
DISTRIBUTED LINEAR PROGRAMMING
WITH EVENT-TRIGGERED COMMUNICATION

DEAN RICHERT JORGE CORTÉS∗

Abstract. We consider a network of agents whose objective is for the aggregate of their states to
converge to a solution of a linear program in standard form. Each agent has limited information about
the problem data and can communicate with other agents at discrete time instants of their choosing.
Our main contribution is the synthesis of a distributed dynamics and a set of state-based rules,
termed triggers, that individual agents use to determine when to opportunistically broadcast their
state to neighboring agents to ensure asymptotic convergence to a solution of the linear program.
Our technical approach to the algorithm design and analysis overcomes a number of challenges,
including establishing convergence in the absence of a common smooth Lyapunov function, ensuring
that the triggers are detectable by agents using only local information, accounting for asynchronism
in the state broadcasts, and ruling out various causes of arbitrarily fast state broadcasting. Various
simulations illustrate our results.

Key words. linear programming, distributed algorithms, event-triggered communication, multi-
agent systems, hybrid systems

AMS subject classifications. 90C05, 68M14, 93C30, 65K10, 93C65

1. Introduction. The global objective of many multi-agent systems can be for-
mulated as an optimization problem where the individual agents’ states are the de-
cision variables. Due to the inherent networked structure of these problems, much
research has been devoted to developing local dynamics for each agent that guarantee
that the aggregate of their states converge to a solution of the optimization problem.
From an analysis viewpoint, the availability of powerful concepts and tools from sta-
bility analysis makes continuous-time coordination algorithms appealing. However,
their implementation requires the continuous flow of information among agents. On
the other hand, discrete-time algorithms are amenable to real-time implementation,
but the selection of the stepsizes to guarantee convergence has to take into account
worst-case situations, leading to an inefficient use of the network resources. In this
paper, we seek to combine the advantages of both approaches by designing a dis-
tributed algorithmic solution to linear programming in standard form that combines
continuous-time computation by individual agents with opportunistic event-triggered
communication among neighbors. Our focus on linear programming is motivated
by its importance in mathematical optimization and its pervasiveness in multi-agent
scenarios, with applications to task assignment, network flow, optimal control, and
energy storage, among others.

Literature review. The present work has connections with three main areas: dis-
tributed optimization, event-triggered control, and switched and hybrid systems. Dis-
tributed convex optimization problems have many applications to networked systems,
see e.g., [2, 20, 24], and this has motivated the development of a growing body of
work that includes dual-decomposition [22, 27], the alternating direction method of
multipliers [26], subgradient projection algorithms [14, 19, 28], auction algorithms [1],
and saddle-point dynamics [6, 7]. The works [4, 21] propose algorithms specifically
designed for distributed linear programming. In [4], the goal is for agents to agree
on the global solution. In [21], instead, the goal is for the aggregate of agents’ states
to converge to a solution. All the algorithms mentioned above are implemented in

∗The authors are with the Department of Mechanical and Aerospace Engineering, University of
California, San Diego, 9500 Gilman Dr, La Jolla CA 92093, USA, {drichert,cortes}@ucsd.edu

1



either continuous or discrete time, the latter with time-dependent stepsizes that are
independent of the network state. Instead, event-triggered control seeks to oppor-
tunistically adapt the execution to the network state by trading computation and
decision-making for less communication, sensing or actuation effort while guarantee-
ing a desired level of performance, see e.g., [11, 25, 18]. In this approach to real-time
implementation, a key design objective, besides asymptotic convergence, is to ensure
the lack of an infinite number of updates in any finite time interval of the resulting
event-triggered strategy. A few works [24, 15] have explored the design of distributed
event-triggered optimization algorithms for multi-agent systems. A major difference
between event-triggered stabilization and optimization is that in the former the equi-
librium is known a priori, whereas in the latter the determination of the equilibrium
point is the objective itself. Finally, our work is related to the literature on switched
and hybrid systems [16, 12, 9] where discrete and continuous dynamical components
coexist. To the authors’ knowledge, this work is the first to consider event-triggered
implementations of state-dependent switched dynamical systems. A unique challenge
that must be overcome in this scenario is the fact that the use of outdated state in-
formation may cause the system to miss a mode switch, and this in turn may affect
the overall stability and performance.

Statement of contributions. The main contribution of the paper is the design of a
provably correct distributed dynamics which, together with a set of distributed criteria
to trigger state broadcasts among neighbors, enable a group of agents to collectively
solve linear programs in standard form. Our starting point is the introduction of a
novel distributed continuous-time dynamics for linear programming based on an exact
quadratic regularization and the characterization of its solutions as saddle points of
an augmented Lagrangian function. This distributed dynamics is discontinuous in
the agents’ state because of the inequality constraints in the original linear program.
Our approach to synthesize strategies that rely only on discrete-time communication
proceeds by having agents implement the distributed continuous-time dynamics using
a sample-and-hold value of their neighbors’ state. The key challenge is then to identify
suitable criteria to opportunistically determine when agents should share information
with their neighbors in order to guarantee asymptotic convergence and persistency of
the executions. Because of the technical complexity involved in solving this challenge,
we structure our discussion in two steps, dealing with the design first of centralized
criteria and then of distributed ones.

