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Abstract

This paper considers a team of spatially distributed drifters that move underwater under the influence of an ocean internal
wave. The overall objective is for the drifters to use the known depth-dependent ocean flowfield to rendezvous underwater
and then return to the surface as a cluster for easy retrieval. From the structure of the internal wave, the ocean flowfield is
time-varying and spatially dependent on depth and position along the wave propagation direction. The drifters can control
their depth by changing their buoyancy and are otherwise subject to the horizontal flowfield at their given depth. We consider
two different drifter dynamical models: a first-order Lagrangian model, useful when the drifter’s mass is sufficiently small,
and a second-order linear model, where the drag force caused by the water accelerates the drifter. We design provably correct
distributed algorithms that rely on the drifters opportunistically changing their depth so that the ocean flowfield takes them
in a desirable direction to perform coordinated motion. Under the proposed algorithms, the drifters converge asymptotically
to the same depth and position along the wave propagation direction. We also investigate the algorithms’ robustness against
errors in actuation, estimation of the wave parameters, or state measurements. Various simulations illustrate our results.
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1 Introduction

Internal waves are waves that propagate within a fluid,
rather than on its surface. They are of particular in-
terest to marine ecologists and oceanographers because
they are agents of transport for planktonic organisms,
larvae, and small fish. The type considered here arise
when deep oceanic water is disturbed. Normally, water
density varies continuously with depth and surfaces of
constant density are at a fixed depth. However, when the
water receives an energetic disturbance, it leads to time-
varying, sinusoidal profiles in the surfaces of constant
density. This, in turn, gives rise to a nonlinear, depth-
and time-varying dynamical model for the ocean, which
can be parameterized by constants such as amplitude,
wavenumber, and frequency. In these scenarios, one can
envision using a team of robotic drifters to perform the
dual task of estimating the parameters that define the
ocean flowfield induced by the internal wave and then
using this knowledge to perform motion control. Here
we are interested in distributed control algorithms for

⋆ A preliminary version of this paper appeared as [Ouimet
and Cortés, 2014a] at the 2014 IEEE Conference on Decision
and Control.
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rendezvous. Our focus is motivated by practical consid-
erations of easy recovery: when oceanographers deploy
these robotic sensors, they must retrieve them after the
data is collected. However, with long deployment times,
the drifters may drift miles apart. For large numbers of
robots, this recovery task becomes time-consuming. Ac-
tive control is also useful for recovering drifters measur-
ing water properties underneath ice caps. In this more
challenging problem, drifters must rendezvous as well as
reach the ice hole they were dropped in for recovery. The
rendezvous problem, however, is challenging because the
drifters can only control their depth by changing their
buoyancy and are otherwise subject to the horizontal
flowfield of the ocean at their given depth. The basic idea
of our strategy is for drifters to opportunistically change
their depth so that the ocean flowfield takes them in a
desirable direction to perform coordinated motion.

Literature review: Internal waves are associated with
high concentrations of various types of planktonic organ-
isms and small fishes [Zeldis and Jillett, 1982, Shanks,
1983], as well as an agent of larval transport [Pineda,
1999]. This makes their study important to oceanog-
raphers, see e.g. [Lennert-Cody and Franks, 1999, Su-
santo et al., 2005] and references therein. Many internal
wave models exist in the literature [Osborne and Burch,
1980, Hamdi et al., 2011]; here, we consider a continu-
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ously depth-dependent model found in [Thorpe, 1968].
Scientists widely use drifters drifting passively as mon-
itoring platforms to gather relevant ocean data [Perry
and Rudnick, 2003, Freeland and Cummins, 2005, Han
et al., 2010]. The use of autonomous underwater vehi-
cles to detect and characterize internal waves is a rela-
tively new approach. Whereas previous works use ocean
measurements such as conductivity, temperature, pres-
sure data [Cazenave, 2008, Petillo and Schmidt, 2013]
or vertical flow velocity [Zhang et al., 2001] to detect
and analyze internal waves, our recent work [Ouimet and
Cortés, 2014b] is unique in using inter-vehicles measure-
ments for depth-independent internal wave models. This
work is also connected to the increasing literature that
deals with cooperative networks of agents estimating
spatial natural phenomena, including ocean [Leonard
et al., 2007, Paley et al., 2008, Graham and Cortés,
2012], river [Ru andMart́ınez, 2013], and hurricane sam-
pling [DeVries and Paley, 2012]. Furthermore, it is tied
to works related to motion planning in oceanic flows.
Recent work [Jouffroy et al., 2013] explores the possibil-
ity of actively utilizing tidal currents so that drifters can
autonomously reach a desired destination. The flowfield
considered there is a time-varying model with no hori-
zontal spatial dependency and a piecewise-constant de-
pendency on depth. This simplicity allows the drifter to
achieve its objective by only sensing which way the cur-
rent is going, its depth, and the relative distance between
itself and the goal location. Other researchers have also
dealt with marine robots moving through strong flow-
fields where their actuation is limited and therefore can-
not completely compensate the flow [Paley and Peterson,
2009, Kwok and Mart́ınez, 2012]. Because the drifters
control their vertical velocity which, in turn, affects their
depth-dependent horizontal velocity, we adopt a back-
stepping framework [Khalil, 2002] where we first design a
controller based on Laplacian agreement dynamics [Ren
and Beard, 2008] assuming direct control and then we
design the depth-controller for the full system.

Statement of contributions: We consider a group of
robotic drifters that seek to coordinately rendezvous un-
derwater while moving in an ocean flowfield induced by
a depth-dependent internal wave. Our starting point is
the assumption that the parameters that determine the
internal wave are known to the drifters. We develop dis-
tributed cooperative strategies that allow the drifters to
asymptotically rendezvous under two different dynami-
cal models. In the first (Lagrangian) model, we assume
that the drifters are sufficiently small so that their veloc-
ity is equal to that of the ocean’s velocity at their current
location. In the second (drag-based) model, we assume
that drifters are accelerated by a drag force proportional
to the difference in their velocity and the ocean’s. The
coordinated rendezvous problem is challenging because
of two reasons. First, since the drifters may only di-
rectly change their vertical depth in the water column,
they must rely on the horizontal current at their current
depth to move them towards rendezvous. Second, the
flowfields are time-varying, creating situations where

periodically the drifters have not enough (or even com-
pletely lack) control authority. Our technical approach
is divided into two stages. First, assuming drifters have
direct control in the horizontal direction, we design a
provably correct law, that we term ‘virtual’, that al-
lows all drifters to rendezvous despite the time-varying
control authority. Second, we design a depth-control
law for the true system and establish its convergence
to the virtual control law in finite time, from which we
deduce the desired asymptotic rendezvous property for
the full dynamics. We also investigate the robustness
properties of the proposed algorithms against errors in
actuation and in the knowledge of the flowfield or the
state of other drifters. We provide a bound on the max-
imum error size in the depth-control law with which the
drifters still rendezvous. When the virtual control law is
corrupted by additive errors, we show that the drifters
converge to a neighborhood around each other. Various
simulations illustrate our results.

