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Abstract

This paper proposes a novel distributed event-triggered algorithmic solution to the multi-agent average consensus problem
for networks whose communication topology is described by weight-balanced, strongly connected digraphs. The proposed
event-triggered communication and control strategy does not rely on individual agents having continuous or periodic access
to information about the state of their neighbors. In addition, it does not require the agents to have a priori knowledge of
any global parameter to execute the algorithm. We show that, under the proposed law, events cannot be triggered an infinite
number of times in any finite period (i.e., no Zeno behavior), and that the resulting network executions provably converge
to the average of the initial agents’ states exponentially fast. We also provide weaker conditions on connectivity under which
convergence is guaranteed when the communication topology is switching. Finally, we also propose and analyze a periodic
implementation of our algorithm where the relevant triggering functions do not need to be evaluated continuously. Simulations
illustrate our results and provide comparisons with other existing algorithms.
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1 Introduction

This paper studies the multi-agent average consensus
problem, where a group of agents seek to agree on the av-
erage of their initial states. Due to its numerous applica-
tions in networked systems, many algorithmic solutions
exist to this problem; however, a majority of them rely on
agents having continuous or periodic availability of infor-
mation from other agents. Unfortunately, this assump-
tion leads to inefficient implementations in terms of en-
ergy consumption, communication bandwidth, conges-
tion, and processor usage. Motivated by these observa-
tions, our main goal here is the design of a provably cor-
rect distributed event-triggered strategy that prescribes
when communication and control updates should occur
so that the resulting asynchronous network executions
still achieve average consensus.

Literature review: Triggered control seeks to under-
stand the trade-offs between computation, communica-
tion, sensing, and actuator effort in achieving a desired
task with a guaranteed level of performance. Early

? A preliminary version was presented as [Nowzari and
Cortés, 2014] at the 2014 American Control Conference.

Email addresses: cnowzari@seas.upenn.edu (Cameron
Nowzari), cortes@ucsd.edu (Jorge Cortés).

works [Åström and Bernhardsson., 2002] consider tun-
ing controller executions to the state evolution of a given
system, but the ideas have since then been extended to
consider other tasks, see [Heemels et al., 2012] and ref-
erences therein for a recent overview. Among the many
references in the context of multi-agent systems, [Mazo
Jr. and Tabuada, 2011] specifies the responsibility of
each agent in updating the control signals, [Wang and
Lemmon, 2011] considers network scenarios with dis-
turbances, communication delays, and packet drops,
and [Stöker et al., 2013] studies decentralized event-
based control that incorporates estimators of the inter-
connection signals among agents. Several works have
explored the application of event-triggered ideas to the
acquisition of information by the agents. To this end, Xie
et al. [2009], Heemels and Donkers [2013], Meng and
Chen [2013] combine event-triggered controller updates
with sampled data that allows for the periodic evalua-
tion of the triggers. Zhong and Cassandras [2010] drop
the need for periodic access to information by consid-
ering event-based broadcasts, where agents decide with
local information only when to obtain further informa-
tion about neighbors. Self-triggered control [Anta and
Tabuada, 2010, Wang and Lemmon, 2009] relaxes the
need for local information by deciding when a future
sample of the state should be taken based on the avail-
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able information from the last sampled state. Team-
triggered coordination [Nowzari and Cortés, 2016] com-
bines the strengths of event- and self-triggered control
into a unified approach for networked systems.

The literature on multi-agent average consensus is vast,
see e.g., [Olfati-Saber et al., 2007, Ren and Beard, 2008,
Mesbahi and Egerstedt, 2010] and references therein.
Olfati-Saber and Murray [2004] introduce a continuous-
time algorithm that achieves asymptotic convergence
to average consensus for both undirected and weight-
balanced directed graphs. Dimarogonas et al. [2012]
build on this algorithm to propose a Lyapunov-based
event-triggered strategy that dictates when agents
should update their control signals but its implemen-
tation relies on each agent having perfect information
about their neighbors at all times. The work [Seybotha
et al., 2013] uses event-triggered broadcasting with time-
dependent triggering functions to provide an algorithm
where each agent only requires exact information about
itself, rather than its neighbors. However, its implemen-
tation requires knowledge of the algebraic connectivity
of the network. In addition, the strictly time-dependent
nature of the thresholds makes the network executions
decoupled from the actual state of the agents. Closer
to our treatment here, Garcia et al. [2013] propose an
event-triggered broadcasting law with state-dependent
triggering functions where agents do not rely on the
availability of continuous information about their neigh-
bors (under the assumption that all agents have initial
access to a common parameter). This algorithm works
for networks with undirected communication topolo-
gies, tolerates quantized communication, and guaran-
tees that all inter-event times are strictly positive, but
does not discard the possibility of an infinite number of
events happening in a finite time period. The work [Fan
et al., 2015] proposes a self-triggered algorithm for this
problem that is guaranteed to avoid Zeno executions.
We consider here a more general class of communica-
tion topologies described by weight-balanced, directed
graphs. The works [Gharesifard and Cortés, 2012, Rikos
et al., 2014] present provably correct distributed strate-
gies that, given a directed communication topology,
allow a network of agents to find such weight edge
assignments.

