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Abstract— This paper considers a team of spatially dis-
tributed drifters that move underwater under the influence of
an ocean internal wave. The team’s objective is to estimate
the physical parameters that determine the internal wave, use
the then-known ocean dynamics to rendezvous underwater, and
finally return to the surface as a cluster for easy retrieval. From
the structure of the internal wave, the ocean’s flowfield is time-
varying and spatially dependent on depth and position along
the wave propagation direction. The drifters can control their
depth by changing their buoyancy and are otherwise subject to
the horizontal flowfield at their given depth. We consider two
different drifter dynamical models: a first-order Lagrangian
model, useful when the drifter’s mass is sufficiently small, and
a second-order model, where the drag force caused by the water
accelerates the drifter. We propose provably correct distributed
algorithms that rely on the drifters opportunistically changing
their depth so that the ocean flowfield takes them in a desirable
direction to perform coordinated motion. The drifters converge
to the same depth and position along the wave propagation
direction asymptotically. Simulations illustrate our results.

I. INTRODUCTION

Internal waves are waves that propagate within a fluid,
rather than on its surface. The type considered here arise
when deep oceanic water is disturbed. Normally, water den-
sity varies continuously with depth and surfaces of constant
density are at a fixed depth. However, when the water
receives an energetic disturbance, it leads to time-varying,
sinusoidal profiles in the surfaces of constant density. This,
in turn, gives rise to a nonlinear, depth- and time-varying
dynamical model for the ocean, which can be parame-
terized by constants such as amplitude, wavenumber, and
frequency. In these scenarios, one can envision using a team
of robotic drifters to perform the dual task of estimating
the parameters that define the ocean flowfield induced by
an internal wave and then using this now-known model to
perform motion control. Here we are interested in distributed
control laws for rendezvous. Such coordination strategies
have important applications because, when oceanographers
deploy these robotic sensors, they must retrieve them after
the data is collected. However, with long deployment times,
the drifters may drift miles apart. For large numbers of
drifters, rendezvous strategies can make recovery easier. The
problem is challenging because the drifters can only control
their depth by changing their buoyancy and are otherwise
subject to the horizontal flowfield of the ocean at their given
depth. The basic idea of our rendezvous strategy is for
drifters to opportunistically change their depth so that the
ocean flowfield takes them in a desirable direction to perform
coordinated motion.
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Literature review: Internal waves are associated with high
concentrations of various types of planktonic organisms and
small fishes [1], [2], as well as an agent of larval trans-
port [3]. This makes their study important to oceanographers,
see e.g., [4], [5] and references therein. Many internal wave
models exist in the literature [6], [7]; here, we consider
two continuously depth-dependent models proposed in [8].
Scientists widely use drifters drifting passively as monitoring
platforms to gather relevant ocean data [9], [10]. The use of
autonomous underwater vehicles to detect and characterize
internal waves is a relatively new approach. Whereas pre-
vious works use ocean measurements such as conductivity,
temperature, pressure data [11], [12] or vertical flow veloc-
ity [13] to detect and analyze internal waves, our recent
work [14] is unique in using inter-vehicles measurements
for depth-independent internal wave models. This work is
also connected to the increasing literature that deals with
cooperative networks of agents estimating spatial natural
phenomena, including ocean [15], [16], river [17], and hur-
ricane sampling [18]. Furthermore, it is tied to works related
to motion planning in oceanic flows. Recent work [19]
explores the possibility of actively selecting tidal currents
so that drifters can autonomously reach a desired destination.
Other researchers have also dealt with marine robots moving
through strong flowfields where their actuation is limited and
therefore cannot completely compensate the flow [20], [21].
Because the drifters control their vertical velocity which, in
turn, affects their depth-dependent horizontal velocity, we use
a backstepping framework [22]. We design a virtual control
law, based on Laplacian agreement dynamics [23], which
causes the drifters to rendezvous and a depth-control law
which converges to this virtual control law.

