Robust estimation and aggregation of ocean internal wave pteesne
using Lagrangian drifters

Michael Ouimet Jorge Cars

Abstract— This paper considers a group of drogues whose oceanographers, see e.g. [4], [5], [6]. In particularpstg of
objective is to estimate the physical parameters that determine |ow/high densities in plankton can be well explained by $mal
the dynamics of ocean nonlinear internal waves. While un- amplitude, linear internal waves [4]. However, nonlinear

derwater, individual drogues do not have access to absolute ded t t for th dvecti ired
position information and only rely on inter-drogue measure- waves are needed 1o account for the advection require

ments. Building on this data and the structure of the drogue for larval transport [1]. Many models exist for nonlinear
dynamics under the flow induced by an internal wave, this waves [7], [8] to account for the wide variety of conditions
paper improves in three different ways upon our previous and bathymetries found in the ocean. Scientists widely use
strategy, termed PARAMETER DETERMINATION STRATEGY .,  groques drifting passively as monitoring platforms to eath
which determines all wave parameters. The first is by showing

that with sufficiently fast sampling, the extended algorithm relevant ocean .data (9], [10], [11]. The usg of_autonomous
determines the wave parameters. The second is by showing Underwater vehicles to detect and characterize intermagsva
its applicability to situations where two internal waves are is a relatively new approach. Whereas previous works use
present simultaneously. With the extended algorithm, multiple  gcean measurements such as conductivity, temperatuee, pre
estimates are calculated for each parameter. Thus, with the sure data [12], [13] or vertical flow velocity [14] to detect

presence of noisy measurements, the third contribution is a d | int | h foll 15
method to aggregate parameter estimates to reduce the error. and analyze internal waves, our approach follows [15],

Simulations illustrate the algorithm performance under noisy ~[16] in using inter-vehicles measurements. This work is the
measurements, the effect that the initial drogue locations has conference version of our previous work [16], but contains

on robustness, and the effectiveness of parameter aggregat.  several novel contributions of its own, including extergin
the applicability of the proposed algorithm to multiple in-
stants of times, dealing with the estimation of two nonlinea
Internal waves travel within a fluid, rather than on itsyaves simultaneously, and aggregating multiple parameter
surface. We consider ones that are a moving oscillation #stimates for increased accuracy. Since the parameteir dist
the boundary surface between two layers of a stratified fluigutions are implicitly defined and non-Gaussian, we adopt
A continuously stratified fluid (such as the ocean) can bg mixture distribution approach to express the distrilutio
modeled as a two-layer fluid, where the interface, calleds a sum of simpler distributions [17]. Finally, our work is
pycnocline, is the surface of constant density where thglso connected to the increasing literature that deals with
vertical rate of change in density is largest. This class ajooperative networks of agents estimating spatial natural
internal waves can be broadly categorized into linear anshenomena, including ocean [18], [19], [20], river [21]dan
nonlinear, and we focus here on the latter. These waves havrricane sampling [22].
large amplitudes (relative to the depth of the water colymn)
allowing them to be an agent of transport of small oceanic Statement of contributionsWe consider the problem of
life. The nonlinear waves considered here are solitonschvhi estimating the physical parameters of a nonlinear internal
are stable, solitary peaks (or troughs) that propagategalowave that is propagating horizontally. A group of underwate
the pycnocline. Given that pycnoclines are typically deepagrangian drifters are subjected to the flow induced by the
below the ocean surface, it is difficult to measure therinternal wave and can only measure inter-drogue distances
without placing sensors close by. We address this issue by distance derivatives. Because the drogues only have
using a group of drogues capable of drifting underwater neakccess to these relative measurements, they must rely on the
the internal wave’s interface. A drogue is a sensor-ladepresence of other drogues to achieve their task. The benefit
Lagrangian drifter able to actuate its depth by changing itsbtained here by ‘the power of many’ in the estimation of
buoyancy. While underwater, drogues are subject to the flowie ocean flow field is a key feature of the paper. Our starting
induced by the motion of the internal wave and do not havgoint is the RRAMETER DETERMINATION STRATEGY intro-
access to exact location information. Figure 1 presents duced in the journal version [16] of this work. This algorith
schematic of the problem setup. Our basic premise is thiafrun on the drogues using only relative measurements and
drogues should be able to extract information from theiis capable of determining all of the internal wave paranseter
inter-drogue measurements to characterize the interna.waHere, we extend its domain of applicability and improve
Literature review: Internal waves are associated withthe correctness result by showing that the algorithm can
high concentrations of various types of planktonic organdetermine the wave parameters with noiseless inter-drogue
isms and small fishes [2], [3], as well as an agent ofeasurements sampled sufficiently fast, as opposed to in
larval transport [1]. This makes their study important tacontinuous time. We also show that the method can be