Statement of contributions: Our main contribution is the
design and analysis of novel event-triggered broadcast-
ing and controller update strategies to solve the multi-
agent average consensus problem over weight-balanced
digraphs. With respect to the conference version of this
work [Nowzari and Cortés, 2014], the present manuscript
introduces new trigger designs, extends the treatment
from undirected graphs to weight-balanced digraphs,
and provides a comprehensive technical treatment. Our
proposed law does not require individual agents to have
continuous access to information about the state of their
neighbors and is fully distributed in the sense that it
does not require any a priori knowledge by agents of
global network parameters to execute the algorithm. Our

Lyapunov-based design builds on the evolution of the
network disagreement to synthesize triggers that agents
can evaluate using locally available information to make
decisions about when to broadcast their current state to
neighbors. In our design, we carefully take into account
the discontinuities in the information available to the
agents caused by broadcasts received from neighbors and
their effect on the feasibility of the resulting implementa-
tion. Our analysis shows that the resulting asynchronous
network executions are free from Zeno behavior, i.e., only
a finite number of events are triggered in any finite time
period, and exponentially converge to agreement on the
average of all agents’ initial states over weight-balanced,
strongly connected digraphs. We also provide a lower
bound on the exponential convergence rate and charac-
terize the asymptotic convergence of the network under
switching topologies that remain weight-balanced and
are jointly strongly connected. Lastly, we propose a pe-
riodic implementation of our event-triggered design that
has agents check the triggers periodically and charac-
terize the sampling period that guarantees correctness.
Various simulations illustrate our results.

2 Preliminaries

This section introduces some notational conventions and
notions on graph theory. Let R, R>0, R≥0, and Z>0 de-
note the set of real, positive real, nonnegative real, and
positive integer numbers, respectively. We denote by 1N
and 0N ∈ RN the column vectors with entries all equal
to one and zero, respectively. We let ‖ · ‖ denote the Eu-
clidean norm on RN . We let diag(RN ) = {x ∈ RN | x1 =
· · · = xN} ⊂ RN be the agreement subspace in RN . For
a finite set S, we let |S| denote its cardinality. Given
x, y ∈ R, Young’s inequality [Hardy et al., 1952] states
that, for any ε ∈ R>0,

xy ≤ x2

2ε
+
εy2

2
. (1)

A weighted directed graph (or weighted digraph)
G = (V,E,W ) is comprised of a set of vertices
V = {1, . . . , N}, directed edges E ⊂ V × V and

weighted adjacency matrix W ∈ RN×N≥0 . Given an edge

(i, j) ∈ E, we refer to j as an out-neighbor of i and i as
an in-neighbor of j. The sets of out- and in-neighbors
of a given node i are N out

i and N in
i , respectively. The

weighted adjacency matrix W ∈ RN×N satisfies wij > 0
if (i, j) ∈ E and wij = 0 otherwise. A path from vertex
i to j is an ordered sequence of vertices such that each
intermediate pair of vertices is an edge. A digraph G is
strongly connected if there exists a path from all i ∈ V
to all j ∈ V . The out- and in-degree matrices Dout and
Din are diagonal matrices where

douti =
∑

j∈N out
i

wij , dini =
∑
j∈N in

i

wji,
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respectively. A digraph is weight-balanced ifDout = Din.
The (weighted) Laplacian matrix is L = Dout − W .
Based on the structure of L, at least one of its eigenval-
ues is zero and the rest of them have nonnegative real
parts. If the digraph G is strongly connected, 0 is sim-
ple with associated eigenvector 1N . The digraph G is
weight-balanced if and only if 1TNL = 0N if and only if
Ls = 1

2 (L+ LT ) is positive semidefinite. For a strongly
connected and weight-balanced digraph, zero is a simple
eigenvalue of Ls. In this case, we order its eigenvalues as
λ1 = 0 < λ2 ≤ · · · ≤ λN , and note the inequality

xTLx ≥ λ2(Ls)‖x−
1

N
(1TNx)1N‖2, (2)

for all x ∈ RN . The following property will also be of
use later,

λ2(Ls)x
TLx ≤ xTL2

sx ≤ λN (Ls)x
TLx. (3)

This can be seen by noting that Ls is diagonalizable and
rewriting Ls = S−1DS, where D is a diagonal matrix
containing the eigenvalues of Ls.