Statement of contributions: We develop a solution to a
two-part problem for a group of robotic drifters: determine
the parameters of a oceanic internal wave flowfield and
then use this knowledge to autonomously rendezvous for
easy recovery. In the first part, we introduce a new method
to estimate the parameters of a depth-dependent internal
wave which specifically harnesses the added structure of
the depth-dependency. The bulk of the paper is concerned
with developing a distributed rendezvous method for the
team of drifters. We develop distributed control law allowing
all drifters to asymptotically rendezvous under two different
drifter dynamical models. In the first (Lagrangian) model, we
assume that the drifters are sufficiently small, and so, their
velocity is equal to that of the ocean’s velocity at their current
location. In the second (drag-based) model, we assume that
drifters are accelerated by a drag force proportional to the
difference in their velocity and the ocean’s. The rendezvous



problem is difficult for two reasons. First, since the drifters
may only directly change their vertical depth in the water
column, they must then rely on the horizontal current at
that depth to move them towards rendezvous. Second, the
flowfields are time-varying, creating situations where peri-
odically the drifters have not enough and even no control
authority. Our technical approach is broken into two stages.
First, assuming drifters have direct control in the horizontal
direction, we design a provably correct law, that we term
‘virtual’, that allows all drifters to rendezvous despite the
time-varying control authority. Second, we design a depth-
control law for the true system and establish its convergence
to the virtual control law in finite time. The desired property
of asymptotic rendezvous for the full dynamics then follows.
Several simulations illustrate our results. For reasons of
space, we omit the proofs, which will appear elsewhere.

II. PRELIMINARIES

This section contains some preliminary notation. Let R,
and R>0 denote the set of all and positive real numbers,
respectively. Given a set of points P ⊂ Rd, let the convex
hull co(P ) of P be the smallest convex set which contains
P . We let B(Rd) be the collection of all subsets of Rd.
The saturation function sat : R × R>0 → R is defined as
sat(x,M) = M if x > M , sat(x,M) = −M if x < M ,
and sat(x,M) = x if −M ≤ x ≤ M . The sign function
sgn : R → R is defined as sgn(x) = 1 if x > 0, sgn(x) =
−1 if x < 0, and sgn(0) = 0.We let L denote the Laplacian
matrix of a line graph

L =
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III. PROBLEM STATEMENT

This section presents the internal wave and drifter models
and a formal problem statement.

A. Internal wave model

The internal wave models are specified in a global ref-
erence frame Σ = (p, {ex, ey, ez}). The origin p is an
arbitrary point at the ocean surface; the vector ex corresponds
to the direction of wave propagation, which we assume
parallel to the ocean bottom, and ez is perpendicular to
the ocean bottom, pointing from bottom to surface. The
coordinates induced by Σ are {x, y, z}. Following [8], we
consider a continuously stratified density profile and the
mode-1 internal waves produced in it. Here, a fluid has
a finite depth H and the density increases linearly from
ocean surface to ocean bottom. This leads to the following
horizontal and vertical flowfields, cf. Figure 1, induced by

the presence of the internal wave,

fx(x, z, t) =
απ

H
cos
(πz
H

)
sin(kx− ωt+ φ), (1a)

fz(x, z, t) = −αk sin
(πz
H

)
cos(kx− ωt+ φ). (1b)

Here, α is the ordering parameter proportional to the wave
amplitude, H is the water column depth, k is the horizontal
wavenumber, ω is the frequency, and φ is the initial phase.

Fig. 1. The plot illustrates the dependency of internal wave flowfield
cf. (1) as a function of depth (-z-direction) and wave propagation direction
(+x-direction) at one time instant. As the wave propagates to the right, the
flowfield translates to the right at a fixed speed.

This wave model does not produce motion in the y-
direction and depends continuously on depth as a result of
the dependency of density on depth. This adds an additional
layer of complexity with respect to simpler, two-layer fluid
models where the flowfield changes discontinuously at the
wave interface, such as the ones considered in [24], [4]. In
fact, our developments here are based on the observation
that the added complexity can be leveraged to allow for
coordinated motion of the drifters. There exist other continu-
ously stratified models for internal waves, see [8], such as the
hyperbolic tangent model capturing the density depth profile
of deep ocean water. Although we do not consider them for
reasons of space, our proposed design could be adapted to
produce similar results to the ones presented here.

B. Drifter model

A drifter is a submersible buoy which can drift in the
ocean, unattached to the ocean floor or a boat, and is able
to change its depth in the water by controlling its buoyancy.
A drifter can measure its own absolute position and relative
distance to nearby drifters. Although GPS is not available
underwater, oceanographers can deploy a grid of acoustic
pingers to provide absolute position to the drifters. The
drifters, equipped with hydrophones, can determine their
location based on the travel time of the pingers’ pulses [25],
[26]. Consider a group of N drifters, each with a reference
frame Σi = (pi, {exi

, eyi , ezi}), i ∈ {1, . . . , N}, attached to
it. The origin pi corresponds to the location of the drifter. In
general, this reference frame might not be aligned with the
global wave frame Σ. However, for simplicity, we assume
the drifters know the rotation between frames. Our previous
work [14] shows how each drifter can determine the rotation



between its local frame and the global frame by using relative
distance and distance derivative measurements. The drifters
can change its vertical velocity via buoyancy control.

