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Abstract. This paper studies the robustness properties against additive persistent noise of a
class of distributed continuous-time algorithms for convex optimization. A team of agents, each with
its own private objective function, seeks to collectively determine the global decision vector that
minimizes the sum of all the objectives. The team communicates over a weight-balanced, strongly
connected digraph and both inter-agent communication and agent computation are corrupted by
noise. Under the proposed distributed algorithm, each agent updates its estimate of the global
solution using the gradient of its local objective function while, at the same time, seeking to agree
with its neighbors’ estimates via proportional-integral feedback on their disagreement. Under mild
conditions on the local objective functions, we show that this strategy is noise-to-state exponentially
stable in second moment with respect to the optimal solution. Our technical approach combines
notions and tools from graph theory, stochastic differential equations, Lyapunov stability analysis,
and co-coercivity of vector fields. Simulations illustrate our results.

1. Introduction. Coordination problems that involve the collective optimiza-
tion of a sum of convex functions, one per agent, find applications in a wide range of
networked scenarios. These include, for example, distributed estimation in wireless
sensor networks, motion coordination in multi-agent robotic systems, and large-scale
optimization in machine learning. This paper is a contribution to the growing body of
work that designs distributed coordination algorithms to allow agents to collectively
determine a global solution of the optimization problem. In particular, we consider
scenarios where the presence of noise in the agent-to-agent communications and in the
agent computations induces errors in the algorithm execution. We study a family of
distributed, continuous-time algorithms that have each agent update its estimate of
the global optimizer doing gradient descent on its local cost function while, at the same
time, seeking to agree with its neighbors’ estimates via proportional-integral feedback
on their disagreement. Our aim is to characterize the algorithm robustness properties
against the additive persistent noise resulting from the errors in communication and
computation.

Literature review. Our work here on distributed coordination for convex opti-
mization under noise has connections mainly with two areas of research in the litera-
ture: distributed convex optimization and stability of stochastic differential equations.
The multiple applications of the distributed optimization of a sum of convex func-
tions has motivated the development of an increasing body of work. The model itself
for what it means for a coordination strategy to be distributed leads to different ar-
chitectures [3, 26]. While some emphasize the iterative selection of the component
functions [2, 9, 21], here we focus on the multiagent approach, where the component
functions are distributed among a group of agents that share information across a
network. Some algorithms evolve in discrete time with associated gradient stepsize
that is vanishing [6, 23, 25, 32], nonvanishing [18, 22, 23], or might require the solution
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of a local optimization at each iteration [6, 29, 25, 19]; others evolve in continuous
time [28, 7, 12] and even use separation of time scales [30]; and some are hybrid [27].
Most algorithms converge asymptotically to the solution, while others converge to an
arbitrarily good approximation [18, 22]. Some examples of convergence rates, or size of
the cost error as a function of the number of iterations, are 1/

√
k [6, 25] and 1/k [29].

The communication topologies might be undirected [18, 29, 12, 19, 28, 30], directed
and weight-balanced or with a doubly stochastic adjacency matrix [6, 7, 32, 22, 23],
or just directed under some knowledge about the number of in-neighbors and out-
neighbors [25]; also, they can be fixed [7, 29, 12, 19, 30], or change over time un-
der joint connectivity [6, 18, 32, 25, 22, 19, 23]. On the other hand, the objective
functions might be required to be twice continuously differentiable [12, 30] or once
differentiable [7, Sec. V], [19], or just Lipschitz [6], [7, Sec. IV], [18, 29, 32, 25, 22, 23];
in addition, they might need to be strongly convex [12], strictly convex [29, 19, 30],
or just convex [6, 7, 18, 32, 25, 22, 23]. Some algorithms use the Hessian of the ob-
jective functions in addition to the gradients [12, 19, 30]. Also, the agents might need
to share their gradients or second derivatives [12, 30] or even their objectives [19].
Some incorporate a global constraint known to all the agents using a projection
method [6, 32, 25, 22] or a dual method [19], and in same cases each agent has
a different constraint [32, 23]. Some algorithms impose a constraint on the initial
condition [12, 19] in order to guarantee convergence. The algorithm execution can
be synchronous [7, 29, 12], allow gossip/randomized communication [13, 23], or use
event-triggered communication [27, 11]. Of particular interest to the subject matter of
this paper are the works that consider noise affecting the dynamics through stochasti-
cally perturbed gradients with associated vanishing stepsize [6] or nonvanishing step-
size [22], while [23] considers both noisy communication links and subgradient errors.
The characterization of the (discrete-time) algorithm performance under noise pro-
vided in these works builds on the fact that the projection onto a compact constraint
set at every iteration effectively provides a uniform bound on the subgradients of the
component functions.

The present work generalizes the class of continuous-time algorithms studied in [28] for
undirected graphs and in [7] for weight-balanced digraphs by accounting for the pres-
ence of noise in the communication channels and in the agent computations. Under
this strategy, each agent updates its estimate of the global solution using the gradient
of its local objective function while, at the same time, performing proportional-integral
distributed feedback on the disagreement among neighboring agents. As a result, the
set of equilibria is given by the solution of the optimization problem together with an
affine subspace of the integrator variables. The introduction of noise makes the result-
ing dynamical system a stochastic differential equation [15, 20, 10], with the particular
feature that the stochastic perturbations do not decay with time and are present even
at the equilibria of the underlying deterministic dynamics. The persistent nature of
the noise rules out many classical stochastic notions of stability [24, 14, 15]. Instead,
the concept of noise-to-state stability (NSS) [5] with respect to an equilibrium of the
underlying ordinary differential equation is a notion of stochastic convergence to a
neighborhood of that point. More precisely, it provides an ultimate bound for the
state of the stochastic system, in probability, that depends on the magnitude of the
covariance of the noise. Asymptotic convergence to the equilibrium follows in the
absence of noise. Here, we build on our extension [17] of this concept to NSS in pth
moment with respect to subspaces to establish NSS in second moment with respect
to the subspace of equilibria of the underlying ordinary differential equation.
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Statement of contributions. We consider a scenario where a group of agents
communicating over a weight-balanced, strongly connected digraph seeks to collec-
tively solve a convex optimization problem defined by a sum of local functions, one
per agent. Both inter-agent communications and agent computations are corrupted
by Gaussian white noise of locally bounded covariance. We study a family of dis-
tributed continuous-time coordination algorithms where each agent keeps track and
interchanges with its neighbors two variables: one corresponding to its current esti-
mate of the global optimizer and the other one being an auxiliary variable to guide
agents towards agreement. According to this coordination strategy, each agent up-
dates its estimate using gradient information of its local cost function while, at the
same time, seeking to agree with its neighbors’ estimates via proportional-integral
feedback on their disagreement. The presence of noise both in the communication
channels and the agent computations introduces errors in the algorithm execution
that do not decay with time and are present even at the equilibria.

Our main contribution establishes that the resulting stochastic dynamics is noise-to-
state exponentially stable in second moment and, therefore, robust against additive
persistent noise. Our technical approach relies on the construction of a suitable can-
didate noise-to-state Lyapunov function whose nullspace is the affine subspace corre-
sponding to the solution of the convex optimization problem and a direction of the
auxiliary variables that absorbs the variance of the noise. To verify that the candidate
function is in fact an NSS Lyapunov function, we analyze the interaction between lo-
cal optimization and local consensus through the co-coercivity of a family of vector
fields that are the sum of a gradient of a convex function plus a nonsymmetric Lapla-
cian. Specifically, we give sufficient conditions for this family of vector fields to be
co-coercive. In the absence of noise, our NSS-Lyapunov function is a strict Lyapunov
function in the sense that it decreases along the trajectories outside of its nullspace.
When noise is present, the expected rate of change of the NSS Lyapunov function is
proportional to the difference between the square Frobenius norm of the covariance of
the noise and the distance to its nullspace. The technical approach allows us to over-
come the challenges posed by directed communication topologies and the presence
of additive persistent noise. In addition, we also characterize the exponential rate
of convergence of the coordination algorithm and the functional dependence on the
size of the disturbance in the notion of noise-to-state exponential stability in second
moment. Various simulations illustrate our results.

Organization. Section 2 introduces notational conventions and preliminary no-
tions on graph theory and stochastic differential equations. Section 3 presents the
network model and formulates the problem of interest. Section 4 introduces the fam-
ily of distributed coordination algorithms along with the main convergence result and
illustrative simulations. Section 5 presents the technical analysis of the algorithm
properties. Finally, Section 6 gathers our conclusions and ideas for future work and
the appendix contains an auxiliary result employed in our technical discussion.

2. Preliminaries. Here we introduce some notations and review basic notions
on graph theory and stochastic differential equations.

