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Abstract— This paper considers a group of drogues whose
objective is to estimate the physical parameters that determine
the dynamics of ocean nonlinear internal waves. While un-
derwater, individual drogues do not have access to absolute
position information and only rely on inter-drogue measure-
ments. Building on this data and the structure of the drogue
dynamics under the flow induced by an internal wave, this
paper improves in three different ways upon our previous
strategy, termed PARAMETER DETERMINATION STRATEGY ,
which determines all wave parameters. The first is by showing
that with sufficiently fast sampling, the extended algorithm
determines the wave parameters. The second is by showing
its applicability to situations where two internal waves are
present simultaneously. With the extended algorithm, multiple
estimates are calculated for each parameter. Thus, with the
presence of noisy measurements, the third contribution is a
method to aggregate parameter estimates to reduce the error.
Simulations illustrate the algorithm performance under noisy
measurements, the effect that the initial drogue locations has
on robustness, and the effectiveness of parameter aggregation.

I. I NTRODUCTION

Internal waves travel within a fluid, rather than on its
surface. We consider ones that are a moving oscillation in
the boundary surface between two layers of a stratified fluid.
A continuously stratified fluid (such as the ocean) can be
modeled as a two-layer fluid, where the interface, called
pycnocline, is the surface of constant density where the
vertical rate of change in density is largest. This class of
internal waves can be broadly categorized into linear and
nonlinear, and we focus here on the latter. These waves have
large amplitudes (relative to the depth of the water column),
allowing them to be an agent of transport of small oceanic
life. The nonlinear waves considered here are solitons, which
are stable, solitary peaks (or troughs) that propagate along
the pycnocline. Given that pycnoclines are typically deep
below the ocean surface, it is difficult to measure them
without placing sensors close by. We address this issue by
using a group of drogues capable of drifting underwater near
the internal wave’s interface. A drogue is a sensor-laden,
Lagrangian drifter able to actuate its depth by changing its
buoyancy. While underwater, drogues are subject to the flow
induced by the motion of the internal wave and do not have
access to exact location information. Figure 1 presents a
schematic of the problem setup. Our basic premise is that
drogues should be able to extract information from their
inter-drogue measurements to characterize the internal wave.

Literature review: Internal waves are associated with
high concentrations of various types of planktonic organ-
isms and small fishes [2], [3], as well as an agent of
larval transport [1]. This makes their study important to

oceanographers, see e.g. [4], [5], [6]. In particular, striping of
low/high densities in plankton can be well explained by small
amplitude, linear internal waves [4]. However, nonlinear
waves are needed to account for the advection required
for larval transport [1]. Many models exist for nonlinear
waves [7], [8] to account for the wide variety of conditions
and bathymetries found in the ocean. Scientists widely use
drogues drifting passively as monitoring platforms to gather
relevant ocean data [9], [10], [11]. The use of autonomous
underwater vehicles to detect and characterize internal waves
is a relatively new approach. Whereas previous works use
ocean measurements such as conductivity, temperature, pres-
sure data [12], [13] or vertical flow velocity [14] to detect
and analyze internal waves, our approach follows [15],
[16] in using inter-vehicles measurements. This work is the
conference version of our previous work [16], but contains
several novel contributions of its own, including extending
the applicability of the proposed algorithm to multiple in-
stants of times, dealing with the estimation of two nonlinear
waves simultaneously, and aggregating multiple parameter
estimates for increased accuracy. Since the parameter distri-
butions are implicitly defined and non-Gaussian, we adopt
a mixture distribution approach to express the distribution
as a sum of simpler distributions [17]. Finally, our work is
also connected to the increasing literature that deals with
cooperative networks of agents estimating spatial natural
phenomena, including ocean [18], [19], [20], river [21], and
hurricane sampling [22].