I. INTRODUCTION
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(a) Schematic of drogues and internal wave (b) Thermal fluctuations induced by an internal wave

Fig. 1. For an ocean nonlinear internal wave, (a) shows isiapstructure at a fixed instant of time whereas (b) showteitsporal structure at a fixed
horizontal location. In (a), one can see a vertical crosticre of the ocean perpendicular to the wave propagatioection. A group of drogues float at
constant depths (but not necessarily along a straight &nd)do not have access to exact location information. Ourcbbgeis to provide drogues with
mechanisms that rely only on the relative distances betwesm tb determine the parameters that uniquely define the imtene. In (b), one can see
temperature and vertical/onshore-offshore current veadata taken from a train of nonlinear soliton internal waabsut one kilometer off the coast of
La Jolla, CA on July 3, 1996. The bottom figure is a zoom-in oftie figure. Figure (b) i0 (1999) by the Association for the Sciences of Limnology
and Oceanography, Inc., see [1] for additional information.

extended to the case where there are two internal wavesA classical equation used to model weakly nonlinear long
present. Because with our extension multiple estimates argernal waves is the Korteweg-de Vries (KdV) equation,
now available for each parameter, we also describe a method 3
L . an 3 hy—hy On 1 0°n
of aggregating individual parameters to improve the aayura — ——c——n—+ ch whim—
of the estimation. Simulations illustrate the benefit ofgmar v Oz
eter aggregation in reducing the final estimation error. wheren is the distance that the internal wave is displacing the

pycnocline,c = ,/g"” p”‘ wuli p,, hy andp;, hy are the

density and depth of the upper and lower layers, respegtivel
This section presents some notation and the model 8ndg is the acceleration due to gravity. The stable soliton

nonlinear internal waves used. LBt R, andR~, denote Solution to (1) is [7]

the set of all, positive, and non-negative real numbers, n(z,t) = Asech® (k(z — xo) — wt).

respectively and leZs; be the set of all positive integers. , )
Given independent random variables and z» with mean 1he wave's amplitude, wavenumber, and frequency are

E[z1] = E[z2] = p and varianced/ar[z;] = o7, Var[zz] = 2Ch hl 1 [ 6C
o2, consider the optimal aggregating functiOptAgg by A= T ha \/ ch hz =35\ I C,
9 9 % + % 1 andC = ¢ is the wave celerity ang is the initial location
OptAgg(w1, 07,22, 03) = (12 + L0 L1 > of the center of the wave. As the wave propagates, it induces
o7 g% motion in the nearby water. The model assumes that the
The first component oOptAgg is the new random variable vertical velocity varies linearly with depth. Coupled witie

and the second one its variance. This is the convex comlgenservation of mass law for an incompressible fluid yields
nation ofz; andx, with the smallest variance. the horizontal:,, and vertical,, velocities of the upper layer,

2CA

=0, 1)

Il. PRELIMINARIES

A. Modeling of nonlinear internal waves Uy (T, ) = — sechz(k(m —Xo) — wt),

This section describes a model of nonlinear internal waves QWAZ )
following [8], [7]. As Figure 1 shows, an internal wave is Vu(%,2,1) = — = sech™(k(z — xo) — wt):
a wave that travels beneath the surface of the ocean, along “

