +NH2Znt + [ My — w3,
t=1

where M := M ® [y, u := 1y ® u and each function p; :

(RYN x (RN — Rsq is the modulus of strong convexity.

The proof is omitted and will appear elsewhere.

B. Bound on cumulative disagreement

Here we study the evolution of the disagreement among
agents. Our analysis builds on the representation (5) of the
coordination algorithm (3) as a combination of a second-
order linear consensus algorithm with subgradient descent,
that we treat here as a perturbation. Consequently, consider
the general dynamics

Vi1 = (Ianag + o) v + uy, ©))
where v; = (z4,2;) € (RH)N x (RHN € (RHN x
(RN is arbitrary, and
—aLl; —L; —a -1
L;:= = L;. 10
t { L, 0 ] { 1 0 ] @ Ly (10)

Note that we recover the dynamics (5) with Ehe choice u; =

—1t(J=,,0). Next, we left-multiply (9) by L := I ® Lg

to describe the evolution of the disagreement
f_l]C'Ut+1 = ]Z)C (I + O']Lt>'l)t + f;;gut

= (f;;c + a]Lt)'ut + f;;cut =

(11)
(iJIC + O'Lt)f‘l(l'vt + Licu,

where we have used that f;;gILt = L, in the second equality
and I:,QC = L and Ly = L;L in the third equality. Given
the disagreement dynamics (11), the next result examines the
properties of Lx 4 oL, to which we refer as second-order
disagreement matrix for the graph G;. Its proof is given in
the Appendix.

Proposition V.3. (Properties of the second-order disagree-
ment matrix): Let G be a connected graph with associated
Laplacian matrix L, and define, for a > 2,

—a -1
L.—[l 0:|®L®Id. (12)
Using the shorthand notation h(a) := ./(5)*—1, the
following holds:

(1) for any o € R, the eigenvalues of I:;g + oLl are 0, with
multiplicity 2d, and

{14+0(—%+hn(a)X : X€espec(L)\{0}} (13)



(each with multiplicity d). Consequently,
p(Lx + o) = max {[1+o(— %+ h( )) )\;nn(L)|
1+ 0(=5 = ha)) Amax(L)]}-

(i) f;;c +oL is diagonalizable, f;;c +oL = SDS™!, where

D= (121\/ + o diag (— % + h(a), —% — h(a)) @Dy
D¢
_12® (61|Ne-1r|N)> ®Id,
g |:—g+h(a) -5 =

h
1 1 (a):| ®SL ®1y.

Sa

(iii) Lx + oL is convergent (i.e., p(f;;c +olL) < 1) for

2

o< (0, (@ 1 (@) hmn(L) ):

We are now ready to bound the cumulative disagreement
of the collective estimates over time. Our result is a conse-
quence of the input-to-state stability property of the dynam-
ics (9), which we also establish.

Proposition V.4. (Input-to-state stability of the disagree-
ment dynamics under switching connected topologies):
Let {G;}Z_, be a sequence of connected weighted graphs
and let ¢ € (2,00) and ¢ € (0,0%), where o* is defined
in (7). Then, tpe dynamics (9) is input-to-state stable with
respect to N'(Lx). Specifically, for any ¢ € Z>; and any

{us}iZi € RN x (RN
ILicvillz < w(S6) ol [lon la (14)
£(5q)
+ 1—po 1<He1<${ 1 s,
where
po :=max { |1+ c(— %+ h(a))Al,
1+o(—%—nh(a))Al} <1. (15)

Furthermore, the following bound for the cumulative dis-
agreement for T' € Z> holds:

T T
D Lkaelz <> kvl (16)
t=1 t=1

T-1
K(Sg)
< 22 (oo + Y llullz).
~Po t=1
Proof. The disagreement dynamics (11) yields
f;;(:vt+1 = (}(t, 1)f4]<:'l)1
t—1
+ ) ®(t, s+ 1)Licu, + Licuy, (17)
s=1

where, for any k > s, we define the transition matrix ®(k, s)
for the second-order disagreement dynamics as

®(k,s) == (L 4+ olg) ... (Li 4 oLy).

By Proposition V.3(ii), we have ﬁK + oLy = S,DLS Y,
where

Sk =5 ® S, ®1q4,
Dy i=(Tav + 0D ® Dy, ~ L@ (e el|y) ) @ Ta.
Note that
S Sk-1 = (Sg' © S @1a) (Se ® Su,_, ®1a)
=L®S. 'S, , ®la

Using this fact and the sub-multiplicativity of the norm,
together with [28, Fact 9.12.22] for the norms of Kronecker
products, we get

| @k, )ll2 = | (S DkS; ") (Sk-1Dr-18:2,)
X (Ss+1Ds+1S5_+11) (SsDGSZI) ”2

k—1

< 1SalalISt, 201 Dalall Sz 2 D211 2)
r=s+1
& ll2llSc

Grouping the condition numbers and noting that x(S,) =1
because Sy, is orthogonal for each t € Z>;, we get
k
1@(k, 8)]l2 < w(Se) [T (SLID: 2

k
= k(Sq) H p(Lx + oL,).
Using this bound in (17) in conjunction with the triangular
inequality, and noting that |Lx|ls = 1 (because L is
symmetric and its nonzero eigenvalues equal 1), we obtain

|Licvisil2 <#(Sq) pbllvi]l2

t
+r(Sa) Y o lus|le.