Statement of contributions:We consider the problem of
estimating the physical parameters of a nonlinear internal
wave that is propagating horizontally. A group of underwater
Lagrangian drifters are subjected to the flow induced by the
internal wave and can only measure inter-drogue distances
and distance derivatives. Because the drogues only have
access to these relative measurements, they must rely on the
presence of other drogues to achieve their task. The benefit
obtained here by ‘the power of many’ in the estimation of
the ocean flow field is a key feature of the paper. Our starting
point is the PARAMETER DETERMINATION STRATEGY intro-
duced in the journal version [16] of this work. This algorithm
is run on the drogues using only relative measurements and
is capable of determining all of the internal wave parameters.
Here, we extend its domain of applicability and improve
the correctness result by showing that the algorithm can
determine the wave parameters with noiseless inter-drogue
measurements sampled sufficiently fast, as opposed to in
continuous time. We also show that the method can be
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(a) Schematic of drogues and internal wave (b) Thermal fluctuations induced by an internal wave

Fig. 1. For an ocean nonlinear internal wave, (a) shows its spatial structure at a fixed instant of time whereas (b) shows itstemporal structure at a fixed
horizontal location. In (a), one can see a vertical cross-section of the ocean perpendicular to the wave propagation direction. A group of drogues float at
constant depths (but not necessarily along a straight line)and do not have access to exact location information. Our objective is to provide drogues with
mechanisms that rely only on the relative distances between them to determine the parameters that uniquely define the internal wave. In (b), one can see
temperature and vertical/onshore-offshore current vectors data taken from a train of nonlinear soliton internal wavesabout one kilometer off the coast of
La Jolla, CA on July 3, 1996. The bottom figure is a zoom-in of thetop figure. Figure (b) isc© (1999) by the Association for the Sciences of Limnology
and Oceanography, Inc., see [1] for additional information.

extended to the case where there are two internal waves
present. Because with our extension multiple estimates are
now available for each parameter, we also describe a method
of aggregating individual parameters to improve the accuracy
of the estimation. Simulations illustrate the benefit of param-
eter aggregation in reducing the final estimation error.

II. PRELIMINARIES

This section presents some notation and the model of
nonlinear internal waves used. LetR, R>0, andR≥0 denote
the set of all, positive, and non-negative real numbers,
respectively and letZ≥1 be the set of all positive integers.
Given independent random variablesx1 and x2 with mean
E[x1] = E[x2] = µ and variancesVar[x1] = σ2

1 , Var[x2] =
σ2
2 , consider the optimal aggregating functionOptAgg by
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The first component ofOptAgg is the new random variable
and the second one its variance. This is the convex combi-
nation ofx1 andx2 with the smallest variance.

A. Modeling of nonlinear internal waves

This section describes a model of nonlinear internal waves
following [8], [7]. As Figure 1 shows, an internal wave is
a wave that travels beneath the surface of the ocean, along
a pycnocline, which is a surface of constant water density.
Before introducing the wave model, we first specify the
reference frameΣ = (p, {ex, ey, ez}) as follows: the origin
pg is an arbitrary point at the ocean surface; the vectorex
corresponds to the direction of wave propagation, which we
assume parallel to the ocean bottom, andez is perpendicular
to the ocean bottom, pointing from bottom to surface. The
coordinates induced byΣ are denoted by{x, y, z}.

A classical equation used to model weakly nonlinear long
internal waves is the Korteweg-de Vries (KdV) equation,
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whereη is the distance that the internal wave is displacing the

pycnocline,c =
√

g
|ρl−ρu|

ρl
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hu+hl
, ρu, hu andρl, hl are the

density and depth of the upper and lower layers, respectively,
and g is the acceleration due to gravity. The stable soliton
solution to (1) is [7]

η(x, t) = A sech2
(
k(x− χ0)− ωt

)
.

The wave’s amplitude, wavenumber, and frequency are
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andC = ω
k

is the wave celerity andχ0 is the initial location
of the center of the wave. As the wave propagates, it induces
motion in the nearby water. The model assumes that the
vertical velocity varies linearly with depth. Coupled withthe
conservation of mass law for an incompressible fluid yields
the horizontaluu and verticalvu velocities of the upper layer,

uu(x, t) = −
2CA

hu

sech2(k(x− χ0)− ωt),

vu(x, z, t) =
2ωAz

hu

sech2(k(x− χ0)− ωt)·

· tanh(k(x− χ0)− ωt),

and the horizontalul and verticalvl velocities of the lower
layer

ul(x, t)=−
hu

hl

uu(x,t), vl(x, z, t)=
hu(hu+hl−z)

zhl

vu(x,t).