2.1. Notational conventions. We let R and R≥0 denote the sets of real and
nonnegative real numbers, respectively. For convenience, we use the shorthand no-
tation 1n := [1, . . . , 1]> ∈ Rn, 0n := [0, . . . , 0]> ∈ Rn, and denote by In ∈ Rn×n
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(or simply I) the identity matrix in Rn and by ei ∈ Rn, the ith column of In. We
denote by ‖.‖2 the Euclidean norm for vectors or the induced two-norm for matri-
ces, and by |x|U := inf{‖x − u‖2 : u ∈ U}, the Euclidean distance from x to a set
U ⊆ Rn. The linear subspace generated by a set {u1, ..., um} ⊆ Rn of vectors is
denoted by span{u1, ..., un}. Given a vector v whose entries are matrices, diag(v)
is a block-diagonal matrix whose blocks are the entries of v. Given B ∈ Rn×m, its
Frobenius norm is |B|F :=

√
trace (B>B) =

√
trace (BB>). We also define the semi-

norm on Rm associated to B by ‖x‖B := ‖Bx‖2 (note that we depart here from
the usual convention of defining ‖x‖A :=

√
x>Ax, which has the inconvenience of

requiring A to be symmetric and positive semidefinite). The nullset of the seminorm
corresponds to the nullspace of B, N (B) = {x ∈ Rm : Bx = 0}. For a symmet-
ric real matrix A ∈ Rn×n, spec(A) denotes its set of eigenvalues, which we order
as λmax(A) := λ1(A) ≥ · · · ≥ λn(A) := λmin(A). For convenience, we also use the
notation λ∅max(A) to denote the maximum nonzero eigenvalue of A. Given a subspace

U , we let λU
⊥

max(A) := max{x>u=0 :u∈U, ‖x‖2=1} x
>Ax. Given a matrix B ∈ Rn×m, its

singular values are the square roots of the eigenvalues of B>B). We order them ac-
cording to σmax(B) := σ1(B) ≥ · · · ≥ σr(B) := σmin(A), where r = rank(B) is the
rank of B. We let A⊗B denote the Kronecker product of matrices A and B. Recall
that spec(A⊗B) = spec(A)× spec(B).

Given a convex set X, a function f : X → R is convex if f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y) for each x, y ∈ X and any λ ∈ [0, 1]. The function f is concave
if −f is convex. Given normed vector spaces X1, X2, a function f : X1 → X2 is
Lipschitz with constant κ if ‖f(x)− f(y)‖X1

≤ κ‖x− y‖X2
for each x, y ∈ X1, where

‖.‖X denotes the norm of X. If f : Rn → R is twice continuously differentiable, we
denote its gradient and Hessian by ∇f and ∇2f , respectively. Given a differentiable
vector field F : Rn → Rm, we let DF : Rn → Rm×n denote its Jacobian, where

DF(x)ij = ∂Fi(x)
∂xj

for all x ∈ Rn. A continuous function α : R≥0 → R≥0 belongs to

class K if it is strictly increasing and α(0) = 0, and it belongs to class K∞ if α ∈ K
and it is unbounded. Also, a continuous function µ : R≥0 × R≥0 → R≥0 is class KL
if, for each fixed s ≥ 0, the function r 7→ µ(r, s) is class K, and for each fixed r ≥ 0,
the function s 7→ µ(r, s) is decreasing and lims→∞ µ(r, s) = 0.

2.2. Graph theory. The following notions in graph theory follow the exposition
in [4]. A weighted digraph G = (I, E ,A) is a triplet where I = {1, . . . , N} is the
vertex set, E ⊆ {(i, j) ∈ I × I : i 6= j} is the edge set, and A ∈ RN×N≥ 0

is the
weighted adjacency matrix with the property that aij > 0 if and only if (i, j) ∈ E .
The (out-)Laplacian matrix L ∈ RN×N of G is L := diag(A1N ) − A, which satisfies
L1N = 0N . The complete graph is the digraph with edge set EK = {(i, j) ∈ I × I :
i 6= j}. For convenience, we let LK denote the Laplacian of the complete graph with
edge weights 1/N . Note that LK = IN − M, where M := 1

N 1N1
>
N , and that LK

is idempotent, i.e., L2
K = LK. The weighted out-degree and in-degree of i ∈ I are,

respectively, dout(i) =
∑N
j=1 aij and din(i) =

∑N
j=1 aji. A digraph is weight-balanced

if dout(i) = din(i) for all i ∈ I, that is, 1>NL = 0N , which is also equivalent to the
condition of L + L> being positive semidefinite. A path is an ordered sequence of
vertices such that any pair of vertices appearing consecutively is an edge. A digraph
is strongly connected if there is a path between any pair of distinct vertices. If G
is weight-balanced and strongly connected, then L + L> is positive semidefinite and
N (L + L>) = span{1N}.
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2.3. Stochastic differential equations. A stochastic differential equation (SDE) [15,
20] is, roughly speaking, an ordinary differential equation driven by a “random pro-
cess” called Brownian motion, B : Ω × [t0,∞) → Rm. Here, Ω is the outcome space
and P is a probability measure defined on the sigma-algebra F of measurable events
(subsets) of Ω. These elements together form the probability space (Ω,F ,P). For each
outcome ω ∈ Ω, the mapping B(ω, .) : [t0,∞)→ Rm is a sample path of the Brownian
motion and is continuous with probability 1 and with B(., t0) = 0; and for each time
t ∈ [t0,∞), the function B(t) := B(., t) : Ω→ Rm is a random variable such that the
increments B(t) − B(s) have a multivariate Gaussian distribution of zero mean and
covariance (t − s)Im and are independent from B(s) for all t0 ≤ s < t. Formally, we
consider the SDE

dx(ω, t) = g(x(ω, t), t)dt+G(x(ω, t), t)Σ(t)dB(ω, t) ,(2.1)

where x(ω, t0) = x0 with probability 1 for some x0 ∈ Rn. The vector field g :
Rn × [t0,∞)→ Rn is the drift, the matrix valued function G : Rm × [t0,∞)→ Rn×q
is the diffusion term that models the way in which the noise enters the dynamics,
and Σ : [t0,∞) → Rq×m determines the size of the noise. The matrix Σ(t)Σ(t)> is
called the infinitesimal covariance. The following result, from [15, Th. 3.6, p. 58],
guarantees the existence and uniqueness of solutions.

Lemma 2.1. (Existence and uniqueness). Let Σ be essentially locally bounded and,
for any T > t0 and n ≥ 1, let KT,n ∈ R>0 be such that, for almost every t ∈ [t0, T ]
and all x, y ∈ Rn with max

{
‖x‖2, ‖y‖2

}
≤ n, it holds that

max
{
‖f(x, t)− f(y, t)‖22 , |G(x, t)−G(y, t)|2F

}
≤ KT,n‖x− y‖22.

Furthermore, assume that for any T > t0, there exists KT > 0 such that, for almost
every t ∈ [t0, T ] and all x ∈ Rn,

x>f(x, t) + 1
2 |G(x, t)|2F ≤ KT (1 + ‖x‖22).

Then, the SDE (2.1) enjoys global existence and uniqueness of solutions for each
initial condition x0 ∈ Rn.

In particular, under the hypotheses of Lemma 2.1, the solution inherits some prop-
erties of the Brownian motion. For instance, x : Ω × [t0,∞) → Rn has continu-
ous sample paths x(ω, .) : [t0,∞) → Rn with probability 1, and for each t ≥ t0,
x(t) := x(., t) : Ω → Rn is a random variable with certain distribution (so that we
are able to measure the probabilities of certain events that involve them). Looking
at (2.1), during a small time interval δ, the random outcome x(ω, t) changes ap-
proximately its value by an amount that is normally distributed with expectation
g(x(ω, t))δ and covariance G(x(ω, t), t)Σ(t)Σ(t)>G(x(ω, t), t)>δ, and this change is in-
dependent of the previous history of the solution {x(s)}s≤t.
Next we introduce an important operator in the stability analysis of stochastic dif-
ferential equations. For any twice continuously differentiable function V : Rn → R,
we denote the generator of the SDE (2.1) acting on the function V as the mapping
L[V] : Rn × [t0,∞)→ R given by

L[V](x, t) := ∇V(x)>g(x) + 1
2 trace

(
Σ(t)>G(x, t)>∇2V(x)G(x, t)Σ(t)

)
.(2.2)
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The above quantity is the expected rate of change of the function V along the solutions
of the SDE (2.1) that take the value x at time t. It can be thought of as a generalization
of Lie derivative to SDEs. This operator plays a key role in the following result, which
provides a useful tool to study the stability properties of SDEs. The formulation
presented here is a distilled version of the discussion in [17, Section 3].

Theorem 2.2. (Exponential pth moment noise-to-state stability). Under the hy-
potheses of Lemma 2.1, let V ∈ C2(Rn;R≥ 0) satisfy the following properties with
respect to a closed set U ⊆ Rn: there exist p > 0 and class K∞ functions α1 and α2,
where α1 is convex, such that

α1(|x|pU) ≤ V(x) ≤ α2(|x|pU),

for all x ∈ Rn, and there exist W ∈ C(Rn;R≥ 0), σ ∈ K, and concave η ∈ K∞ such
that

L[V](x, t) ≤ −W(x) + σ
(
|Σ(t)|F

)
,

for all (x, t) ∈ Rn×[t0,∞), where, in addition, V(x) ≤ η(W(x)), for all x ∈ Rn. Then
the system (2.1) is pth moment noise-to-state stable (pthNSS) with respect to U , i.e.,
there exist µ ∈ KL and θ ∈ K such that

E
[
|x(t)|pU

]
≤ µ

(
|x0|U , t− t0

)
+ θ
(

ess sup
t0≤s≤t

|Σ(s)|F
)
,

for all t ≥ t0 and any x0 ∈ Rn. Specifically, µ(r, s) := α−1
1

(
2µ̃(α2(rp), s)

)
and

θ(r) := α−1
1

(
2η(2σ(r))

)
, where the class KL function (r, s) 7→ µ̃(r, s) is well defined

as the solution y(s) to the initial value problem

ẏ(s) = − 1
2η
−1(y(s)), y(0) = r.