Different models exist to describe an object’s dynamics
within an ocean flowfield. The classical drag-based model is
a second-order dynamics where the object feels a drag force
that is a function of the difference in velocity between the
flowfield and the object [27]. Instead, objects that are very
small or are in laminar flows are driven by a second-order
dynamics where acceleration is governed by Stokes drag,

ẋi = vi, (2a)

v̇i = −cd
m

(vi − fx(xi, zi, t)) (2b)

żi = fz(xi, zi, t) + ui. (2c)

Here, cd is the drag parameter and m is the combined drifter
mass and inertial added mass [27]. We also consider first-
order Lagrangian dynamics, where the drifter’s velocity is
equal to ocean’s velocity at its current location,

ẋi = fx(xi, zi, t), (3a)
żi = fz(xi, zi, t) + ui. (3b)

Note that as the mass m tends to zero, the second-order
dynamics models become the first-order Lagrangian model.

C. Problem statement

Consider a group of N spatially distributed drifters that
move underwater under the influence of an ocean internal
wave. The overall objective is to estimate the physical
parameters that determine the internal wave, use the then-
known ocean dynamics to rendezvous underwater, and finally
return to the surface as a cluster for easy retrieval. Formally,
let the N drifters be at initial states x(0), v(0), z(0). All
drifters i in {1, . . . , N} have continuous access to xj , vj ,
v̇j , and zj , for j in {i − 1, i, i + 1}. Under the influence
of the flowfield (1), the drifters must first use their local
measurements to determine the parameters which define their
motion: α, k, ω, and φ. After that, they should enact an
algorithm so that they may surface near each other. Our
objective is to design a distributed feedback control law that
makes all drifters rendezvous at a common location in the
wave propagation direction, i.e.,

lim
t→∞

xi(t)− xj(t) = 0, ∀i, j ∈ {1, . . . , N}.

In practical implementation, once rendezvous is achieved to a
desired level of accuracy, drifters can surface synchronously
near each other for easy retrieval.

IV. INTERNAL WAVE PARAMETER ESTIMATION

Our previous work [14] has provided one solution to the
problem of estimating the parameters of linear interfacial
internal waves for first-order drifters. Though the ocean
model considered there is simpler, the proposed algorithm
may be readily adapted to determine the parameters of
depth-dependent internal waves when the drifters maintain
a prescribed depth. Here, we introduce a new parameter

identification strategy that specifically utilizes the added
structure of depth-dependent wave models and the knowl-
edge of absolute position. The motion for a depth-keeping
particle in an interfacial internal wave is given by [24]

ẋ =
aω

zuk
sin(kx− ωt+ φ) (4)

One can solve (4) to find the analytic expression for a depth-
keeping particle’s trajectory influenced by an internal wave.

Lemma 4.1: (Depth-keeping drifter motion [14]) The so-
lution of (4) starting from x(0) is

x(t) =
ω

k

(
1−

√
1− (a/zu)

2
)
t+ Ξ(t)− φ

k
,

Ξ(t) =
2

k
tan−1

( a
zu
−
√

1−
( a
zu

)2
tan

(πt
T

+ Λ0

))
− 2π

k

⌊
t

T
+

Λ0

π
−
⌊
kx(0) + φ+ π

2π

⌋
+

1

2

⌋
+

2π

kT
t,

with period T and initial condition Λ0 as

T =
2π

ω

√
1− (a/zu)

2
,

Λ0 = tan−1

(
1√

1− (a/zu)
2

(
a

zu
− tan

(
kx(0) + φ

2

)))
.