For convenience, we define the upper and lower velocity
amplitudes asBu = − 2CA

hu
and Bl = 2CA

hl
. Motivated by



practical considerations, we assume there exists a closed and
bounded interval with the lower bound strictly positive for
each wave parameter that the parameter is guaranteed to
fall within. We refer to a given parameter’s bounds with
subscripts min and max.

III. PROBLEM STATEMENT

This section presents the model for the drogue drifters
and their interaction with the nonlinear internal wave, and
the formal statement of the problem of interest.

A. Drogue model

A drogue is a submersible buoy that can drift in the ocean,
unattached to the ocean floor or a boat, and is able to change
its depth in the water by controlling its buoyancy. While
underwater, a drogue can measure the relative distance, the
distance derivative, and orientation to other drogues through
sensing (e.g., via acoustic or optical sensors and an onboard
compass). A drogue can also measure its depth. However, it
does not have access to absolute position because GPS is un-
available underwater. Consider a group ofN drogues, where
each has a local reference frame aligned with the wave’s
reference frame. This assumption is merely for ease of
exposition (our previous work [15] shows how each droguei

can determine the angleθi between its local reference frame
and the wave’s reference frame using relative distance and
distance derivative measurements). We make the simplifying
assumption that the drogues’ dynamics are Lagrangian, i.e.,
the drogue’s velocity is equal to ocean’s velocity at its
current location. Furthermore, we assume that the drogues
maintain the same prescribed depth by means of buoyancy
control. Thus, the dynamics of droguei ∈ {1, . . . , N} in
the upper layer isṗi = (ẋi, ẏi, żi) = (uu(x, t), 0, 0) and
can be similarly defined for drogues in the lower layer.
Drogue i senses inter-drogue measurements with theM

closest neighbors. For each neighborj, droguei has access to

di,j=(dxi,j , d
y
i,j , 0)=xj−xj , ḋi,j=(ḋxi,j , 0, 0)= ẋj−ẋj .

We assume the drogues have continuous access to these
quantities. In Section IV, we elaborate on the fact that a
large enough, finite sampling rate will also produce noiseless
parameter estimates. Since the internal wave causes no
motion in they-direction (due to choice of coordinates), we
ease notation by lettingdi,j = dxi,j and ḋi,j = ḋxi,j .

B. Problem description

A team ofN drogues is deployed in the ocean and their
motion is governed by an internal wave. The drogues may
control their depth through buoyancy changes, and each
one can measure the relative distance and orientation to
the closestM drogues in their own coordinate frame. Our
objective is to design an algorithm that allows the drogues
to collectively determine the physical parametersC, |ρu−ρl|

ρl
,

hu, andhl that define the internal wave.

IV. PARAMETER DETERMINATION STRATEGY

In this section, we extend the strategy proposed in [16],
termed the PARAMETER DETERMINATION STRATEGY, to
estimate the nonlinear wave parameters. The following in-
formal rationale describes the basic idea behind its design.

[Rationale]: The strategy for determining the phys-
ical parameters that define the internal wave are
based on first determining the phase of the wave
relative to the drogues at some time. Our method
leverages the fact that, when the crest of the wave
is directly between two drogues, their inter-drogue
distance derivative momentarily becomes zero and
the drogues can then determine the phase. Using
this insight, one can create equations between
inter-drogue measurements and the parameters of
interest. The crux of the analysis is to ensure
that only the true set of parameters solve the
constructed set of equations.

Our discussion below extends the range of applicability
of the algorithm by considering times when the inter-drogue
distance derivative is sufficiently close to zero, rather than
exactly zero. The basic algorithm methodology remains the
same, yet the framework and the results must be extended
because, among other things, the specific set of constructed
equations used to determine the parameters differ. The algo-
rithm requires the capability for measuring both inter-drogue
distance and its derivative. It is written in terms of droguei

using measured inter-drogue data between itself and nearest
neighbors with identitiesj1, j2, j3, j4, j5, and j6. Before
introducing it, we comment briefly on some assumptions on
drogue locations that make the presentation easier.

