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Abstract— This paper considers a network of agents whose
objective is for the aggregate of their states to converge to
a solution of a linear program. We assume that each agent has
limited information about the problem data and communicates
with other agents at discrete times of its choice. Our main
contribution is the development of a distributed continuous-time
dynamics and a set of state-based rules, termed triggers, that
an individual agent can use to determine when to broadcast its
state to neighboring agents to ensure convergence. Our technical
approach to the algorithm design and analysis overcomes a
number of challenges, including establishing convergence in
the absence of a common smooth Lyapunov function, ensuring
that the triggers are detectable by agents using only local
information, and accounting for the asynchronism in the state
broadcasts of the agents. Simulations illustrate our results.

I. INTRODUCTION

The global objective of many multi-agent systems can be
formulated as an optimization problem where the individual
agents’ states are the decision variables. Due to the inherent
network structure of these problems, much research has been
devoted to developing local dynamics for each agent such
that the aggregate of their states converge to a solution of
the optimization problem. From an analysis viewpoint, the
availability of powerful concepts and tools from stability
analysis makes continuous-time coordination algorithms ap-
pealing. However, their implementation requires continuous
information flow among agents. On the other hand, discrete-
time algorithms are amenable to real-time implementation,
but the selection of the stepsizes to guarantee convergence
has to take into account worst-case situations, leading to an
inefficient use of the network resources. In this paper we seek
to combine the advantages of both approaches by designing
a distributed continuous-time dynamics that relies on event-
triggered communication to solve linear programs.
Literature review. The present work has connections with
three main areas: distributed optimization, event-triggered
control, and switched and hybrid systems. The literature
on distributed optimization of multi-agent systems is vast
and includes dual-decomposition [1], alternating direction
method of multipliers [2], subgradient projection algo-
rithms [3], [4], [5], auction algorithms [6], and saddle-point
dynamics [7], [8]. The works [9], [10] propose algorithms
specifically designed for distributed linear programming.
In [9], the goal is for agents to agree on the global solution.
In [10], instead, the goal is for the aggregate of agents’ states
to converge to a solution. Event-triggered control seeks to
trade computation and decision-making for less communica-
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tion, sensing or actuation effort while guaranteeing a desired
level of performance, see e.g., [11], [12], [13] and references
therein. A few works [14], [15], [16] have explored the
design of distributed event-triggered optimization algorithms
for multi-agent systems. A major difference between event-
triggered stabilization and optimization is that in the former,
the equilibrium is known a priori, whereas in the latter the
determination of the equilibrium point is the objective itself.
Finally, our work here is related to the literature on switched
and hybrid systems [17], [18], [19]. To the authors’ knowl-
edge, this work is the first to consider an event-triggered
implementation of a state-dependent switched dynamical
system. A unique challenge that arises in this scenario is that
the use of outdated state information by an event-triggered
implementation may cause the system to miss a mode switch.
Statement of contributions. Our main contribution is the
design of a distributed continuous-time dynamics and a set of
distributed criteria to trigger state broadcasts among agents
that enable a network of agents to collectively solve a linear
program. Our starting point is an extension of the continuous-
time dynamics for linear programming we introduced in [10].
We design a centralized event-triggered communication law
and characterize its convergence properties. In doing so, we
overcome the fact that a strict Lyapunov function is unknown
for the original continuous-time dynamics by introducing a
discontinuous potential function and examining its evolution
during intervals where state-broadcasts do not occur. The fact
that our potential function lacks some properties of a true
Lyapunov function, such as continuity, complicates our proof
of convergence. We draw on some concepts from switched
and hybrid systems but, to our knowledge, the specific
challenges we face have not been explored in the literature.
Using the centralized design as motivation, we design a
distributed event-triggered communication law. Because the
centralized triggers are not locally detectable by individual
agents, we are forced to relax some of them. We show that
the relaxed triggers preserve the necessary decrease in the
potential function and state a convergence result for the fully
distributed implementation. In addition, we derive sufficient
conditions for executions to be persistently flowing (that is,
state broadcasts are separated by a uniform time infinitely
often). We show that the asynchronous state broadcasts can-
not be the cause of non-persistently flowing executions and
conjecture that all executions are persistently flowing. For
space reasons, proofs are omitted and will appear elsewhere.