We refer to the function V satisfying the hypotheses of this result as a pth moment
NSS-Lyapunov function with respect to U for the system (2.1). If the functions α1

and η are linear, then we refer to the above property as pth moment noise-to-state
exponential stability.

3. Network model and problem statement. This section describes the model
for the network of agents and the optimization problem we set out to solve in a dis-
tributed way. Consider a group of N agents with identities {1, . . . , N} whose commu-
nication topology is modeled by a strongly connected and weight-balanced digraph G.
An edge (i, j) ∈ E represents the ability of agent i to receive information sent from
agent j. We consider scenarios where the inter-agent communication is corrupted by
Gaussian white noise. Specifically, if agent j sends the signal x(t) ∈ Rd to agent i at
time t ≥ t0, agent i receives the corrupted signal

x(t) + Jij(t)W (i,j)
cmm(ω, t),(3.1)

where W
(i,j)
cmm(ω, t) ∈ Rd is a random variable representing Gaussian white noise, and

Jij(t) ∈ Rd×d is a weighting matrix. The noise we consider is additive, might be always
present no matter what the value of the transmitted signal is, and is persistent because
it might not decay with time. Our forthcoming algorithm design does not require that
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agent i ∈ {1, . . . , N} knows the weighting matrices Jij for any (i, j) ∈ E . Similarly,
we also consider the possibility of the information available to any given agent being
corrupted by noise when incorporated into its computations. Specifically, if agent i
incorporates the quantity qi(t) ∈ Rd into its computations at time instant t ≥ t0, it
instead gets

qi(t) + Jii(t)W i
cmp(ω, t).(3.2)

As before, W i
cmp(ω, t) ∈ Rd is a random variable representing Gaussian white noise,

and Jii(t) ∈ Rd×d is a weighting matrix. Again, our algorithm design does not require
that agent i ∈ {1, . . . , N} knows the weighting matrix Jii.

With the model for the network in place, we next define the network objective. Con-
sider a function f : Rd → R of the form

f(x) =
N∑

i=1

fi(x),(3.3)

where the local function fi : Rd → R is only known to agent i ∈ {1, . . . , N}. We
assume each fi is convex and that at least one of them is strongly convex, so that the
function f has a unique minimizer, which we denote by xmin ∈ Rd. Our goal is to
design a distributed continuous-time coordination algorithm that helps the network
collectively find the minimizer xmin in the presence of noise both in the communication
channels and in the agent computations.

4. Robust distributed optimization. This section introduces a distributed
coordination algorithm that allows the network of agents to solve the optimization
problem as described in Section 3. Our study here generalizes the work in [7] to
scenarios where the communication channels and the computations performed by
the agents are subject to noise. In order to synthesize a strategy that allows the
network to agree on the solution of the optimization problem, we have each agent i ∈
{1, . . . , N} keep an estimate xi ∈ Rd about the minimizer of the function f in (3.3).

For convenience, we denote by x := [(x1)
>
, . . . , (xN )

>
]> ∈ (Rd)N the collection of

estimates across the network and consider the function f̃ : (Rd)N → R defined by

f̃(x) :=

N∑

i=1

fi(x
i).(4.1)

In this computation, each agent can evaluate fi at its own estimate xi and the network
objective function in (3.3) can be evaluated when agreement holds, f̃(1⊗ x) = f(x).

The continuous-time algorithm we consider is then given by the following system of
stochastic differential equations,

dx =−(∇f̃(x) + γ̃ Lx + Lz)dt+G1(x, z, t)Σ1(t)dB(t),(4.2a)

dz = Lxdt+G2(x, z, t)Σ2(t)dB(t),(4.2b)

where we use the shorthand notation L := L ⊗ Id and L is the Laplacian of the
digraph G modeling inter-agent communication. We assume that the matrix-valued
functions G1, G2 : R2Nd × [t0,∞) → RNd×q are uniformly bounded and uniformly
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globally Lipschitz in the first two arguments, and measurable and essentially bounded
in time. Also, we assume that the matrix-valued functions Σ1,Σ2 : [t0,∞) → Rq×m,
with m ≥ 1, are measurable and essentially locally bounded, and that {B(t)}t≥t0 is
an m-dimensional Brownian motion defined in the probability space.

We next provide some intuition behind the algorithm design in (4.2) and properly
justify its distributed character. The deterministic part of the dynamics prescribes
that each agent updates its estimate by following the gradient of its local cost function
while, at the same time, seeking to agree with its neighbors’ estimates. The latter
is implemented through a second-order process that involves the auxiliary variables
z := [(z1)

>
, . . . , (zN )

>
]> ∈ (Rd)N and employs proportional-integral feedback on the

disagreement. When the graph G is undirected, one can in fact see [7] that the
deterministic part corresponds exactly to the saddle-point dynamics associated with
the augmented Lagrangian

L(x, z) = f̃(x) + γ̃ x>Lx + z>Lx,

corresponding to the minimization of f̃ under the constraints Lx = 0. The stochas-
tic part of the dynamics (4.2) is motivated by the desire to capture the presence
of noise affecting the execution of the coordination algorithm. In particular, Re-
mark 4.1 below discusses how the noise model described in Section 3 affecting the
communication channels and the agent computations is captured by the stochastic
differential equation (4.2). Finally, the dynamics is distributed over the digraph G
because each agent i ∈ {1, . . . , N} can update its variables xi and zi using only the
information sent from its neighbors and its knowledge of its local function fi. This
is not difficult to see from the observation that the gradient of f̃ takes the form
∇f̃(x) = [∇f̃1(x1)>, . . . ,∇f̃N (xN )>]> and that the agent i can compute the ith d-
dimensional block (Lx)i ∈ Rd.

Remark 4.1. (Noise model for communication and computation is captured by the
dynamics (4.2)). When communication along an edge (i, j) ∈ E occurs continuously
over time, the model (3.1) gives rise to functions Jij : [t0,∞) → Rd×d, which we

assume measurable and essentially locally bounded, and W
(i,j)
cmm : Ω × [t0,∞) → Rd,

which essentially correspond to the derivative of Brownian motion. Similarly, when
considering continuous-time dynamics, the computation model (3.2) gives rise to func-
tions Jii : [t0,∞) → Rd×d, which we also assume measurable and essentially locally
bounded, and W i

cmp : Ω× [t0,∞)→ Rd. Under this noise model, the implementation

of the dynamics ẋ = −(∇f̃(x) + γ̃ Lx + Lz) and ż = Lx by the agent i actually
results in the dynamics,

dxi(t) = γ̃

N∑

j=1

aij
((
xj(t)− xi(t)

)
dt+ Jij(t)dB1,(i,j)(t)

)

+

N∑

j=1

aij
((
zj(t)− zi(t)

)
dt+ Jij(t)dB2,(i,j)(t)

)

−∇fi(xi(t))dt− Jii(t)dB3,i(t),(4.3a)

dzi(t) = −
N∑

j=1

aij
((
xj(t)− xi(t)

)
dt+ Jij(t)dB1,(i,j)(t)

)
,(4.3b)
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where B1,(i,j), B2,(i,j) and B3,i are independent d-dimensional Brownian motions for
each edge (i, j) ∈ E and each agent i ∈ {1, . . . , N}, respectively. We next show how
this dynamics is captured by (4.2). First, we set G1(x, z, t) = G2(x, z, t) = INd for
all x, z, t. Second, let J(t) ∈ RNd×Nd be the matrix whose (i, j)th d-dimensional
block is aijJ

ij(t) and J̃(t) = diag
(
J̃11(t), . . . , J̃NN (t)

)
∈ RNd×Nd. Define Σ̂1(t) :=[

γ̃J(t) J(t) −J̃(t)
]
∈ RNd×3Nd and Σ̂2(t) :=

[
−J(t) 0 0

]
∈ RNd×3Nd, and set

[
Σ1(t)
Σ2(t)

]
:=

[(
(e1e

>
1 )⊗ Id

)
Σ̂1(t) · · ·

(
(eNe

>
N )⊗ Id

)
Σ̂1(t)(

(e1e
>
1 )⊗ Id

)
Σ̂2(t) · · ·

(
(eNe

>
N )⊗ Id

)
Σ̂2(t)

]
∈ R2Nd×3N2d.

Then, the dynamics (4.2) with this selection of functions G1, G2, Σ1, and Σ2 corre-
sponds to (4.3). •
The main result of the paper is the characterization of the asymptotic stability prop-
erties of the stochastic differential equation (4.2) with respect to the solution of the
optimization problem. In particular, the following result shows that the dynamics of
x(t) is noise-to-state exponentially stable in second moment with respect to 1⊗xmin.

