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Distributed online convex optimization
over jointly connected digraphs

David Mateos-Núñez Jorge Cortés

Abstract—This paper considers networked online convex opti-
mization scenarios from a regret analysis perspective. At each
round, each agent in the network commits to a decision and
incurs in a local cost given by functions that are revealed over
time and whose unknown evolution model might be adversarially
adaptive to the agent’s behavior. The goal of each agent is to
incur a cumulative cost over time with respect to the sum of
local functions across the network that is competitive with the
best single centralized decision in hindsight. To achieve this,
agents cooperate with each other using local averaging over time-
varying weight-balanced digraphs as well as subgradient descent
on the local cost functions revealed in the previous round. We
propose a class of coordination algorithms that generalize dis-
tributed online subgradient descent and saddle-point dynamics,
allowing proportional-integral (and higher-order) feedback on
the disagreement among neighboring agents. We show that our
algorithm design achieves logarithmic agent regret (when local
objectives are strongly convex), or square-root agent regret (when
local objectives are convex) in scenarios where the communication
graphs are jointly connected. Simulations in a medical diagnosis
application illustrate our results.

Index Terms—distributed optimization; online optimization; re-
gret analysis; jointly connected digraphs.

I. INTRODUCTION

Networked multi-agent systems are being increasingly de-
ployed in scenarios where information is dynamic and increas-
ingly revealed over time. Given the limited resources available
to the network combined with the automatic and distributed
data-collection, such scenarios bring to the forefront the need
for optimizing network behavior in a distributed fashion and in
real time. Motivated by these observations, we consider here
a group of N agents seeking to solve a sequential decision
problem over a time horizon T defined by the objective

T∑

t=1

N∑

i=1

f it (x),

where each component function f it : Rd → R becomes
available to agent i ∈ {1, . . . , N}, and only to it, after having
made its decision at time t ∈ {1, . . . , T}. Such networked
online optimization problems arise in regression, classification,
and other estimation problems in machine learning, where the
functions {f it} measure the fitness of some model parameters,
represented by the global decision vector x ∈ Rd, with
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respect to data sets that are incrementally revealed over time
and become available in a distributed way (like in sensor
networks or label-feedback systems). These problems naturally
lend themselves to distributed algorithmic solutions because
the information is distributed across the agents and making
it centrally available might be costly (e.g., communication
overhead, latency, and message drops), undesirable (e.g., pri-
vacy and security considerations), or poorly scalable (e.g.,
data sets which are large and change with time). In these
scenarios, each agent would like to compute a provisional
estimate of the global optimizer without waiting until all
the data has been collected over time across the network.
This represents a departure from standard static distributed
optimization problems to a distributed online optimization
framework that accounts for the adverse scenario of local
decisions being evaluated against information available to the
agents only after the decisions have been made.
As an example application, consider a network of hospitals
that gather data over time about patients that might need some
specific medical procedure. Each hospital has to assess the
adequacy of the procedure upon prior observations and local
communication with neighboring hospitals in the group. At
each time instant, the estimated parameters of the predicting
model governing the decisions of each hospital are evaluated
against all the data most recently made available to the
network, while each piece of this newly collected data is used
locally by each hospital to improve its model to inform future
decisions. In abstract terms, the goal is that each agent of the
network performs in temporal average nearly as well as the
best decision computed in hindsight had all patient data been
centrally available. This notion is called agent regret and it is a
performance measure for algorithm design and analysis in the
framework just described of distributed online optimization.
Literature review: Distributed optimization problems are per-
vasive in distributed and parallel computation [1], [2], and dis-
tributed convex optimization constitutes a rich subfamily with
many applications to multi-agent systems. This has motivated
a growing body of work, see e.g., [3], [4], [5], [6], [7], [8],
on the synthesis of distributed algorithms with asymptotic con-
vergence guarantees to solve a variety of networked problems,
including data fusion, network formation, and resource alloca-
tion. Our work here generalizes a family of distributed saddle-
point subgradient algorithms [9], [7] that enjoy asymptotic
convergence with constant stepsizes and robust asymptotic
behavior in the presence of noise [10]. Online learning, on
the other hand, performs sequential decision making given
historical observations on the loss incurred by previous deci-
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sions, even when the loss functions are adversarially adaptive
to the behavior of the decision maker. Interestingly, in online
convex optimization [11], [12], [13], [14], it is doable to be
competitive with the best single decision in hindsight. These
works show how the regret, i.e., the difference between the
cumulative cost over time and the cost of the best single deci-
sion in hindsight, is sublinear in the time horizon. Online con-
vex optimization has applications to information theory [12],
game theory [15], supervised online machine learning [13],
online advertisement placement, and portfolio selection [14].
Algorithmic approaches include online gradient descent [11],
online Newton step [16], follow-the-approximate-leader [16],
and online alternating directions [17]. A few recent works
have explored the combination of distributed and online con-
vex optimization. The work [18] proposes distributed online
strategies that rely on the computation and maintenance of
spanning trees for global vector-sum operations and work
under suitable statistical assumptions on the sequence of ob-
jectives. [19] studies decentralized online convex programming
for groups of agents whose interaction topology is a chain.
The works [20], [21] study agent regret without any statistical
assumptions on the sequence of objectives. [20] introduces
distributed online projected subgradient descent and shows
square-root regret (for convex cost functions) and logarithmic
regret (for strongly convex cost functions). However, the
analysis critically relies on a projection step onto a compact
set at each time step (which automatically guarantees the
uniform boundedness of the estimates), and therefore excludes
the unconstrained case (given the non-compactness of the
whole state space). In contrast, [21] introduces distributed
online dual averaging and shows square-root regret (for convex
cost functions) using a general regularized projection that
admits both unconstrained and constrained optimization, but
the logarithmic bound is not established. Both works only
consider static and strongly-connected interaction digraphs.
Statement of contributions: We consider a network of agents
that communicate over a jointly connected sequence of time-
dependent, weight-balanced digraphs. This means that the
successive unions of consecutive digraphs over periods of
time of a given length are strongly connected. The network
is involved in an online unconstrained convex optimization
scenario where no model is assumed about the evolution of
the local objectives available to the agents. We propose a class
of distributed coordination algorithms and study the associated
agent regret in the optimization of the sum of the local cost
functions across the network. Our algorithm design combines
subgradient descent on the local objectives revealed in the
previous round and proportional-integral (and/or higher-order)
distributed feedback on the disagreement among neighboring
agents. Assuming bounded subgradients of the local cost func-
tions, we establish logarithmic agent regret bounds under local
strong convexity and square-root agent regret under convexity
plus a mild geometric condition. We also characterize the
dependence of the regret bounds on the network parameters.
Our technical approach uses the concept of network regret,
that captures the performance of the sequence of collective
estimates across the group of agents. The derivation of the

sublinear regret bounds results from three main steps: the
study of the difference between network and agent regret; the
analysis of the cumulative disagreement of the online estimates
via the input-to-state stability property of a generalized Lapla-
cian consensus dynamics; and the uniform boundedness of the
online estimates (and auxiliary variables) when the set of local
optimizers is uniformly bounded. With respect to previous
work, the contributions advance the current state of the art
because of the consideration of unconstrained formulations of
the online optimization problem, which makes the discussion
valid for regression and classification and raises major techni-
cal challenges to ensure the uniform boundedness of estimates;
the synthesis of a novel family of coordination algorithms that
generalize distributed online subgradient descent and saddle-
point dynamics; and the development of regret guarantees
under jointly connected interaction digraphs. Our novel anal-
ysis framework modularizes the main technical ingredients
(the disagreement evolution via linear decoupling and input-
to-state stability; the boundedness of estimates and auxiliary
states through marginalizing the role of disagreement and
learning rates; and the role played by network topology and
the convexity properties) and extends and integrate techniques
from distributed optimization (e.g., Lyapunov techniques for
consensus under joint connectivity) and online optimization
(e.g., Doubling Trick bounding techniques for square-root re-
gret). We illustrate our results in a medical diagnosis example.