Remark 4.1: (Assumptions on drogue locations)For con-
creteness in the algorithm’s presentation, we make the as-
sumption that droguesi, j1, j2, j3 j4 are in the same ocean
layer. The algorithm also requires at least one drogue in
the lower layer and one in the upper layer, we assume are
droguesj5 and j6, respectively. •

A. Determination of the wavenumber

Because drogues do not have absolute measurements, we
write their dynamics in terms of the distance between them.
To completely describe the drogues evolution, we also need
to add the statevi, which is the position of the wave relative
to droguei, vi = k(x− χ0)− ωt, Thus, the dynamics are

ḋi,jm = B(sech2(kdi,jm + vi)−sech2(vi)), ∀m 6= i (2a)

v̇i = Bk sech2(vi)− ω. (2b)

The relative phasevi is unobservable, however, at times when
inter-drogue distance derivatives momentarily vanish, one
can gain insight, as we show next. At all other times, there
exists an implicit function that describes the relative phase.

Lemma 4.2: (Relative wave position when distance
derivative vanishes)For three droguesi, j1 andj2 at initial
positionsxi(0) 6= xj1(0) 6= xj2(0), if xi(0), xj(0) > χ0,
then there exists timetcr > 0 when ḋi,j(tcr) = 0 and
vi(tcr) = −

kdi,j1
(tcr)

2 . Furthermore, for allt > 0, there



exists an implicit function forvi(k, di,j1 , di,j2 , ḋi,j1 , ḋi,j2)
determined by the equation

ḋi,j1

ḋi,j2
−

sech2(kdi,j1 + vi)− sech2(vi)

sech2(kdi,j2 + vi)− sech2(vi)
= 0. (3)

From (2), the dynamics of an inter-drogue distance be-
tween droguesi and j in the wave propagation direction
contain the unknown parametersB and k, as well as un-
measurable statevi. However, using Lemma 4.2 to write the
ratio of two equations in (2a) fori,j3 andi,j4 specifically at
the tcr when ḋi,j1(tcr) = 0, one gets

ḋi,j3

ḋi,j4
−

sech2(k(di,j3 −
di,j1

2 ))− sech2(k
di,j1

2 )

sech2(k(di,j4 −
di,j1

2 ))− sech2(k
di,j1

2 )
= 0,

and, more generally, for all times,

ḋi,j3

ḋi,j4
−

sech2(kdi,j3 − vi)− sech2(vi)

sech2(kdi,j4 − vi)− sech2(vi)
= 0,

which is now only a function of the unknown parameter
k (becausevi = vi(k, di,j1 , di,j2 , ḋi,j1 , ḋi,j2), as implicitly
defined in Lemma 4.2). We now wish to show that only the
actual value ofk satisfies this equation. With this in mind,
we define the functionf as

f(k , di,j3 , di,j4 , ḋi,j3 , ḋi,j4 , vi(k , di,j1 , di,j2 , ḋi,j1 , ḋi,j2)) =

ḋi,j3

ḋi,j4
−

sech2(kdi,j3 − vi)− sech2(vi)

sech2(kdi,j4 − vi)− sech2(vi)
(4)

and examine the number of roots in the next result.
Lemma 4.3: (Uniqueness of spatial wavenumber)Given

noiseless measurements ofdi,j(t) and ḋi,j(t), for j ∈
{j1, j2, j3, j4}, wheret is sufficiently close totcr, the time
when ḋi,j1(tcr) = 0. If di,j1(t) is sufficiently small, then
k = k is the only root to (4).

B. Correctness analysis

Once k has been determined, we wish to leverage it to
calculate other parameters. This is what the PARAMETER

DETERMINATION STRATEGYaccomplishes using the dynam-
ics that defines the internal wave. The strategy is formally
presented in Algorithm 1. We also refer back to Remark 4.1,
which explains the assumptions on drogue locations that are
needed to make the algorithm more concrete.