Now, we adapt Lemma 4.1 to depth-keeping particles
in (1). The dynamics of the depth-keeping particle is

ẋ =
απ

H
cos(

πz

H
) sin(kx− ωt+ φ) (5)

Using Lemma 4.1, one finds that the period T of the
particle’s motion at depth z is

T (z) =
2π

ω

√
1−

(
απ
ωH cos(πzH )

)2 (6)

and the net displacement ∆xT of the particle over one period
T while at depth z is

∆xT (z) =
2π

k

(
1−

√
1−

(
απ
ωH cos(πzH )

)2)
√

1−
(
απ
ωH cos(πzH )

)2 . (7)

We detail next the procedure to determine the parameters.
Lemma 4.2: (Determination of wave parameters) If a

drifter waits at two different depths z1 and z2 for one period
at each depth, recording the periods T1 and T2 and the
displacement ∆xT (z1), the parameters ω, α, and k can be
uniquely determined by solving (6) and (7). Finally, the
other parameter φ can be found by solving (5) and using
knowledge of v(t), x(t), and ω, α, and k .

V. RENDEZVOUS OF FIRST-ORDER DRIFTERS

This section details the rendezvous control law for a group
of first-order drifters. We assume that all drifters know the
wave parameters. Since the drifters do not have direct control
in the x-direction, we break the design in two steps,



[Informal description]: We employ a two-part,
backstepping strategy. First, we assume we can ac-
tuate in the x-direction and design a virtual control
law that causes the drifters to rendezvous. Second,
we design the depth-control law that converges to
and tracks the virtual control law in finite time.

A. Virtual rendezvous control law

Here we design a control law that achieves rendezvous
when direct control authority is available in the x-direction.
For each i ∈ {1, . . . , N}, we consider the dynamics

ẋi =
απ

H
wi sin(kxi − ωt+ φ), (8)

where wi is the ‘virtual’ control. Specifically, we design the
distributed controller with design parameter A ∈ R>0,

wi(x, t)=−A tanh(Lx)i sin(kxi−ωt+φ). (9)

The closed-loop dynamics is

ẋi = −Aαπ
H

tanh(Lx)i sin(kxi − ωt+ φ)2. (10)

This controller has two terms. The first, −A tanh(Lx)i,
pushes agents in the direction of the average of their
neighbors and could be implemented with relative distance
measurements. The second, sin(kxi−ωt + φ), ensures that
the ocean flow always pushes agents in the right direction, as
seen in (10). This second term requires absolute position in-
formation to know which direction the wave is currently The
next result shows that the state of the drifters following (10)
remains bounded.

Lemma 5.1: (Boundedness of the trajectories) Given any
x(0) ∈ RN for the group of drifters, the network trajectory
under (10) satisfies x(t) ∈ [x(0)min, x(0)max]N for all t ≥ 0.

We combine the boundedness of the drifters’ evolution
stated in Lemma 5.1 with Barbalat’s Lemma [22], to deduce
that the closed-loop dynamics (9) makes the drifters asymp-
totically rendezvous in the wave propagation direction.

Proposition 5.2: (Asymptotic network rendezvous) Given
any x(0) ∈ RN for the group of drifters, the dynamics (10)
makes the network rendezvous in the x-direction,

lim
t→∞

xi(t)− xj(t) = 0, ∀i, j ∈ {1, . . . , N}.

B. Backstepping depth-control law

Here, we build on the developments of Section V-A to
design a depth-control law that achieves the desired network
objective for the drifter dynamics (3). We make the assump-
tion that each drifter has enough control authority in the
vertical direction to cancel the vertical motion induced by
the wave, and that the magnitude of the remaining control is
bounded by M . For simplicity, we abuse notation to re-define
ui to be the control after canceling the vertical motion fz .
Thus, for each i ∈ {1, . . . , N}, we rewrite (3) as

ẋi =
απ

H
cos
(πzi
H

)
sin(kxi − ωt+ φ), żi = ui,

where |ui| ≤M . Defining di = cos(πziH ),

ẋi =
απ

H
di sin(kxi − ωt+ φ), ḋi = − π

H

√
1− d2iui,

where di is constrained to [−1, 1]. We refer to it as the
‘transformed depth’. Given the discussion of Section V-A,
our basic idea is to synthesize a design that makes the
drifter’s transformed depth track the virtual control law (9).
Consequently, we define the error variables ei = di−wi and
rewrite the dynamics in terms of xi and ei as

ẋi=
απ

H

(
wi sin(kxi−ωt+φ)+ei sin(kxi−ωt+φ)

)
, (11a)

ėi=−
π

H

√
1− d2iui − ẇi. (11b)

Our proposed design is the depth-control law,

ui(d, x, t) = (12)

satM

( H

π
√

1− d2i
(C sgn(di − wi(x, t))−ẇi(x(t), t))

)
,

where ẇi(x(t), t) is the total derivative and C ∈ R>0 is a
design parameter. We next show that this controller makes
the transformed depth converge to a generic virtual control
law in finite time if the magnitude of the control law and its
time derivative are small enough.