II. PRELIMINARIES

Here we introduce notational conventions and basic notions.
Linear algebra: We denote by Rn the n-dimensional Eu-
clidean space, by In ∈ Rn×n the identity matrix, and by
1n ∈ Rn the column vector of all ones. For simplicity,
we often use (v1, . . . , vN ) to represent the column vector
[v>1 , . . . , v

>
N ]>. We denote by ‖.‖2 the Euclidean norm and

by B(x, ε) := {y ∈ Rn : ‖y− x‖2 < ε} and B̄(x, ε) the open
and closed balls, respectively, centered at x of radius ε. Given
w ∈ Rn \ {0} and c ∈ [0, 1], we let

Fc(w) :=
{
v ∈ Rn : v>w ≥ c ‖v‖2‖w‖2

}

denote the convex cone of vectors in Rn whose angle with
w has a cosine lower bounded by c. A matrix A ∈ Rn×n
is diagonalizable if it can be written as A = SADAS

−1
A ,

where DA ∈ Rn×n is a diagonal matrix (whose entries are
the eigenvalues of A), and SA ∈ Rn×n is an invertible
matrix (whose columns are the corresponding eigenvectors).
If the eigenvalues of A are real, we label them in increasing
order from the minimum to the maximum as λmin(A) =
λ1(A), . . . , λn(A) = λmax(A). For B ∈ Rn×m, we use
‖B‖2 := σmax(B) for the largest singular value of B and
κ(B) := ‖B‖2‖B−1‖2 = σmax(B)/σmin(B) for the condition
number of B. The Kronecker product of B ∈ Rn×m and
C ∈ Rp×q is denoted by B ⊗ C ∈ Rnp×mq .
Convex functions: Given a convex set C ⊆ Rn, a function f :
C → R is convex if f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y) for
all α ∈ [0, 1] and x, y ∈ C. A vector ξx ∈ Rn is a subgradient
of f at x ∈ C if f(y) − f(x) ≥ ξ>x (y − x), for all y ∈ C.
We denote by ∂f(x) the set of all such subgradients. The
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characterization in [22, Lemma 3.1.6] asserts that a function
f : C → R is convex if and only if ∂f(x) is nonempty for
each x ∈ C. Equivalently, f is convex if ∂f(x) is nonempty
and for each x ∈ C and ξx ∈ ∂f(x),

f(y)− f(x) ≥ ξ>x (y − x) + p(x,y)
2 ‖y − x‖22,

for all y ∈ C, where p : C×C → R≥0 is the modulus of strong
convexity (whose value may be 0). For p > 0, a function f
is p-strongly convex on C if p(x, y) = p for all x, y ∈ C.
Equivalently, f is p-strongly convex on C if

(ξy − ξx)>(y − x) ≥ p‖y − x‖22,
for each ξx ∈ ∂f(x), ξy ∈ ∂f(y), for all x, y ∈ C. For
convenience, we denote by argmin(f) the set of minimizers
of a convex function f in its domain. For β ∈ [0, 1], a convex
function f : Rn → R with argmin(f) 6= ∅ is β-central
on Z ⊆ Rn \ argmin(f) if for each x ∈ Z , there exists
y ∈ argmin(f) such that −∂f(x) ⊂ Fβ(y − x), i.e.,

−ξ>x (y − x) ≥ β ‖ξx‖2‖y − x‖2,
for all ξx ∈ ∂f(x). Note that any convex function f : Rn → R
with a nonempty set of minimizers is at least 0-central on
Rn \ argmin(f). Finally, a convex function f has H-bounded
subgradient sets if there exists H ∈ R>0 such that ‖ξx‖2 ≤ H
for all ξx ∈ ∂f(x) and x ∈ Rn.
Graph theory: We review basic notions from graph theory
following [23]. A (weighted) digraph G := (I, E ,A) is a
triplet where I := {1, . . . , N} is the vertex set, E ⊆ I × I
is the edge set, and A ∈ RN×N≥ 0

is the weighted adjacency
matrix with the property that aij := Aij > 0 if and only
if (i, j) ∈ E . The complete graph is the digraph with edge
set I × I. Given G1 = (I, E1,A1) and G2 = (I, E2,A2), their
union is the digraph G1∪G2 = (I, E1∪E2,A1 +A2). A path is
an ordered sequence of vertices such that any pair of vertices
appearing consecutively is an edge. A digraph is strongly
connected if there is a path between any pair of distinct
vertices. A sequence of digraphs

{
Gt := (I, Et,At)

}
t≥1

is
δ-nondegenerate, for δ ∈ R>0, if the weights are uniformly
bounded away from zero by δ whenever positive, i.e., for
each t ∈ Z≥1, aij,t := (At)ij > δ whenever aij,t > 0. A
sequence {Gt}t≥1 is B-jointly connected, for B ∈ Z≥1, if
for each k ∈ Z≥1, the digraph GkB ∪ · · · ∪ G(k+1)B−1 is
strongly connected. The Laplacian matrix L ∈ RN×N of a
digraph G is L := diag(A1N ) − A. Note that L1N = 0.
The weighted out-degree and in-degree of i ∈ I are, re-
spectively, dout(i) :=

∑N
j=1 aij and din(i) :=

∑N
j=1 aji. A

digraph is weight-balanced if dout(i) = din(i) for all i ∈ I,
that is, 1>NL = 0. For convenience, we let LK denote the
Laplacian of the complete graph with edge weights 1/N ,
i.e., LK := IN − M, where M := 1

N 1N1
>
N . Note that LK

is idempotent, i.e., L2
K = LK. For the reader’s convenience,

Table I collects the shorthand notation combining Laplacian
matrices and Kronecker products used in the paper.

III. PROBLEM STATEMENT

This section introduces the problem of interest. We begin by
describing the online convex optimization problem for one

M = 1
N
1N1

>
N M = M⊗ Id

LK = IN −M LK = LK ⊗ Id L̂K = IK ⊗ LK
Lt = diag(At1N )− At Lt = Lt ⊗ Id Lt = E ⊗ Lt

TABLE I: Shorthand notation for graph matrices employed
along the paper. Here, {Gt}t≥1, K ∈ Z≥1, and E ∈ RK×K .

player and then present the networked version, which is the
focus of the paper. In online convex optimization, given a
time horizon T ∈ Z≥1, in each round t ∈ {1, . . . , T} a player
chooses a point xt ∈ Rd. After committing to this choice, a
convex cost function ft : Rd → R is revealed. Consequently,
the ‘cost’ incurred by the player is ft(xt). Given the temporal
sequence of objectives {ft}Tt=1, the regret of the player using
{xt}Tt=1 with respect to a single choice u ∈ Rd in hindsight
over a time horizon T is defined by

R(u, {ft}Tt=1) :=

T∑

t=1

ft(xt)−
T∑

t=1

ft(u), (1)

i.e., the difference between the total cost incurred by the online
estimates {xt}Tt=1 and the cost of a single hindsight decision u.
A logical choice, if it exists, is the best decision over a time
horizon T had all the information been available a priori, i.e.,

u = x∗T ∈ arg minx∈Rd

T∑

t=1

ft(x).

In the case when no information is available about the evolu-
tion of the functions {ft}Tt=1, one is interested in designing al-
gorithms whose worst-case regret is upper bounded sublinearly
in the time horizon T with respect to any decision in hindsight.
This ensures that, on average, the algorithm performs nearly
as well as the best single decision in hindsight.
We now explain the distributed version of the online convex
optimization problem where the online player is replaced by a
network of N agents, each with access to partial information.
In the round t ∈ {1, . . . , T}, agent i ∈ {1, . . . , N} chooses
a point xit corresponding to what it thinks the network as a
whole should have chosen. After committing to this choice,
the agent has access to a convex cost function f it : Rd → R
and the network cost is then given by the evaluation of

ft(x) :=

N∑

i=1

f it (x). (2)

Note that this function is not known to any of the agents and
is not available at any single location. In this scenario, the
regret of agent j ∈ {1, . . . , N} using {xjt}Tt=1 with respect to
a single choice u in hindsight over a time horizon T is

Rj(u, {ft}Tt=1) :=

T∑

t=1

N∑

i=1

f it (x
j
t )−

T∑

t=1

N∑

i=1

f it (u).

The goal then is to design coordination algorithms among the
agents that guarantee that the worst-case agent regret is upper
bounded sublinearly in the time horizon T with respect to any
decision in hindsight. This would guarantee that each agent
incurs an average cost over time with respect to the sum of
local cost functions across the network that is nearly as low
as the cost of the best single choice had all the information



4

been centrally available a priori. Since information is now
distributed across the network, agents must collaborate with
each other to determine their decisions for the next round.
We assume that the network communication topology is time-
dependent and described by a sequence of weight-balanced di-
graphs {Gt}Tt=1 = {({1, . . . , N}, Et,At)}Tt=1. At each round,
agents can use historical observations of locally revealed cost
functions and become aware through local communication of
the choices made by their neighbors in the previous round.

IV. DYNAMICS FOR DISTRIBUTED ONLINE OPTIMIZATION

In this section we propose a distributed coordination algorithm
to solve the networked online convex optimization problem
described in Section III. In each round t ∈ {1, . . . , T}, agent
i ∈ {1, . . . , N} performs

xit+1 = xit+σ
(
a

N∑

j=1

aij,t(x
j
t−xit) +

N∑

j=1

aij,t(z
j
t−zit)

)
−ηtgxi

t
,

zit+1 = zit−σ
N∑

j=1

aij,t(x
j
t−xit), (3)

where gxi
t
∈ ∂f it (x

i
t), the scalars σ, a ∈ R>0 are design

parameters, and ηt ∈ R>0 is the learning rate at time t.
Agent i is responsible for the variables xi, zi, and shares
their values with its neighbors according to the time-dependent
digraph Gt. Note that (3) is both consistent with the notion of
incremental access to information by individual agents and
is distributed over Gt: each agent updates its estimate by
following a subgradient of the cost function revealed to it
in the previous round while, at the same time, seeking to
agree with its neighbors’ estimates. The latter is implemented
through a second-order process that employs proportional-
integral feedback on the disagreement. Our design is inspired
by and extends the distributed algorithms for distributed op-
timization of a sum of convex functions studied in [9], [7].
We use the term online subgradient descent algorithm with
proportional-integral disagreement feedback to refer to (3).
We next rewrite the dynamics in compact form. To do so, we
introduce the notation x := (x1, . . . , xN ) ∈ (Rd)N and z :=
(z1, . . . , zN ) ∈ (Rd)N to denote the aggregate of the agents’
online decisions and the aggregate of the agents’ auxiliary
variables, respectively. For t ∈ {1, . . . , T}, we also define the
convex function f̃t : (Rd)N → R by

f̃t(x) :=

N∑

i=1

f it (x
i). (4)

When all agents agree on the same choice, one recovers the
value of the network cost function (2), f̃t(1N ⊗ x) = ft(x).
With this notation in place, the algorithm (3) takes the form

[
xt+1

zt+1

]
=

[
xt
zt

]
− σ

[
aLt Lt
−Lt 0

] [
xt
zt

]
− ηt

[
g̃xt

0

]
, (5)

where Lt := Lt ⊗ Id and g̃xt
= (gx1

t
, . . . , gxN

t
) ∈ ∂f̃t(xt).