The next result establishes the algorithm correctness. Its
proof follows from Lemma 4.3, the form of the inter-drogue
distance derivative equation, and algebraic relations between
parameters in the nonlinear soliton model in Section II-A.

Proposition 4.4: (Correctness ofPARAMETER DETERMI-
NATION STRATEGY) At times t sufficiently close totcr
when ḋi,j1 = 0 and if di,j1(t) is sufficiently small, then
given noiseless knowledge ofdi,jm(t) and ḋi,jm(t) for all
m ∈ {j1, j2, j3, j4, j5, j6}, the PARAMETER DETERMINA-
TION STRATEGY, presented in Algorithm 1, can be used to
determine all of the internal wave physical parameters.
Note that Step2 can be solved using a variety of root-finding
methods. Sincef is a monotonic function ink, a gradient
descent method would be sufficient, for example.

Algorithm 1: PARAMETER DETERMINATION STRATEGY

1 Set t such thatḋi,j1(t) sufficiently close to0
2 k uniquely solves
f(k ,di,j3 ,di,j4 ,ḋi,j3 ,ḋi,j4 ,vi(k ,di,j1 , di,j2 , ḋi,j1 , ḋi,j2))=0

3 Setvi(t) = vi(k , di,j1(t), di,j2(t), ḋi,j1(t), ḋi,j2(t))

4 SetBl =
ḋi,j5

(t)

sech2(kdi,j5
(t)+vi(t))−sech2(vi(t))

5 SetBu =
ḋi,j6

(t)+Bl sech
2(vi(t))

sech2(kdi,j6
(t)+vi(t))

6 Set t2 not equal tot
7 Setvi(t2) = vi(k , di,j1(t2), di,j2(t2), ḋi,j1(t2), ḋi,j2(t2))

8 Setω =
k(di,j1

(t2)−di,j1
(t))−vi(t2)+vi(t)

t2−t
andC = ω

k

9 Sethu = hocean

1−Bu
Bl

andhl = hocean− hu

10 Setc = 3C
2k2huhl

and |ρl−ρu|
ρl

= c2hocean
ghuhl

Remark 4.5 (Robustness against noise):Here we com-
ment on the algorithm performance when errors are present,
specifically noise in the sensor measurements. We assume
that this noise is unbiased, Gaussian, and that noise at
different time instances and for different measurements are
uncorrelated. The fact that all the functions that appear in
the equations employed in Algorithm 1 have a continuous
dependence on the variables makes the PARAMETER DE-
TERMINATION STRATEGY naturally robust against errors, in
the sense that the estimated parameters are still unique and
remain close to the true parameters for small enough errors.
Figure 2 illustrates the algorithm robustness for three differ-
ent initial drogue configurations. Note that our method has a
linear relationship on a log-log plot between relative errors in
measurements and relative errors in the wavenumber. Three
drogues are located at0, 1, and 2 meters and the fourth
drogue’s position varies; in three trials it is located at10,
100, and 200 meters. As the largest inter-drogue distance
grows, the algorithm robustness improves. •
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Fig. 2. Relative error in estimates of the wavenumber as a function of the
relative errors in the inter-drogue distance and its derivative measurements
for several different initial drogue locations. The plot shows the effect of
changing the largest inter-drogue distance on the performance of PARAM -
ETER DETERMINATION STRATEGY. The true value of the wavenumber is
k = .0065

1

m
and the first three drogues were located at0, 1, 2 meters. The

fourth drogue was at10, 100, and200 meters. Each point is the average of
3000 runs. Robustness improves as the largest inter-drogue distance grows.