II. PRELIMINARIES

Here we introduce notation and notions of hybrid systems.
Notation: For x ∈ Rp, x ≥ 0 means that every component of



x is non-negative. The maximum component of x is ||x||∞.
For a matrix A, its ith row is ai, its (i, j)-element is ai,j ,
and its spectral radius is ρ(A). Given sets S1, S2 ⊆ Rp, the
elements that are in S1 but not S2 are S1 \ S2. A function
f : X → R is Lipschitz on X if, for some constant K and for
all x1, x2 ∈ X , it holds that ||f(x1)−f(x2)|| ≤ K||x1−x2||.
f is convex if for all x1, x2 ∈ X and all λ ∈ [0, 1] it holds
that f(λx1+(1−λ)x2) ≤ λx1+(1−λ)x2. f is concave if −f
is convex. The generalized gradient of f at x̂ ∈ X , denoted
∂f(x̂), is the set of v such that f(x) − f(x̂) ≥ vT (x − x̂)
for all x ∈ X . If g : X × Y → R, then ∂xg(x, y) (resp.
∂yg(x, y)) is the generalized gradient of x 7→ g(x, y) (resp.
y 7→ g(x, y)). For c ∈ R, f−1(≤ c) is the set of x ∈ X such
that f(x) ≤ c. Given V : Rp → R and F : Rp → Rp, the
Lie-derivative of V along F at x is LFV (x).
Hybrid systems: These basic notions on hybrid systems
follow closely the exposition found in [19]. A hybrid system
H = (f, g, C,D) is a dynamical system of the form

ẋ = f(x), x ∈ C, (1a)
x+ = g(x), x ∈ D. (1b)

A function ψ(t, j) is a solution to the hybrid system (1) if

(i) for all j ∈ N such that Ij := {t : (t, j) ∈ domψ} has
non-empty interior

ψ(t, j) ∈ C, ∀t ∈ int(Ij),

ψ̇(t, j) = f(ψ(t, j)), for almost all t ∈ Ij .
(ii) for all (t, j) ∈ domψ such that (t, j + 1) ∈ domψ

ψ(t, j) ∈ D,
ψ(t, j + 1) = g(ψ(t, j)).

We call ψ persistently flowing if

(i) ([tJ ,∞), J) ⊂ domψ for some J ∈ N, or
(ii) there exists a τP > 0 and an infinite increasing

sequence {jk}∞k=0 ⊂ N such that ([tjk , tjk +τP ], jk) ⊂
domψ for each k ∈ N.

III. PROBLEM STATEMENT AND NETWORK MODEL

Our main motivation for this paper is to solve, in a multi-
agent setting, a standard form linear program

min{cTx : Ax = b, x ≥ 0}, (2)

where c, x ∈ Rn, b ∈ Rm, and A ∈ Rm×n for n,m ∈ N. We
assume that (2) is feasible with a finite optimal value and let
X ⊆ Rn denote the set of its solutions. We also make the
following standing assumption of the matrix A:

SA #1: ρ(ATA) ≤ 1.

This assumption is made without loss of generality and the
results of the paper can easily be extended to the case when
ρ(ATA) > 1; its purpose is simply to ease notation.
The multi-agent setting that we consider is described at a
high-level as follows: Consider a collection of agents, each
with a unique identifier i ∈ {1, . . . , n} and associated state

xi. The goal of the network is for the aggregate of the agents’
states, x = (x1, . . . , xn), to converge to a solution of (2).
However, each agent i knows only its own state and the
following limited data: ci and the non-zero elements of any
row a` (and the associated b`) of A where a`,i 6= 0. In
addition, we assume that if xi and xj appear in a common
constraint then i and j can communicate their states to each
other. Even though two agents can communicate, we assume
that messages can only be sent at discrete instances. We
model this setup using a hybrid system, and the essence of
the problem we solve is captured in the following.