3 Problem statement

We consider the multi-agent average consensus prob-
lem for a network of N agents. We let G denote the
weight-balanced, strongly connected digraph describing
the communication topology of the network. Without
loss of generality, we use the convention that an agent i is
able to receive information from neighbors in N out

i and
send information to neighbors in N in

i . All inter-agent
communications are assumed instantaneous and of infi-
nite precision. We denote by xi ∈ R the state of agent
i ∈ {1, . . . , N}. We consider single-integrator dynamics

ẋi(t) = ui(t), (4)

for all i ∈ {1, . . . , N}. It is well known [Olfati-Saber and
Murray, 2004] that the distributed continuous control
law

ui(t) = −
∑

j∈N out
i

wij(xi(t)− xj(t)), (5)

drives each agent of the system to asymptotically con-
verge to the average of the agents’ initial conditions. In
compact form, this can be expressed by

ẋ(t) = −Lx(t),

where x(t) = (x1(t), . . . , xN (t)) is the column vector of
all agent states and L is the Laplacian of G. However, in
order to be implemented, this control law requires each
agent to continuously access state information about its
neighbors and continuously update its control law. Here,

we are interested in controller implementations that re-
lax both of these requirements by having agents decide in
an opportunistic fashion when to perform these actions.

Under this framework, neighbors of a given agent only
receive state information from it when this agent de-
cides to broadcast its state to them. Equipped with this
information, the neighbors update their respective con-
trol laws. We denote by x̂i(t) the last broadcast state of
agent i ∈ {1, . . . , N} at any given time t ∈ R≥0. We as-
sume that each agent has continuous access to its own
state. We then utilize an event-triggered implementation
of the controller (5) given by

ui(t) = −
∑

j∈N out
i

wij(x̂i(t)− x̂j(t)). (6)

Letting u(t) = (u1(t), . . . , uN (t)) ∈ RN and x̂ =
(x̂1, . . . , x̂N ) ∈ RN , we write (6) as

u(t) = −Lx̂.

Note that although agent i has access to its own state
xi(t), the controller (6) uses the last broadcast state
x̂i(t). This is to ensure that the average of the agents’
initial states is preserved throughout the evolution of the
system. More specifically, using this controller, one has

d

dt
(1TNx(t)) = 1TN ẋ(t) = −1TNLx̂(t) = 0, (7)

where we have used the fact that G is weight-balanced.

Our aim is to identify triggers that prescribe in an op-
portunistic fashion when agents should broadcast their
state to their neighbors so that the network converges
to the average of the initial agents’ states. Given that
the average is conserved by (6), all the triggers should
enforce is that the agents’ states ultimately agree.

4 Distributed trigger design

In this section we synthesize a distributed triggering
strategy that prescribes when agents should broadcast
state information and update their control signals. Our
design builds on the analysis of the evolution of the net-
work disagreement characterized by the following can-
didate Lyapunov function,

V (x) =
1

2
(x− x̄)T (x− x̄), (8)

where x̄ = 1
N (1TNx)1N corresponds to agreement at the

average of the states of all agents. The next result char-
acterizes a local condition for all agents in the network
such that this candidate Lyapunov function is monoton-
ically nonincreasing.

Proposition 4.1 (Evolution of network disagree-
ment) For i ∈ {1, . . . , N}, let ai ∈ R>0 and denote by
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ei(t) = x̂i(t)−xi(t) the error between agent i’s last broad-
cast state and its current state at time t ∈ R≥0. Then,

V̇ (t) ≤ −1

2

N∑
i=1

∑
j∈N out

i

wij

[
(1− ai)(x̂i − x̂j)2 −

e2i
ai

]
.

PROOF. Note that, since the average is preserved,
cf. (7), under the control law (6), x̄ = 1

N (1TNx(0))1N .
The function t 7→ V (x(t)) is continuous and piecewise
continuously differentiable, with points of discontinuity
of V̇ corresponding to instants of time where an agent
broadcasts its state. Whenever defined, this derivative
takes the form

V̇ = xT ẋ− x̄T ẋ = −xTLx̂− x̄TLx̂ = −xTLx̂,

where we have used that the graph is weight-balanced
in the last equality. Let e = (e1, . . . , eN ) ∈ RN be the

vector of errors of all agents. We can then rewrite V̇ as

V̇ = −x̂TLx̂+ eTLx̂.