Theorem 4.2. (Exponential noise-to-state stability of the dynamics (4.2)). Assume
the functions {fi}Ni=1 are convex and twice continuously differentiable with uniformly
upper-bounded Hessians, i.e., there exists R > 0 such that 0 4 ∇2fi 2 R Id, for
i ∈ {1, . . . , N}. Further assume that at least one of the functions is strongly convex,
i.e., there exists r > 0 such that r Id 4 ∇2fi0 for some i0 ∈ {1, . . . , N}. In addition, let
the design parameter γ̃ be selected as follows. Given ε > 0, let K1 := λmin

(
r ei0e

>
i0

+

ε (L+L>)
)

and K2 := R+2ε σmax(L), and, for any δ ∈ (0, K1K
−2
2 ), let β∗1 ≡ β∗1(δ, ε) :=√

K2
1K
−2
2 −K1δ and β∗2 ≡ β∗2(δ) be such that h(β, δ) < 0 for β ∈ (0, β∗2(δ)), where

h(β, δ) :=
(
− β4+3β2+2

2β +
√(

β4+3β2+2
2β

)2− 1
)
λ2(L + L>) + β2

2δ .(4.4)

Under the above selections, define γ̃ as

γ̃(ε, δ) := 2+β2

β + 2ε, β ∈ (0,min{β∗1(δ, ε), β∗2(δ)}).

Then, the dynamics (4.2) executed over a strongly connected and weight-balanced di-
graph has the following stability property: there exist constants Cµ, Dµ, Cθ > 0 such
that, for any initial condition (x0, z0) ∈ (Rd)N × (Rd)N and all t ≥ t0, it holds that

(4.5) E
[
‖x(t)− 1⊗ xmin‖22

]
≤ E

[
‖x(t)− 1⊗ xmin‖22 + ‖z(t)− z∗‖2LK

]

≤ Cµ(‖x0 − 1⊗ xmin‖22 + ‖z0 − z∗‖2LK) e−Dµ(t−t0) + Cθ
(

ess sup
t0≤τ≤t

|Σ(τ)|F
)2
,

where LK := LK ⊗ Id, Σ(t) := [Σ1(t)>,Σ2(t)>]>, xmin ∈ Rd is the unique minimizer
of (3.3), and z∗ ∈ Rd is any point satisfying Lz∗ = −∇f̃(1⊗ xmin).

Regarding Theorem 4.2, it is worth noting that the range of values of the design param-
eter γ̃ under which convergence is guaranteed depends on the network topology and
has to be known by the agents. The expression (4.5) states that the dynamics (4.2) is
noise-to-state stable in second moment with respect to the affine subspace of equilib-
ria. In other words, the agreement direction of the agents’ auxiliary states in z absorbs
the cumulative variance of the noise while the estimates in x converge asymptotically,
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in second moment, to a neighborhood of the minimizer of (3.3). The size of this neigh-
borhood depends on the size of the noise, measured by |Σ(t)|F :=

√
trace (Σ(t)Σ(t)>),

which depends on the infinitesimal covariance Σ(t)Σ(t)>. Figure 4.1 illustrates empir-
ically the evolution of the second moment using several realizations of the noise and
also shows the values of the ultimate bounds as a function of the size of the noise.

0 2 4 6 8 10 12 14 16 18
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time, t
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‖x(t) − 1 ⊗ xmin ‖22
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γ̃ = 2

γ̃ = 3

γ̃ = 4

(c)

Fig. 4.1: Evolution of the distributed optimization algorithm (4.2) with noise
over a group of N = 4 agents communicating over the directed ring (E =
{(1, 3), (3, 2), (2, 4), (4, 1)}). The local objective functions are defined on R2 and given
by f1(x1, x2) = 1

2 ((x1 − 4)2 + (x2 − 3)2), f2(x1, x2) = x1 + 3x2 − 2, f3(x1, x2) =
log(ex1+3+ex2+1), and f4(x1, x2) = (x1+2x2+5)2+(x1−x2−4)2. In all plots, the ini-
tial conditions are x0 = (−3,−3,−1,−1, 1, 1, 3, 3), and z0 = 18. The dynamics is sim-
ulated using the Euler discretization with step size 0.01. Plot (a) shows the evolution
of the first and second coordinates of the agents’ estimates with γ̃ = 3, G1 = G2 = I8,
and Σ1 = Σ2 = 0.2 I8. Despite the additive persistent noise, the estimates converge,
in probability, to a neighborhood of the minimizer xmin = (1.10,−2.74). For three
different values of the design parameter γ̃, plot (b) shows the asymptotic convergence
in second moment to a neighborhood of the solution and plot (c) depicts the ultimate
bound for the second moment when Σ1 = Σ2 = s I8 for increasing values of s. Ob-
serve that, as the design parameter gets larger (putting more emphasis on consensus
among the agents) the noise gain gets smaller. Here, the expectations are computed
averaging over 100 realizations of the noise.

We devote Section 5 to prove Theorem 4.2, where we provide explicit characterizations
of the class KL function µ(r, s) := Cµr

2 e−Dµ s and the class K∞ function θ(r) :=
Cθ r

2. We end this section by noting that, in the noiseless case, a byproduct of
Theorem 4.2 is a refinement of the result in [7], showing exponential convergence to
the solution.

Corollary 4.3. (Global exponential stability in the noiseless case). In the noiseless
case (i.e., Σ1 = Σ2 = 0), and under the hypotheses of Theorem 4.2, the trajectory
of the dynamics (4.2) starting from an arbitrary initial condition (x0, z0) ∈ (Rd)N ×
(Rd)N satisfies, for all t ≥ t0,

‖x(t)− 1⊗ xmin‖22 ≤ ‖x(t)− 1⊗ xmin‖22 + ‖z(t)− z∗‖22
≤ Cµ(‖x0 − 1⊗ xmin‖22 + ‖z0 − z∗‖2LK)e−Dµ(t−t0) + ‖z0 − z∗‖2M,(4.6)

where M = 1
N 11

> ⊗ Id, and z∗ ∈ Rd is any point satisfying Lz∗ = −∇f̃(1 ⊗ xmin).
In particular, choosing z∗ ∈ Rd such that Mz∗ = Mz0 shows that the convergence of
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the trajectory starting from (x0, z0) to the point (1⊗ xmin, z
∗) is exponential.

Proof. Since Σ1 = Σ2 = 0, the system of SDEs (4.2) becomes a system of ordinary
differential equations. Let zagree(t) := Mz(t). By left-multiplying the dynamics of
z(t) in (4.2) by M, we obtain that żagree = 0 and therefore zagree(t) = zagree(t0) for
all t ≥ t0. Using that M is symmetric and M = M2, if we define z∗agree := M z∗, then

(z(t)− z∗)>M(z(t)− z∗) = (zagree(t)− z∗agree)>M(zagree(t)− z∗agree)

= (zagree(t0)− z∗agree)>M (zagree(t0)− z∗agree)

= (z0 − z∗)>M (z0 − z∗) = ‖z0 − z∗‖2M.

On the other hand, using that INd = LK + M and L2
K = LK, we obtain

‖z(t)− z∗‖22 = (z(t)− z∗)>
(
LK + M

)
(z(t)− z∗) = ‖z(t)− z∗‖2LK + ‖z0 − z∗‖2M.

Equation (4.6) follows from this fact together with (4.5). Finally, noting that Mz =

1 ⊗ ( 1
N

∑N
i=1 z

i) and L(1 ⊗ a) = 0 for any a ∈ Rd, it is clear that, given an initial
condition z0 ∈ (Rd)N , one can choose z∗ that satisfies at the same time Lz∗ =
−∇f̃(1⊗xmin) and Mz∗ = Mz0. If this is the case, ‖z0−z∗‖M = 0, and (4.6) shows
exponential convergence of the trajectory starting from (x0, z0) to (1⊗ xmin, z

∗).

5. Algorithm properties and stability analysis. In this section, we establish
a series of properties of the distributed coordination algorithm (4.2) leading up to the
characterization of its asymptotic correctness stated in Theorem 4.2. We begin by
expressing the dynamics in compact form. Let v := (x>, z>)> ∈ R2Nd and consider

(5.1) dv = (Av + N(x))dt+G(v, t)Σ(t)dB

:=

([
−γL −L

L 0

]
v +

[
−∇f̃(x)− 2εLx

0

])
dt+

[
G1(x, z, t) 0

0 G2(x, z, t)

]
Σ(t)dB,

where, for convenience, we have split the parameter γ̃ as γ̃ = γ+2ε. This dynamics fits
the model (2.1) with g(v) := Av + N(x). As mentioned earlier, Σ : [t0,∞) → Rq×m
is measurable and essentially locally bounded, and G : R2Nd × [t0,∞) → R2Nd×q

is measurable in time, uniformly globally Lipschitz in the first argument, say with
Lipschitz constant κ1 ∈ R>0, and bounded in its domain (essentially in time) by
κ2 ∈ R>0. Formally,

|G(v, t)−G(v′, t)|F ≤ κ1‖v − v′‖2, sup
v∈R2Nd

ess sup
t≥t0

|G(v, t)|F ≤ κ2,(5.2)

for all v, v′ ∈ R2Nd.