Organization: Section 2 contains notation and prelimi-
naries and Section 3 contains the wave and drifter mod-
els along with our problem statement. Section 4 contains
the proposed algorithm, the proof of its correctness, and
its robustness properties for a first-order drifter model
and Section 5 contains the proposed algorithm and the
proof of correctness for a second-order drifter model. Fi-
nally, Section 6 contains our conclusions and some di-
rections of future work.

2 Preliminaries

This section introduces basic notation and preliminaries
used throughout the paper.

2.1 Notation

Let R, R≥0, and R>0 denote the set of real, nonnegative
real, and positive real numbers, respectively. We use 1d

and 0d ∈ R
d to denote the vectors of all ones and all

zeros, respectively. We use ‖ ·‖2 to denote the Euclidean
norm. For a finite set P , card(P ) denotes its cardinality.
Given M ∈ R>0, the saturation function satM : R ×
R>0 → R is defined as

satM (x) =







M, x > M,

x, −M ≤ x ≤ M,

−M, x < −M.

The sign function sgn : R → R is defined as

sgn(x) =







1, x > 0,

0, x = 0,

−1, x < 0.

Given x ∈ R
d, we let xmin, respectively xmax, be the

smallest, respectively largest, component of x.

2.2 Graph theory

We discuss here some basic graph theory following the
exposition in [Bullo et al., 2009]. Let G = (V,E) be an
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undirected graph with N vertices V = {1, . . . , N} and
edges E ⊆ V × V . A path in graph G is an ordered se-
quence of vertices such that any pair of consecutive ver-
tices in the sequence is an edge of the graph. A graph
is connected if there exists a path between any two ver-
tices. The neighbor set of vertex v ∈ V is the set of ver-
tices it has edges to, Nv = {v′ ∈ V \{v} | (v, v′) ∈ E}.
The Laplacian matrix L(G) = (ℓi,j)n×n associated with
G is defined by,

ℓi,j =







card(Ni), if i = j,

−1, if i 6= j and (i, j) ∈ E,

0, otherwise.

Note that L(G)1n = 0n. This matrix is symmetric and
positive semidefinite, with the multiplicity of 0 corre-
sponding to the number of connected components of G.
For connected graphs, the following inequality, taken
from [Nowzari and Cortés, 2014], will be useful later

λ2(L)x
TLx ≤ xTL2x ≤ λn(L)x

TLx, (1)

where λ2(L) and λn(L) denote the smallest non-zero and
largest eigenvalue of L, respectively.

2.3 Stability analysis

Here, we recall some useful results that are later em-
ployed in our technical approach. We begin with Bar-
balat’s Lemma, which characterizes the asymptotic be-
havior of a certain class of functions.

Lemma 2.1 (Barbalat’s Lemma [Khalil, 2002])
Let φ : R≥0 → R be a uniformly continuous function.

Suppose that limt→∞

∫ t

0
φ(τ)dτ exists and is finite.

Then, φ(t) → 0 as t → ∞.

This result is particularly useful when analyzing the
asymptotic behavior of trajectories of time-dependent
dynamical systems, as the ones considered in this paper.

3 Problem statement

This section presents the internal wave and depth-
actuated drifter models, and then provides a formal
problem statement.

3.1 Internal wave model

We specify the internal wave model in a global refer-
ence frame Σ = (p, {ex, ey, ez}), defined as follows. The
origin p is an arbitrary point at the ocean surface; the
vector ex corresponds to the direction of wave propa-
gation, which we assume parallel to the ocean bottom,
and ez is perpendicular to the ocean bottom, pointing
from bottom to surface. The coordinates induced by Σ
are denoted by {x, y, z}.
Following [Thorpe, 1968], we consider a continuously
stratified density profile and the mode-1 internal waves
produced in it. Here, a fluid has a finite depthH and the
density increases linearly from ocean surface to ocean

bottom. This leads to the following horizontal and ver-
tical flowfields, respectively, induced by the presence of
the internal wave,

fx(x, z, t) =
απ

H
cos
(πz

H

)

sin(kx− ωt+ φ), (2a)

fz(x, z, t) = −αk sin
(πz

H

)

cos(kx− ωt+ φ). (2b)

Here, α is the ordering parameter proportional to the
wave amplitude, k is the horizontal wavenumber, ω is
the frequency, and φ is the initial condition for phase.
The flowfield can be seen in Figure 1.

wave propagation direction

d
e

p
th

Fig. 1. The plot illustrates the dependency of internal wave
flowfield cf. (2) as a function of depth (-z-direction) and wave
propagation direction (+x-direction) at one time instant. As
the wave propagates to the right, the flowfield translates to
the right at a fixed speed.

In the ocean, it is not always a valid assumption that an
internal wave exists in isolation of other phenomena such
as tides. However, a time-varying addition to the flow-
field which is spatially constant over the drifters’ spatial
scale affects all drifters equally. With a change of coordi-
nates, these types of additive currents can be removed,
making our simplified oceanic flowfield applicable.

Note that this wave model does not produce motion in
the y-direction and it depends continuously on depth as
a result of the dependency of density on depth. This adds
an additional layer of complexity and realism with re-
spect to simpler, two-layer fluid models where the flow-
field changes discontinuously at the wave interface, such
as the ones considered in [Franks, 1997, Lennert-Cody
and Franks, 1999]. In fact, our developments in this pa-
per are based on the observation that the added com-
plexity from depth-dependent flowfields can be lever-
aged to allow for coordinated motion of the drifters, as
we explain in the problem statement below. We finish
this section by noting that there exist other continuously
stratified models for internal waves, see [Thorpe, 1968],
such as the hyperbolic tangent model capturing the den-
sity depth profile of deep ocean water. Although we do
not consider them for reasons of space, our proposed de-
sign could be adapted to produce similar results to the
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ones presented here. In general, little is known about
the ocean flowfields at small temporal and spatial scales
(such as the specific models for internal waves), provid-
ing a motivating purpose for researchers to use drifters
to estimate them.