Expanding this out yields

V̇ = −
N∑
i=1

∑
j∈N out

i

[
1

2
wij(x̂i − x̂j)2 − eiwij(x̂i − x̂j)

]
.

Using Young’s inequality (1) for each product ei(x̂i−x̂j)
with ε = ai > 0 yields,

V̇ ≤ −
N∑
i=1

∑
j∈N out

i

wij

[
1

2
(x̂i − x̂j)2 −

e2i
2ai
− ai(x̂i − x̂j)2

2

]

= −1

2

N∑
i=1

∑
j∈N out

i

wij

[
(1− ai)(x̂i − x̂j)2 −

e2i
ai

]
,

which concludes the proof. 2

From Proposition 4.1, a sufficient condition to ensure
that the proposed candidate Lyapunov function V is
monotonically decreasing is to maintain

∑
j∈N out

i

wij

[
(1− ai)(x̂i − x̂j)2 −

e2i
ai

]
≥ 0,

for all i ∈ {1, . . . , N} at all times. This is accomplished
by ensuring

e2i ≤
ai(1− ai)
douti

∑
j∈N out

i

wij(x̂i − x̂j)2,

for all i ∈ {1, . . . , N}. The maximum of the function
ai(1 − ai) in the domain (0,∞) is attained at ai = 1

2 ,
so we have each agent select this value to optimize the
trigger design. As a consequence of the above discussion,
we have the following result.

Corollary 4.2 For each i ∈ {1, . . . , N}, let σi ∈ (0, 1)
and define

fi(ei) = e2i − σi
1

4douti

∑
j∈N out

i

wij(x̂i − x̂j)2. (9)

If each agent i enforces the condition fi(ei(t)) ≤ 0 at all
times, then

V̇ (t) ≤ −
N∑
i=1

1− σi
4

∑
j∈N out

i

wij(x̂i − x̂j)2.

(Note that the latter quantity is strictly negative for all
x̂ /∈ diag(RN ) because the graph is strongly connected).

For each i ∈ {1, . . . , N}, we refer to the function fi de-
fined in Corollary 4.2 as the triggering function and to
the condition fi(ei) = 0 as the trigger. Note that the de-
sign parameter σi affects how flexible the trigger is: as
the value of σi is selected closer to 1, the trigger is en-
abled less frequently at the cost of agent i contributing
less to the decrease of the Lyapunov function.

An important observation is that, since the triggering
function fi depends on the last broadcast states x̂, a
broadcast from a neighbor of i might cause a disconti-
nuity in the evaluation of f(ei), where just before the
update was received, fi(ei) < 0, and immediately after,
fi(ei) > 0. Such event would make agent i miss the trig-
ger. Thus, rather than prescribing agent i ∈ {1, . . . , N}
to broadcast its state when fi(ei) = 0, we instead define
an event by either

fi(ei) > 0 or (10)

fi(ei) = 0 and φi 6= 0 (11)

where for convenience, we use the shorthand notation

φi =
∑

j∈N out
i

wij(x̂i − x̂j)2 ∈ R≥0.

We note the useful equality
∑N
i=1 φi = 2 x̂TLx̂. The rea-

soning behind these triggers is the following. The in-
equality (10) makes sure that the discontinuities of φi
do not make the agent miss an event. The trigger (11)
makes sure that the agent is not required to continuously
broadcast its state to neighbors when its last broadcast
state is in agreement with the states received from them.

The triggers (10) and (11) are a generalization of the ones
proposed in [Garcia et al., 2013]. However, it is unknown

4



whether they are sufficient to exclude the possibility of
Zeno behavior in the resulting executions. To address
this issue, we prescribe the following additional trigger.
Let tilast be the last time at which agent i broadcast its
information to its neighbors N in

i . If at some time t ≥
tilast, agent i receives new information from a neighbor
j ∈ N out

i , then i immediately broadcasts its state if

t ∈ (tilast, t
i
last + εi). (12)

Here, εi ∈ R>0 is a design parameter selected so that

εi <

√
σi

4douti wmax
i |N out

i |
, (13)

where wmax
i = maxj∈N out

i
wij . Our analysis in Section 5

will expand on the role of this bound and the additional
trigger in preventing the occurrence of Zeno behavior.

In conclusion, the triggers (10)-(12) form the basis of the
event-triggered communication and control
law, which is formally presented in Table 1.