This compact-form representation suggests a more general
class of distributed dynamics that includes (3) as a particular

case. For K ∈ Z≥1, let E ∈ RK×K be diagonalizable with
real positive eigenvalues, and define Lt := E ⊗ Lt. Consider
the dynamics on ((Rd)N )K defined by

vt+1 = (IKNd − σLt)vt − ηtgt, (6)

where gt ∈ ((Rd)N )K takes the form

gt := (g̃xt , 0, . . . , 0), (7)

and we use the decomposition v = (x,v2, . . . ,vK). Through-
out the paper, our convergence results are formulated for this
dynamics because of its generality, which we discuss in the
following remark.
Remark IV.1. (Online subgradient descent algorithms
with proportional and proportional-integral disagreement
feedback): The online subgradient descent algorithm with
proportional-integral disagreement feedback (3) corresponds
to the dynamics (6) with the choices K = 2 and

E =

[
a 1
−1 0

]
.

For a ∈ (2,∞), E has positive eigenvalues λmin(E) =
a
2 −
√

(a2 )2 − 1 and λmax(E) = a
2 +
√

(a2 )2 − 1. Interestingly,
the online subgradient descent algorithm with proportional dis-
agreement feedback proposed in [20] (without the projection
component onto a bounded convex set) also corresponds to
the dynamics (6) with the choices K = 1 and E = [1]. •
Our forthcoming exposition presents the technical approach to
establish the properties of the distributed dynamics (6) with
respect to the agent regret defined in Section III. An informal
description of our main results is as follows. Under mild
conditions on the connectivity of the communication network,
a suitable choice of σ, and the assumption that the time-
dependent local cost functions have bounded subgradient sets
and uniformly bounded optimizers, the following bounds hold:

Logarithmic agent regret: if each local cost function is lo-
cally p-strongly convex and ηt = 1

p t , then any sequence
generated by the dynamics (6) satisfies, for each j ∈
{1, . . . , N},

Rj
(
u, {ft}Tt=1

)
∈ O(‖u‖22 + log T ).

Square-root agent regret: if each local cost function is con-
vex (plus a mild geometric assumption) and, for m =
0, 1, 2, . . . , dlog2 T e, we take ηt = 1√

2m
in each period

of 2m rounds t = 2m, . . . , 2m+1 − 1, then any sequence
generated by the dynamics (6) satisfies, for each j ∈
{1, . . . , N},

Rj
(
u, {ft}Tt=1

)
∈ O(‖u‖22

√
T ).

In our technical approach to establish these sublinear agent
regret bounds, we find it useful to consider the notion of
network regret [18], [24] with respect to a single hindsight
choice u ∈ Rd over the time horizon T ,

RN (u, {f̃t}Tt=1) :=

T∑

t=1

f̃t(xt)−
T∑

t=1

f̃t(1N ⊗ u),
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to capture the performance of the sequence of collective
estimates {xt}Tt=1 ⊆ (Rd)N . Our proof strategy builds on
this concept and relies on bounding the following terms:

(i) both the network regret and the difference between the
agent and network regrets;

(ii) the cumulative disagreement of the collective estimates;
(iii) the sequence of collective estimates uniformly in the

time horizon.

Section V presents the formal discussion for these results. The
combination of these steps allows us in Section VI to formally
establish the sublinear agent regret bounds outlined above.

V. REGRET ANALYSIS

This section presents the results outlined above on bounding
the agent and network regrets, the cumulative disagreement
of the collective estimates, and the sequence of collective
estimates for executions of the distributed dynamics (6). These
results are instrumental later in the derivation of the sublinear
agent regret bounds, but are also of independent interest.

A. Bounds on network and agent regret

Our first result relates the agent and network regrets for any
sequence of collective estimates (regardless of the algorithm
that generates them) in terms of their cumulative disagreement.
Lemma V.1. (Bound on the difference between agent and
network regret): For T ∈ Z≥1, let {f1

t , . . . , f
N
t }Tt=1 be

convex functions on Rd with H-bounded subgradient sets.
Then, any sequence {xt}Tt=1 ⊂ (Rd)N satisfies, for any
j ∈ {1, . . . , N} and u ∈ Rd,

Rj(u, {ft}Tt=1) ≤ RN (u, {f̃t}Tt=1) +NH

T∑

t=1

‖LKxt‖2,

where LK := LK ⊗ Id.

Proof: Since f̃t(1N⊗x) = ft(x) for all x ∈ Rd, we have

Rj(u, {ft}Tt=1)−RN (u, {f̃t}Tt=1)

=

T∑

t=1

(
f̃t(1N ⊗ xjt )− f̃t(xt)

)
. (8)

The convexity of f̃t implies that, for any ξ ∈ ∂f̃t(1N ⊗ xjt ),

f̃t(1N ⊗ xjt )− f̃t(xt) ≤ ξ>(1N ⊗ xjt − xt)

≤‖ξ‖2‖1N ⊗ xjt − xt‖2 ≤
√
NH‖1N ⊗ xjt − xt‖2, (9)

where we have used the Cauchy-Schwarz inequality and the
fact that the subgradient sets are H-bounded. In addition,

‖1N ⊗ xjt − xt‖22 =

N∑

i=1

‖xjt − xit‖22 (10)

≤ 1

2

N∑

j=1

N∑

i=1

‖xjt − xit‖22 = Nx>t LKxt.

The fact that L2
K = LK = L>K allows us to write x>t LKxt =

‖LKxt‖22. The result now follows using (9) and (10) in
conjunction with (8).

Next, we bound the network regret for executions of the
coordination algorithm (6) in terms of the learning rates and
the cumulative disagreement. The bound holds regardless of
the connectivity of the communication network as long as the
digraph remains weight-balanced.
Lemma V.2. (Bound on network regret): For T ∈ Z≥1, let
{f1
t , . . . , f

N
t }Tt=1 be convex functions on Rd with H-bounded

subgradient sets. Let the sequence {xt}Tt=1 be generated by
the coordination algorithm (6) over a sequence of arbitrary
weight-balanced digraphs {Gt}Tt=1. Then, for any u ∈ Rd,
and any sequence of learning rates {ηt}Tt=1 ⊂ R>0,

2RN
(
u, {f̃t}Tt=1

)
≤

T∑

t=2

‖Mxt − u‖22
(

1
ηt
− 1

ηt−1
− pt(u,xt)

)

+ 2
√
NH

T∑

t=1

‖LKxt‖2 +NH2
T∑

t=1

ηt + 1
η1
‖Mx1 − u‖22,

where M := M⊗Id, u := 1N⊗u and pt : (Rd)N×(Rd)N →
R≥0 is the modulus of strong convexity of f̃t.

Proof: Left-multiplying the dynamics (6) by the block-
diagonal matrix diag(1, 0, . . . , 0)⊗M ∈ R(Nd)K×(Nd)K , and
using MLt = 0, we obtain the following projected dynamics

Mxt+1 = Mxt − ηtMg̃xt
. (11)

Note that this dynamics is decoupled from the dynamics of
v2
t , . . .v

K
t . Subtracting u and taking the norm on both sides,

we get ‖Mxt+1 − u‖22 = ‖Mxt − u− ηtMg̃xt
‖22, so that

‖Mxt+1 − u‖22 (12)

=‖Mxt − u‖22 + η2
t ‖Mg̃xt

‖22 − 2ηt(Mg̃xt
)>(Mxt − u)

=‖Mxt − u‖22 + η2
t ‖Mg̃xt

‖22 − 2ηtg̃
>
xt

(Mxt − u),

where we have used M2 = M and Mu = u. Regarding the
last term, note that

− g̃>xt
(Mxt − u) = −g̃>xt

(Mxt − xt)− g̃>xt
(xt − u)

≤ g̃>xt
LKxt + f̃t(u)− f̃t(xt)− pt(u,xt)

2 ‖u− xt‖22,
where we have used LK = INd −M. Substituting into (12),
we obtain

‖Mxt+1 − u‖22 ≤ ‖Mxt − u‖22 + η2
t ‖Mg̃xt

‖22
+ 2ηt

(
g̃>xt

LKxt + f̃t(u)− f̃t(xt)− pt(u,xt)
2 ‖u− xt‖22

)
,

so that, reordering terms,

2(f̃t(xt)− f̃t(u)) ≤ 1
ηt

(
‖Mxt − u‖22 − ‖Mxt+1 − u‖22

)

− pt(u,xt)‖xt − u‖22 + 2g̃>xt
LKxt + ηt‖Mg̃xt‖22. (13)

Next, we bound each of the terms appearing in the last line
of (13). For the term pt(u,xt)‖xt − u‖22, note that

‖xt − u‖22 = ‖(M + LK)(xt − u)‖22 = ‖M(xt − u)‖22
+ ‖LK(xt − u)‖22 + 2(xt − u)>MLK(xt − u)