3.2 Drifter model

A drifter is a submersible buoy which can drift in the
ocean, unattached to the ocean floor or a boat, and is
able to change its vertical velocity in the water by con-
trolling its buoyancy. We assume a drifter can measure
its own absolute position and the position of nearby
drifters. Even though GPS is not available underwater,
oceanographers have other means to achieve this in
areas of limited size by deploying a grid of acoustic near-
surface pingers, for instance. The drifters, equipped
with hydrophones, can determine their location based
on the travel time of the pingers’ pulses [Jaffe Labora-
tory for Underwater Imaging, 2014, Techy et al., 2010].
Given a drifter’s absolute position information, either
relative or absolute position information about neigh-
boring drifters can be used to infer absolute position
information. This could be from a sensing instrument
like sonar or via communication using acoustic modems
over relatively short ranges (and utilizing stationary
relays/amplifiers for a longer range). In the presented
algorithm, drifters also require velocity and accelera-
tion measurements, which we assume can be estimated
by numerical differentiating the position signals. Our
colleagues at Scripps Institute of Oceanography [Jaffe
Laboratory for Underwater Imaging, 2014] have an au-
tonomous underwater vehicle team that can localize
from acoustic pingers. Although their current prototype
does not have a method to get position information
of neighboring vehicles, they are currently working on
a version that is able to communicate using acoustic
modems.

Consider a group of N drifters, each with a reference
frame Σi = (pi, {exi

, eyi
, ezi}), i ∈ {1, . . . , N}, attached

to it. The origin pi corresponds to the location of the
drifter. In general, this reference frame might not be
aligned with the global wave frame Σ. However, we as-
sume that the drifters know the rotation between frames.
This assumption is for simplicity of exposition. For in-
stance, our previous work [Ouimet and Cortés, 2014b]
shows how each drifter can determine the rotation be-
tween its local frame and the global frame by using rel-
ative distance and distance derivative measurements.

Different models exist to describe an object’s dynamics
within an ocean flowfield. The most widely used is a first-
order Lagrangian dynamics, where the drifter’s velocity
is equal to ocean’s velocity at its current location,

ẋi = fx(xi, zi, t), (3a)

żi = fz(xi, zi, t) + ui. (3b)

Dropping the Lagrangian assumption, one can consider
a second-order dynamics where the object is accelerated

by a force governed by Stokes drag,

ẋi = vi, (4a)

v̇i = −cd
m

(vi − fx(xi, zi, t)) (4b)

żi = fz(xi, zi, t) + ui. (4c)

This model is suitable for objects that are in laminar
flows or are very small. Note that as the mass m tends
to zero, the second-order dynamics model becomes the
first-order Lagrangian model. We develop algorithms for
both drifter dynamic models above. In both cases, we as-
sume that the drifters’ control authority ui is capable of
counteracting the vertical velocity. In addition, there is
a finite amount of available control authorityM remain-
ing. Thus, with a slight abuse of notation, we assume
that the depth dynamics for each drifter i are żi = ui,
where |ui| ≤ M .

3.3 Problem statement

Consider a group of N spatially distributed drifters that
move underwater under the influence of an ocean inter-
nal wave. Our starting point is the assumption that the
drifters have determined the physical parameters that
govern the motion of the internal wave. This assump-
tion is motivated by our previous research that develops
coordination algorithms for the collective estimation of
such parameters. The overall objective is for the drifters
to use the known ocean dynamics to rendezvous under-
water and return to the surface as a cluster for easy re-
trieval. Formally, let the N drifters be at initial states
x(0), v(0), z(0). Each drifter i ∈ {1, . . . , N} has access
to their own state as well as its neighbors Ni (via either
communication or sensing). We assume that the graph
G induced by this exchange of state information is con-
nected and fixed. Thus, drifter i in {1, . . . , N} has con-
tinuous access to xj , vj , v̇j , and zj , for j in Ni ∪ {i}.
One possible neighbor choice is for each drifter to use the
state of the drifter initially directly ahead of itself and
initially directly behind itself in the wave propagation
direction, i.e., a line graph.

Our objective is to design a distributed feedback coordi-
nation law that makes all drifters rendezvous at a com-
mon location in the wave propagation direction, i.e.,

lim
t→∞

xi(t)− xj(t) = 0, ∀i, j ∈ {1, . . . , N}.

In practical implementations, once rendezvous is
achieved to a desired level of accuracy, drifters can
surface synchronously near each other for easy retrieval.

4 Rendezvous of first-order drifters

This section presents our algorithmic solution for ren-
dezvous of a group of first-order drifters. We assume that
all drifters know the wave parameters, e.g., by running
first the procedure in [Ouimet and Cortés, 2014b]. Since
the drifters do not have direct control in the x-direction,
we split the design in two steps, as described next,
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[Informal description of strategy]: We employ a two-
part, backstepping strategy. First, we assume that
drifters can directly control their motion in the x-
direction and we design a virtual control law that
allows them to rendezvous. Second, we consider the
true dynamics, where the control is only exerted on the
drifter’s depth, and design a control law that tracks the
virtual control law and converges to it in finite time.

4.1 Virtual rendezvous control law

Following the outline presented above, here we design a
control law that achieves rendezvous when direct control
authority is available in the x-direction. Consequently,
for each i ∈ {1, . . . , N}, we consider the dynamics

ẋi =
απ

H
wi sin(kxi − ωt+ φ), (5)

where wi is the ‘virtual’ control. Specifically, we design
the distributed controller,

wi(x, t)=−A tanh(Lx)i sin(kxi−ωt+φ), (6)

whereA ∈ R>0 is a design parameter, so that the closed-
loop dynamics is

ẋi = −A
απ

H
tanh(Lx)i sin

2(kxi − ωt+ φ). (7)

This controller has two terms to discuss here. The first,
−A tanh(Lx)i, pushes agents in the direction of the av-
erage of their neighbors. Note that this term could be
implemented with relative distance measurements. The
second, sin(kxi−ωt+φ), ensures that the ocean flow al-
ways pushes agents in the correct direction, as seen in
(7). This second term requires absolute position infor-
mation to know which direction the wave is currently go-
ing, i.e., the sign of sin(kxi−ωt+φ). For instance, if one
employed an acoustic Doppler current profiler (ADCP)
and inertial measurement unit (IMU) to estimate water
velocity as a function of depth, then one could design a
controller that requires only relative positions.

The next result shows that the state of the drifters fol-
lowing (7) remains bounded.

Lemma 4.1 (Boundedness of the trajectories)
Given any initial condition x(0) ∈ R

N for the group
of drifters, the network trajectory under (7) satisfies
x(t) ∈ [x(0)min, x(0)max]

N for all t ≥ 0.