Problem Statement III.1 (Distributed event-triggered
linear programming). Design a hybrid system of the form:
for each i ∈ {1, . . . , n}

ẋi = gi(x̂), if (x, x̂) /∈ Ti, (3a)

x̂+i = xi, if (x, x̂) ∈ Ti, (3b)

such that

(i) gi is computable by agent i and the inclusion (x, x̂) ∈
Ti is detectable by agent i using local information and
communication, and

(ii) the aggregate of the agents’ states converge to a
solution of (2).

The interpretation of Problem III.1 is as follows: agents
use the last broadcast state x̂ of their neighbors’ states to
compute their continuous-time flow as modeled by (3a).
While flowing, there is no dynamics for x̂i, i.e., ˙̂xi = 0
when (x, x̂) /∈ Ti. The condition (x, x̂) ∈ Ti is a state-based
trigger used by agent i to know when it should broadcast its
current state xi to its neighbors. The broadcast procedure is
modeled by the jump relation (3b). Similarly, it is implied
that x+i = xi when (x, x̂) ∈ Ti. Note that there is dynamical
coupling between agents through the broadcast state x̂ only.

IV. CONTINUOUS-TIME DISCONTINUOUS DYNAMICS

This section begins the process of solving Problem III.1 by
first designing the local continuous-time dynamics for each
agent (i.e., functions gi). The design rationale we employ is
to design g = (g1, . . . , gn) such that (i) each gi is computable
by agent i and (ii) the trajectories of ẋ = g(x) converge
to a solution of (2). A dynamics of this type has been
proposed in [10], however it does not lend itself well to
an event-triggered implementation, which is our ultimate
goal. Nevertheless, the design approach that we employ is
analogous to the one found in that paper.

A. Continuous-time saddle-point dynamics

The general approach we use for designing the continuous-
time dynamics is to define an augmented Lagrangian function
based on some optimization problem and then derive the
natural saddle-point dynamics for that function. We start by
introducing the aforementioned optimization problem,

min{cTx+ 1
2x

Tx : Ax = b, x ≥ 0}. (4)



We use this regularization rather than (2) itself because
the resulting algorithm is amenable to an event-triggered
implementation (we will revisit this fact in Section VI). We
make the following standing assumption regarding (4)

SA #2: the solution of (4) is a solution of (2).

It is well understood in the optimization literature that SA #2
can be made true by appropriately scaling the objective
direction c (see e.g., [20]). Thus, SA #2 is again made with-
out loss of generality. Next, we establish a correspondence
between the solution of (4) and the saddle points of an
associated augmented Lagrangian function.

Lemma IV.1 (Solutions of (4) as saddle points). For K ≥
0, consider the function

LK(x, z) = cTx+ 1
2x

Tx+ 1
2 (Ax− b)T (Ax− b)

+ zT (Ax− b) +K1Tn max{0,−x}.
Then, LK is convex in x and concave in z. Suppose that x∗ ∈
Rn (resp. z∗ ∈ Rm) is the solution to (4) (resp. a solution
to the dual of (4)). Then, for K > ‖c+ x∗ +AT z∗‖∞,

(i) (x∗, z∗) is a saddle point of LK ,
(ii) if (x̄, z̄) is a saddle point of LK , x̄ is a solution of (2).

As a way of solving (2), the above result suggests using the
saddle-point dynamics associated to the Lagrangian function,

ẋ ∈ −∂xLK(x, z), (5a)

ż = ∂zL
K(x, z). (5b)

This saddle-point dynamics is well-defined since LK is
Lipschitz. In fact, one can show that any bounded trajectory
of the following (continuous-time discontinuous) dynamics

ẋi =

{
fi(x, z), if xi > 0,

max{0, fi(x, z)}, if xi = 0,
i ∈ {1, . . . , n}, (6a)

ż = Ax− b, (6b)

where f(x, z) = −(AT z+c+x)−AT (Ax−b), is a trajectory
of (5). This is the dynamics that we design an event-triggered
implementation for in the next sections.