At all times t agent i ∈ {1, . . . , N} performs:

1: if fi(ei(t)) > 0 or (fi(ei(t)) = 0 and φi(t) 6= 0)
then

2: broadcast state information xi(t) and update
control signal

3: end if
4: if new information xj(t) is received from some

neighbor(s) j ∈ N out
i then

5: if agent i has broadcast its state at any time
t′ ∈ (t− εi, t) then

6: broadcast state information xi(t)
7: end if
8: update control signal
9: end if

Table 1
event-triggered communication and control law.

Each time an event is triggered by an agent, say i ∈
{1, . . . , N}, that agent broadcasts its current state to
its out-neighbors and updates its control signal, while
its in-neighbors j ∈ N in

i update their control signal.
This is in contrast to other event-triggered designs, see
e.g., [Zhongxin and Zengqiang, 2010, Dimarogonas et al.,
2012], where events only correspond to updates of con-
trol signals because exact information is available to the
agents at all times. As a final observation, we note that if
we drop our assumption on infinite precision of the trans-
mitted messages, step 1 would reduce to fi(ei(t)) > 0.
Digital platforms operate with quantized signals, mak-
ing it easy to determine when a function has crossed
some threshold at the cost of introducing errors associ-
ated with finite precision.

5 Analysis of the event-triggered communica-
tion and control law

Here we analyze the properties of the control law (6) in
conjunction with the event-triggered communica-

tion and control law of Section 4. Our first result
shows that the network executions are guaranteed not
to exhibit Zeno behavior. Its proof illustrates the role
played by the additional trigger (12) in facilitating the
analysis to establish this property.

Proposition 5.1 (No Zeno behavior) Given the
system (4) with control law (6) executing the event-
triggered communication and control law over
a weight-balanced, strongly connected digraph, the agents
will not be required to communicate an infinite number
of times in any finite time period.

PROOF. We are interested in showing here that no
agent will broadcast its state an infinite number of times
in any finite time period. Our first step consists of show-
ing that, if an agent does not receive new information
from neighbors, its inter-event times are lower bounded
by a positive constant. Assume agent i ∈ {1, . . . , N} has
just broadcast its state at time t0, and thus ei(t0) = 0.
For t ≥ t0, while no new information is received, x̂i(t)
and x̂j(t) remain constant. Given that ėi = −ẋi, the
evolution of the error is simply

ei(t) = −(t− t0)ẑi, (14)

where, for convenience, we use the shorthand notation
ẑi =

∑
j∈N out

i
wij(x̂j − x̂i). Since we are considering

the case when no neighbors of i broadcast information,
the trigger (12) is irrelevant. We are then interested in
finding the time t∗ when fi(ei) = 0 occurs, triggering a
broadcast of agent i’s state. If ẑi = 0, no broadcasts will
ever happen (t∗ = ∞) because ei(t) = 0 for all t ≥ t0.
Hence, consider the case when ẑi 6= 0, which in turn
implies φi 6= 0. Using (14), the trigger (11) prescribes a
broadcast at the time t∗ ≥ t0 satisfying

(t∗ − t0)2ẑ2i − σi
1

4douti

∑
j∈N out

i

wij(x̂i − x̂j)2 = 0,

or, equivalently,

(t∗ − t0)2 =
σi
∑
j∈N out

i
wij(x̂i − x̂j)2

4douti

(∑
j∈N out

i
wij(x̂i − x̂j)

)2 .
Using the fact that (

∑p
k=1 yk)2 ≤ p

∑p
k=1 y

2
k for any

y1, . . . , yp ∈ R and p ∈ Z>0 (which readily follows from
the Cauchy-Schwarz inequality), we obtain

( ∑
j∈N out

i

wij(x̂i − x̂j)
)2
≤ |N out

i |
∑

j∈N out
i

w2
ij(x̂i − x̂j)2

≤ |N out
i |wmax

i

∑
j∈N out

i

wij(x̂i − x̂j)2. (15)
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Therefore, we can lower bound the inter-event time by

τi = t∗ − t0 ≥
√

σi
4douti wmax

i |N out
i |

> 0,

(incidentally, this explains our choice in (13)). Our sec-
ond step builds on this fact to show that messages can-
not be sent an infinite number of times between agents
in a finite time period. Let t0 be the time at which
agent i has broadcast its information to neighbors and
thus ei(t0) = 0. If no information is received by time
t0 + εi < t0 + τi, there is no problem since εi > 0, so
we now consider the case that at least one neighbor of i
broadcasts its information at some time t1 ∈ (t0, t0+εi).
In this case, at least one neighbor j ∈ N out