PROOF. Note that to establish the invariance
of the set [x(0)min, x(0)max]

N , it suffices to look
at the dynamics (7) on its boundary. Given x ∈
bndry([x(0)min, x(0)max]

N ), consider the case when
i ∈ {1, . . . , N} is such that xi = x(0)min. In such case,
we have tanh(Lx)i ≤ 0, and therefore ẋi ≥ 0. Sim-
ilarly, for the case when i ∈ {1, . . . , N} is such that
xi = x(0)max, we have tanh(Lx)i ≥ 0, and hence ẋi ≤ 0.
Therefore, the vector field (7) points towards the set

[x(0)min, x(0)max]
N on its boundary, and the result

follows. ✷

We combine the boundedness of the drifters’ evolu-
tion stated in Lemma 4.1 with Barbalat’s Lemma, cf.
Lemma 2.1, to deduce that the closed-loop dynamics (6)
makes the drifters asymptotically rendezvous in the
wave propagation direction.

Proposition 4.2 (Asymptotic network rendezvous)
Given any initial condition x(0) ∈ R

N for the group of
drifters, the dynamics (7) makes the network rendezvous
in the x-direction,

lim
t→∞

xi(t)− xj(t) = 0, ∀i, j ∈ {1, . . . , N}.

PROOF. Consider the disagreement function V (x) =
1
2x

TLx, whose Lie derivative along (7) is

L(7)V (x(t)) = −A
απ

H

N
∑

i=1

(Lx(t))i·

tanh(Lx(t))i sin
2(kxi(t)− ωt+ φ) ≤ 0. (8)

Since V is non-increasing and lower bounded by 0,
V (x(t)) converges as t → ∞. Therefore,

lim
t→∞

V (x(t))− V (x(0)) = lim
t→∞

∫ t

0

L(7)V (x(s))ds,

exists and is finite. Furthermore, because x remains
in [x(0)min, x(0)max]

N by Lemma 4.1, d
dt
L(7)V (x(t))

is bounded for all t, which implies that L(7)V (x(t))
is uniformly continuous on R≥0. Therefore, the
application of Lemma 2.1 to L(7)V (x(t)) yields
limt→∞ L(7)V (x(t)) = 0. Since each summand of (8) is
non-positive, in the limit, all summands must converge
to zero. Considering the first summand, we suppose
that limt→∞ sin2(kx1 − ωt+ φ) = 0 and show a contra-
diction. This condition implies that kx1 − ωt + φ con-
verges to the discrete set {. . . ,−2π,−π, 0, π, 2π, . . . }.
However, convergence to a discrete set implies conver-
gence to one of its points, which, in turn, implies that
limt→∞ kx1 − ωt = C, for some C ∈ R, which implies
that x1 diverges as time goes to infinity, contradicting
Lemma 4.1. Reasoning in a similar way, one deduces
that L(x(t)) converges to 0 or, in other words, all drifters
agree on their x-variables. ✷

4.2 Backstepping depth-control law

Here, we build on the developments of Section 4.1 to de-
sign a depth-control law that achieves the desired net-
work objective for the true drifter dynamics (3). As men-
tioned in Section 3, we make the assumption that each
drifter has enough control authority in the vertical di-
rection to cancel the vertical motion induced by the
wave, and that the magnitude of the remaining control is
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bounded by M . For simplicity of presentation, we abuse
notation to re-define ui to be the control after canceling
the vertical motion fz. Thus, for each i ∈ {1, . . . , N}, we
rewrite (3) as

ẋi =
απ

H
cos
(πzi
H

)

sin(kxi − ωt+ φ), żi = ui,

where |ui| ≤ M . Defining di = cos(πzi
H

), we can rewrite
the dynamics as

ẋi =
απ

H
di sin(kxi − ωt+ φ), ḋi = − π

H

√

1− d2iui,

where di is constrained to [−1, 1]. We refer to it as
the ‘transformed depth’. Given the discussion of Sec-
tion 4.1, our basic idea is to synthesize a design that
makes the drifter’s transformed depth track the virtual
control law (6). Consequently, we define the error vari-
ables ei = di −wi and rewrite the dynamics in terms of
xi and ei as

ẋi=
απ

H

(

wi sin(kxi−ωt+φ)+ei sin(kxi−ωt+φ)
)

, (9a)

ėi=− π

H

√

1− d2iui − ẇi. (9b)

Our proposed design is the depth-control law,

ui(d, x, t) = (10)

satM

( H

π
√

1− d2i
(C sgn(di − wi(x, t))−ẇi(x(t), t))

)

,

where ẇi(x(t), t) is the total derivative and C ∈ R>0

is a design parameter. The next result shows that this
controller makes the transformed depth converge to a
generic virtual control law in finite time if the magni-
tude of the control law and its time derivative are small
enough to account for the limited depth-control author-
ity M and the design parameter C is properly chosen.

Lemma 4.3 (Finite-time convergence to virtual
control law) Let M ∈ R>0 and d(0) ∈ (−1, 1)N . Sup-
pose there exist ǫ, β ∈ R>0 and a continuous and increas-
ing function h : R≥0 → R≥0 with h(0) = 0 such that for
an arbitrary virtual rendezvous control wi, its magnitude
and its derivative are uniformly bounded by β and h(β),
respectively, and

Hh(β)(1 + ǫ)

π(1− (1 + ǫ)2β2)
≤ M. (11)

Then, for any C ≥ h(β)(1 + ǫ), the error variables ei,
for all i ∈ {1, . . . , N}, evolving the dynamics (9b) with
control law (10) converges to 0 in finite time.

PROOF. We first show that for any initial d(0) ∈
(−1, 1)N , each di converges in finite time to an invari-
ant set where ui in (10) is not saturated. Given any i in

{1, . . . , N}, note that ḋi < 0 for di > β and ḋi > 0 for
di < −β, which makes [−β(1+ ǫ), β(1+ ǫ)] an invariant
set for di. Furthermore, because of (11), ui is unsatu-
rated when di ∈ [−β(1 + ǫ), β(1 + ǫ)] as well. On the
other hand, if |di(0)| 6∈ [−β, β], then

ḋi ≤ −min{ π

H

√

1− d2iM,C}, if di > β,

ḋi ≥ min{ π

H

√

1− d2iM,C}, if di < −β,

which shows that di converges to the invariant set in fi-
nite time. Once in this set, and given that ui is unsatu-
rated on it, the ei dynamics reduces to ėi = −C sgn(ei),
which converges in finite time because the initial condi-
tion satisfies |ei(0)| ≤ 1 + β. ✷

Because the result does not consider the exact form of
the virtual control law, we are able to re-use later the
designed depth-control law for second-order drifters in
Section 5. The next result states that under the true dy-
namics (9) with distributed control among agents given
by (6) and (10), all drifters rendezvous in the x-direction.