B. Distributed implementation

Let us now explore the distributed implementation of (6)
based on the network model alluded to in Section III. The
dynamics of the auxiliary variables z ∈ Rm can be inter-
preted as internal to the system. For purposes of analysis, we
consider m virtual agents with identifiers {n+1, . . . , n+m}
where virtual agent n + ` has state z` and knows the data
a` and b` (in actual implementation, the state and dynamics
of a virtual agent can be stored and implemented by one of
the real agents). For each ` ∈ {1, . . . ,m}, the set of agents

{i ∈ {1, . . . , n} : a`,i 6= 0} ∪ {n+ `},
can communicate their state information to each other. In
words, if xi and xj appear in constraint `, then agents i, j,

and n + ` can communicate with each other. The set of
all agents that i can communicate with is denoted Ni (the
neighbor set of i). The set of real (resp. virtual) neighbors of
i is N x

i := Ni∩{1, . . . , n} (resp. N z
i := Ni∩{n+1, . . . , n+

m}). Under these assumptions, it is straight forward to verify
that real agent i ∈ {1, . . . , n} can compute fi(x, z) using
local information and can thus implement ẋi = fi(x, z).
Likewise, a virtual agent n + ` ∈ {n + 1, . . . , n + m} can
compute and implement the dynamics ż` = aT` x− b`.

V. CENTRALIZED EVENT-TRIGGERED DESIGN

Now that we have defined the agents’ dynamics during
continuous-time flow, we turn our attention to the design of
the state-based broadcast trigger sets, Ti (cf. Problem III.1).
However, in this preliminary design, we only concern our-
selves with a centralized trigger. The next section will design
a distributed version of the design here. In light of the
developments thus far, it is helpful to formally state the
problem we solve here in terms of the dynamics (6).

Problem Statement V.1 (Centralized event-triggered lin-
ear programming). Design a hybrid system of the form: if
(x, z, x̂, ẑ) /∈ T c then

ẋi =

{
fi(x̂, ẑ), x̂i > 0,

max{0, fi(x̂, ẑ)}, x̂i = 0,
i ∈ {1, . . . , n}, (7a)

ż = Ax̂− b, (7b)

and, if (x, z, x̂, ẑ) ∈ T c, then

(x̂+, ẑ+) = (x, z), (7c)

such that the aggregate of the real agents’ states, x, con-
verges to a solution of the linear program (2).

The set T c is called the centralized trigger set and we do
not put any restrictions on individual agents being able to
detect the inclusion (x, z, x̂, ẑ) ∈ T c. Also, note that in our
centralized event-triggered setup the state broadcasts are per-
formed synchronously as modeled by (7c). The organization
of this section is as follows. We first introduce a compact
notation to represent (7) that will be useful in our analysis.
Then we introduce a certain potential function and design T c
such that its evolution is decreasing along solutions of (7).
We conclude with a convergence result.

A. Compact notation to represent (7)

In the analysis that follows, we require a more compact
notation to represent the hybrid system (7). Denote by
σ(x̂, ẑ) the set of i for which ẋi = fi(x̂, ẑ) in (7). Formally,

σ(x̂, ẑ) =
{
i ∈ {1, . . . , n} : fi(x̂, ẑ) ≥ 0 or x̂i > 0

}
.

The matrix Iσ(x̂,ẑ) ∈ Rn×n is an identity-like matrix with a
zero (i, i)-element if i /∈ σ(x̂, ẑ). Defined component-wise,

(Iσ(x̂,ẑ))i,j =

{
0, if i 6= j or i /∈ σ(x̂, ẑ),

1, otherwise.



Then, a compact representation of (7a)-(7b) is

(ẋ, ż) = F (x̂, ẑ) := (Iσ(x̂,ẑ)f(x̂, ẑ), Ax̂− b),

where F = (Fx, Fz) : Rn≥0 × Rm → Rn × Rm.

B. Potential function and trigger set design

Now let us define and analyze the potential function, V , that
we use to design the trigger set T c. We introduce V as

V (x, z) = (V1 + V2)(x, z),

where V1 is the Lyapunov function used in [10] and V2 is
an additional function required for our design. Neither V1 or
V2 by themselves are sufficient to design an event-triggered
implementation of (6) which is why we require both. To
define V1, fix K > ‖c + x∗ + AT z∗‖∞ where x∗ (resp. z∗)
is the solution to (4) (resp. any solution of the dual of (4))
and let (x̄, z̄) be a saddle-point of LK. Then

V1(x, z) = 1
2 (x− x̄)T (x− x̄) + 1

2 (z − z̄)T (z − z̄).