= ‖Mxt − u‖22 + ‖LKxt‖22, (14)

where we have used MLK = 0 and Mu = u. Regarding the
term 2g̃>xt

LKxt, note that ‖g̃xt
‖22 =

∑N
i=1 ‖gxi

t
‖22 ≤ NH2
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because the subgradient sets are bounded by H . Hence, using
the Cauchy-Schwarz inequality,

g̃>xt
LKxt ≤ ‖g̃xt‖2‖LKxt‖2 ≤

√
NH‖LKxt‖2. (15)

Finally, regarding the term ηt‖Mg̃xt
‖22 in (13), note that

‖Mg̃xt‖22 = ‖1N ⊗ 1
N

N∑

i=1

gxi
t
‖22 = N

∥∥∥ 1
N

N∑

i=1

gxi
t

∥∥∥
2

2

= 1
N

d∑

l=1

( N∑

i=1

gxi
t

)2

l
≤ 1

N

d∑

l=1

(
N

N∑

i=1

(
gxi

t

)2
l

)

=

N∑

i=1

d∑

l=1

(
gxi

t

)2
l

=

N∑

i=1

‖gxi
t
‖22 ≤ NH2, (16)

where in the first inequality we have used the inequality of
quadratic and arithmetic means [25]. The result now follows
from summing the expression in (13) over the time horizon T ,
discarding the negative terms, and using the upper bounds
in (14)-(16).
The combination of Lemmas V.1 and V.2 provides a bound
on the agent regret in terms of the learning rates and the
cumulative disagreement of the collective estimates. This
motivates our next section.

B. Bound on cumulative disagreement

In this section we study the evolution of the disagreement
among the agents’ estimates under (6). Our analysis builds on
the input-to-state stability (ISS) properties of the linear part of
the dynamics with respect to the agreement subspace, where
we treat the subgradient term as a perturbation. Consequently,
here we study the dynamics

vt+1 = (IKNd − σLt)vt + dt, (17)

where {dt}t≥1 ⊂ ((Rd)N )K is an arbitrary sequence of
disturbances. Our first result shows that, for the purpose of
studying the ISS properties of (17), the dynamics can be
decoupled into K first-order linear consensus dynamics.
Lemma V.3. (Decoupling into a collection of first-order
consensus dynamics): Given a diagonalizable matrix E ∈
RK×K with real eigenvalues, let SE be the matrix of eigen-
vectors in the decomposition E = SEDES

−1
E , with DE =

diag(λ1(E), . . . , λK(E)). Then, under the change of variables

wt := (S−1
E ⊗ INd)vt, (18)

the dynamics (17) is equivalently represented by the collection
of first-order dynamics on (Rd)N defined by

wl
t+1 = (INd − σ λl(E)Lt)w

l
t + elt, (19)

where l ∈ {1, . . . ,K}, wt = (w1
t , . . . ,w

K
t ) ∈ ((Rd)N )K and

elt :=
(
(S−1
E ⊗ INd)dt

)l ∈ (Rd)N . (20)

Moreover, for each t ∈ Z≥1,

‖L̂Kvt‖2 ≤ ‖SE‖2
√
K max

1≤l≤K
‖LKwl

t‖2, (21)

where L̂K := IK ⊗ LK.

Proof: We start by noting that

Lt = SE DE S
−1
E ⊗ INd Lt INd

= (SE ⊗ INd) (DE ⊗ Lt) (SE ⊗ INd)
−1,

and therefore we obtain the factorization

IKNd −σLt=(SE ⊗ INd)(IKNd −σDE ⊗ Lt)(SE ⊗ INd)
−1.

Now, under the change of variables (18), the dynamics (17)
takes the form

wt+1 = (IKNd − σDE ⊗ Lt)wt + (S−1
E ⊗ INd)dt, (22)

which corresponds to the set of dynamics (19). Moreover,

L̂Kvt = (IK ⊗ LK)(SE ⊗ INd)wt

= (SE ⊗ INd)(IK ⊗ LK)wt = (SE ⊗ INd)L̂Kwt.

Hence, the sub-multiplicativity of the norm together with [26,
Fact 9.12.22] for the norms of Kronecker products, yields

‖L̂Kvt‖2 ≤ ‖SE ⊗ INd‖2‖L̂Kwt‖2 = ‖SE‖2‖L̂Kwt‖2

= ‖SE‖2
( K∑

l=1

‖LKwl
t‖22
)1/2 ≤ ‖SE‖2

√
K max

1≤l≤K
‖LKwl

t‖2,

as claimed.
In the next result, we use Lemma V.3 to bound the cumulative
disagreement of the collective estimates over time.
Proposition V.4. (Input-to-state stability and cumula-
tive disagreement of (17) over jointly connected weight-
balanced digraphs): Let E ∈ RK×K be a diagonalizable
matrix with real positive eigenvalues and {Gs}s≥1 a sequence
of B-jointly connected, δ-nondegenerate, weight-balanced di-
graphs. For δ̃′ ∈ (0, 1), let

δ̃ := min
{
δ̃′, (1− δ̃′) λmin(E) δ

λmax(E) dmax

}
, (23)

where

dmax := max
{
dout,t(k) : k ∈ I, 1 ≤ t ≤ T

}
. (24)

Then, for any choice

σ ∈
[ δ̃

λmin(E)δ
,

1− δ̃
λmax(E)dmax

]
, (25)

the dynamics (17) over {Gs}s≥1 is input-to-state stable with
respect to the nullspace of the matrix L̂K. Specifically, for any
t ∈ Z≥1 and any {ds}t−1

s=1 ⊂ ((Rd)N )K ,

‖L̂Kvt‖2 ≤ CI‖v1‖2
(

1− δ̃

4N2

)d t−1
B e

+ CU max
1≤s≤t−1

‖ds‖2, (26)

where

CI := κ(SE)
√
K ( 4

3 )2, CU :=
CI

1−
(
1− δ̃

4N2

)1/B . (27)

And the cumulative disagreement satisfies, for T ∈ Z≥1,
T∑

t=1

‖L̂Kvt‖2 ≤ CU
(
‖v1‖2 +

T−1∑

t=1

‖dt‖2
)
. (28)
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Proof: The strategy of the proof is the following. We
use Lemma V.3 to decouple (17) into K copies (for each
eigenvalue of E) of the same first-order linear consensus
dynamics. We then analyze the convergence properties of the
latter using [27, Th. 1.2]. Finally, we bound the disagreement
in the original network variables using again Lemma V.3.
We start by noting that the selection of δ̃ makes the set
in (25) nonempty and consequently the selection of σ feasible.
We write the dynamics (19), omitting the dependence on
l ∈ {1, . . . ,K} for the sake of clarity, as

yt+1 = (INd − σ̂Lt)yt + et, (29)

where σ̂ := σ λl(E) > 0 and et := elt. From (20), we have

‖et‖2 ≤ ‖(S−1
E ⊗ INd)dt‖2 ≤ ‖S−1

E ‖2‖dt‖2, (30)

for each t ∈ Z≥1. Next, let

Pt := IN − σ̂ Lt = σ̂At + IN − σ̂Doutt, (31)

and define Φ(k, s) :=
(
PkPk−1 · · ·Ps+1Ps

)
⊗ Id, for each

k ≥ s ≥ 1. The trajectory of (29) can then be expressed as

yt+1 = Φ(t, 1)y1 +

t−1∑

s=1

Φ(t, s+ 1)es + et,

for t ≥ 2. If we now multiply this equation by LK, take norms
on each side, and use the triangular inequality, we obtain

‖LKyt+1‖2 ≤ ‖LKΦ(t, 1)y1‖2 (32)

+

t−1∑

s=1

‖LKΦ(t, s+ 1)es‖2 + ‖LKet‖2

=
√
V (Φ(t, 1)y1) +

t−1∑

s=1

√
V (Φ(t, s+ 1)es) +

√
V (et),

where V : (Rd)N → R is defined by

V (y) := ‖LKy‖22 =

N∑

i=1

‖yi − (My)i‖22.

Our next step is to verify the hypotheses of [27, Th. 1.2] to
conclude from [27, (1.23)] that, for every y ∈ (Rd)N and
every k ≥ s ≥ 1, the following holds,

V (Φ(k, s)y) ≤
(
1− δ̃

2N2

)dk−s+1
B e−2

V (y). (33)

Consider the matrices {Pt}t≥1 defined in (31). Since the
digraphs are weight-balanced, i.e., 1>NLt = 0, we have
1>NPt = 1>N , and since Lt1N = 0, it follows that Pt1N = 1N .
Moreover, according to (24) and (25), for each t ∈ Z≥1,

(Pt)ii ≥ 1− σ̂ dout,t(i) = 1− σλl(E) dout,t(i)

≥ 1− σ λmax(E)dmax ≥ δ̃,
for every i ∈ I. On the other hand, for i 6= j, (Pt)ij =
σ̂aij,t ≥ 0 and therefore, if aij,t > 0, then the nondegeneracy
of the adjacency matrices together with (25) implies that

(Pt)ij = σλl(E)aij,t ≥ σ λmin(E)δ ≥ δ̃.
Summarizing, the matrices in the sequence {Pt}t≥1 are doubly
stochastic with entries uniformly bounded away from 0 by δ̃

whenever positive. These are the sufficient conditions in [27,
Th. 1.2], along with B-joint connectivity, to guarantee that (33)
holds. Plugging (33) into (32), and noting that

ρδ̃ := 1− δ̃

4N2
≥
√

1− δ̃
2N2 ,

because (1− x/2)2 ≥ 1− x for any x ∈ [0, 1], we get

‖LKyt+1‖2 ≤ ρ
d tB e−2

δ̃
‖y1‖2 +

t∑

s=1

ρ
d t−sB e−2

δ̃
‖es‖2. (34)

Here we have used that
√
V (y) ≤ ‖LK‖2‖y‖2 ≤ ‖y‖2

because ‖LK‖2 = 1 (as L̂K is symmetric and all its nonzero
eigenvalues are equal to 1). We now proceed to bound
‖L̂Kvt‖2 in terms of v1 and the inputs {dt}t≥1 of the original
dynamics (17). To do this, we rely on Lemma V.3. In fact,
from (21), and using (34) for each of the K first-order
consensus algorithms, we obtain

‖L̂Kvt‖2 ≤ ‖SE‖2
√
K·

· max
1≤l≤K

{
ρ
d t−1
B e−2

δ̃
‖wl

1‖2 +

t−1∑

s=1

ρ
d t−1−s

B e−2

δ̃
‖es‖2

}
.