Theorem 4.4 (Asymptotic network rendezvous)
For any initial position x(0) ∈ R

N , depth z(0) ∈
(0, H)N , ǫ ∈ R>0, and bound M ∈ R>0 on the magni-
tude of depth control actuation, let the magnitude A of
the virtual control law (6) satisfy

H((2|N |max + k)απ
H
A2 + ωA)(1 + ǫ)

π(1− (1 + ǫ)2A2)
≤ M,

and the gain C ≥ ((2|N |max + k)απ
H
A2 + ωA)(1 + ǫ) in

the depth-control law (10). Then, all drifters asymptot-
ically rendezvous under the dynamics (9) with the con-
trollers (6) and (10), i.e., for all i, j ∈ {1, . . . , N},

lim
t→∞

xi(t)− xj(t) = 0, lim
t→∞

zi(t) =
−H

2
.

PROOF. Under the stated hypotheses, note that, for
each i ∈ {1, . . . , N}, we have |wi| ≤ A and |ẇi(x(t), t)| ≤
(2|N |max + k)απ

H
A2 + ωA = h(A). Then, Lemma 4.3

implies that the depth-control law converges to the vir-
tual rendezvous control law in finite time. After this,
Proposition 4.2 guarantees asymptotic rendezvous in the
wave propagation direction. Depth convergence follows
by noting that, in finite time, di(t) = wi(t) and wi(t)
converges to 0. ✷

The assumptions on A and C in Theorem 4.4 guarantee
that the control law does not exert more control author-
ity than the maximum allowed of M . They also enforce
that the virtual control law never commands beyond
what the ocean’s velocity field can provide. Interestingly,
the algorithm could be readily extended, with similar
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convergence guarantees as in Theorem 4.4, to (i) switch-
ing topologies, as long as the associated graph remains
connected, and (ii) directed information topologies.

Remark 4.5 (Point-to-point reconfiguration)The
coordinated control law (6) allows the drifters to all ren-
dezvous in a situation where an a priori rendezvous lo-
cation is unknown. However, by considering a goal lo-
cation as the sole ’virtual’ robotic neighbor with no dy-
namics, the control law would cause each drifter to move
there. Thus, the control law is also applicable in situ-
ations where a common rendezvous location is agreed
upon, not requiring any knowledge of the locations of
other drifters. •
Figure 2 depicts the evolution of a group of 4 drifters ex-
ecuting the proposed coordination algorithm. Note that
because the drifters start near the top/bottom of the
ocean, their depth-control authority is saturated and
some of them are therefore pushed in the wrong direc-
tion. As they move towards the middle, their depth con-
trol becomes eventually unsaturated and then they are
able to rendezvous successfully.
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Fig. 2. This plot illustrates an evolution of 4 drifters with
Lagrangian dynamics (9) executing the proposed distributed
rendezvous algorithm (6) and (10). The parameters are
k = 2π

100

1

m
, ω = 2π

1000

1

s
, α = 10, and H = 100m. The drifters

are initially at (0,−10), (16,−25), (32,−75) and (80,−95),
marked by ‘o’s. Their neighbors are the drifters initially on
either side of them. The network converges to a point around
(52,−50), marked by ‘x’.

Remark 4.6 (Time-varying wave parameters and
unmodeled dynamics) Although the chosen wave
model is qualitatively realistic to true internal waves,
they rarely correspond perfectly to the model, perhaps
due to coupling with other physical ocean processes. For
general slowly time-varying wave parameters, and with
online estimation of these parameters by the drifters,
the proposed coordination algorithm would still achieve
convergence of the group to a neighborhood of each
other. In the case where one can model the wave with
piecewise-constant parameters, drifters could switch
control laws as the wave parameters change. The ro-

bustness analysis of the forthcoming section also speaks
to the fact that sufficiently small unmodeled dynamics
do not destroy the algorithm convergence properties. •

4.3 Robustness against errors and unmodeled dynamics

Here we investigate the robustness of the proposed coor-
dination strategy for rendezvous against several sources
of error. We start by considering the presence of additive
error in the virtual control law (7),

ẋi = −A
απ

H
tanh(Lx)i sin

2(kxi − ωt+ φ) + γi, (12)

for i ∈ {1, . . . , N}. Here, the error γi may be an arbitrary
function of errors in state or parameter estimation.

Proposition 4.7 (Robustness against additive er-
ror) Given any T > 0 and K > 1, consider the dynam-
ics (12) and assume

|γi| ≤ γ̄ < min
(ω

k
−A

απ

H
,

Aαπ
H
S(T ) tanh

(

(K − 1)2|N |max
ω
k
T
)

(K − 1)

KTN(K + 1)

)

,

for i ∈ {1, . . . , N}, where

S(T ) = min
{Φ:[0,T ]→R | Φ̇i∈I}

∫ T

0

sin2(Φ(τ))dτ

and the interval I = [−ω−k(Aαπ
H

+γ̄),−ω+k(Aαπ
H

+γ̄)].
For γ̄ sufficiently small, there exists d(γ̄(T )) such that, in
finite time, the distance between any two drifters remains
at most d(γ̄(T )). Conversely, for d arbitrarily small, there
exists γ̄∗(T ) > 0 such that d(γ̄(T )) ≤ d for all γ̄ ≤ γ̄∗(T ).

PROOF. We begin by explicitly characterizing, in
terms of the function V (x) = 1

2x
TLx, a region where

we can lower bound the decrease of V by a constant
over a time interval of a given arbitrary length T > 0.
Once this is established, we employ this fact to show
the result. Using (8), we obtain

V (x(t+ T ))− V (x(t)) =

∫ t+T

t

N
∑

i=1

(Lx(τ))i·

·(−A
απ

H
tanh(Lx(τ))i sin

2(kxi(τ)−ωτ+φ)+γi(τ))dτ.