Note that V1 ≥ 0 is smooth with compact sublevel sets. Next,

V2(x, z) = 1
2f(x, z)T Iσ(x,z)f(x, z) + 1

2 (Ax− b)T (Ax− b).

Note that V2 is non-negative but, due to the state-dependent
matrix Iσ(x,z), is only piecewise smooth. In this sense V2
can be viewed as a collection of multiple (smooth) Lyapunov
functions, each defined on a neighborhood where σ(x, z) is
constant. Also, V −12 (0) is, by definition, the set of saddle-
points of LK. The following result reveals an upper bound
on LFV in terms of the state errors

ex = x− x̂, ez = z − ẑ.

Proposition V.2 (Evolution of V ). Let X×Z ⊆ Rn≥0×Rm
be compact and suppose that (x, z, x̂, ẑ) ∈ X ×Z ×X ×Z
is such that σ(x̂, ẑ) ⊆ σ(x, z) and

σ(x, z) = lim
α→0

σ(x+ αFx(x̂, ẑ), z + αFz(x̂, ẑ)).

Then LFV (x, z) exists and

LFV (x, z) ≤ − 1
4 (Ax̂− b)T (Ax̂− b) + 20eTz ez (8a)

− 1
2f(x̂, ẑ)T Iσ(x̂,ẑ)f(x̂, ẑ) + 40eTx ex (8b)

+ 15f(x, z)T Iσ(x,z)\σ(x̂,ẑ)f(x, z). (8c)

We now show how V can be used to design the trigger set
T c. We incrementally design subsets of T c and combine
them at the end to define T c. The main observation that we
base our design on is that, after a state broadcast, ex = ez =
0. Thus, to ensure that (8a) and (8b) we design

(x, z, x̂, ẑ) ∈ T c,e := {(x, z, x̂, ẑ) : 20eTz ez + 40eTx ex

> 1
8 (Ax̂− b)T (Ax̂− b))
+ 1

4f(x̂, ẑ)T Iσ(x̂,ẑ)f(x̂, ẑ)}.

Likewise, when there is a mismatch between the modes
σ(x, z) and σ(x̂, ẑ) the term (8c) is positive. However, after

a state-broadcast, σ(x, z) = σ(x̂, ẑ) and Iσ(x,z)\σ(x̂,ẑ) = 0
which means that (8c) is also zero. For this reason, define

T c,σ := {(x, z, x̂, ẑ) : σ(x, z) 6= σ(x̂, ẑ)},

which demands a state-broadcast when the mode σ changes.
We require one final trigger set for the following reason:
In the (6), the set Rn≥0 × Rm is invariant, but in the event-
triggered case this may not be the case because agents use
outdated state information. To preserve invariance of this set,

T c,0 := {(x, z, x̂, ẑ) : ∃i ∈ {1, . . . , n} s.t. x̂i > 0, xi = 0}.

If this trigger is activated by some agent i’s state becoming
zero, then it is easy to see from the definition of the
dynamics (7a) that ẋi ≥ 0 after the state broadcast and thus
xi remains non-negative. Finally, the overall trigger set is

T c := T c,e ∪ T c,σ ∪ T c,0. (9)

We now state a convergence result of the centralized design.

Theorem V.3 (Convergence of the centralized event-
triggered design). If ψ(t, j) is a persistently flowing solution
of (7) with T c defined as in (9) then there exists a point
(x∗, z

′) ∈ X × Rm such that,

ψ(t, j)→ (x∗, z
′, x∗, z

′) as (t+ j)

(t,j)∈
domψ−−−−→∞.

In the next section, we focus on decomposing T c such that
the triggers can be implemented in a distributed way as well
as addressing the issue of persistently flowing solutions.