s=1
where, from (6) and by Proposition V.3(i), one can see that
Po, given in (15), satisfies

(18)

> L .
po = max p(Lk +oLy)

Moreover, p, € (0,1) because
“1<1+o(—%—h(a))A<1+o0(—2%+h(a))A<1
for o € (0,0*). Equation (14) now follows from (18) by
noting that 32,7 p* = = for p € (0,1). To bound
the cumulative disagreement, we sum (18) over the time

horizon T to get

(SG)Hlez N 1
ZHL)CU la < =S 4 R(S6) DD ok fus -
Po t=1 s=1
Flnally, noting that
T t—1 T-1 T
> o sl = Z > uslla
t=1 s=1 s=1 t=s+1
=
Znusng S e >l
t=s+1 p s=1



for any p € (0, 1), equation (16) follows. O

C. General bound on agent regret

We now combine the previous results to bound the agent
regret in terms of the learning rates.

Proposition V.5. (General bound on agent regret): For
T € Z>y, let {f}, ..., fN}L | be convex functions on R?
with H-bounded subgradient sets for each ¢ € {1,...,T}.
Let the sequence {x;}/_, be generated by the execution of
the coordination algorithm (3) over a sequence of connected
weighted graphs {G;}7_,, and with a > 2 and o € (0, o*).
Then the following bound for the agent regret holds for any
je{l,...,N}, ue R and {n}L, C Rog:

2R (u, {fi}i=1)

T
<Y IMa - 1y @ul (- 5

Mt MNt—1
t=2

+2\/NH(1+\/W)’;(_S?

19)

—p(Iy ®u, mt))

21 (13 + 112113

+ NH?(2(1+ V2N) f(_SG) +1) Y m
t=1

Po
+ o My — Ty @ ull3,

where each function p; : (RN x (RN — Rsq is the
modulus of strong convexity (whose value may be 0).

Proof. Using Lemmas V.1 and V.2, we can write

T
2R (u, { fi 1) < Y IMai—ul5(5 — 725 — pe(u, )
t=2
T T
+ (2VNH +222NH) Y | Lz + NH? D
t=1 t=1
T
+ (5 —p1) My —ull3 =D pel e I3 (20)
t=1

According to Proposition V.4, the cumulative disagreement
of the collective estimates over time is bounded as

T H(SG) T—1
> Ll < — (lvillz + > mVNH),
t=1 g t=1

where we have taken us = —10(gz.,0) € (RHN x
(RHYN whose norm is bounded by [[us|lz = 7s||Fe. |2 <

nsvV/ N H. The result now follows by substituting this inequal-
ity into (20) and bounding by O the negative terms. O

Proposition V.6. (Boundedness of the online estimates):
For T € Z>1, let {f},..., fN}L, be convex functions on
R? with H-bounded subgradient sets and nonempty sets of
minimizers. In addition, assume that the sets of minimiz-
ers are contained in a closed ball centered at the origin
with some radius independent of 7', and further assume
that the functions {f},..., fN}Z_, are p-strongly convex
in any open neighborhood of that ball. Let the sequence

{z; = (x},...,2N)}_, be generated by the coordina-
tion algorithm (3) over a sequence of connected weighted
graphs {G;}{_; under condition (6) and with 7, = g,
a € (2,00) and o € (0,0*), where o* is defined in (7).
Then there exists D > 0, independent of the time horizon
T, such that ||z;||o < D for all t € {1,...,T}.

The proof is omitted and will appear elsewhere.

Theorem IV.1 then is derived from Proposition V.5 as-
suming that the region of p-strong convexity of the func-
tions {f},..., f/V}L_, is the ball centered at the origin of
radius D, where D is given in Proposition V.6. Under this
assumption, we have p;(u,z;) = p for all u € (RY)"N and
t € {1,...,T}, regardless of the time horizon T. Hence,
the logarithmic regret bound (8) follows choosing 7, = %
in (19), for any p € (0,p], because

1 1

it Nt—1

—pi(w, ) =pt—p(t—1)—p=p—p<0,

and also noting that 23:1 % < 1+4logT. Figure 1 illustrates
a particular case of Theorem IV.1.

VI. CONCLUSIONS

We have considered networked convex optimization prob-
lems where a team of agents generate local decisions over
time that achieve sublinear regret with respect to the best
fixed centralized decision in hindsight. We have proposed
a class of distributed online algorithms that allow agents to
fuse their local estimates and incorporate new information as
it becomes available. Our algorithm design uses only first-
order local information about the local objectives, in the
form of subgradients, and only requires local communication
of estimates among neighboring agents in a time-dependent
connected graph. We have established the classical logarith-
mic agent regret bound under strong convexity, relying on
a boundedness property of the trajectories as opposed to a
projection onto a compact set. Future work will consider
directed topologies and bounded interval connectivity, the
convex case, and the characterization of the algorithm per-
formance under noise.
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APPENDIX

Here we prove Proposition V.3. We start with a simple result
from linear algebra whose proof is standard.