7



Using the minimum and maximum values that terms
take over the period T , this can be upper bounded as

V (x(t+ T ))− V (x(t)) ≤
N
∑

i=1

max
ξ∈[t,t+T ]

|Lx(ξ)i|γ̄T

−A
απ

H

N
∑

i=1

min
ξ∈[t,t+T ]

(Lx(ξ))i tanh(Lx(ξ))i·

·
∫ t+T

t

sin2(kxi(τ)− ωτ + φ)dτ. (13)

From (12), note that |ẋi| ≤ Aαπ
H

+ γ̄, which together
with the hypothesis γ̄ < ω

k
− Aαπ

H
implies that Φi(t) =

kxi(t)−ωt+φ is strictly decreasing and its derivative is
bounded, belonging to the interval I = [−ω − k(Aαπ

H
+

γ̄),−ω + k(Aαπ
H

+ γ̄)]. As a consequence, we deduce

S(T ) = min
{Φ:[0,T ]→R | Φ̇i∈I}

∫ T

0

sin2(Φ(τ))dτ,

is strictly positive. Substituting into (13), we obtain

V (x(t+ T ))− V (x(t)) ≤
(

N
∑

i=1

max
ξ∈[t,t+T ]

|Lx(ξ)i|γ̄T

−A
απ

H
S(T )

N
∑

j=1

min
ξ∈[t,t+T ]

(Lx(ξ))j tanh(Lx(ξ))j

)

.

Since the drifters’ velocities are bounded as |ẋi| ≤ ω
k
,

V (x(t+T ))−V (x(t)) ≤ γ̄TN
(

‖Lx(t)‖∞+2|N |max
ω

k
T
)

−A
απ

H
S(T ) tanh

(

‖Lx(t)‖∞ − 2|N |max
ω

k
T
)

·

· (‖Lx(t)‖∞ − 2|N |max
ω

k
T ),

if ‖Lx(t)‖∞ > 2|N |max
ω
k
T . Our strategy now is to grow

this set by a multiplicative factorK. As a function ofK,
we find an upper bound on the error γ̄max(K) for which
the V decreases by a strictly positive constant over the
period T . We choose a gain K > 1, let

γ̄max(K) =
Aαπ

H
S(T ) tanh

(

(K − 1)2|N |max
ω
k
T
)

(K − 1)

KTN(K + 1)
.

(14)

Then, if γ̄ ≤ γ̄max(K),

V (x(t+T ))−V (x(t)) ≤ A
απ

H
S(T )(‖Lx(t)‖∞−2|N |max

ω

k
T )·

· tanh
(

‖Lx(t)‖∞ − 2|N |max
ω

k
T
)

(

1

K

( tanh
(

(K − 1)2|N |max
ω
k
T
)

tanh
(

‖Lx(t)‖∞ − 2|N |max
ω
k
T
)

)

(‖Lx(t)‖∞ + 2|N |max
ω
k
T

‖Lx(t)‖∞ − 2|N |max
ω
k
T

)(K − 1

K + 1

)

− 1

)

, (15)

for ‖Lx(t)‖∞ ≥ 2|N |max
ω
k
T . By growing the set by gain

K to ‖Lx(t)‖∞ ≥ 2|N |maxK
ω
k
T , we have that

tanh
(

(K − 1)2|N |max
ω
k
T
)

tanh
(

‖Lx(t)‖∞ − 2|N |max
ω
k
T
) ≤ 1,

‖Lx(t)‖∞ + 2|N |max
ω
k
T

‖Lx(t)‖∞ − 2|N |max
ω
k
T

≤ K + 1

K − 1

for all ‖Lx(t)‖∞ ≥ 2|N |maxK
ω
k
T . Using these inequali-

ties to simplify (15), we obtain

V (x(t+ T ))− V (x(t))

≤ A
απ

H
S(T ) tanh

(

‖Lx(t)‖∞ − 2|N |max
ω

k
T
)

(‖Lx(t)‖∞ − 2|N |max
ω

k
T )
( 1

K
− 1
)

≤ −C0 < 0,

when ‖Lx(t)‖∞ ≥ 2|N |maxK
ω
k
T , where

C0 = A
απ

H
S(T ) tanh

(

(K − 1)2|N |max
ω

k
T
)

·

· ((K − 1)22|N |max
ω

kK
T ).

From (1), ‖Lx‖2∞ ≥ 1
N
‖Lx‖22 ≥ 2λ2(L)

N
V (x), we deduce

that if V (x(t)) ≥ 2N
λ2(L) (|N |maxK

ω
k
T )2, then V (t+T )−

V (t) ≤ −C0. As a consequence, for any initial V (x(0)),
we deduce that the set V (x) ≤ 2N

λ2(L) (|N |maxK
ω
k
T )2 is

reached in finite time. Once this happens, if there is a
time twhen V (x(t)) = 2N

λ2(L) (|N |maxK
ω
k
T )2, after T sec-

onds one has again V (x(t+T )) ≤ 2N
λ2(L) (|N |maxK

ω
k
T )2.

Furthermore, because

L(12)V (x(t)) = xTLv ≤ ‖Lx‖2
ω

k
≤
√

2λN (L)
ω

k

√

V (x(t)),

we can upper bound V (x(t+ T )) by

V (x(t+ T )) ≤
(

√

2λN (L)ω
k

2
T + V (t)

1

2

)2

.

Using this upper bound, we conclude that once the set
V (x) ≤ 2N

λ2(L) (|N |maxK
ω
k
T )2 is reached, the trajectory
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never leaves the set

V (x) ≤
(
√
2ω

k
T
(

√

λN (L)

2
+

√

N

λ2(L)
|N |maxK

)

)2

.

(16)

The first result in the statement now follows by noting
that an upper bound on V directly translates into an
upper bound on the distance between any two drifters
because

V (x) =
1

2
xTLx =

1

4

N
∑

i=1

N
∑

j=1

ai,j(xi − xj)
2,

where ai,j = 1 if there exists an edge from i to j and
ai,j = 0 otherwise. In the worst case, xmax − xmin ≤
2
√

V (x). The second result follows from first noting a
desired bound d implies an upper bound on K and T to
satisfy (16). These bounds provide an upper bound for
γ̄max through (14). ✷

The bound in Proposition 4.7 enforces that (i) the
perturbation is never large enough to make the drifter
move faster than the wave (which is physically impossi-
ble) and (ii) over an interval of length T , the Lyapunov
function decreases when the drifters are sufficiently far
from agreement. Figure 3 depicts an evolution of the
first-order virtual rendezvous dynamics with additive
error (12). Here one can see that the drifters converge to
a neighborhood around rendezvous. Note that there is
a net horizontal displacement in the wave propagation
direction caused by the internal wave. This is due to the
drifters never quite converging to a depth of H

2 , where
there is no horizontal motion.