; o . ~tanh(k(z — xo) — wt),

a pycnocline, which is a surface of constant water density.
Before introducing the wave model, we first specify theand the horizontal; and verticaly; velocities of the lower
reference framé& = (p, {e,,e,,e.}) as follows: the origin layer
pg 1S an arbitrary point at the ocean surface; the veetor L
corresponds to the direction of wave propagation, which we, (z,t) = ——u,, (x,t), v(x,z,t)=
assume parallel to the ocean bottom, ands perpendicular ha
to the ocean bottom, pointing from bottom to surface. Th&or convenience, we define the upper and lower velocity
coordinates induced by, are denoted by{z, y, z}. amplitudes asB, = —274 and B, = 2¢4. Motivated by

hy(hy+hi—2z)
o Uy (mt).



practical considerations, we assume there exists a clogkd a IV. PARAMETER DETERMINATION STRATEGY

bounded interval with the lower bound strictly positive for In this section, we extend the strategy proposed in [16]
each wave parameter that the parameter is guaranteedtépmed the RRAMETER DETERMINATION STRATEGY, t0

fall W't,h'n' We refer to a given parameters bounds W'thestimate the nonlinear wave parameters. The following in-
subscripts min and max. formal rationale describes the basic idea behind its design

[Rationale]: The strategy for determining the phys-
ical parameters that define the internal wave are
based on first determining the phase of the wave
relative to the drogues at some time. Our method
leverages the fact that, when the crest of the wave
is directly between two drogues, their inter-drogue
distance derivative momentarily becomes zero and
A. Drogue model the drogues can then determine the phase. Using

A drogue is a submersible buoy that can drift in the ocean,  this insight, one can create equations between
unattached to the ocean floor or a boat, and is able to change inter-drogue measurements and the parameters of
its depth in the water by controlling its buoyancy. While ~ interest. The crux of the analysis is to ensure
underwater, a drogue can measure the relative distance, the that only the true set of parameters solve the
distance derivative, and orientation to other droguesuitino constructed set of equations.
sensing (e.g., via acoustic or optical sensors and an odboar Our discussion below extends the range of applicability
compass). A drogue can also measure its depth. Howeverpitthe algorithm by considering times when the inter-drogue
does not have access to absolute position because GPS isdistance derivative is sufficiently close to zero, ratheanth
available underwater. Consider a groupMdfdrogues, where exactly zero. The basic algorithm methodology remains the
each has a local reference frame aligned with the wavesme, yet the framework and the results must be extended
reference frame. This assumption is merely for ease &ecause, among other things, the specific set of constructed
exposition (our previous work [15] shows how each drogue equations used to determine the parameters differ. The algo
can determine the anglg between its local reference framerithm requires the capability for measuring both intergire
and the wave’s reference frame using relative distance adistance and its derivative. It is written in terms of drogue
distance derivative measurements). We make the simpiifyirusing measured inter-drogue data between itself and rieares
assumption that the drogues’ dynamics are Lagrangian, i.eeighbors with identitieg, j2, 73, j4, J5, and js. Before
the drogue’s velocity is equal to ocean’s velocity at itsntroducing it, we comment briefly on some assumptions on
current location. Furthermore, we assume that the drogudsogue locations that make the presentation easier.
maintain the same prescribed depth by means of buoyancyRemark 4.1: (Assumptions on drogue locatioRe} con-
control. Thus, the dynamics of drogdec {1,...,N} in creteness in the algorithm’s presentation, we make the as-
the upper layer igp; = (&, 9, %) = (uu(z,1),0,0) and  sumption that drogues ji, jo, js js are in the same ocean
can be similarly defined for drogues in the lower layeriayer. The algorithm also requires at least one drogue in
Drogue i senses inter-drogue measurements with Me the lower layer and one in the upper layer, we assume are
closest neighbors. For each neighppdroguei has access to droguesjs and jg, respectively. .