Recalling now (18), so that ‖wl
1‖2 ≤ ‖w1‖2 ≤ ‖S−1

E ‖2‖v1‖2
for each l ∈ {1, . . . ,K}, and using also (30), we obtain

‖L̂Kvt‖2 ≤‖SE‖2
√
Kρ−2

δ̃

(
ρ
d t−1
B e

δ̃
‖S−1

E ‖2‖v1‖2

+

t−1∑

s=1

ρ
d t−1−s

B e
δ̃

‖S−1
E ‖2‖ds‖2

)
, (35)

for all t ≥ 2 (and for t = 1 the inequality holds trivially).
Equation (26) follows from (35) noting two facts. First,∑∞
k=0 r

k = 1
1−r for any r ∈ (0, 1) and in particular for

r = ρ
1/B

δ̃
. Second, since δ̃ ∈ (0, 1), we have

ρ−1

δ̃
= 1

1−δ̃/(4N2)
≤ 1

1−1/(4N2) = 4N2

4N2−1 ≤ 4
3 .

To obtain (28), we sum (35) over the time horizon T to get
T∑

t=1

‖L̂Kvt‖2 ≤κ(SE)
√
Kρ−2

δ̃

( 1

1− ρ1/B

δ̃

‖v1‖2

+

T∑

t=2

t−1∑

s=1

ρ
d t−1−s

B e
δ̃

‖ds‖2
)
,

and using r = ρ
1/B

δ̃
for brevity, the last sum is bounded as

T∑

t=2

t−1∑

s=1

rt−1−s‖ds‖2 =

T−1∑

s=1

T∑

t=s+1

rt−1−s‖ds‖2

T−1∑

s=1

‖ds‖2
T∑

t=s+1

rt−1−s ≤ 1

1− r
T−1∑

s=1

‖ds‖2.

This yields (28) and the proof is complete.
The combination of the bound on the cumulative disagreement
stated in Proposition V.4 with the bound on agent regret that
follows from Lemmas V.1 and V.2 leads us to the next result.
Corollary V.5. (Bound on agent regret under the dynam-
ics (6) for arbitrary learning rates): For T ∈ Z≥1, let
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{f1
t , . . . , f

N
t }Tt=1 be convex functions on Rd with H-bounded

subgradient sets. Let E ∈ RK×K be a diagonalizable matrix
with real positive eigenvalues and {Gt}t≥1 a sequence of B-
jointly connected, δ-nondegenerate, weight-balanced digraphs.
If σ is chosen according to (25), then the agent regret associ-
ated to a sequence {xt = (x1

t , . . . , x
N
t )}Tt=1 generated by the

coordination algorithm (6) satisfies, for any j ∈ {1, . . . , N},
u ∈ Rd, and {ηt}Tt=1 ⊂ R>0, the bound

2Rj(u, {ft}Tt=1)

≤N
T∑

t=2

‖ 1
N

N∑

i=1

xit − u‖22
(

1
ηt
− 1

ηt−1
− pt(u,xt)

)

+ 4NHCU‖v1‖2 +NH2(4
√
NCU + 1)

T∑

t=1

ηt

+
N

η1
‖ 1
N

N∑

i=1

xi1 − u‖22, (36)

where CU is given in (27) and pt : (Rd)N × (Rd)N → R≥0

is the modulus of strong convexity of f̃t.

Proof: From Lemmas V.1 and V.2, we can write

2Rj(u, {ft}Tt=1) (37)

≤
T∑

t=2

‖Mxt − u‖22
(

1
ηt
− 1

ηt−1
− pt(u,xt)

)

+
(
2
√
NH + 2NH

) T∑

t=1

‖LKxt‖2 +NH2
T∑

t=1

ηt

+ 1
η1
‖Mx1 − u‖22.

On the one hand, note that

‖Mxt − u‖22 =N‖ 1
N

N∑

i=1

xit − u‖22. (38)

On the other hand, taking ds = −ηs(g̃xs
, 0, . . . , 0) ∈

((Rd)N )K in (28) of Proposition V.4 and noting that ‖ds‖2 =
ηs‖g̃xs‖2 ≤ ηs

√
NH , we get

T∑

t=1

‖LKxt‖2 ≤
T∑

t=1

‖L̂Kvt‖2 ≤ CU
(
‖v1‖2 +

T−1∑

t=1

ηt
√
NH

)
.

We obtain the result by substituting this and (38) into (37),
and using the bound 2

√
NH + 2NH ≤ 4NH .

To establish the desired logarithmic and square-root regret
bounds we need a suitable selection of learning rates in the
bound obtained in Corollary V.5. This step is enabled by the
final ingredient in our analysis: bounding the evolution of the
online estimates and all the auxiliary states uniformly in the
time horizon T . We tackle this next.

C. Bound on the trajectories uniform in the time horizon

Here we show that the trajectories of (6) are bounded uni-
formly in the time horizon. For this, we first bound the mean
of the online estimates and then use the ISS property of the
disagreement evolution studied in the previous section.

Our first result establishes a useful bound on how far from
the origin one should be so that a certain important inclusion
among convex cones is satisfied. This plays a key role in the
technical developments of this section.
Lemma V.6. (Convex cone inclusion): Given β ∈ (0, 1],
ε ∈ (0, β), and any scalars CX , CIU ∈ R>0, let

r̂β :=
CX + CIU

β
√

1− ε2 − ε
√

1− β2
. (39)

Then, r̂β ∈ (CX + CIU ,∞) and, for any x ∈ Rd \ B(0, r̂β),
⋃

w∈B̄(−x,CX+CIU )

Fβ(w) ⊆ Fε(−x), (40)

where the set on the left is convex.

Proof: Throughout the proof, we consider the functions
arccos and arcsin in the domain [0, 1]. Since ε ∈ (0, β) and
β ∈ (0, 1], it follows that arccos(ε) − arccos(β) ∈ (0, π/2).
Now, using the angle-difference formula and noting that
sin(arccos(α)) =

√
1− α2 for any α ∈ [0, 1], we have

sin
(

arccos(ε)− arccos(β)
)

= (
√

1− ε2 )β − ε
√

1− β2,

which belongs to the set (0, 1) by the observation above.
Therefore, r̂β ∈ (CX + CIU ,∞). Let x ∈ Rd \ B(0, r̂β).
Since ‖x‖2 ≥ r̂β > CX + CIU , then B̄(−x,CX + CIU ) ⊆
Rd \ {0}, and the intersection of

⋃
w∈B̄(−x,CX+CIU ) Fβ(w)

with any plane passing through the origin and −x forms a
two-dimensional cone (cf. Figure 1) with angle

2 arcsin
(
CX+CIU
‖x‖2

)
+ 2 arccos(β). (41)

In the case of the intersection of Fε(−x) with any plane
passing through the origin and −x, the angle is 2 arccos(ε)
(which is less than π because ε < β ≤ 1). Now, given the
axial symmetry of both cones with respect to the line passing
through the origin and −x, (40) is satisfied if and only if

arcsin
(
CX+CIU
‖x‖2

)
+ arccos(β) ≤ arccos(ε), (42)

as implied by ‖x‖2 ≥ r̂β because sin is increasing in (0, π/2).
On the other hand, the inclusion (40) also guarantees that⋃
w∈B̄(−x,CX+CIU ) Fβ(w) is a convex cone because each
Fβ(w) is convex, the union is taken over elements in a convex
set, and (42) implies that the angle in (41) is less than π.
The following result bounds the mean of the online estimates
for arbitrary learning rates uniformly in the time horizon.
Lemma V.7. (Uniform bound on the mean of the online
estimates): For T ∈ Z≥1, let {f1

t , . . . , f
N
t }Tt=1 be con-

vex functions on Rd with H-bounded subgradient sets and
nonempty sets of minimizers. Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆
B̄(0, CX ) for some CX ∈ R>0 independent of T , and assume
{f1
t , . . . , f

N
t }Tt=1 are β-central on Rd \ B̄(0, CX ) for some

β ∈ (0, 1]. Let E ∈ RK×K be a diagonalizable matrix
with real positive eigenvalues and {Gs}s≥1 a sequence of B-
jointly connected, δ-nondegenerate, weight-balanced digraphs.
Let σ be chosen according to (25) and denote by {xt =
(x1
t , . . . , x

N
t )}Tt=1 the sequence generated by the coordination

algorithm (6). For t ∈ {1, . . . , T}, let x̄t := 1
N

∑N
i=1 x

i
t denote
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rβ

CX

CIU x̄t

xi1t

xi2t arccos(ε)

2 arcsin(ε)

0

π
2

−ηtN
∑N
i=1 gxi

t

x̄t+1

arccos(β)

arcsin(ε)

Fε(−x̄t)

x̄t +
⋃
w∈B̄(−x̄t, CX+CIU ) Fβ(w)

Fig. 1: Visual aid in two dimensions for the proof of Lem-
mas V.6 and V.7 (where the shaded cones are actually infinite).

the mean of the online estimates. Then, for any sequence of
learning rates {ηt}Tt=1 ⊂ R>0,

‖x̄t‖2 ≤ rβ +H max
s≥1

ηs, (43)

where, for some ε ∈ (0, β),

rβ := max
{ CX + CIU

β
√

1− ε2 − ε
√

1− β2
,
H

2ε
max
s≥1

ηs
}

(44)

(which is well defined as shown in Lemma V.6), and

CIU := CI‖v1‖2 + CU
√
NH max

s≥1
ηs, (45)

where CU and CI are given in (27).