VI. DISTRIBUTED EVENT-TRIGGERED DESIGN

Using the centralized trigger set T c as motivation, in this
section we reveal the main contribution of this paper: a
distributed event-triggered dynamics for linear programming.
The two main challenges that we face in this section are
that (i) there is no obvious way to decompose T c,σ and
(ii) the asynchronism in the state broadcasts add to the
possibility of non-persistently flowing solutions. Our design
assumes that each agent i keeps track of (a) the time elapsed
since it last sent a state broadcast, denoted si, and (b) the
time elapsed between its last state broadcast and the first
broadcast it receives from its neighbor j, denoted ri←j . Let
ξ = (x, z, s, r, x̂, ẑ) be the total state vector and we restate
the problem to reflect these developments.

Problem Statement VI.1 (Distributed event-triggered
linear programming - take 2). Design a hybrid system of
the form: for each agent i ∈ {1, . . . , n+m}, if ξ /∈ Ti then

ẋi =

{
fi(x̂, ẑ), if x̂i > 0,
max{0, fi(x̂, ẑ)}, if x̂i = 0,

if i ≤ n, (10a)

żi−n = aTi−nx̂− bi−n, if i ≥ n+ 1 (10b)

ṡi =

{
1, if si < smax

i ,
0, if si ≥ smax

i ,
for all i, (10c)



and, if ξ ∈ Ti, then

x̂+i = xi, if i ≤ n, (10d)

ẑ+i−n = zi−n, if i ≥ n+ 1, (10e)

s+i = 0, for all i, (10f)

(r+i←j , r
+
j←i) = (−1, sj), for all i & all j ∈ Ni, (10g)

such that

(i) the inclusion ξ ∈ Ti is detectable by agent i, and
(ii) the aggregate of the real agents’ states, x, converges

to a solution of (2).

In the above, ri←j = −1 after an agent i broadcasts its
state to indicate that it has not yet received a state broadcast
from j. Some of the centralized trigger sets designed in the
previous section are easily distributed, and we show how
here. First, consider the following decomposition of T c,e,

T ei :=

{
{ξ : (ex)2i > µifi(x̂, ẑ)

2}, if i ≤ n,
{ξ : (ez)

2
i−n > µi(a

T
i−nx̂− bi−n)2}, if i ≥ n+ 1,

where the ranges of each µi to ensure convergence appear
in Theorem VI.3. Likewise a decomposition for T c,0 is,

T 0
i :=

{
{ξ : x̂i > 0 but xi = 0}, if i ≤ n,
∅, if i ≥ n+ 1.

A. Distributing the trigger set T c,σ

The challenge when designing a distributed version of T c,σ
is that an agent cannot detect a change in σ(x, z) without
updated state information from its neighbors. The specific
scenario we refer to is when, for some real agent, xi = 0
and fi(x̂, ẑ) < 0 but, since the last broadcast, it happens that
fi(x, z) ≥ 0 which is undetectable by i. In such a case, i /∈
σ(x̂, ẑ) but i ∈ σ(x, z) meaning we cannot enforce σ(x, z) =
σ(x̂, ẑ). Thus, we explore the effects on the evolution of V
when there is such a mismatch in the modes.

Proposition VI.2 (A bound when there is a mode switch).
Suppose that (x̂, ẑ) ∈ Rn≥0×Rm is such that i /∈ σ(x̂, ẑ) for
some i ∈ {1, . . . , n} and let (x(t), z(t)) be the solution to

(ẋ, ż) = F (x̂, ẑ),

from (x̂, ẑ). Let T > 0 be the minimum time such that i ∈
σ(x(T ), z(T )). Then, for any ν > 0, and all T ≤ t < ν

2
√
2

fi(x(t), z(t))2 ≤ ν2f(x̂, ẑ)T Iσ(x̂,ẑ)∩Nx
i
f(x̂, ẑ)

+ ν2(Ax̂− b)T IN z
i

(Ax̂− b).

The important consequence of the above result is that, for an
appropriately chosen value of ν, the negative terms in LFV
can compensate (8c) if even though i ∈ σ(x, z) \σ(x̂, ẑ) for
some time. This motivates the following trigger sets which
cause neighbors to send synchronized broadcasts periodically
to an agent if its state is zero. First, if an agent’s state is

zero and it has not sent a broadcast for τi time, it triggers a
broadcast to notify its neighbors that it requires new states,

T request
i :=

{
{ξ : xi = 0 and si ≥ τi}, if i ≤ n,
∅, if i ≥ n+ 1.