C. Extension to two nonlinear waves

In this section, we discuss how our previous algorithm
design and analysis can be extended to situations where
two nonlinear internal waves are simultaneously present.
The basic idea relies on choosing a coordinate system such
that, in one of the directions, the drogues only feel the
effect of one of the two waves. One can apply the extended
PARAMETER DETERMINATION STRATEGY in the direction
where only one wave is felt to solve for the parameters of that
wave. Once that wave has been characterized, its effect can
be removed from the drogue’s measurements, allowing one to
again apply the PARAMETER DETERMINATION STRATEGY

to determine the other wave’s parameters.
Consider the situation where drogues are floating in the

presence of two nonlinear internal waves, each with its
own set of wave parameters and propagation directions. We
assume that these propagation directions are known a priori.
Choosing a horizontalx − y coordinate system with thex-
direction aligned with wave1’s direction makes the angle
between thex-direction and wave1 equal to zero, i.e.,
θ1 = 0. Summing each wave’s individual effect yields the
following planar dynamics for droguei,

ẋi=

2∑

n=1

−
2CnAn

hu

sech2(kn(xi cos(θn)+yi sin(θn)−χ0n)

−ωnt) cos(θn),

ẏi=−
2C2A2

hu

sech2(k2(xi cos(θ2)+yisin(θ2)−χ02

−ω2t) sin(θ2).

Note that in they direction, the drogue only feels the effect
of the second wave. Writing the dynamics for they direction
in terms of inter-drogue distances between droguei andj as
well as the relative phasevi gives

ḋ
y
i,j1

= −
2C2A2

hu

sin(θ2)·
(
sech2(k2(d

x
i,j cos(θ2)+d

y
i,j sin(θ2)+v2i )−ω2t)−sech2(v2i )

)
,

wherev2i = k2(xi cos(θ2) + yi sin(θ2) − χ02) − ω2t. Now,
the PARAMETER DETERMINATION STRATEGY can be used
to determine the parameters of internal wave2 using 4.4.
With the internal wave2’s parameters known, we define

˜̇
dxi,j1 = ḋxi,j1 − ḋ

y
i,j1

cot(θ)

= −
2C1A1

hu

(
sech2(k1d

x
i,j + v1i )− sech2(v1i )

)
,

as the part of the distance derivative in thex-direction that
is due to the internal wave1. Here,v1i = k1(xi−χ01)−ω1t.

Again, one can now apply the PARAMETER DETERMI-
NATION STRATEGY using 4.4. to show the following result.
Thus, one can write write the repeated application of 4.4
formally in the following result.

Proposition 4.6 (Determination of both waves):At times
t andt2 sufficiently close totcr whenḋyi,j1(tcr) = 0 andtcr2

when ˜̇
dxi,j1(tcr2) = 0, respectively, if‖di,j1(t)‖, ‖di,j1(t2)‖

are sufficiently small, then given noiseless knowledge of

d
y
i,jm

(t), ḋ
y
i,jm

(t), dxi,jm(t2), and ˜̇
dxi,jm(t2) for all m ∈

{j1, j2, j3, j4, j5, j6}, the PARAMETER DETERMINATION

STRATEGY in Algorithm 1, can be used to determine all of
the internal wave physical parameters of both internal waves.

V. AGGREGATION OF ESTIMATES

The PARAMETER DETERMINATION STRATEGY can be
executed at various instants of times, as described in the
previous section. Each execution gives rise to an estimate
of the parameters. Therefore, a natural question is whether
drogues could aggregate their individual estimates, as well
as potentially use multiple sets of data from many different
waves, to improve estimates of the parameters. Since the
parameters are solutions to (implicit) nonlinear equations,
even with the assumption of Gaussian measurements, the
resulting distributions of the parameters are, in general,non-
Gaussian and only implicitly defined. Therefore, we employ
a Mixture Distribution approach to represent each param-
eter’s distribution as a truncated Taylor series expansion.
For concreteness and simplicity, we define the procedure for
aggregating estimates of one parameter, the wavenumberk.

Using (4) and the implicit function theorem, it can be
shown that in a neighborhood around true measurements,
noisy measurements produce a unique estimate. Since this
function is only implicitly defined, one can resort to calcu-
lating successive terms of its Taylor series expansion. In this
way, we estimate the implicit distribution of the wavenumber
as a function of the measurement error.

LettingD = (di,j1 , di,j2 , di,j3 , di,j4 , ḋi,j1 ḋi,j2 , ḋi,j3 , ḋi,j4),
we substitute the implicit functionk(D) into (4) and differ-

entiate with respect toD, which yields ∂k(D)
∂D

=
−

∂ f(k,D)
∂D

∂ f(k,D)
∂k

.