Lemma 5.3: (Finite-time convergence to virtual control
law) Let M ∈ R>0 and d(0) ∈ (−1, 1)N . Suppose there
exist ε, β ∈ R>0 and a continuous and increasing function
h : R≥0 → R≥0 with h(0) = 0 such that the magnitude of
g : R≥0 → R and its derivative are uniformly bounded by β
and h(β), respectively, and

Hh(β)(1 + ε)

π(1− (1 + ε)2β2)
≤M. (13)

Then, for any C ≥ h(β)(1+ε), the error variables ei, for all
i ∈ {1, . . . , N}, evolving the dynamics (11b) with control
law (12) converges to 0 in finite time.

Because the result does not consider the exact form of the
virtual control law, we are able to re-use the designed depth-
control law for the second-order case in Section VI. The next
result states that under (11) with distributed control given
by (9) and (12), all drifters rendezvous in the x-direction.

Theorem 5.4: (Asymptotic network rendezvous) For any
x(0) ∈ RN , depth z(0) ∈ (0, H)N , ε ∈ R>0, and bound
M ∈ R>0 on the magnitude of depth control actuation, let
the magnitude A of the virtual control law (9) satisfy

H((4 + k)απH A2 + ωA)(1 + ε)

π(1− (1 + ε)2A2)
≤M,

and the gain C ≥ ((4+k)απH A2 +ωA)(1+ ε) in (12). Then,
all drifters asymptotically rendezvous under (11) with the
controllers (9) and (12), i.e., for all i, j ∈ {1, . . . , N},

lim
t→∞

xi(t)− xj(t) = 0, lim
t→∞

zi(t) =
−H

2
.

Figure 2 depicts the evolution of 4 drifters performing
rendezvous. Because the drifters start near the top/bottom of
the ocean, their depth-control authority is saturated and some



of them are therefore pushed in the wrong direction. As they
move towards the middle, their depth-control is no longer
saturated and then they are successfully able to rendezvous.
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Fig. 2. This plot illustrates an evolution of the proposed distributed
rendezvous algorithm ((9)-(12)) for the Lagrangian dynamics (11) for a
group of 4 drifters. The parameters are k = 2π

50
1
m , ω = 2π

50
1
s , α = 10, and

H = 100m. The drifters are initially at (0,−10), (16,−25), (32,−75)
and (80,−95), marked by the ’o’s. Their neighbors are the drifters on either
side of them initially. They converge to around (52,−50).

VI. RENDEZVOUS OF SECOND-ORDER DRIFTERS

Here we adapt the method developed in Section V to the
linear, second-order model (2) for the drifter dynamics. As
before, our starting point is the assumption that all drifters
know the wave parameters (in fact, one can determine them
using measurements collected by the drifters and fitting
them (2) but we do not present this discussion here).

A. Virtual rendezvous control law

We begin by designing a control law wi, i ∈ {1, . . . , N},
assuming that the drifters can directly actuate their own x-
acceleration through their depth, i.e.,

ẋi = vi, v̇i = −cd
m

(vi −
απ

H
wi sin(kxi − ωt+ φ)),

Our proposed distributed design is

wi(x, v, t)=−Asin(kxi−ωt+φ)tanh(L(
cd
m
x+v)i) (14)

so that the closed-loop dynamics takes the form

ẋi = vi, (15a)

v̇i = −cd
m

(
vi +

απ

H
sin2(kxi − ωt+ φ)·

A tanh(L(
cd
m
x+ v)i

)
. (15b)

The next result shows that each drifters’ sum of position and
velocity remains bounded.

Lemma 6.1: (Boundedness of the sum of position and ve-
locity) Given any initial condition (x(0), v(0)) ∈ R2N for the
group of drifters, the network trajectory under (15) satisfies
cd
mx(t) + v(t) ∈ [( cdmx(0) + v(0))min, (

cd
mx(0) + v(0))max]N

for all t ≥ 0.

Building on Lemma 6.1, we next show that, in fact, the
position of the drifters remains bounded as well.