Lemma A.l. (Rank-one additions to the nullspace
of a special class of matrices): Let B € R"*" be
a diagonalizable matrix with real eigenvalue-eigenvector
pairs { (A, u;) }P ;. Without loss of generality, assume
N (B) is generated by the orthonormal vectors {u;}F_,. If
N(B)LC(B), then, for any (p1,...,ux) € RF,

k
B+ Z,uiuiuz =Sp(Dp + DH)SEI,
i=1

where Sp = [uy - - - uy], Dp = diag(0, ..., 0, Ag11, ..., Ap) €
R™ "™ correspond to the eigenvalue decomposition B =
SpDpSz', and D, := diag(u1, ..., g, 0, .., 0) € R™*™,

Our next result describes the properties of the matrix that
defines the second-order linear consensus algorithm (9).
Lemma A.2. (Properties of the second-order consen-
sus matrix): Let G be a connected graph with associated
Laplacian matrix L € RY*N_ The following properties hold
regarding the matrix L defined in (12) for a € R>¢:

(i) The matrix L has eigenvalues
{(=5 £h(a))X : X €spec(L)},

and rank(L) = 2(INV — 1)d. In addition, if a € Ry,
then L is semistable and, if a € (2,00), then all its
eigenvalues are real.

(i) The nullspace of L is given by

N(L)={(Iy®b1y®c) : bc R},

and is orthogonal to C(L).
If a # 2, then L is diagonalizable, L. = Sy DpS; !,
where S, = Sg ® S| ® I and

Dy, :diag(— % —i—h(a),—% —h(a)) ® DL ®14.

@iv) For any 0 € R, a > 2, the matrix L := oL — LM
is diagonalizable, I = Sp.D; S ~1 where

(iii)

DH:, =D —-1L® (€1|N eI|N) ® 14.
Proof. We start by noting that the matrix
—a -1
G = [ R ]
has eigenvalues —& + h(a). Since G is connected, then
rank(L) = N — 1 and hence 0 is an eigenvalue of L with

multiplicity d. Fact (i) follows by noting that the eigenvalues
of a Kronecker product are the product of the eigenvalues
of the individual matrices, cf. [28, Prop. 7.1.10]. Regarding
fact (ii), the expression for the nullspace follows by noting
that dim(N (L)) = 2d and L(1y ® b,1y ® ¢)" = 0 for
any b,c € R? The orthogonality property A(L) L C(L)
is a consequence of the fact that v'L. = 0 for any v €
N (L). Regarding fact (iii), note that if a # 2, then the
eigenvalues of G are different and G = SgDG'SEl with

D¢ := diag(—$§ + h(a), —§ — h(a)). Additionally,

L=Lel;=SD.S el
=(SL®@ 1) (DL @1)(SL@1g) 7,

Therefore, we can write

GRL=SeDcSz' @ (SL®@ 1) (DL ®@15)(SL ®@14) "
= (Se®SL®14)(De ® DL @14)(Se ® SL@ 1)~

Finally, to show fact (iv), we resort to Lemma A.l. Since
a > 2, the matrix oL is diagonalizable by (iii). Also,
according to (i), its eigenvalues are real and its nullspace
has dimension k& = 2d. In addition, /(L)L C(LL) by (ii). To
apply Lemma A.1, we select the orthonormal basis {Ul}zzi1

of N(L) as
{ Fmep®ly®e

and p; = —1 forall [ € {1,...,2d}. It should be noted that,
with respect to the eigenvalue decomposition of L presented
in (iii), the orthonormal eigenvectors above correspond to the
columns 1,...,d,Nd+1,..., Nd+d of S, = Sg ® S|.
Since Y24 i wuy = 304 —wu] = —Iy ® M, the result
follows noting that D,, € R2V4*2Nd jn [emma A.1 is

1<i<2,1<j<d},

Dy, =T, @ diag(—14,0v—1)a) = —l2 @ (e1n ef)n) @ La,

whose zero diagonal entries are located according with the
rearrangement of eigenvectors described above. O

The previous results allow us to prove Proposition V.3.

Proof of Proposition V.3. We start by noting that
Li + oL = Ipyg + L,

where L is defined in Lemma A.2(iv). Therefore, ﬂK + ol
is diagonalizable with the same eigenvectors as L and
eigenvalues shifted by the addition of unity. Facts (i) and (ii)
now follow from Lemma A.2(i) and (iv). Regarding matrix
convergence, since the eigenvalues are real by Lemma A.2(i),
all of them lie strictly inside the unit circle if

-1<1l+o(—%=+h(a))r<1

for all A € spec(L)\{0}. The right inequality is automati-
cally satisfied for o > 0 because —§—h(a) < —§+h(a) <0
and spec(L)\{0} C (0, 00). For the left inequality, note that

2
o(—%—h(a))A>-2 & 06 < ————,
(75 70@) &+ b
for each \ € spec(L)\{0}, and fact (iii) follows. O