Therefore, for a set of noisy measurementsD̂, we have the
following distributionkD(D̂) = k+ ∂k(D)

∂D
(D̂−D)+O((D̂−

D)2). Repeated differentiation of (4) can produce higher-
order terms in this Taylor series expansion. For simplicity, we
consider only the first-order term. Then, our approximation
of this distribution is k̂D(D̂) = k + ∂k(D)

∂D
(D̂ − D) =

k+ êD(D̂). By assumption,̂D−D is a zero-mean, Gaussian
random variable with a diagonal covariance matrix, making
our approximation of the parameter’s distribution a sum of
Gaussian distributions. Given parameter estimates{kestℓ | ℓ ∈
Z≥1} and measurements{D̂ℓ | ℓ ∈ Z≥1}, we define the
following aggregation scheme:

(kaggℓ+1,Var[k
agg
ℓ+1]) = OptAgg

(
k
agg
ℓ ,Var[kaggℓ ],

kestℓ+1 − E[êDℓ+1
(D̂ℓ+1)],Var[êDℓ+1

(D̂ℓ+1)]
)
, (5)

where k
agg
1 = kest1 − E[êD(D̂1)] and Var[kagg1 ] =

Var[êD(D̂1)]. The following result is now a consequence
of [15, Prop. 5.6].

Proposition 5.1 (Wavenumber aggregation):Given a se-
quence of noisy measurements{D̂ℓ | ℓ ∈ Z≥1}, assume
there existǫE ≥ 0 and ǫV ≥ 0 such that the following
bounds hold uniformly for allℓ ∈ Z≥1

|E[kDℓ
(D̂ℓ)− êDℓ

(D̂ℓ)]− k| ≤ ǫE Var[kDℓ
(D̂ℓ)] ≤ ǫV .



Then, with the estimates{kestℓ | ℓ ∈ Z≥1} generated by the
PARAMETER DETERMINATION STRATEGY using {D̂ℓ}, the
iterates{kaggℓ | ℓ ∈ Z≥1} of the aggregation scheme defined
in (5) satisfy the following:

lim
ℓ→∞

Pr[|kaggℓ − k| ≤ ǫE + ǫ] = 1 ∀ǫ > 0.

Figure 3 depicts the aggregation method discussed above.
It plots the relative error in estimates of the wavenumber,
both for individual estimates and the aggregated estimate.
Note that the aggregated estimate converges to a relative error
significantly smaller than the individual estimates.
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Fig. 3. This figure plots the relative error in estimates of thewavenumber,
both for individual estimates and the aggregated estimate. Note that the
aggregated estimate converges to a relative error significantly smaller than
the individual estimates. The true value for the wavenumber was .014

1

m
and the drogues were located at0, 1, 2, and10 meters from the origin. The
relative error in inter-drogue measurements is.05.

VI. CONCLUSIONS

We have considered the problem of estimating the physical
parameters of a horizontally-propagating nonlinear internal
wave. Because of the lack of absolute position information,
a group of underwater drogues subject to the flow induced by
the internal wave only have access to relative measurements
(inter-drogue distances and distance derivatives) with respect
to each other. We have extended the PARAMETER DETER-
MINATION STRATEGY proposed in our previous work [16],
which is capable of determining the wave parameters given
noiseless measurements in continuous time, in three ways.
First, the extended method is applicable to instants of time
when the inter-drogue distance derivative is sufficiently close
to zero, making it implementable with sufficiently fast sam-
pling. Second, we augmented the algorithm in a way that
made it extendable to the case where there are two differ-
ent nonlinear internal waves present simultaneously. Third,
we developed a method to aggregate individual parameter
estimates obtained with this extended method. Simulations
illustrate the robustness to noisy measurements, the effect
of initial drogue locations on parameter sensitivity, and the
benefit of aggregating estimates in reducing the estimated
parameter error. Ideas for future work include the develop-
ment of analytic results regarding the algorithm robustness,
the explicit characterization of the minimum sampling rate,

the extension to scenarios with three or more internal waves,
and the consideration of second-order drogue dynamics.
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