i has broad-
cast new information, thus agent i would also rebroad-
cast its information at time t1 due to trigger (12). Let
I denote the set of all agents who have broadcast in-
formation at time t1. This means that, as long as no
agent k /∈ I sends new information to any agent in I,
the agents in I will not broadcast new information for
at least minj∈I τj seconds, which includes the original
agent i. As before, if no new information is received by
any agent in I by time t1 + minj∈I εj there is no prob-
lem, so we now consider the case that at least one agent
k sends new information to some agent j ∈ I at time
t2 ∈ (t1, t1 + minj∈I εj). By trigger (12), this would re-
quire all agents in I to also broadcast their state infor-
mation at time t2 and agent k will now be added to I.
Reasoning repeatedly in this way, the only way for infi-
nite communications to occur in a finite time period is
for an infinite number of agents to be added to I, which
is not possible given the finite number of agents. 2

Remark 5.2 (Conditions for Zeno) The introduc-
tion of the trigger (12) is sufficient to rule out Zeno
behavior but we do not know whether it is also neces-
sary. The design in [Garcia et al., 2013, Corollary 2]
has triggers of a nature similar to (10)-(11) for undi-
rected graphs and guarantees that no agent undergoes
an infinite number of updates at any given instant, but
does not discard the possibility of an infinite number of
updates in a finite time period, as Proposition 5.1 does.•

Next, we establish global exponential convergence.

Theorem 5.3 (Exponential convergence to av-
erage consensus) Given the system (4) with control
law (6) executing the event-triggered communica-
tion and control law over a weight-balanced strongly
connected digraph, all agents exponentially converge to
the average of the initial states, i.e., limt→∞ x(t) = x̄.

PROOF. By design, we know that the event-triggers (10)-
(11) ensure that, cf. Corollary 4.2,

V̇ ≤
N∑
i=1

σi − 1

4
φi. (16)

We show that convergence is exponential by establishing
that the evolution of V towards 0 is exponential. Define
σmax = maxi∈{1,...,N} σi to further bounding (16) by

V̇ ≤ σmax − 1

4

N∑
i=1

φi =
σmax − 1

2
x̂TLx̂.

Given this inequality, our next step is to relate the value
of V (x) with x̂TLx̂. Note that

V (x) ≤ 1

2λ2(Ls)
xTLx =

1

2λ2(Ls)
(x̂− e)TL(x̂− e)

=
1

2λ2(Ls)

(
x̂TLx̂− 2x̂TLse+ eTLe

)
,

where we have used (2) in the inequality. Now,

eTLe ≤ λN (Ls)‖e‖2 ≤ λN (Ls)
σmax

2doutmin

x̂TLx̂,

where doutmin = mini∈{1,...,N} d
out
i and we have used

fi(ei) ≤ 0 in the second inequality. On the other hand,

|x̂TLse| ≤ ‖Lsx̂‖ ‖e‖ ≤
√
λN (Ls)x̂TLx̂

√
σmax

2doutmin

x̂TLx̂

=

√
λN (Ls)

σmax

2doutmin

x̂TLx̂,

where we have used (3) in the second inequality. Putting
these bounds together, we obtain

V (x) ≤ A x̂TLx̂,

with A = 1
2λ2(Ls)

(
1 +

√
λN (Ls)

σmax

2dout
min

)2
. Using this ex-

pression in the bound for the Lie derivative, we get

V̇ ≤ σmax − 1

2
x̂TLx̂ ≤ σmax − 1

2A
V (x(t)).

This, together with the fact that t 7→ V (x(t)) is
continuous and piecewise differentiable implies, us-
ing the Comparison Lemma, cf. [Khalil, 2002], that
V (x(t)) ≤ V (x(0)) exp(σmax−1

2A t) and hence the expo-
nential convergence of the network trajectories to the
average state. 2

The Lyapunov function used in the proof of Theorem 5.3
does not depend on the specific network topology. There-
fore, when the communication digraph is time-varying,
this function can be used as a common Lyapunov func-
tion to establish asymptotic convergence to average con-
sensus. This observation is key to establish the next re-
sult, whose proof we omit for reasons of space.
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Proposition 5.4 (Convergence under switching
topologies) Let ΞN be the set of weight-balanced di-
graphs over N vertices. Denote the communication
digraph at time t by G(t). Consider the system (4)
with control law (6) executing the event-triggered
communication and control law over a switching
digraph, where t 7→ G(t) ∈ ΞN is piecewise constant and
such that there exists an infinite sequence of contigu-
ous, nonempty, uniformly bounded time intervals over
which the union of communication graphs is strongly
connected. Then, assuming all agents are aware of who
its neighbors are at each time and agents broadcast their
state if their neighbors change, all agents asymptotically
converge to the average of the initial states.