Lemma 6.2: (Boundedness of position) Given any ini-
tial condition (x(0), v(0)) ∈ R2N for the group of
drifters, the network trajectory under (15) satisfies x(t) ∈
[x(0)min, x(0)max]N , for all t ≥ 0.

We are now ready to show that the drifters all converge
to rendezvous in the x-direction under the control law (15).

Proposition 6.3: (Asymptotic network rendezvous) Given
any initial condition (x(0), v(0)) ∈ R2N for the group of
drifters, the dynamics (15) makes the network rendezvous in
the x-direction: for all i, j in {1, . . . , N}

lim
t→∞

xi(t)−xj(t)=0, lim
t→∞

vi(t)=0.

B. Backstepping depth-control law

As before, we re-define the control authority ui to be the
remaining control after canceling the vertical dynamics, so
that the dynamics looks,

ẋi = vi, żi = ui.

v̇i = −cd
m

(vi −
απ

H
cos(

πzi
H

) sin(kx− ωt+ φ)),

Then, going through the same variable changes as for the
Lagrangian case, we arrive at

ẋi = vi (16a)

v̇i = −cd
m

(vi −
απ

H
wi sin(kxi − ωt+ φ))+ (16b)

cd
m

απ

H
sin(kxi − ωt+ φ)ei,

ėi = − π
H

√
1− d2iui − ẇi. (16c)

We select the depth-control law with the same structure
as (12) but now with the virtual control law given by (14).
The next result characterizes the asymptotic convergence
properties of the closed-loop system.

Theorem 6.4: (Asymptotic network rendezvous) For any
initial position (x(0), v(0)) ∈ R2N , depth z(0) ∈ (0, H)N ,
ε ∈ R>0, and bound M ∈ R>0 on the magnitude of depth
control actuation, let the magnitude A of the law (14) satisfy(

A2απ(4 cdm + k) + ωAH
)
(1 + ε)

π(1− (1 + ε)2A2)
≤M,

and the gain C ≥ (απH A2(4 cdm +k)+ωA)(1+ε) in the depth-
control law (12). Then, all drifters asymptotically rendezvous
under the dynamics of (16) with the controllers (14) and (12),
i.e., for all i, j ∈ {1, . . . , N},

lim
t→∞

xi(t)−xj(t)=0, lim
t→∞

vi(t)=0, lim
t→∞

zi(t)=
−H

2
.

Figure 3 depicts the evolution of 5 drifters performing
rendezvous with second-order dynamics. Note that even
though drifters start near the internal wave mean depth where
their depth-control authority is not saturated, for some of the
drifters, the flow was going in the wrong direction. Thus,
they change depth until the flow is aligned with their desired
direction of motion. By repeatedly switching between being



above the wave and below it depending on the flow, the
drifters asymptotically rendezvous.
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Fig. 3. This plot illustrates an evolution of the proposed distributed
rendezvous algorithm ((14)-(12)) for the Lagrangian dynamics (11). The
parameters are k = 2π

100
1
m , ω = 2π

1000
1
s , α = 10, cd

m
= 4, and H =

100m. The drifters, initially located at (1,−20), (10,−30), (50,−40),
(150,−70) and (200,−75) with no horizontal velocity, are marked by the
’o’s. Their neighbors are the drifters on either side of them initially. They
converge to around (113,−50).

VII. CONCLUSIONS

We have developed distributed algorithmic solutions for
a group of robotic drifters that allow them to estimate the
parameters of a oceanic internal wave flowfield and use
this knowledge to perform coordinated rendezvous for easy
recovery. Regarding the first task, we have introduced a novel
distributed estimation method that relies on drifters having
absolute position information and inter-drifter distance mea-
surements. Regarding the second task, we have developed
distributed control laws for two different dynamical (La-
grangian and drag-based) models that allow all drifters to
asymptotically rendezvous in the wave direction. Our design
employs a backstepping methodology, where we first syn-
thesize a rendezvousing controller assuming direct control in
the horizontal direction is available and then design a depth-
control law that is guaranteed to converge to this controller
in finite time. Future work will be devoted to extend our
results to increasingly realistic scenarios, including the con-
sideration of other wave models [8], the presence of multiple
internal waves, the ability to estimate wave parameters for
second-order drifter dynamics, the consideration of nonlinear
second-order drifter dynamics, and the synthesis of strategies
that only rely on relative distance inter-drifter measurements.
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