5.1. Equilibrium points. In this section we show, for completeness, the cor-
respondence between the equilibrium points of (4.2) in the absence of noise and the
solutions of the optimization problem stated in Section 3.

Lemma 5.1. (Equilibrium points and Karush-Kuhn-Tucker conditions). Let G be
weight-balanced and strongly connected. Then, there exists x∗ such that [x∗>, z∗>]>

satisfies the equilibrium conditions for the dynamics (4.2) without noise,

∇f̃(x∗) + Lz∗ = 0Nd and Lx∗ = 0Nd,(5.3)
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for some z∗ ∈ (Rd)N , if and only if there exists xKKT such that [x>
KKT

, z>
KKT

]> satisfies
the Karush-Kuhn-Tucker conditions for the minimization of f̃ in (4.1) subject to
Lx = 0,

∇f̃(xKKT) + L>zKKT = 0Nd and LxKKT = 0Nd,(5.4)

for some zKKT ∈ (Rd)N . Moreover, both (5.3) and (5.4) are equivalent to

(1> ⊗ Id)∇f̃(x) = 0Nd and Lx = 0Nd,(5.5)

and, if either x∗ or xKKT exists and is unique, then so is the other one and x∗ = xKKT.

Proof. Since G is weight-balanced and strongly connected, then N (L+L>) = span{1}.
The first equation in (5.5) follows by left-multiplying the first equation in (5.3) and (5.4)
by (1> ⊗ Id) and using that 1>L = 0 because G is weight-balanced. The rea-
son why (5.5) is equivalent to both (5.3) and (5.4) is the following: if there ex-
ists any x such that (1> ⊗ Id)∇f̃(x) = 0d, then ∇f̃(x) is in the column space
of both L and L>, which means that there exist z∗ and zKKT, respectively, that
satisfy (5.3) and (5.4). This is because L(1 ⊗ Id) = L>(1 ⊗ Id) = 0Nd×d, and
rank(L) + rank(1 ⊗ Id) = rank(L>) + rank(1 ⊗ Id) = (N − 1)d + d = Nd. The
result now follows by observing that x∗ and xKKT are both defined by (5.5).

As a consequence of this result and since there exists a unique minimizer xmin of (3.3),
we deduce that the equilibrium points of the dynamics (4.2) in the absence of noise
are x∗ = 1⊗ xmin ∈ (Rd)N and any z∗ ∈ (Rd)n with Lz∗ = −∇f̃(1⊗ xmin).

5.2. Co-coercivity properties of the dynamics. In this section, we study
the co-coercivity properties of the vector field N in the dynamics (5.1). Our results
here play a key role later in establishing the global existence and uniqueness of the
solutions and the noise-to-state stability properties of the dynamics. We first provide
a general discussion on co-coercivity and then focus our attention on the properties
of the dynamics (5.1). Given S ∈ Rm×m and δ > 0, we refer to a vector field
F : Rm → Rm as (S, δ)− co-coercive with respect to x̄ ∈ Rm if,

(x− x̄)>S(F (x)− F (x̄)) ≥ δ ‖F (x)− F (x̄)‖22,(5.6)

for all x ∈ Rm. This corresponds to the notion of co-coercivity of S>F as defined
in [31] but here we define it for a vector field that is not necessarily the gradient of
a scalar function. The following result provides sufficient conditions for a family of
vector fields to be co-coercive under transformations that are small perturbations of
the identity.

Theorem 5.2. (Sufficient conditions for (I+β2S̃, δ)−co-coercivity). Let G : (Rd)N →
(Rd)N be a continuously differentiable vector field such that DG(x) ∈ RNd×Nd is
symmetric positive semidefinite for all x ∈ (Rd)N . Also, let T : (Rd)N → (Rd)N be
the linear vector field T(x) = 2(L⊗Id)x, where L is the Laplacian matrix of a strongly
connected and weight-balanced digraph. Assume that there exist i0 ∈ {1, . . . , N} and
r,R > 0 such that r (ei0e

>
i0

) ⊗ Id 2 DG(x) 2 R INd for all x ∈ (Rd)N . Given ε > 0,

let K1 := λmin

(
r ei0e

>
i0

+ ε (L+ L>)
)
, K2 := R+ 2ε σmax(L), and F := G + εT. Then,

(i) K1 > 0 and 2K1 INd 2 DF(x) + (DF(x))> for any x ∈ (Rd)N .
(ii) K1‖x− x̄‖2 ≤ ‖F(x)− F(x̄)‖2 ≤ K2‖x− x̄‖2 for any x, x̄ ∈ (Rd)N .
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(iii) F is (I+β2S̃, δ)−co-coercive with respect to every x̄ ∈ (Rd)N for any nonzero
matrix S̃ ∈ RNd×Nd if δ ∈ [0,K1K

−2
2 ) and

β ∈
[

0,
√(

K1K
−2
2 − δ

)
/(‖S̃‖2K−1

1 )
]
.

Proof. Regarding (i), we first show that λmin

(
r ei0e

>
i0

+ ε (L + L>)
)
> 0. For this,

note that the matrices r ei0e
>
i0

and ε(L + L>) are positive semidefinite. In addition,
their sum has rank N as we show next. Arguing by contradiction, assume that
y ∈ RN \ {0} is in its nullspace, i.e.,

(
r ei0e

>
i0

+ ε(L + L>)
)
y = 0. Pre-multiplying by

y>, it follows then that 0 ≤ εy>(L+L>)y> = −r (yi0)2 ≤ 0, which implies that yi0 = 0
and y>(L + L>)y> = 0. As L + L> is symmetric positive semidefinite (because the
graph is weight-balanced), we have y ∈ N (L + L>). Since N (L + L>) = span{1N},
because the graph is strongly connected, and yi0 = 0, we obtain that y = 0N , which
is a contradiction. Therefore, r (ei0e

>
i0

) ⊗ Id + ε(L + L>) ⊗ Id is positive definite, and
hence K1 > 0. On the other hand,

2K1 INd 2 2
(
r ei0e

>
i0 + ε(L + L>)

)
⊗ Id

2 2DG(x) + DT(x) + (DT(x))> 2 DF(x) + (DF(x))>,

for any x ∈ (Rd)N , as required. Before proving (ii) and (iii), we derive some useful
expressions. We start by defining j : [0, 1]→ (Rd)N as j(t) := F

(
x̄+t(x− x̄)

)
−F(x̄).

By the Fundamental Theorem of Calculus, we have that

j(1) = j(1)− j(0) =

∫ 1

0

j′(t)dt = E(x)(x− x̄),(5.7)

where the integral is taken component-wise and the matrix-valued function E : (Rd)N →
RNd×Nd is defined by

E(x) :=

∫ 1

0

DF
(
x̄ + t(x− x̄)

)
dt =

∫ 1

0

DG
(
x̄ + t(x− x̄)

)
dt+ 2ε(L⊗ Id)

:= D(x) + 2ε(L⊗ Id),

for x ∈ (Rd)N . We derive next some useful facts about E.

(a) Since D(x) is symmetric positive semidefinite and D(x) 2 R I for all x ∈ (Rd)N ,
using [1, Fact 5.11.2], we deduce

σmax(E(x)) ≤ σmax(D(x)) + σmax(2ε(L⊗ Id))

= λmax(D(x)) + 2ε σmax(L⊗ Id) ≤ R+ 2ε σmax(L) = K2,(5.8)

where in the last inequality we have used σmax(L ⊗ Id) =
√
λmax((L>L)⊗ Id) =√

λmax(L>L) = σmax(L).

(b) Using (i), we deduce

2K1 I 2 E(x) + E(x)>.(5.9)

(c) Using [1, Fact 8.14.4] and (5.9), we get

σmin(E(x)) ≥ 1
2 λmin(E(x) + E(x)>) ≥ K1 > 0.(5.10)
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(d) Since E(x) is a square matrix, we have λi(E(x)E(x)>) = λi(E(x)>E(x)) =(
σi(E(x))

)2
for i = 1, . . . , Nd, and, therefore, both E(x)E(x)> and E(x)>E(x) are

lower and upper bounded by (σmin(E(x)))2 I and (σmax(E(x)))2 I, respectively.

(e) Taking the invertible congruence given by the matrix E(x)−1 ∈ RNd×Nd (which is
invertible by (c)) on both sides of (5.9), that is, multiplying on the left by (E(x)>)−1 =
(E(x)−1)> := E(x)−> and on the right by E(x)−1, we get

2K1 E(x)−>E(x)−1 2 E(x)−> + E(x)−1.(5.11)

Now, since E(x)−>E(x)−1 =
(
E(x)E(x)>

)−1
we obtain from (5.11) that

E(x)−> + E(x)−1 3 2K1

λmax

(
E(x)E(x)>

) I = 2K1

(
σmax(E(x))

)−2
I 3 2K1K

−2
2 I,

(5.12)

for all x ∈ (Rd)N , where we used (d) in the identity and (a) in the last inequality.
Equipped with these facts, we are ready to establish items (ii) and (iii).