On the receiving end, if i receives a broadcast from neighbor
j with x̂j = 0, then it should also broadcast immediately,

T send
i := {ξ : ∃j ∈ N x

i s.t. x̂j = 0 and ri←j ≥ 0}.

B. Accounting for asynchronism

In this section we introduce an additional trigger set so as to
prevent non-persistently flowing solutions occurring due to
the asynchronism of state broadcasts. The intuition behind
the additional trigger is the following. If an agent broadcasts
its state and in turn receives a state broadcast from a neighbor
faster than some tolerated rate, that agent should broadcast
its state immediately again. The effect of this trigger is that,
if broadcasts start occurring too frequently in the network,
neighboring agents’ broadcasts will synchronize. Formally,

T synch
i := {ξ : ∃j ∈ Ni s.t. 0 ≤ ri←j ≤ rmin

i }.

The threshold rmin
i is designed to be small. Finally, we define

Ti := T ei ∪ T 0
i ∪ T request

i ∪ T send ∪ T synch
i . (11)

We now state the main convergence result of this paper.

Theorem VI.3 (Distributed triggers - convergence and
persistently flowing solutions). Suppose 0 < µi ≤ 1

180 and

0 < rmin
i ≤ τi ≤ 1

6
√

2|Ni|maxj∈Ni
|Nj |
≤ smax

i ,

for each i ∈ {1, . . . , n+m}. Let ψ(t, j) be a solution of (10)
with each Ti defined as in (11). Then,

(i) if ψ is persistently flowing, there exists a point
(x∗, z) ∈ X × Rm such that,

(x(t, j), z(t, j))→ (x∗, z
′) as (t+ j)

(t,j)∈
domψ−−−−→∞,

(ii) if there exists a τp > 0 such that, for any time (t′, j′) ∈
domψ where ψ(t′, j′) ∈ T 0

i for some i it holds that
ψ(t, j) /∈ T 0

i for all (t, j) ∈ ([t′, t′+τp]×N)∩domψ,
the solution ψ is persistently flowing.

The meaning of (ii) in the above result is that triggers
T ei , T τi , T request

i , T send
i , T synch

i cannot be the cause of non-
persistently flowing solutions. If we had used (2) in our
derivation instead of (4), the resulting design would not have
enjoyed this attribute. In our experience, τP (as defined in (ii)
above) is always ∞. Thus, we conjecture that all solutions
to (10) are persistently flowing. Figure 1 shows simulation
results, which support our claim.
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(a) Linear program and network model

= x(t ) , = z(t )

T ime (s)

(x
(t

),
z
(t

))

0 5 10 15
−5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

= x̂(t )

(b) State trajectories
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(c) Evolution of V and number of broadcasts

Fig. 1. Simulation results of agents implementing (10) to solve the linear program in (a). Virtual agents are denoted by transparent nodes. The state
trajectories are shown in (b) with an inlay displaying the transient response in detail. This inlay also shows the evolution of the broadcast states, x̂ in grey.
The aggregate of the agents’ states converge to the solution X = (1, 0, 0, 0, 1). The function V is discontinuous but decreasing as evidenced in (c). The
accumulation of broadcasts appears linear, suggesting that executions are persistently flowing. Each inlay shows the first second of the simulation in detail.

VII. CONCLUSIONS AND FUTURE WORK

We have studied the design of distributed algorithms for
networks of agents that seek to collectively solve linear
programs in standard form. Our algorithmic solution has
agents executing a distributed continuous-time dynamics and
deciding in an opportunistic and autonomous way when
to broadcast updated state information to their neighbors.
Our design methodology combines elements from switched
and hybrid systems, event-triggered control, and stability
theory. We have rigorously characterized the asymptotic
convergence of persistently flowing executions to a solution
of the linear program. Based on a sufficient condition for
executions to be persistently flowing, we conjecture that
they all are. Future work will be devoted to establish that
all solutions are persistently flowing, study the trade-off
between the number of communication events and the rate
of convergence, characterize the algorithm robustness against
disturbances, extend our results to event-triggered imple-
mentations of general switched systems, and experimental
implementations on a multi-agent testbed.
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