6 Periodically checked event-triggered coordi-
nation

Here we propose an alternative strategy, termed peri-
odic event-triggered communication and con-
trol law, where agents only evaluate triggers (10)
and (11) periodically, instead of continuously. Specifi-
cally, given a sampling period h ∈ R>0, we let {t`}`∈Z≥0

,
where t`+1 = t` + h, denote the sequence of times at
which agents evaluate the decision of whether to broad-
cast their state to their neighbors. This type of design is
more in line with the constraints imposed by real-time
implementations, where individual components work at
some given frequency, rather than continuously. An in-
herent and convenient feature of this strategy is the lack
of Zeno behavior (since inter-event times are naturally
lower bounded by h), making the need for the addi-
tional trigger (12) superfluous. The strategy is formally
presented in Table 2.

At times t ∈ {0, h, 2h, . . . }, agent i ∈ {1, . . . , N}
performs:
1: if fi(ei(t)) > 0 or (fi(ei(t)) = 0 and φi(t) 6= 0)

then
2: broadcast state information xi(t) and update

control signal
3: end if
4: if new information xj(t) is received from some

neighbor(s) j ∈ N out
i then

5: update control signal
6: end if

Table 2
periodic event-triggered communication and con-
trol law.

Each time an agent i ∈ {1, . . . , N} broadcasts, this re-
sets the error to zero, ei = 0. However, because triggers
are not evaluated continuously, we no longer have the
guarantee fi(ei(t)) ≤ 0 at all times t but, instead, have

fi(ei(t`)) ≤ 0, (17)

for ` ∈ Z≥0. The next result provides a sufficient condi-
tion on h that guarantees the correctness of our design.

Theorem 6.1 (Exponential convergence under
periodic event-triggered communication and
control law) Let h ∈ R>0 be such that

σmax + 4hwmax|N out
max| < 1, (18)

where wmax = maxi∈{1,...,N} w
max
i and |N out

max| =
maxi∈{1,...,N} |N out

i |. Then, given the system (4)
with control law (6) executing the periodic event-
triggered communication and control law over
a weight-balanced strongly connected digraph, all agents
exponentially converge to the average of the initial states.

PROOF. Since (17) is only guaranteed at the sampling
times under the periodic event-triggered commu-
nication and control law, we analyze what hap-
pens to the Lyapunov function V in between them. For
t ∈ [t`, t`+1), note that

e(t) = e(t`) + (t− t`)Lx̂(t`).

Substituting this expression into V̇ (t) = −x̂T (t)Lx̂(t) +
eT (t)Lx̂(t), we obtain

V̇ (t) = −x̂T (t`)Lx̂(t`) + eT (t`)Lx̂(t`)

+ (t− t`)x̂T (t`)L
TLx̂(t`),

for all t ∈ [t`, t`+1). For a simpler exposition, we drop all
arguments referring to time t` in the sequel. Following
the same line of reasoning as in Proposition 4.1 yields

V̇ (t) ≤
N∑
i=1

σi − 1

4
φi + (t− t`)x̂TLTLx̂.

Using (15), we bound

x̂TLTLx̂ =

N∑
i=1

( ∑
j∈N out

i

wij(x̂i − x̂j)
)2

≤
N∑
i=1

|N out
i |wmax

i

∑
j∈N out

i

wij(x̂i − x̂j)2

= |N out
max|wmax

N∑
i=1

φi. (19)

Hence, for t ∈ [t`, t`+1),

V̇ (t) ≤
N∑
i=1

(σi − 1

4
+ hwmax|N out

max|
)
φi

≤
(
− 1

2
+
σmax

2
+ 2hwmax|N out

max|
)
x̂TLx̂.
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Under (18), a reasoning similar to the proof of Theo-
rem 5.3 using (19) leads to finding B > 0 such that

V̇ (t) ≤ 1

2B

(
σmax + 4hwmax|N out

max| − 1
)
V (x(t)),

which implies the result. 2

Note that checking the sufficient condition (18) re-
quires knowledge of the global quantities σmax, wmax,
andN out

max. Ensuring that this condition is met can either
be enforced a priori by the designer or, alternatively,
the network can execute a distributed initialization
procedure, e.g., [Lynch, 1997, Ren and Beard, 2008], to
compute these quantities in finite time. Once known,
agents can compute h by instantiating a specific formula
to select it that is guaranteed to satisfy (18).