To finish this section, we consider the true drifter dy-
namics (3) for each i ∈ {1, . . . , N} subject to both ad-
ditive errors

ẋi =
απ

H
cos
(πzi
H

)

sin(kxi − ωt+ φ) + γi, (17)

żi = ui, and actuation errors of the form

ui(d, x, t) = (18)

satM
( H

π
√

1− d2i
(C sgn(di − wi(x, t))−ẇi(x, t)) + δi

)

.

Interestingly, it is clear from this expression that if the
actuation error is small enough, the term arising from
the discontinuous function sgn in the controller cancels
the effect of the disturbance, making the algorithm in-
herently robust. We formalize this next.

Lemma 4.8 (Robustness to actuation error) As-

sume δi ≤ δ̄ < Hǫh(A)/π
√

1− di(0)2, for all i ∈
{1, . . . , N}. Then, for any x(0) ∈ R

N , z(0) ∈ (0, H)N ,
and M ∈ R>0, the error variable ei evolving under the
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Fig. 3. This plot illustrates an evolution of the virtual ren-
dezvous dynamics with additive error (12) for a group of 4
drifters. The parameters are k = 2π

100

1

m
, ω = 2π

1000

1

s
, α = 10,

and H = 100m. The drifters are initially at 0, 16, 32 and
80 meters. Each drifter has a constant error of .02, −.005,
−.01, and .005, respectively. They converge to a neighbor-
hood around each other of about 5 meters. Note the net
horizontal displacement in the wave propagation direction.

closed-loop system (17) with (6) and (18) converges to 0
in finite time.

As a consequence of this result, in finite time, the dy-
namics (17) becomes exactly (12), and therefore the ro-
bustness properties asserted in Proposition 4.7 hold too.
This also implies that, in the absence of additive errors,
if the assumptions of Theorem 4.4 are met, the drifters
asymptotically rendezvous despite the actuation errors.

5 Rendezvous of second-order drifters

In this section we adapt the method developed in Sec-
tion 4 to the linear, second-order model (4) for the drifter
dynamics. As we did before, our starting point is the
assumption that all drifters know the wave parameters
(in fact, one can determine them using measurements
collected by the drifters and fitting them to the dynam-
ics (4) induced by the internal wave but, for reasons of
space, we do not present this discussion here).

5.1 Virtual rendezvous control law

We begin by designing a control law wi, i ∈ {1, . . . , N},
assuming that the drifters can directly actuate their own
x-acceleration through their depth, i.e.,

ẋi = vi, v̇i = −cd
m

(vi −
απ

H
wi sin(kxi − ωt+ φ)),

Our proposed distributed design is

wi(x, v, t)=−Asin(kxi−ωt+φ)tanh(L(
cd
m

x+v)i) (19)

9



so that the closed-loop dynamics takes the form

ẋi = vi, (20a)

v̇i = −cd
m

(

vi +
απ

H
sin2(kxi − ωt+ φ)·

A tanh(L(
cd
m

x+ v)i
)

. (20b)

The next result shows that each drifters’ sum of position
and velocity remains bounded.

Lemma 5.1 (Boundedness of the sum of po-
sition and velocity) Given any initial condition
(x(0), v(0)) ∈ R

2N for the group of drifters, the net-
work trajectory under (20) satisfies cd

m
x(t) + v(t) ∈

[( cd
m
x(0) + v(0))min, (

cd
m
x(0) + v(0))max]

N for all t ≥ 0.

The proof of this result uses the same argument em-
ployed in Lemma 4.1.

Building on Lemma 5.1, we next show that, in fact, the
position of the drifters remains bounded as well.

Lemma 5.2 (Boundedness of position) Given any
initial condition (x(0), v(0)) ∈ R

2N for the group of
drifters, the network trajectory under (20) satisfies
x(t) ∈ [x(0)min, x(0)max]

N , for all t ≥ 0.

PROOF. From Lemma 5.1, we have cd
m
x(t) + v(t) ∈

[( cd
m
x(0) + v(0))min, (

cd
m
x(0) + v(0))max]

N for all t ≥ 0.
This implies that, if drifter i ∈ {1, . . . , N} has cd

m
xi(0) >

( cd
m
x(0)+v(0))max (resp. cd

m
xi(0) < ( cd

m
x(0)+v(0))min),

then ẋi(0) < 0 (resp. ẋi(0) > 0), which shows the re-
sult. ✷

Weare now ready to show that the drifters all converge to
rendezvous in the x-direction under the control law (20).

Proposition 5.3 (Asymptotic network rendezvous)
Given any initial condition (x(0), v(0)) ∈ R

2N for the
group of drifters, the dynamics (20) makes the network
rendezvous in the x-direction: for all i, j in {1, . . . , N}

lim
t→∞

xi(t)−xj(t)=0, lim
t→∞

vi(t)=0.

PROOF. Consider the disagreement function V (x, v) =
1
2 (

cd
m
x+ v)TL( cd

m
x+ v), whose Lie derivative is

L(20)V (x, v) =
N
∑

i=1

(L(
cd
m

x+ v))i
cd
m

απ

H
·

sin2(kxi − ωt+ φ)A tanh(L(
cd
m

x+ v)i) ≤ 0. (21)

Since V is non-increasing and lower-bounded by 0,
V (x(t), v(t)) converges as t → ∞. Therefore,

lim
t→∞

V (x(t), v(t))− V (x(0), v(0)) =

lim
t→∞

∫ t

0

L(20)V (x(s), v(s))ds

exists and is finite. Furthermore, because x and v remain
bounded by Lemmas 5.1 and 5.2, d

dt
L(20)V (x(t), v(t)) is

bounded for all t, which implies that L(20)V (x(t), v(t))
is uniformly continuous on R≥0. Therefore, the ap-
plication of Lemma 2.1 to L(20)V (x(t), v(t)) yields
limt→∞ L(20)V (x(t)) = 0. Since each summand of
L(20)V (x(t)) is non-positive, in the limit, all summands
must converge to zero. Considering the first summand,
we suppose that limt→∞ sin2(kx1−ωt+φ) = 0 and show
a contradiction. This condition implies that kx1−ωt+φ
converges to the discrete set {. . . ,−2π,−π, 0, π, 2π, . . . }.
However, convergence to a discrete set implies conver-
gence to one of its points, which, in turn, implies that
x1 diverges, contradicting Lemma 5.2. Reasoning in a
similar way, one deduces L( cd

m
x(t) + v(t)) converges to

zero. Note that for any i ∈ {1, . . . , N}, the derivative of
cd
m
xi + vi is

cd
m

vi + v̇i = −cd
m

απ

H
sin2(kxi − ωt+ φ)·

A tanh(L(
cd
m

x+ v))i,

which we now know converges to zero. This, in turn,
implies that vi converges to zero, for all i ∈ {1, . . . , N}.
Thus, we conclude that L(x(t)) converges to 0, or, in
other words, all drifters agree on their x−variables. ✷

5.2 Backstepping depth-control law

As before, we re-define the control authority ui to be the
remaining control after canceling the vertical dynamics,
so that the dynamics looks,

ẋi = vi,

v̇i = −cd
m

(vi −
απ

H
cos(

πzi
H

) sin(kx− ωt+ φ)),

żi = ui.