Regarding (ii), notice that ‖F(x)− F(x̄)‖22 = ‖j(1)‖22 = (x− x̄)>E(x)>E(x)(x− x̄),
and therefore the result follows from (d) using the bound for σmin(E(x)) in (5.10) and
for σmax(E(x)) in (5.8).

Regarding (iii), we rewrite the inequality (5.6), which we need to establish for the
vector field F and the matrix transformation S := I + β2S̃, as (x − x̄)>Sj(1) ≥
δ j(1)>j(1), for all x ∈ (Rd)N . Using (5.7), this becomes

(x− x̄)>SE(x)(x− x̄) ≥ δ (x− x̄)>E(x)>E(x)(x− x̄), ∀x ∈ (Rd)N ,

which follows from the stronger condition given by

1
2

(
E(x)>S> + SE(x)

)
< δ E(x)>E(x), ∀x ∈ (Rd)N .(5.13)

We now proceed verifying an equivalent linear matrix inequality. Taking now on both
sides of (5.13) the same congruence as in (e) and substituting S = I + β2S̃, we get

(I + β2S̃>)E(x)−1 + E(x)−>(I + β2S̃) < 2δI, ∀x ∈ (Rd)N ,

which, after reordering terms and defining Ẽ(x) := E(x)−1 − δI, becomes

Ẽ(x) + Ẽ(x)> < −β2
(
S̃>E(x)−1 + E(x)−>S̃

)
, ∀x ∈ (Rd)N .(5.14)

To guarantee that (5.14) holds, we seek bounds on both sides that are uniform. Re-
garding the left-hand side of (5.14), we get from (5.12) that

Ẽ(x) + Ẽ(x)> = E(x)−1 + E(x)−> − 2δI 3 2
(
K1K

−2
2 − δ

)
I, ∀x ∈ (Rd)N .(5.15)

Regarding the right-hand side of (5.14), using (5.10) we first observe that

‖E(x)−1‖2 = σmax(E(x)−1) =
(
σmin(E(x))

)−1 ≤ K−1
1 , ∀x ∈ (Rd)N .

Thus, using the triangular inequality, the fact that ‖A‖2 = ‖A>‖2, and the sub-
multiplicativity of the norm, we get that for all x ∈ (Rd)N ,

‖S̃>E(x)−1 + E(x)−>S̃‖2 ≤ 2‖S̃>E(x)−1‖2 ≤ 2‖S̃‖2 ‖E(x)−1‖2 ≤ 2‖S̃‖2K−1
1 .
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Since ±A 4 ‖A‖2 I, we deduce

−
(
S̃>E(x)−1 + E(x)−1S̃

)
4 2 ‖S̃‖2K−1

1 I, ∀x ∈ (Rd)N .(5.16)

Therefore, relating the uniform bounds (5.15) and (5.16), we conclude that if β ≤ β∗1 ,
then (5.14) holds for every x ∈ (Rd)N because

Ẽ(x) + Ẽ(x)> 3 2
(
K1K

−2
2 − δ

)
I < 2 ‖S̃‖2K−1

1 β2 I < −β2
(
S̃>E(x)−1 + E(x)−1S̃

)
,

which concludes the proof.

Note that, under the hypotheses of Theorem 4.2, the above result is applicable to
G = ∇f̃ (so that DG = ∇2f̃ is symmetric and conveniently lower and upper bounded
by the hypotheses on the local functions), F(x) = Fε(x) := ∇f̃(x) + 2εLx, and
S̃ = LK (which has ‖S̃‖2 = ‖LK‖2 = 1). In particular, we have

K1‖x′ − x‖2 ≤ ‖Fε(x′)− Fε(x)‖2 ≤ K2‖x′ − x‖2,(5.17)

for all x′,x ∈ (Rd)N , and

(x− x∗)>(I + β2LK)(Fε(x)− Fε(x
∗)) ≥ δ ‖Fε(x)− Fε(x

∗)‖22,(5.18)

for all x ∈ (Rd)N , δ ∈ (0, K1K
−2
2 ) and β ∈

[
0,
√
K2

1K
−2
2 −K1δ

]
.

5.3. Global existence and uniqueness of solutions. Here we establish the
global existence and uniqueness of solutions of the dynamics (4.2) by verifying the
hypotheses in Lemma 2.1. We obtain the following bound for almost every t ≥ t0:

max
{
‖g(v)− g(v′)‖2 , |G(v, t)−G(v′, t)|F

}

≤ ‖A(v − v′)‖2 + ‖Fε(x)− Fε(x
′)‖2 + |G(v, t)−G(v′, t)|F

≤ ‖A‖2‖v − v′‖2 +K2‖x− x′‖2 + κ1‖v − v′‖2 ≤
(
‖A‖2 +K2 + κ1

)
‖v − v′‖2,

where in the second inequality we have used (5.17) and the Lipschitz condition for G
in (5.2). In addition, for almost every t ≥ t0,

v>g(v) + 1
2 |G(v, t)|2F = v>Av + v>N(x) + 1

2 |G(v, t)|2F
≤‖A‖2‖v‖22 + ‖v‖2‖Fε(x)‖2 + 1

2κ
2
2

≤‖A‖2‖v‖22 + ‖v‖2
(
K2‖x− x∗‖2 + ‖Fε(x∗)‖2

)
+ 1

2κ
2
2

≤‖A‖2‖v‖22 + ‖v‖2
(
K2‖x‖2 +K2‖x∗‖2 + ‖Fε(x∗)‖2

)
+ 1

2κ
2
2

≤
(
‖A‖2 +K2

)
‖v‖22 + ‖v‖2

(
K2‖x∗‖2 + ‖Fε(x∗)‖2

)
+ 1

2κ
2
2

≤
(
1 + ‖v‖22

)(
‖A‖2 +K2 +K2‖x∗‖2 + ‖Fε(x∗)‖2 + 1

2κ
2
2

)
.

The global existence and uniqueness of the solutions of the dynamics (4.2) now follows
from Lemma 2.1 as a consequence of these two facts.

5.4. NSS Lyapunov function. Our strategy to establish the noise-to-state sta-
bility properties of the distributed coordination algorithm (4.2) is based on identifying
a suitable NSS Lyapunov function for the dynamics. Our first result of this section
identifies a candidate Lyapunov function whose derivative in the sense of Itô can be
conveniently upper bounded. To obtain this bound, we build on the co-coercivity
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properties stated in Theorem 5.2 of the vector fields that combine local gradient de-
scent and local consensus.

Proposition 5.3. (Candidate second moment NSS-Lyapunov function). Under the
hypotheses of Theorem 4.2, let

Pβ :=

[
I + β2LK βLK
βLK LK

]
∈ R2Nd×2Nd,

Qβ :=



[
β3 + 2β + 2

β (1 + β2)

(1 + β2) β

]
⊗ (L + L>)

0
βLK

0 βLK 2δI


 ∈ R3Nd×3Nd,

and define the functions V,W : R2Nd → R by

V(v) := 1
2 [(x− x∗)>, (z − z∗)>] Pβ

[
x− x∗

z − z∗

]
,

W(v) := 1
2 [(x− x∗)>, (z − z∗)>, (Fε(x)− Fε(x

∗))>] Qβ




x− x∗

z − z∗

Fε(x)− Fε(x
∗)


 ,

where x∗ = 1 ⊗ xmin ∈ (Rd)N and z∗ ∈ (Rd)n is such that Lz∗ = −∇f̃(1 ⊗ xmin).
Then the following holds:

(i) The matrix Pβ is positive semidefinite for any β ∈ R with nullspace

N (Pβ) = span
{ [

0 (1⊗ b)>
]>

: b ∈ Rd
}
.

(ii) The matrix Qβ is positive semidefinite for the range of values of β specified
in Theorem 4.2, and has nullspace

N (Qβ) = span
{ [

(1⊗ b1)> 0 0
]>
,
[
0 (1⊗ b2)> 0

]>
: b1, b2 ∈ Rd

}
.

(iii) The function V is twice continuously differentiable and bounded by

α1

(
‖v − v∗‖2

Î

)
≤ V(v) ≤ α2

(
‖v − v∗‖2

Î

)
,(5.19)

where v∗ := (x∗, z∗), α1(r) := λ(2N−1)d(Pβ)r, α2(r) := λmax(Pβ)r, and the

matrix Î ∈ R2Nd is defined as

Î := diag
(
INd,LK

)
.

(iv) The function W is continuous, and the following dissipation inequality holds,

L[V](v, t) ≤ −W(v) + σ
(
|Σ(t)|F

)
,(5.20)

for all (v, t) ∈ R2Nd × [t0,∞), where σ(r) := trace(Pβ)κ
2
2 r

2.

Proof. To show (i), we note that Pβ is a congruence by an invertible matrix of the

positive semidefinite matrix Î,

Pβ =

[
I 0
βI I

]> [
I 0
0 LK

] [
I 0
βI I

]
.
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Therefore, rank (Pβ) = rank (̂I) = rank (I) + rank (LK) = Nd+ (N − 1)d = (2N − 1)d.