7 Simulations

This section illustrates the performance of the proposed
algorithms in simulation. Figure 1 shows a comparison
of the event-triggered communication and con-
trol law with the algorithm proposed in [Garcia et al.,
2013] for undirected graphs over a network of 5 agents.
Both algorithms operate under the dynamics (4) with
control law (6), and differ in the way events are trig-
gered. The algorithm in [Garcia et al., 2013] requires all
network agents to have knowledge of an a priori cho-
sen common parameter a ∈ R>0, which we set here to
a = 0.2. Figure 1(a) shows the evolution of the Lyapunov
function V and Figure 1(b) shows the number of events
triggered over time by each strategy. Figure 2 shows an
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Fig. 1. Plots of (a) the evolution of the Lyapunov func-
tion V and (b) the total number NE of events of the
event-triggered communication and control law
with σi = 0.999 for all i (solid blue) and the algo-
rithm proposed in [Garcia et al., 2013] with a = 0.2
(dashed black). The network consists of 5 agents with com-
munication topology described by the undirected graph
({1, . . . , 5}, {(1, 2), (1, 3), (2, 4), (4, 5)}). The initial condition
is x(0) = [−1, 0, 2, 2, 1]T .

execution of event-triggered communication and
control law over a network of 5 agents whose com-
munication topology is described by a weight-balanced
digraph. We do not compare it against the algorithm
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Fig. 2. Plots of (a) the evolution of the Lyapunov function V
and (b) the total number NE of events of the event-trig-
gered communication and control law with σi = 0.999
for all i. The network consists of 5 agents with communi-
cation topology described by the weight-balanced digraph
({1, . . . , 5}, {(1, 2), (2, 3), (2, 4), (3, 4), (4, 5), (5, 1), (5, 2)})
with weights (1, 1, 0.5, 1, 1.5, 1, 0.5). The initial condition is
x(0) = [−1, 0, 2, 2, 1]T .

in Garcia et al. [2013] because the latter is only designed
to work for undirected graphs.

We have also compared the periodic event-triggered
communication and control law with a periodic
implementation of Laplacian consensus, cf. [Olfati-
Saber et al., 2007]. For the latter, trajectories are guar-
anteed to converge if the periodic is less than 1/dmax,
where dmax is the maximum out-degree of the graph G.
Figure 3 shows this comparison using h = 0.01 and also
demonstrates the effect of {σi}Ni=1 on the executions
of the periodic event-triggered communication
and control law. This is compared against the stan-
dard periodic implementations with periods 0.1 and
0.3. For simplicity, we have used σi = σ to be the same
for all agents in each execution. One can observe the
trade-off between communication and convergence rate
for varying σ: higher σ results in less communication
but slower convergence compared to smaller values of σ.
It should be noted that, although using a period of 0.3
in the standard consensus algorithm yields a similar
performance in terms of convergence speed and requires
a comparable amount of communication, there is no
systematic way of selecting the period a priori, which
in general depends on the initial condition. Instead,
for each execution, the periodic event-triggered
communication and control law naturally tunes
the communications to occur only when necessary for
convergence.

8 Conclusions

We have proposed novel event-triggered communication
and control strategies for the multi-agent average con-
sensus problem. Among the novelties of our first de-
sign, we highlight that it works over weight-balanced di-
rected communication topologies, does not require indi-
vidual agents to continuously access information about
the states of their neighbors, and does not necessitate
a priori agent knowledge of global network parameters
to execute the algorithm. We have shown that our al-
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Fig. 3. Plots of (a) the evolution of the Lyapunov func-
tion V and (b) the total number NE of events of the pe-
riodic event-triggered communication and control
law (with varying σ = 0.2, 0.5, 0.8 and h = 0.01, solid blue)
and a standard periodic Laplacian consensus algorithm (with
period 0.1 and 0.3, dashed red). Network and initial condi-
tion are as in Figure 2.

gorithms exclude the possibility of Zeno behavior and
identified conditions such that the network state ex-
ponentially converges to agreement on the initial aver-
age of the agents’ state. We have also provided a lower
bound on the convergence rate and characterized the
network convergence when the topology is switching un-
der a weaker form of connectivity. Finally, we have devel-
oped a periodic implementation of our event-triggered
law that relaxes the need for agents to evaluate the rel-
evant triggering functions continuously and provided a
sufficient condition on the sampling period that guar-
antee its asymptotic correctness. Future work will ex-
plore scenarios with more general dynamics and physical
sources of error such as communication delays or packet
drops, the extension of our design to distributed convex
optimization and other coordination tasks, and further
analysis of trigger designs that rule out the possibility
of Zeno behavior. We are also interested in developing
asynchronous implementations and in identifying locally
checkable sufficient conditions that collectively ensure
the same convergence guarantees on the overall network.
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