Proof: To guide the reasoning, Figure 1 depicts some of
the elements of the proof and intends to be a visual aid. The
dynamics of the mean of the agents’ estimates is described
by (11), which in fact corresponds to N copies of

x̄t+1 = x̄t − ηt 1
N

N∑

i=1

gxi
t
, (46)

where gxi
t
∈ ∂f it (xit). Our proof strategy is based on showing

that, for any t ∈ {1, . . . , T}, if x̄t belongs to the set

Rd \ B(0, rβ), (47)

then ‖x̄t+1‖2 ≤ ‖x̄t‖2. To establish this fact, we study both the
direction and the magnitude of the increment −ηtN

∑N
i=1 gxi

t

in (46). Since the subgradients in the latter expression are
not evaluated at the mean, but at the agents’ estimates,
we first show that the agents’ estimates are sufficiently
close to the mean. According to the input-to-state stability
property (26) from Proposition V.4 with the choice ds =
−ηs(g̃xs

, 0, . . . , 0) ∈ ((Rd)N )K , so that ‖ds‖2 = ηs‖g̃xs
‖2 ≤

ηs
√
NH , we get

‖LKxt‖2 ≤‖L̂Kvt‖2 ≤ CI‖v1‖2
(

1− δ̃

4N2

)d t−1
B e

+ CU
√
NH max

1≤s≤t−1
ηs ≤ CIU , (48)

where CIU is defined in (45). Hence,

max
i
‖xit − x̄t‖2 ≤

( n∑

i=1

‖xit − x̄t‖22
)1/2

= ‖LKxt‖2 ≤ CIU . (49)

This allows to exploit the starting assumption that x̄t belongs
to the set (47) when we study the increment −ηtN

∑N
i=1 gxi

t
.

Regarding the direction of the increment −ηtN
∑N
i=1 gxi

t
, the

β-centrality of the function f it for each i ∈ {1, . . . , N} and
t ∈ {1, . . . , T} on Rd \ B̄(0, CX ) implies that, for any z ∈
Rd \ B̄(0, CX ), we have

−∂f it (z) ⊆
⋃

y∈argmin(fi
t )

Fβ(y − z) ⊆
⋃

y∈B̄(0,CX )

Fβ(y − z), (50)

where the last inclusion follows from the hypothesis that
∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0, CX ). Now, using the change
of variables w := y − z, we have

⋃

y∈B̄(0,CX )
z∈B̄(x,CIU )

Fβ(y − z) =
⋃

w∈B̄(−x,CX+CIU )

Fβ(w). (51)

The representation on the right shows that the set is convex
whenever x belongs to the set in (47) thanks to Lemma V.6
(essentially because Fβ(w) is convex, the union is taken over
elements in a convex set, and the intersection with any plane
passing through −x and the origin is a two-dimensional cone
with angle less than π). Hence, taking the union when z ∈
B̄(x,CIU ) on both sides of (50) and using (51), we obtain

conv
( ⋃

z∈B̄(x,CIU )

−∂f it (z)
)
⊆

⋃

w∈B̄(−x,CX+CIU )

Fβ(w)

⊆ Fε(−x),

where the last inclusion holds for any x in the set (47) by
Lemma V.6 (noting from (39) that rβ ≥ r̂β). Taking now
x = x̄t and noting that xit ∈ B̄(x̄t, CIU ) by (49), we deduce

− 1
N

N∑

i=1

gxi
t
∈ conv

( ⋃

z∈B̄(x̄t,CIU )

−∂f it (z)
)
⊆ Fε(−x̄t).

This guarantees that x̄t+1 = x̄t − ηt
N

∑N
i=1 gxi

t
is contained

in a convex cone with vertex at x̄t and strictly contained in
the semi-space tangent to the ball B̄(0, ‖x̄t‖2) at x̄t (with a
tolerance-angle between them of arcsin(ε)).
Regarding the magnitude ‖ − ηt

N

∑N
i=1 gxi

t
‖2 ≤ Hηt, we

need to show, based on the starting assumption that x̄t
belongs to the set (47), that H maxs≥1 ηs is no larger than
the chords of angle arccos(ε) with respect to the radii of
B̄(0, rβ). Now, any such chord defines an isosceles triangle
in the plane containing the chord and the segment joining the
origin and x̄t. Since the angle subtended by the chord at the
origin is 2 arcsin(ε), then the length of the chord is 2rβε.
Therefore, since rβ ≥ H

2ε maxs≥1 ηs by the hypothesis (44),
we conclude that the length of the chord is larger or equal than
H maxs≥1 ηs. This guarantees that x̄t+1 = x̄t − ηt

N

∑N
i=1 gxi

t

is in the ball B̄(0, ‖x̄t‖2).
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The above argument guarantees that, if the starting assumption
that x̄t belongs to the set (47) holds, then ‖x̄t+1‖2 ≤ ‖x̄t‖2.
However, if the starting assumption is not true, then the
previous inequality might not hold. Since the magnitude of
the increment in an arbitrary direction is upper bounded by
H maxs≥1 ηs, adding this value to the threshold rβ in the
definition of (47) yields the desired bound (43) for {x̄t}Tt=1,
uniformly in T .
The next result bounds the online estimates for arbitrary
learning rates in terms of the initial conditions and the uniform
bound on the sets of local minimizers. The fact that the bound
includes the auxiliary states follows from the ISS property and
the invariance of the mean of the auxiliary states.
Proposition V.8. (Boundedness of the online estimates and
the auxiliary states): Under the hypotheses of Lemma V.7,
the trajectories of the coordination algorithm (6) are uniformly
bounded in the time horizon T , for any {ηt}Tt=1 ⊂ R>0, as

‖vt‖2 ≤ C(β),

for t ∈ {1, . . . , T}, where

C(β) :=
√
N
(
rβ +H max

s≥1
ηs
)

+
√
K‖v1‖2 + CIU , (52)

and where rβ is given in (44) and CIU in (45).

Proof: We start by noting the useful decomposition vt =
(IK⊗M)vt+L̂Kvt. Using the triangular inequality, we obtain

‖vt‖2 ≤ ‖(IK ⊗M)vt‖2 + ‖L̂Kvt‖2

≤ ‖Mxt‖2 +

K∑

l=2

‖Mvlt‖2 + ‖L̂Kvt‖2.

The first term can be upper bounded by noting that ‖Mxt‖2 =√
N‖ 1

N

∑n
i=1 x

i
t‖2 and invoking (43) in Lemma V.7. The

second term does not actually depend on t. To see this, we
use the fact that (IK ⊗ M)(IKNd − σLt) = IK ⊗ M in
the dynamics (6) with the choice (7) to obtain the following
invariance property of the mean of the auxiliary states,

Mvlt+1 = Mvlt = Mvl1

for l ∈ {2, . . . ,K}. Then, using the sub-multiplicativity of
the norm and [26, Fact 9.12.22] for the norms of Kronecker
products in ‖M‖2 = ‖M⊗ Id‖2 = ‖M‖2‖Id‖2 = 1, we get

K∑

l=2

‖Mvl1‖2 ≤ ‖M‖2
K∑

l=2

‖vl1‖2 ≤
√
K‖v1‖2,

where the last inequality follows from the inequality of arith-
metic and quadratic means [25]. Finally, the third term is upper
bounded in (48), and the result follows.
The previous statements about uniform boundedness of the
trajectories can also be concluded when the objectives are
strongly convex. The following result says that local strong
convexity and bounded subgradient sets imply β-centrality.
Lemma V.9. (Local strong convexity and bounded subgra-
dients implies centrality away from the minimizer): Let
h : Rd → R be a convex function on Rd that is also γ-
strongly convex on B̄(y, ζ), for some γ, ζ ∈ R>0 and y ∈ Rd.

Then, for any x ∈ Rd \ B̄(y, ζ) and gx ∈ ∂h(x), gy ∈ ∂h(y),
(
gx − gy

)>
(x− y) ≥ γζ ‖x− y‖2. (53)

If in addition h has H-bounded subgradient sets and 0 ∈
∂h(y), then h is γζ

H -central in Rd \ B̄(y, ζ). (Note that if
0 ∈ ∂h(y), then arg minx∈Rd h(x) = {y} is a singleton by
strong convexity in the ball B̄(y, ζ).)