IIl. PROBLEM STATEMENT

This section presents the model for the drogue drifters
and their interaction with the nonlinear internal wave, and
the formal statement of the problem of interest.

d; ;= (di;, df

cad! L 0)=x—x;, dij=(d};,0,0)=%—%;. A. Determination of the wavenumber

J 1,777

) Because drogues do not have absolute measurements, we
We assume the drogues have continuous access to th@gfie their dynamics in terms of the distance between them.
quantities. In Section IV, we elaborate on the fact that &, completely describe the drogues evolution, we also need
large enough, finite sampling rate will also produce noele 1o add the state;, which is the position of the wave relative

parameter estimates. Since the internal wave causes @0droguei, v; = k(z — xo) — wt, Thus, the dynamics are
motion in they-direction (due to choice of coordinates), we

ease notation by letting; ; = d?, andd; ; = d? . d; j,, = B(sech®(kd; j,, + v;)—sech®(v;)), Vm #i (2a)
v; = Bk sech?(v;) — w. (2b)
B. Problem description The relative phase; is unobservable, however, at times when

A team of N drogues is deployed in the ocean and theiinter-drogue distance derivatives momentarily vanishe on
motion is governed by an internal wave. The drogues ma§2n gain insight, as we show next. At all other times, there
control their depth through buoyancy changes, and ea@¥iSts an implicit function that describes the relative stha
one can measure the relative distance and orientation toLemma 4.2: (Relative wave position when distance
the closestM drogues in their own coordinate frame. Ourderivative vanishesror three drogues, j; and j; at initial
objective is to design an algorithm that allows the drogueositionsz;(0) # x, (0) # x;,(0), if 2;(0), ;(0) > xo,
to collectively determine the physical parameté‘r,slp“p%p”, then there exists time., > 0 whend;;(t.:) = 0 and
h., andhy; that define the internal wave. vi(ter) = —k‘i%(t) Furthermore, for allt > 0, there



exists an implicit function forv;(k, d; j,, di j,, di j, , di j,) Algorithm 1: PARAMETER DETERMINATION STRATEGY
determined by the equation

1 Sett such thatd, j, () sufficiently close td)
2 k uniquely solves

d; j, sechQ(kdm1 +v;) — sechz(vi) B

L —0. (@3 : o
dij,  sech®(kd; j, +v;) — sech®(v;) @) F(Rodi g5 i ja i g ol Vi (Rodi gy i o iy, i) =0
From (2), the dynamics of an inter-drogue distance bed S€tvi(t) = vi(K; dij, (1), dij, (1), di j, (1), di s, (1))
tween drogues and j in the wave propagation direction 4 SetB; = di,j5 (1)

sech?(kd; 5, (£)+v: (1)) —sech (v; (1))
di_jg (t)+Bi sech® (vi(t))

sech? (kd;, jg (1) +vi(t))
Sett, not equal tot

contain the unknown parametefs and k, as well as un-
measurable state. However, using Lemma 4.2 to write the °
ratio of two equations in (2a) farj;3 andi,j, specifically at
the t.. whend; ;, (t.:) = 0, one gets

. i di

d; j, sech®(k(d; j, — “4%)) — sech®(k“4L)
j N 2 dif 2 d;,

dij,  sech®(k(d;;, — =%%)) — sech™(k=5%) ; el

. 10 Setc = g5z and HoFs = e

and, more generally, for all times, 2k%huby pL ghuhi

SetB, =

6

7 Setv;(t2) = vi(K, dij, (t2), di j, (t2), di j, (t2), di ;
s Setw — k(di,jy (t2)—dijy (£))—vi(t2)+vi(t) andC =
9

(t2))