The statement follows now by noting that the subspace span
{ [

0 (1⊗ b)>
]>

: b ∈ Rd
}

has dimension d and lies in the nullspace of Pβ.

To establish (ii), we show that −Qβ is negative semidefinite for the range of values of
β in the statement. For convenience, define the matrices

B :=

[
β3 + 2β + 2

β (1 + β2)

(1 + β2) β

]
,

Q1 := −B⊗ (L + L>) ,

and note that Q1 corresponds to the first block of −Qβ. Since B is symmetric,
det(B) = 1, and trace(B) = β3 + 3β + 2

β > 0 for β > 0, we deduce that −B ≺ 0
for any β > 0. Therefore, Q1 is symmetric negative semidefinite with nullspace

N (Q1) = span
{ [

(1⊗ b1)> 0
]>
,
[
0 (1⊗ b2)>

]>
: b1, b2 ∈ Rd

}
.

Next, defining

Q2 :=

(
0 0

0 β2

2δ

)
⊗ LK

and using L2
K = LK, we simplify the following invertible congruence,

−




I 0 0
0 I 0

0 − β
2δLK I



>

Qβ




I 0 0
0 I 0

0 − β
2δLK I




=




I 0 0

0 I − β
2δLK

0 0 I



(
 Q1

0
0

0 0 0


+




0 0 0
0 0 −βLK
0 −βLK −2δI



)


I 0 0
0 I 0

0 − β
2δLK I




=


Q1 +

(
0 0

0 β2

2δ

)
⊗ LK 0

0 −2δI


 =

[
Q1 + Q2 0

0 −2δI

]
.

Since this is a block-diagonal matrix whose lower block, −2δI, is negative definite,
to establish the result is sufficient to show that for the specified values of β, the
sum Q1 + Q2 is negative semidefinite. Note the maximum nonzero eigenvalue of Q1,
denoted λ∅max(Q1), is

(
− β4+3β2+2

2β +
√(

β4+3β2+2
2β

)2 − 1
)
λ2(L + L>) .

On the other hand, Q2 is symmetric positive semidefinite with rank(Q2) = rank(LK) =

(N −1)d and spec(Q2) = {0, β2

2δ }, so the maximum eigenvalue of Q2 is λmax(R) = β2

2δ .
Now, since N (Q1) ⊆ N (Q2), it follows that N (Q1) ⊆ N (Q1 + Q2). Thus, in order to
check the semidefiniteness of Q1 + Q2, we can restrict our attention to the subspace
U⊥ := N (Q1)⊥. By Weyl’s Theorem [8, Theorem 4.3.7],

λ∅max(Q1 + Q2) = λU
⊥

max(Q1 + Q2) ≤ λU⊥max(Q1) + λU
⊥

max(Q2)

= λ∅max(Q1) + λmax(Q2) = h(β, δ) .
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Since, by Lemma A.1, h(β, δ) < 0 for δ ∈ (0, K1K
−2
2 ) and β ∈ (0,min{β∗1(δ, ε), β∗2(δ)}),

we deduce that Q1 + Q2 is negative definite in the subspace N (Q1)⊥. Therefore,
N (Q1+Q2) = N (Q1), which in turn implies thatN (Qβ) = span

{
[u>, 0]> : u ∈ N (Q1)

}
.

Regarding (iii), it is clear from its definition that V is twice (in fact, infinitely)
continuously differentiable. Furthermore, notice that Î and Pβ are symmetric positive
semidefinite with the same nullspace, so that

λ(2N−1)d(Pβ)

λmax (̂I)
y> Î y ≤ y> Pβ y ≤ λmax(Pβ)

λ(2N−1)d (̂I)
y> Î y,

for all y ∈ R2Nd. Since Î is idempotent, Î = Î2, we have y> Î y = ‖y‖2
Î
. The result now

follows by observing that all nonzero eigenvalues of Î are 1.

Finally, we turn our attention to (iv). We first compute the elements of L[V] in (2.2).
With the notation of (5.1), using that Pβ = P>β and the sub-multiplicativity of the
Frobenius norm, the diffusion term yields

1
2 trace

(
Σ(t)>G(v, t)>∇2

vV(v)G(v, t)Σ(t)
)

= 1
2 trace

(
Σ(t)>G(v, t)>PβG(v, t)Σ(t)

)

= |P1/2
β G(v, t)Σ(t)|2F ≤ |P1/2

β |2F |G(v, t)|2F |Σ(t)|2F
≤ trace(Pβ)κ

2
2 |Σ(t)|2F = σ(|Σ(t)|F).

On the other hand, defining Q̃1 := 2 sym
(
PβA

)
:= PβA + A>Pβ and ṽ := v − v∗, and

subtracting the quantity Av∗ + N(x∗) = 0, the drift term yields

∇vV(v)>
(
Av + N(x)

)
=∇vV(v)>

(
Aṽ −N(x∗) + N(x)

)

= 1
2 ṽ
>Q̃1ṽ + ṽ>Pβ(−N(x∗) + N(x)).

Summarizing, we have

L[V](v, t) ≤ 1
2 ṽ
>Q̃1ṽ + ṽ>Pβ(−N(x∗) + N(x)) + σ

(
|Σ(t)|F

)
(5.21)

for all (v, t) ∈ R2Nd × [t0,∞). We look first at the quadratic term in (5.21) arising
from the linear part of the dynamics. Since LKL = I L = L, splitting the matrix Pβ,
we obtain the factorization

Q̃1 = 2 sym
(([

1 0
0 0

]
⊗ INd +

[
β2 β
β 1

]
⊗ LK

)([−γ −1
1 0

]
⊗ L

))

= 2 sym
(([1 + β2 β

β 1

] [
−γ −1
1 0

])
⊗
(
LKL

))

= 2 sym
([−γ(1 + β2) + β −(1 + β2)

−γβ + 1 −β

]
⊗ L

)
.

Now, recalling that (2 + β2)/β + 2ε = γ̃ = γ + 2ε, we have γ = (2 + β2)/β, so the
first matrix is indeed symmetric and we can factor out 2 sym(L) := L + L> using the
Kronecker product. In fact, −γ(1 + β2) + β = −β3 − 2β − 2

β , and we deduce

Q̃1 = −
[
β3 + 2β + 2

β (1 + β2)

(1 + β2) β

]
⊗ (L + L>) = Q1.(5.22)
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Next, we turn our attention to the nonlinear term in (5.21). Note that

ṽ>Pβ
(
−N(x∗) + N(x)

)

= ṽ>
[
I + β2LK βLK
βLK LK

] [
I
0

] (
− Fε(x

∗) + Fε(x)
)

= −(x− x∗)>(I + β2LK)
(
Fε(x)− Fε(x

∗)
)
− (z − z∗)>βLK

(
Fε(x)− Fε(x

∗)
)

≤ −δ‖Fε(x)− Fε(x
∗)‖22 − (z − z∗)>βLK

(
Fε(x)− Fε(x

∗)
)
.

Here, the last inequality follows from (5.18). Therefore, the nonlinear term can be
expressed as

(5.23) ṽ>Pβ
(
−N(x∗) + N(x)

)

=
1

2

[
ṽ>,

(
Fε(x)− Fε(x

∗)
)>]




0 0 0
0 0 −βLK
0 −βLK −2δI



[

ṽ
Fε(x)− Fε(x

∗)

]
.

The result now follows from substituting (5.22) and (5.23) into (5.21).

Given the result in Proposition 5.3, the missing piece to establish that V is a second
moment NSS-Lyapunov function with respect to span

{ [
0 (1⊗ b)>

]>
: b ∈ Rd

}
is to

relate its value to that of W. To this end, we define the constraint set

Dx∗ :=
{
y ∈ R3Nd : y3 = Fε(y

1 + x∗)− Fε(x
∗)
}
⊂ R3Nd,

and the quadratic functions VP̃β
,WQβ

: Dx∗ → R≥0,

VP̃β
(y) := 1

2y
>P̃βy, P̃β := 1

2y
>

[
Pβ 0
0 0

]
y,

WQβ
(y) := 1

2y
>Qβy.

Note that V(v) = VP̃β
(v−v∗,Fε(x)−Fε(x

∗)) and W(v) = WQβ
(v−v∗,Fε(x)−Fε(x

∗))
for all v ∈ R2Nd. The following result relates the value of these quadratic functions.

Proposition 5.4. (Bound on candidate second moment NSS-Lyapunov function).
Under the hypotheses of Theorem 4.2, the next bound holds,

VP̃β
(y) ≤ η(WQβ

(y)), ∀y ∈ Dx∗ ,(5.24)

with linear gain η(r) := Cη r, for r ≥ 0, where

Cη :=
λmax(Q̂)λmax(P̃β)

min{1, K1

(1+K2
2 )
}λ(3N−2)d(Qβ)λ(2N−1)d(P̂)

,

Q̂ := diag
(
L + L>,L + L>, I

)
and P̂ := diag

(
I,L + L>, 0

)
.