Proof: Given any y ∈ Rd and x ∈ Rd \ B̄(y, ζ), let
x̃ ∈ B̄(y, ζ) be any point in the line segment between x and
y. Consequently, for some ν ∈ (0, 1), we can write

x̃− y = ν(x− y) =
ν

1− ν (x− x̃). (54)

Then, for any gx ∈ ∂h(x), gy ∈ ∂h(y), and gx̃ ∈ ∂h(x̃),
(
gx − gy

)>
(x− y) =

(
gx − gx̃ + gx̃ − gy

)>
(x− y)

=
1

1− ν (gx − gx̃)>(x− x̃) +
1

ν
(gx̃ − gy)>(x̃− y)

≥ 0 +
γ

ν
‖x̃− y‖22 = γ‖x̃− y‖2‖x− y‖2,

where in the inequality we have used convexity for the first
term and strong convexity for the second term. To derive (53)
we choose x̃ satisfying ‖x̃ − y‖2 = ζ, while the second part
follows taking gy = 0 in (53) and multiplying the right-hand
side by ‖gx‖2H because the latter quantity is less than 1.

VI. LOGARITHMIC AND SQUARE-ROOT AGENT REGRET

In this section, we build on our technical results of the previous
section: the general agent regret bound for arbitrary learning
rates (cf. Corollary V.5), and the uniform boundedness of the
trajectories of the general dynamics (6) (cf. Proposition V.8).
Equipped with these results, we are ready to select the learning
rates to deduce the agent regret bounds outlined in Section IV.
Our first main result establishes the logarithmic agent regret
for the general dynamics (6) under harmonic learning rates.
Theorem VI.1. (Logarithmic agent regret for the dynam-
ics (6)): For T ∈ Z≥1, let {f1

t , . . . , f
N
t }Tt=1 be convex func-

tions on Rd with H-bounded subgradient sets and nonempty
sets of minimizers. Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0, CX /2)
for some CX ∈ R>0 independent of T , and assume
{f1
t , . . . , f

N
t }Tt=1 are p-strongly convex on B̄(0, C(pCX2H )),

for some p ∈ R>0, where C(·) is defined in (52). Let
E ∈ RK×K be a diagonalizable matrix with real positive
eigenvalues and {Gt}t≥1 a sequence of B-jointly connected,
δ-nondegenerate, weight-balanced digraphs. Let σ be chosen
according to (25) and denote by {xt = (x1

t , . . . , x
N
t )}Tt=1 the

sequence generated by the coordination algorithm (6). Then,
taking ηt = 1

p̃ t , for any p̃ ∈ (0, p ], the following regret bound
holds for any j ∈ {1, . . . , N} and u ∈ Rd :

2Rj(u, {ft}Tt=1) ≤ NH2
(
4
√
NCU + 1

)

p̃
(1 + log T )

+ 4NHCU‖v1‖2 +Np̃ ‖ 1
N

N∑

i=1

xi1 − u‖22, (55)

where CU is given by (27).
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Proof: First we note that CX < C(pCX2H ) because rβ
in (44) is a lower bound for the function C(·) in (52) and
CX < rβ as a consequence of Lemma V.6. Thus, the fact
that each f it is p-strongly convex on B̄(0, C(pCX2H )) implies
that it is also p-strongly convex on B̄(0, CX ). Let x∗it denote
the unique minimizer of f it . Then, argmin(f it ) ⊆ B̄(0, CX /2)
implies that B̄(x∗it , CX /2) ⊆ B̄(0, CX ). The application of
Lemma V.9 with γ = p, ζ = CX /2 and y = x∗it implies
then that each f it is β′-central on Rd \ B̄(0, CX ) for any
β′ ≤ pCX /2

H . Hence, the hypotheses of Proposition V.8 are
satisfied with β = pCX

2H and therefore the estimates satisfy the
bound ‖xt‖2 ≤ ‖vt‖2 ≤ C(pCX2H ) for t ≥ 1, independent
of T , which means they are confined to the region where
the modulus of strong convexity of each f it is p. Now, the
modulus of strong convexity of f̃t is the same as for the
functions {f it}Ni=1. That is, for each ξ̃y = (ξy1 , . . . , ξyN ) ∈
∂f̃t(y) and ξ̃x = (ξx1 , . . . , ξxN ) ∈ ∂f̃t(x), for all y,x ∈
B̄(0, C(pCX2H )) ⊂ (Rd)N , one has

(ξ̃y − ξ̃x)>(y − x) =

N∑

i=1

(ξyi − ξxi)>(yi − xi)

≥ p

N∑

i=1

‖yi − xi‖22 = p ‖y − x‖22.

Thus, for all y, x ∈ B̄(0, C(pCX2H )), we can take pt(y,x) = p
in (36) and hence Corollary V.5 implies the result by noting

1
ηt
− 1

ηt−1
− pt(u,xt) = p̃t− p̃(t− 1)− p = p̃− p ≤ 0,

so the first sum in (36) can be bounded by 0. Finally,∑T
t=1 ηt = 1

p̃

∑T
t=1

1
t <

1
p̃ (1 + log T ).

Our second main result establishes the square-root agent regret
for the general dynamics (6). Its proof follows from Corol-
lary V.5, this time by using a bounding technique called the
Doubling Trick [13, Sec. 2.3.1] in the learning rates selection.
Theorem VI.2. (Square-root agent regret): For T ∈ Z≥1,
let {f1

t , . . . , f
N
t }Tt=1 be convex functions on Rd with H-

bounded subgradient sets and nonempty sets of minimizers.
Let ∪Tt=1 ∪Ni=1 argmin(f it ) ⊆ B̄(0, CX ) for some CX ∈ R>0

independent of T , and assume {f1
t , . . . , f

N
t }Tt=1 are also β-

central on Rd \B̄(0, CX ) for some β ∈ (0, 1]. Let E ∈ RK×K
be a diagonalizable matrix with real positive eigenvalues and
{Gt}t≥1 a sequence of B-jointly connected, δ-nondegenerate,
weight-balanced digraphs. Let σ be chosen according to (25)
and denote by {xt = (x1

t , . . . , x
N
t )}Tt=1 the sequence gener-

ated by the coordination algorithm (6). Consider the following
choice of learning rates called Doubling Trick scheme: for
m = 0, 1, 2, . . . , dlog2 T e, we take ηt = 1√

2m
in each period

of 2m rounds t = 2m, . . . , 2m+1 − 1. Then, the following
regret bound holds for any j ∈ {1, . . . , N} and u ∈ Rd:

2Rj(u, {ft}Tt=1) ≤
√

2√
2− 1

α
√
T , (56)

where

α :=N3/2H2CUC(β)
( 4√

NH
+

4

C(β)
+

1√
NCUC(β)

)

+N
(
rβ +H + ‖u‖2

)2
,

where CU is given in (27) and C(·) is defined in (52).

Proof: We divide the proof in two steps. In step (i), we
use the general agent regret bound of Corollary V.5 making
a choice of constant learning rates over a fixed known time
horizon T ′. In step (ii), we use multiple times this bound
together with the Doubling Trick [13, Sec. 2.3.1] to produce
an implementation procedure in which no knowledge of the
time horizon is required. Regarding (i), the choice ηt = η′ for
all t ∈ {1, . . . , T ′} in (36) yields

2Rj(u, {ft}T
′

t=1) ≤ 4NHCU‖v1‖2

+NH2
(
4
√
NCU + 1

)
T ′η′ +

N

η′
‖ 1
N

N∑

i=1

xi1 − u‖22, (57)

where the first sum in (36) is upper-bounded by 0 because
1
η′ − 1

η′ − pt(u,xt) ≤ 0. Taking now η′ = 1/
√
T ′ in (57),

factoring out
√
T ′ and using 1 ≤

√
T ′, we obtain

2Rj(u, {ft}T
′

t=1) ≤
(

4NHCU‖v1‖2

+NH2
(
4
√
NCU + 1

)
+N‖ 1

N

N∑

i=1

xi1 − u‖22
)√

T ′. (58)

This bound is of the type 2Rj(u, {ft}T
′

t=1) ≤ α′
√
T ′, where

α′ depends on the initial conditions. This leads to step (ii).
According to the Doubling Trick [13, Sec. 2.3.1], for m =
0, 1, . . . dlog2 T e, the dynamics is executed in each period
of T ′ = 2m rounds t = 2m, . . . , 2m+1 − 1, where at the
beginning of each period the initial conditions are the final
values in the previous period. The regret bound for each
period is α′

√
T ′ = αm

√
2m, where αm is the multiplicative

constant in (58) that depends on the initial conditions in the
corresponding period. To eliminate the dependence on the
latter, by Proposition V.8, we have that ‖vt‖2 ≤ C(β), for
C(·) in (52) with maxs≥1 ηs = 1. Also, using (43), we have

‖ 1
N

N∑

i=1

xit − u‖2 ≤ ‖x̄t‖2 + ‖u‖2 ≤ rβ +H + ‖u‖2.