N

d

=€

to—t
Seth, = Lﬁf" and h; = hocean—

=
B

:0’

di,js sechQ(kde — ’Ui) — sech2 (1)7) 0

P 2 2 =Y

dij,  sech”(kd;j, —vi) —sech(v;) Remark 4.5 (Robustness against noisdgre we com-
which is now only a function of the unknown parametement on the algorithm performance when errors are present,
k (becausev; = v;(k,d; ;,,d; ;,.d;i . dij,), as implicity specifically noise in the sensor measurements. We assume
defined in Lemma 4.2). We now wish to show that only théhat this noise is unbiased, Gaussian, and that noise at

actual value ofk satisfies this equation. With this in mind, different time instances and for different measuremengs ar

we define the functiorf as uncorrelated. The fact that all the functions that appear in
. . . . the equations employed in Algorithm 1 have a continuous
£(K, di gy dijas dijss di gy, Vi(Ky di gy dija s digy, dig,)) = dependence on the variables makes th&®AMETER DE-
di,j3 sech? (kd; j, — v;) — sech?(v;) TERMINATION STRATEGY naturally robust against errors, in

dii, - sech?(kd; ;, — v;) — sech®(v;) (4)  the sense that the estimated parameters are still unique and

) ) remain close to the true parameters for small enough errors.

and examine the number of roots in the next result. Figure 2 illustrates the algorithm robustness for thretegif
Lemma 4.3: (Uniqueness of spatial wavenumb@iyen ent initial drogue configurations. Note that our method has a

noiseless measurements df ;(t) and d; ;(t), for j € linear relationship on a log-log plot between relative estia

{j1,J2, js, ja}, wheret is sufficiently close to.,, the time measurements and relative errors in the wavenumber. Three

when d; j, (t:) = 0. If d;j, () is sufficiently small, then drogues are located 4 1, and 2 meters and the fourth

k = k is the only root to (4). drogue’s position varies; in three trials it is located 18t

100, and 200 meters. As the largest inter-drogue distance

grows, the algorithm robustness improves. °
Once k has been determined, we wish to leverage it to

calculate other parameters. This is what theRREMETER .
DETERMINATION STRATEGY accomplishes using the dynam- 10
ics that defines the internal wave. The strategy is formall
presented in Algorithm 1. We also refer back to Remark 4.1
which explains the assumptions on drogue locations that a
needed to make the algorithm more concrete.

The next result establishes the algorithm correctness. |
proof follows from Lemma 4.3, the form of the inter-drogue
distance derivative equation, and algebraic relationadet
parameters in the nonlinear soliton model in Section II-A.

Proposition 4.4: (Correctness dPARAMETER DETERMI-

B. Correctness analysis

total inter-drogue spacing: 10m

““““ total inter-drogue spacing: 100m

— — —total inter—drogue spacing: 200m /

Relative error in wavenumber

NATION STRATEGY) At times ¢ sufficiently close tot., P ‘ ‘ ‘
when d; ;, = 0 and if d; ;, (t) is sufficiently small, then 10° 10° 10" 10°
given noiseless knowledge ‘dfij (t) and dij (t) for all standard deviation of relative error in inter-drogue measurements

m 11592, 735 745 755 76 } the RRRAMETER DETERMINA- . . . . .
€ {J1,J2:J3,Ja, J5, Jo } di lgorith b d Fig. 2. Relative error in estimates of the wavenumber as aifumof the
TION STRATEGY, presented in Algorithm 1, can be used tGejative errors in the inter-drogue distance and its déviganeasurements

determine all of the internal wave physical parameters. for several different initial drogue locations. The plobals the effect of

: : _findinnchanging the largest inter-drogue distance on the perfarenaf PARAM -
Note that Stefz can be solved using a variety of root ﬂndlngETER DETERMINATION STRATEGY. The true value of the wavenumber is

methods. Sincé is a monotonic function irk, a gradient j = .0065-L and the first three drogues were located,at, 2 meters. The
descent method would be sufficient, for example. fourth drogue was at0, 100, and200 meters. Each point is the average of
3000 runs. Robustness improves as the largest inter-droguendesgrows.
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C. Extension to two nonlinear waves dj; (1), d'i{jm(t), df; (t2), and d.f;jm(tg) for all m €
In this section, we discuss how our previous algorithn{leJQv-73’Jf1’35736}_- the RARAMETER DETERMINATION
design and analysis can be extended to situations whet&RATEGY in Algorithm 1, can be used to determine all of

two nonlinear internal waves are simultaneously preseril€ internal wave physical parameters of both internal wave