Proof. For A := diag
(
I,
√

L + L>, I
)
∈ R3Nd×3Nd, whose nullspace is N (A) =

span
{ [

0 (1⊗ b)> 0
]>

: b ∈ Rd
}

, we define the functions φ2, A, ψ2, A : R≥0 → R≥0,

φ2, A(s) := sup
{y∈Dx∗ : ‖y‖2A≤s}

VP̃β
(y),

ψ2, A(s) := inf
{y∈Dx∗ : ‖y‖2A≥s}

WQβ
(y).
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Before preceding with our proof strategy we show that the infimum and supremum
are taken over nonempty sets. Consider the bijective map ` : R2Nd → R3Nd given by

`(x, z) := (x− x∗, z − z∗,Fε(x)− Fε(x
∗)),

which is continuous with image `(R2Nd) = Dx∗ . We deduce that, as (x, z) ranges
over R2Nd, the norm ‖`(x, z)‖2A = ‖x− x∗‖22 + q(z − z∗) + ‖Fε(x)− Fε(x

∗)‖22 takes
all the values in R≥0 (because the composition is continuous), where

q(y) := y>(L + L>)y

for y ∈ (Rd)N . Therefore, the sets {y ∈ Dx∗ : ‖y‖A ≥ s} and {y ∈ Dx∗ : ‖y‖A ≤ s}
are nonempty for each s ≥ 0.

Our proof strategy consists of showing that for all y ∈ Dx∗ it holds that

VP̃β
(y) ≤φ2, A

(
‖y‖2A

)
≤ ᾱ2

(
‖y‖2A

)
,(5.25a)

ᾱ3

(
‖y‖2A

)
≤ψ2, A

(
‖y‖2A

)
≤WQβ

(y) .(5.25b)

If this were the case, then the result would follow by defining η(r) = ᾱ2(ᾱ−1
3 (r)). For

convenience, we use the shorthand notation x̃ := x−x∗, z̃ := z−z∗, and ∆Fε(x̃) :=
Fε(x) − Fε(x

∗). Regarding (5.25b), note that Q̂ and Qβ are positive semidefinite

with N (Q̂) = N (Qβ) by Proposition 5.3(ii), and hence c1w̃
> Q̂ w̃ ≤ w̃>Qβ w̃ for all

w̃ ∈ Dx∗ , with c1 := λ(3N−2)d(Qβ)/λmax(Q̂). For each s > 0, we then have

ψ2, A(s) = inf
{‖x̃‖22+q(z̃)+‖∆Fε(x̃)‖22≥s}

WQβ
(x̃, z̃,∆Fε(x̃))

≥ inf
{‖x̃‖22+q(z̃)+‖∆Fε(x̃)‖22≥s}

c1
(
q(x̃) + q(z̃) + ‖∆Fε(x̃)‖22

)

≥ inf
{q(z̃)+(1+K2

2 )‖x̃‖22≥s}
c1
(
q(x̃) + q(z̃) +K1‖x̃‖22

)

≥ inf
{q(z̃)+(1+K2

2 )‖x̃‖22≥s}
min {c1ĉs , c1s} = c1 min {ĉ, 1} s,

where ĉ := K1/(1 +K2
2 ), in the second inequality we have used that for each s > 0,

{
‖x̃‖22 + q(z̃) + ‖∆Fε(x̃)‖22 ≥ s

}
⊆
{
q(z̃) + (1 +K2

2 )‖x̃‖22 ≥ s
}
,

(which follows from (5.17)), and in the last inequality we have used

q(x̃) + q(z̃) +K1‖x̃‖22 ≥ min {ĉ, 1}
(
q(z̃) + (1 +K2

2 )‖x̃‖22
)
.

Thus, the linear gain in (5.25b) is ᾱ3(r) := c1 min {ĉ, 1}r. Regarding (5.25a), we
proceed similarly: P̂ and P̃β are positive semidefinite with N (P̂) = N (P̃β) by Proposi-

tion 5.3(i), and hence w̃>P̃βw̃ ≤ c̄2w̃>P̂w̃ for all w̃ ∈ Dx∗ , with c̄2 := λmax(P̃β)/λ(2N−1)d(P̂).
We then have

φ2, A(s) = sup
{‖x̃‖22+q(z̃)+‖∆Fε(x̃)‖22≤s}

VP̃β
(x̃, z̃,∆Fε(x̃))

≤ sup
{‖x̃‖22+q(z̃)+‖∆Fε(x̃)‖22≤s}

c̄2
(
‖x̃‖22 + q(z̃)

)

≤ sup
{‖x̃‖22+q(z̃)+‖∆Fε(x̃)‖22≤s}

c̄2
(
‖x̃‖22 + q(z̃) + ‖∆Fε(x̃)‖22

)
= c̄2s.

Thus, the linear gain in (5.25a) is ᾱ2(r) := c̄2r.
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5.5. Proof of Theorem 4.2. The combination of the above developments leads
us here to the proof of Theorem 4.2.

Proof. [Proof of Theorem 4.2] By Proposition 5.3, the function V also satisfies (5.19)
and (5.20). Additionally, from Proposition 5.4, for all v ∈ R2Nd we have

V(v) = VP̃β
(v − v∗,Fε(x)− Fε(x

∗)) ≤ η(WQβ
(v − v∗,Fε(x)− Fε(x

∗))) = η(W(v)).

Therefore, V is a second moment NSS-Lyapunov function (as defined in Theorem 2.2)
for the dynamics (4.2) with respect to the affine subspace

[1> ⊗ x>min, z
∗>]> +N (̂I) = [1> ⊗ x>min, z

∗>]> + span
{ [

0 (1⊗ b)>
]>

: b ∈ Rd
}
.

Applying Theorem 2.2, we conclude that the dynamics (4.2) is second moment NSS
stable with respect to the same affine subspace with

µ(r, s) := α−1
1

(
2µ̃(α2(rp), s)

)
=

2λmax(Pβ)r
2

λ(2N−1)d(Pβ)
exp

(
− 1

2Cη
s
)
,

θ(r) := α−1
1

(
2η(2σ(r))

)
=

4Cη trace(Pβ)κ
2
2

λ(2N−1)d(Pβ)
r2,

where κ2 is such that (5.2) holds and Cη is defined in Proposition 5.4.

6. Conclusions. We have considered a multi-agent network communicating over
a weight-balanced, strongly connected digraph that seeks to collectively solve a con-
vex optimization problem defined by a sum of local functions, one per agent, in the
presence of noise both in the communication channels and in the agent computations.
We have studied the robustness properties against additive persistent noise of a family
of distributed continuous-time algorithms that have each agent update its estimate
by following the gradient of its local cost function while, at the same time, seeking
to agree with its neighbors’ estimates via proportional-integral feedback on their dis-
agreement. Specifically, we have established that the proposed class of algorithms
is noise-to-state exponentially stable in second moment. Our strategy to establish
this result has relied on constructing a function whose nullset is the solution to the
optimization problem plus a direction of variance accumulation in some auxiliary vari-
ables, and then showing that in fact this is a NSS-Lyapunov function relying on the
co-coercivity properties of the vector fields that define the dynamics. Future work
will include the design of distributed procedures to determine the values of the design
parameter for convergence and disturbance attenuation, relaxing the weight-balanced
property of the directed communication topology, and extensions to scenarios with
discrete-time communication, delays, and bandwidth limitations.
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Appendix. The following result concerning the function h defined by (4.4) is
employed in the proof of Proposition 5.3.

Lemma A.1. For δ > 0, let h(., δ) : (0,∞) → R be defined by (4.4) and L be the
Laplacian matrix of a strongly connected and weight-balanced digraph. Then, there
exists β̂ ≡ β̂(δ) > 0 such that h(β, δ) < 0 for all β ∈ (0, β̂).

Proof. Since the function h(., δ) is continuous in the first argument, it is enough to
show that the next two limits hold,

lim
β→+∞

h(β, δ) =∞, and lim
β→0+

h(β, δ) = 0−,

to deduce the result from the by Bolzano Intermediate Value Theorem. Note that

−r +
√
r2 − 1 =

(−r +
√
r2 − 1)(−r −

√
r2 − 1)

−r −
√
r2 − 1

=
|r2 − 1| − r2

r +
√
r2 − 1

,

which behaves asymptotically as − 1
2r when r →∞. Since r := β4+3β2+2

2β goes to∞ for

both cases in which β →∞ or β → 0, it follows that −β4+3β2+2
2β +

√(
β4+3β2+2

2β

)2 − 1

behaves as − β
β4+3β2+2 in both cases. Therefore,

lim
β→+∞

h(β, δ) = lim
β→+∞

(
− β

β4+3β2+2λ2(L + L>) + β2

2δ

)

= lim
β→+∞

(
− 1

β3λ2(L + L>) + β2

2δ

)
=∞,

and

lim
β→0+

h(β, δ) = lim
β→0+

(
− β

β4+3β2+2λ2(L + L>) + β2

2δ

)

= lim
β→0+

(
− β

2λ2(L + L>) + β2

2δ

)
= lim
β→0+

β
(
− λ2(L+L>)

2 + β
)

= 0−,

and the result follows.
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