Since C(β) only depends on the initial conditions at the
beginning of the implementation procedure, the regret on each
period is now bounded as αm

√
2m ≤ α

√
2m, for α in the

statement. Consequently, the total regret can be bounded by

dlog2 Te∑

m=0

α
√

2m = α 1−
√

2
dlog2 Te+1

1−
√

2
≤ α 1−

√
2T

1−
√

2
≤

√
2√

2−1
α
√
T ,

which yields the desired bound.
Remark VI.3. (Asymptotic dependence of logarithmic
agent regret bound on network properties): Here we
analyze the asymptotic dependence of the logarithmic regret
bound in Theorem VI.1 on the number of agents. It is not
difficult to see that, when N →∞, then

CU
CI

=
1

1− (1− δ̃
4N2 )1/B

∼ 4N2B

δ̃
.
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Hence, for any B that guarantees B-joint connectivity, the
asymptotic behavior as N →∞ of the bound (55) scales as

N3+1/2B

δ̃
o(T ), (59)

where limT→∞
o(T )
T = 0. In contrast to (59), the asymptotic

dependence on the number of agents in [20], [21], which
assume strong connectivity every time step and a doubly
stochastic adjacency matrix A, is

N1+1/2

1− σ2(A)
o(T ), (60)

where σ2(A) is the second smallest singular value of A. (Here
we are taking into account the fact that [21] divides the regret
by the number of agents.) The bounds (59) and (60) are
comparable in the case of sparse connected graphs that fail to
be good expanders (i.e., for sparse graphs with low algebraic
connectivity given by the second smallest eigenvalue of the
Laplacian). This is the most reasonable comparison given
our joint-connectivity assumption. For simplicity, we examine
the case of undirected graphs because then 1 − σ2(A) =
1 − λ2(A) = λ2(L), where L = diag(A1N ) − A = I − A
is the Laplacian corresponding to A. The sparsity of the
graph implies that δ, dmax ≈ 1, so that one can compute
the maximum feasible δ̃ from (23) to be δ̃∗ := (1 +
λmax(E)dmax
λmin(E)δ )−1 ≈ (1 + λmax(E)/ λmin(E))−1. The algebraic

connectivity λ2(L) can vary even for sparse graphs. Paths and
cycles are two examples of graphs that fail to be expander
graphs and their algebraic connectivity [28] is 2(1−cos(π/N))
and 2(1 − cos(2π/N)), respectively (for edge-weights equal
to 1), and thus proportional to 1 − cos(1/N) ∼ 1

N2 when
N →∞. With these values of δ̃∗ and λ2(L) (up to a constant
independent of N ), (59) and (60) become

N3+1/2B o(T ) and N3+1/2o(T ),

respectively. Expression (59) highlights the trade-offs between
the degree of parallelization and the regret behavior for a given
time horizon. Such trade-offs must be considered in the light
of factors like the serial processor speed and the rate of data-
collection as well as the cost and bandwidth limitations of
transmitting spatially distributed data. •

VII. SIMULATION: APPLICATION TO MEDICAL DIAGNOSIS

In this section we illustrate the performance of the co-
ordination algorithm (6) in a binary classification problem
from medical diagnosis. We specifically consider the online
gradient descent with proportional and with proportional-
integral disagreement feedback. Inspired by [29], we consider
a clinical decision problem involving the use of Computerized
Tomography (CT) for patients with minor head injury. We
consider a network of hospitals that works cooperatively to
develop a set of rules to determine whether a patient requires
immediately a CT for possible neurological intervention, or if
an alternative follow-up protocol should be applied to further
inform the decision. The hospitals estimate local prediction
models using the data collected from their patients while

coordinating their efforts according to (6) to benefit from the
model parameters updated by other hospitals.
We start by describing the data collected by the hospitals.
Suppose that at round t, hospital i collects a vector wit ∈
Rc encoding a set of features corresponding to patient data.
In our case, c = 10 and the components of wit correspond
to factors or symptoms like “age”, “amnesia before impact”,
“open skull fracture”, “loss of consciousness”, “vomiting”, etc.
The ultimate goal of each hospital is to decide if any acute
brain finding would be revealed by the CT, and the true answer
is denoted by yit ∈ {−1, 1}, where −1 = “no” and 1 = “yes”
are the two possible classes. The true assessment is only found
once the CT or the follow-up protocol have been used.
To cast this scenario in the networked online optimization
framework described in Section III, it is enough to spec-
ify the cost function f it : Rd → R for each hospital
i ∈ {1, . . . , N} and each round t ∈ {1, . . . , T}. In this
scenario, the cost function measures the fitness of the model
parameters estimated by the hospital with respect to the data
collected from its patients, as we explain next. Each hospital i
seeks to estimate a vector of model parameters xit ∈ Rd,
d = c + 1, that weigh the correspondence between the
symptoms and the actual brain damage (up to an additional
affine term). More precisely, hospital i employs a model h to
assign the quantity h(xit, w

i
t), called decision or prediction,

to the data point wit using the estimated model parame-
ters xit. For instance, a linear predictor is based on the model
h(xit, w) = xit

>
(wit, 1), with the corresponding class predictor

being sign(h(xit, w
i
t)). The loss incurred by hospital i is then

f it (x
i
t) = l(xit, w

i
t, y

i
t), where the loss function l is decreasing

in the so-called margin yit h(xit, w
i
t). This is because correct

predictions (when the margin is positive) should be penalized
less than incorrect predictions (when the margin is negative).
Common loss functions are the logistic (smooth) function,
l(x,w, y) = log

(
1 + e−2y h(x,w)

)
or the hinge (nonsmooth)

function, l(x,w, y) = max{0, 1− y h(x,w)}.
In the scenario just described, each hospital i ∈ {1, . . . , N}
updates to xit+1 its estimated model parameters xit according
to the dynamics (6) as the data (wit, y

i
t) becomes available.

We simulate here two cases, the online gradient descent
with proportional disagreement feedback, corresponding to
K = 1 and E = [1], and the online gradient descent with
proportional-integral disagreement feedback, corresponding to

K = 2 and E =

[
a 1
−1 0

]
;

cf. Remark IV.1. Both the online and distributed aspects of our
approach are relevant for this kind of large-scale supervised
learning. On one hand, data streams can be analyzed rapidly
and with low storage to produce a real-time service using
first-order information of the corresponding cost functions (for
single data points or for mini-batches). On the other hand,
hospitals can benefit from the prediction models updated by
other hospitals. Under (6), each hospital i only shares the
provisional vector of model parameters xit with neighboring
hospitals and maintains its patient data (wit, y

i
t) private. In

addition, the joint connectivity assumption is a flexible con-
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dition on how frequently hospitals communicate with each
other. With regards to communication latency, note that the
potential delays in communication among hospitals are small
compared to the rate at which data is collected from patients.
Also, the fitness of provisional local models can always be
computed with respect to mini-batches of variable size when
one hospital collects a different amount of data than others in
the given time scales of coordination.
In our simulation, a network of 5 hospitals uses the time-
varying communication topology shown in Figure 2. This
results in the executions displayed in Figure 3, where pro-
visional local models are shown to asymptotically agree and
achieve sublinear regret with respect to the best model ob-
tained in hindsight with all the data centrally available. For
completeness, the plots also compare their performance against
a centralized online gradient descent algorithm [11], [16].

Gt′ Gt′+1 Gt′+2

Fig. 2: The communication topology corresponds to the peri-
odic repetition of the displayed sequence of weight-balanced
digraphs (where all nonzero edge weights are 1). The resulting
sequence is 3-jointly connected, 1-nondegenerate, and the
maximum out-degree is 1, i.e., B = 3, δ = 1, and dmax = 1.

VIII. CONCLUSIONS

We have studied a networked online convex optimization
scenario where each agent has access to partial information
that is increasingly revealed over time in the form of a local
cost function. The goal of the agents is to generate a sequence
of decisions that achieves sublinear regret with respect to the
best single decision in hindsight had all the information been
centrally available. We have proposed a class of distributed
coordination algorithms that allow agents to fuse their local
decision parameters and incorporate the information of the
local objectives as it becomes available. Our algorithm design
uses first-order local information about the cost functions
revealed in the previous round, in the form of subgradients,
and only requires local communication of decision parame-
ters among neighboring agents over a sequence of weight-
balanced, jointly connected digraphs. We have shown that our
distributed strategies achieve the same logarithmic and square-
root agent regret bounds that centralized implementations
enjoy. We have also characterized the dependence of the
agent regret bounds on the network parameters. Our technical
approach has built on an innovative combination of network
and agent regret bounds, the cumulative disagreement of the
collective estimates, and the boundedness of the sequence
of collective estimates uniformly in the time horizon. Future
work will include the refinement of the regret bounds when
partial knowledge about the evolution of the cost functions is
available, the study of the impact of practical implementation
considerations such as disturbances, noise, communication

delays, and asynchronism in the algorithm performance, and
the application to large-scale learning scenarios involving the
distributed interaction of many users and devices.
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Fig. 3: Performance of the online gradient descent algorithms with proportional and proportional-integral disagreement feedback
(with a = 4 in the latter). The dynamics involves N = 5 agents communicating over the periodic sequence of digraphs
displayed in Figure 2. Each local objective f it : Rd → R, with d = 11, is given by f it (x) = l(x,wit, y

i
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l(x,w, y) = log
(
1+e−2yx>(w,1)

)
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z1 = 15⊗111. Plot (a), top, shows the evolution of the 7th coordinate of each agent’s estimate, which is the gain associated to
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