The basic idea relies on choosing a coordinate system such V. AGGREGATION OF ESTIMATES

that, in one of the directions, the drogues only feel the h b
effect of one of the two waves. One can apply the extended | "€ PARAMETER DETERMINATION STRATEGY can be
PARAMETER DETERMINATION STRATEGY in the direction €Xecuted at various instants of times, as described in the
where only one wave is felt to solve for the parameters of th&€Vious section. Each execution gives rise to an estimate
wave. Once that wave has been characterized, its effect c@nthe parameters. Therefore, a natural question is whether
be removed from the drogue’s measurements, allowing oneffogues could aggregate their individual estimates, as wel

again apply the ARAMETER DETERMINATION STRATEGY as potentially use multiple sets of data from many different
to determine the other wave's parameters waves, to improve estimates of the parameters. Since the

Consider the situation where drogues are floating in th%arameters are solutions to (implicit) nonlinear equatjon

. . . .even with the assumption of Gaussian measurements, the
presence of two nonlinear internal waves, each with it§ P

own set of wave parameters and propagation directions. V@sultmg distributions of the parameters are, in genexa;

: R . (Gaussian and only implicitly defined. Therefore, we employ
assume that these propagation directions are known a.prioft’y o ture Distribution aoproach to represent each param-
Choosing a horizontat — y coordinate system with the- P P P

direction aligned with wave’s direction makes the angle eter's distribution as a truncated Taylor series expansion

between thex-direction and wavel equal to zero, i.e., For concreteness and simplicity, we define the procedure for

f, = 0. Summing each wave’s individual effect yields theaggrggatmg estlmates_ of gn_e parameter, the wa\{enumber
Using (4) and the implicit function theorem, it can be

following planar dynamics for drogug

9 shown that in a neighborhood around true measurements,
Bi=Y _2Cndn sech? (ky (2 cos(6,) +yi sin(6,) —yo,) OISy measurements produce a unique estimate. Since this
ot ha function is only implicitly defined, one can resort to calcu-

—wnt) cos(6,), lating succgssive terms of_ i'Fs Tayl_or s_eries expansiorhib t
20 A way, we estimate the implicit distribution of the wavenumbe
yi:—% sech? (ko (x5 cos(fa) +yisin(62) — xo9 as a function of the measurement error.
b ot sin(@y).  FEUNG D = (dijydiga s, iy iy i diiso i),

we substitute the implicit functio&(D) into (4) and differ-

Note that in they direction, the drogue only feels the effectentiate with respect td, which yields 252) — a5

D
.. . . . oD 9f(k,D) *
of the second wave. Writing the dynamics for thdirection Theref ¢ f noi . hiak h
in terms of inter-drogue distances between drogard; as erefore, for a set of noisy measurementswe have the

. . . . Y ak(D) ~ A
well as the relative phase gives following distributionkp (D) = k+ =55 (D—D)+O((D—

D)?). Repeated differentiation of (4) can produce higher-
" 20545 . S . ) S
dv. = sin(fs)- order terms in this Taylor series expansion. For simplieity
o u consider only the first-order term. Then, our approximation

(sech? (ko (df ; cos(6a)+dy ; sin(fa)+v7) —wat) —sech?(v})),  of this distribution iskp(D) = k + 2LV(H — p) =
k+ép(D). By assumption) — D is a zero-mean, Gaussian
random variable with a diagonal covariance matrix, making
our approximation of the parameter’s distribution a sum of
Gaussian distributions. Given parameter estiméig¥ | ¢ €
Z>,} and measurementsD, | ¢ € Z>,}, we define the

wherev? = ko (z; cos(fs) + y; sin(fa) — xo9) — wat. Now,
the ARAMETER DETERMINATION STRATEGY can be used
to determine the parameters of internal waveising 4.4.
With the internal wave2's parameters known, we define

dy; = df; —dY; cot(d) following aggregation scheme:
2 A a,| a, a) a,
= — C;; ! (sechQ(k1dfij +o}) — sechQ(vil)), (K85, Var[ky25]) = OptAgg (kﬁg,\/ar[kegg],
as the part of the distance derivative in thalirection that ki — E[éDe+1([)Z-H)]vVar[éDz+1(DZ+1)])v (5)

is due to the internal wave Here,v} = ki (z; — xo0;) —wit.
Again, one can now apply theARAMETER DETERMI- . . .
NATION STRATEGY Using 4.4. to show the following result. Y2 (€p(D1)]. The following result is now a consequence