Then, going through the same variable changes as for
the Lagrangian case, we arrive at

ẋi = vi (22a)

v̇i = −cd
m

(vi −
απ

H
wi sin(kxi − ωt+ φ))+ (22b)

cd
m

απ

H
sin(kxi − ωt+ φ)ei,

ėi = − π

H

√

1− d2iui − ẇi. (22c)
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We select the depth-control law with the same struc-
ture as (10) but now with the virtual control law given
by (19). The next result characterizes the asymptotic
convergence properties of the closed-loop system.

Theorem 5.4 (Asymptotic network rendezvous)
For any initial position (x(0), v(0)) ∈ R

2N , depth z(0) ∈
(0, H)N , ǫ ∈ R>0, and boundM ∈ R>0 on the magnitude
of depth control actuation, let the magnitude A of the
control law (19) satisfy

(

A2απ(2|N |max
cd
m

+ k) + ωAH
)

(1 + ǫ)

π(1− (1 + ǫ)2A2)
≤ M,

and the gain C ≥ (απ
H
A2(2|N |max

cd
m

+ k) + ωA)(1 + ǫ)
in the depth-control law (10). Then, all drifters asymp-
totically rendezvous under the dynamics of (22) with the
controllers (19) and (10), i.e., for all i, j ∈ {1, . . . , N},

lim
t→∞

xi(t)−xj(t)=0, lim
t→∞

vi(t)=0, lim
t→∞

zi(t)=
−H

2
.

PROOF. Under the stated hypotheses, note that, for
each i ∈ {1, . . . , N}, we have |wi| ≤ A and |ẇi| ≤
(απ
H
A2(2|N |max

cd
m
+k)+ωA) = h(A). Then, Lemma 4.3

implies that the depth-control law converges to the vir-
tual rendezvous control law in finite time. After this,
Proposition 5.3 guarantees asymptotic rendezvous in the
wave propagation direction. Depth convergence follows
by noting that, in finite time, di(t) = wi(t) and wi(t)
converges to 0. ✷

Figure 4 depicts the evolution of 5 drifters with second-
order dynamics executing the coordination algorithm.
Note that even though drifters start near the internal
wave mean depth, where their depth-control authority
is unsaturated, the flow pushes some of them in the
wrong direction. These drifters then change depth until
the flow is aligned with their desired direction of motion.
By repeatedly switching between being above and below
the wave depending on the flow direction, the drifters
asymptotically rendezvous.

One can also study the algorithm robustness properties
along lines similar to those of the first-order case.

For instance, in the case of additive errors in the virtual
controller,

ẋi = vi + γx,i, (23a)

v̇i = −cd
m

(vi −
απ

H
wi sin(kxi − ωt+ φ)) + γv,i, (23b)

one can readily adapt Proposition 4.7 to show that un-
der (23), the drifters converge to a neighborhood around
agreement in cd

m
x + v. Figure 5 illustrates this result.

The algorithm robustness against actuation errors in the
depth-controller can also be stated in a similar result
to Lemma 4.8 by just appropriately changing the func-
tion h in its statement.
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Fig. 4. This plot illustrates an evolution of 5 drifters
with second-order dynamics (4) executing the proposed dis-
tributed rendezvous algorithm (19)-(10). The parameters are
k = 2π

100

1

m
, ω = 2π

1000

1

s
, α = 10, cd

m
= 4, and H = 100m.

The drifters are initially located at (1,−20), (10,−30),
(50,−40), (150,−70) and (200,−75) with no horizontal ve-
locity, marked by ‘o’s. Their neighbors are the drifters ini-
tially on either side of them. The network converges to a
point around (113,−50), marked by ‘x’.
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Fig. 5. This plot illustrates an evolution of the virtual ren-
dezvous dynamics with additive error (23). The parameters
are k = 2π

100

1

m
, ω = 2π

1000

1

s
, α = 10, cd

m
= 4, and H = 100m.

The drifters are initially located at 1, 10, 50, 150 and 200 me-
ters with no horizontal velocity. They have constant errors in
(position, velocity) of (.002, .08), (−.004,−.02), (.004,−.04),
(−.004, .02), and (.002, .02) in (meters, meters per second).
They converge to a neighborhood around each other of about
5 meters. Note that there is a net horizontal displacement in
the wave propagation direction. This is due to the drifters
never quite converging to a depth of H

2
, where there is no

horizontal motion.

Remark 5.5 (Extension to individual drifter lo-
cation control) We note that the presented algorithm
can be extended to allow the drifters to converge to an
arbitrary horizontal location. For a given desired loca-
tion ξ, drifter i can reach it by moving towards a static
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’virtual’ drifter located at ξ. As a result, drifter i will
asymptotically converge to the horizontal location ξ and
depth −H

2 . •

6 Conclusions

We have considered a group of depth-actuated robotic
drifters deployed in a ocean flowfield generated by an in-
ternal wave that seek to perform coordinated rendezvous
for easy retrieval. We have synthesized a distributed al-
gorithmic solution that allows them to rely on the ocean
flowfield to asymptotically rendezvous in the wave prop-
agation direction for two different (Lagrangian and drag-
based) dynamical drifter models. Our design has em-
ployed a backstepping methodology, where we first syn-
thesize a rendezvousing controller assuming direct con-
trol in the horizontal direction is available and then de-
sign a depth-control law that is guaranteed to converge
to this controller in finite time. We have also investi-
gated the algorithms’ robustness properties of the depth-
control law against actuation errors and the virtual con-
trol law against errors in the knowledge of the flowfield
or the state of other drifters. Future work will be devoted
to extend our results to increasingly realistic scenarios,
including an internal wave plus nonperiodic currents, the
consideration of nonlinear second-order drifter dynam-
ics where the drag force is proportional to the square of
the relative velocity, the synthesis of strategies that only
rely on relative distance inter-drifter measurements, and
scenarios where the drifters’ control authority cannot al-
ways completely cancel the vertical wave dynamics.
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