Thus, one can write write the repeated application of 4.ﬁf [15, Pr'o.p. 5.6]. o
formally in the following result. Proposition 5.1 (Wavenumber aggregatiorgiven a se-

quence of noisy measurement®, | ¢ € Z>;}, assume
there existey > 0 and ey, > 0 such that the following
bounds hold uniformly for al¥ € Z>,

where k%8 = k$** — Elep(Dy)] and Var[kj®]

Proposition 4.6 (Determination of both wavesjt times
t andt, sufficiently close ta., whend? . (t..) = 0 andt o

1,71
whend? . (ters) = 0, respectively, iflld; j, (£)], [|di.j, (t2)] R .
are suffijcl:iently small, then given noiseless knowledge ot Elkp, (De) — ép,(De)] — k| < ep Varlkp,(Dy)] < ey



Then, with the estimate§k$** | ¢ € Z>,} generated by the the extension to scenarios with three or more internal waves

PARAMETER DETERMINATION STRATEGY using {D,}, the
iterates{k,** | ¢ € Z>,} of the aggregation scheme defined
in (5) satisfy the following:

lim Pr{|k;®® — k| <ep+e=1 Ve>O0.
l— 00

Figure 3 depicts the aggregation method discussed above.
It plots the relative error in estimates of the Wavenumber,m
both for individual estimates and the aggregated estimate.
Note that the aggregated estimate converges to a relative er [2]
significantly smaller than the individual estimates.

Relative error in estimating wavenumber v.s. number of estimates aggregat [3]
0.6 T T T T
= Error in individual estimati %
04l Error in aggregated estimate
5 O
£ [4]
>
g
3 [5]
=
kS
S
5 6]
g
k| [71
[}
o - X X
-0.6r x|
(8]
_08 Il Il L L
0 20 40 60 80 100 9]
Number of estimates aggregated
Fig. 3. This figure plots the relative error in estimates ofwaenumber, [10]

both for individual estimates and the aggregated estimatée Nat the
aggregated estimate converges to a relative error sigrificamaller than

the individual estimates. The true value for the wavenumbes Wa4 =

and the drogues were located0atl, 2, and10 meters from the origin. The [11]
relative error in inter-drogue measurementsos.

VI. CONCLUSIONS [12]

We have considered the problem of estimating the physical
parameters of a horizontally-propagating nonlinear mdér [13]
wave. Because of the lack of absolute position information,
a group of underwater drogues subject to the flow induced By
the internal wave only have access to relative measurements
(inter-drogue distances and distance derivatives) wiheet
to each other. We have extended theRRMETER DETER-
MINATION STRATEGY proposed in our previous work [16],
which is capable of determining the wave parameters giv 516]
noiseless measurements in continuous time, in three ways.
First, the extended method is applicable to instants of time7]
when the inter-drogue distance derivative is sufficienkbse 18]
to zero, making it implementable with sufficiently fast sam-
pling. Second, we augmented the algorithm in a way that
made it extendable to the case where there are two differ-
ent nonlinear internal waves present simultaneously.dThir
we developed a method to aggregate individual parameter
estimates obtained with this extended method. Simulatiof?d]
illustrate the robustness to noisy measurements, theteffec
of initial drogue locations on parameter sensitivity, ahd t [21]
benefit of aggregating estimates in reducing the estimated
parameter error. Ideas for future work include the develop,;
ment of analytic results regarding the algorithm robustpes
the explicit characterization of the minimum sampling rate

15]

and the consideration of second-order drogue dynamics.
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