Under our centralized event-triggered communication scheme, agents use global
knowledge of the network to determine when to synchronously broadcast their state.
The characterization of the convergence properties of the centralized implementation
is challenging because the original continuous-time dynamics is discontinuous in the
agents’ state and the fact that its final convergence value (being the solution of the
optimization problem) is not known a priori, which further complicates the identi-
fication of a common smooth Lyapunov function. Nevertheless, using concepts and
tools from switched and hybrid systems, we are able to overcome these obstacles by
introducing a discontinuous Lyapunov function and examining its evolution during
time intervals where state broadcasts do not occur

We build on our centralized design to synthesize a distributed event-triggered
communication law under which agents use local information to determine when to
broadcast their individual state. Our strategy to accomplish this is to investigate to
what extent the centralized triggers can be implemented in a distributed way and
modify them when necessary. In doing so, we face the additional difficulty posed by
the fact that the mode switches associated to the discontinuity of the original dy-

2



namics are not locally detectable by individual agents. To address this challenge, we
bound the evolution of the Lyapunov function under mode mismatch and, based on
this understanding, design the distributed triggers so that any potential increase of the
Lyapunov function due to the mismatch is compensated by the decrease in its value
before the mismatch took place. Moreover, the distributed character of the agent
triggers leads to asynchronous state broadcasts, which poses an additional challenge
for both design and analysis. Our main result establishes the asymptotic convergence
of the distributed implementation and identifies sufficient conditions for executions
to be persistently flowing (that is, state broadcasts are separated by a uniform time
infinitely often). We show that the asynchronous state broadcasts cannot be the cause
of non-persistently flowing executions and we conjecture that all executions are in fact
persistently flowing. As a byproduct of using a hybrid systems modeling framework in
our technical approach, we are also able to guarantee that the global asymptotic sta-
bility of the proposed distributed algorithm is robust to small perturbations. Finally,
simulations illustrate our results.

Organization. Section 2 introduces preliminary notions. Section 3 presents the
problem statement and network model. Section 4 introduces the continuous-time
dynamics on which we base our event-triggered design. Sections 5 and 6 present, re-
spectively, centralized and distributed event-triggered mechanisms for communication
and their convergence analysis. Section 7 provides simulation results in a multi-agent
assignment problem and Section 8 gathers our conclusions and ideas for future work.

2. Preliminaries. This section introduces the notation and some notions from
hybrid systems and optimization employed throughout the paper.

2.1. Notation. We let R and N denote the set of real and nonnegative integer
numbers, respectively. For a vector x ∈ Rd, x ≥ 0 means that every component of
x is non-negative. For x ∈ Rd, ‖x‖2 and ‖x‖∞ denote its Euclidean and ∞-norm,
respectively. For a matrix A ∈ Rd1×d2 , its ith row is ai, its (i, j)-element is ai,j ,
and its spectral radius is ρ(A). Given sets S1, S2 ⊆ Rd, we let S1 \ S2 denote the
elements that are in S1 but not in S2. We use int(S) to denote the set of interior
points of the set S ⊆ Rd. A function f : X → R is locally Lipschitz at x ∈ X ⊂ Rd
if there exists some neighborhood U of x and constant Kx ≥ 0 such that for all
x1, x2 ∈ U , it holds that |f(x1) − f(x2)| ≤ Kx‖x1 − x2‖2. We say that f is locally
Lipschitz on X if it is locally Lipschitz at x for all x ∈ X. The domain of f is denoted
dom(f). The function f is convex if for all x1, x2 ∈ X and all λ ∈ [0, 1], it holds
that f(λx1 + (1 − λ)x2) ≤ λx1 + (1 − λ)x2. Also, f is concave if −f is convex. The
generalized gradient of f at x̂ ∈ X is defined as

∂f(x̂) := co

{
lim
i→∞

∇f(xi) : xi → x, xi /∈ S ∪ Ωf

}
,

where co denotes the convex hull, S is a set of measure zero, and Ωf ⊂ Rd is the set of
points where f is not differentiable. If f is locally Lipschitz, its generalized gradient
at any point in X is non-empty. If g : X × Y → R, then ∂xg(x, y) (resp. ∂yg(x, y)) is
the generalized gradient of the map x 7→ g(x, y) (resp. y 7→ g(x, y)). For c ∈ R, we
denote by f−1(≤ c) = {x ∈ X | f(x) ≤ c} the c-sublevel set of f . Given V : Rd → R
and f : Rd → Rd, the Lie derivative of V along f at x is

LfV (x) := lim
α→0

V (x+ αf(x))− V (x)

α
.(2.1)

We say that LfV (x) exists when the limit in (2.1) exist. If V is differentiable, then
LfV (x) = ∇V (x)TF (x) for x ∈ Rd.

3



2.2. Hybrid systems. These basic notions on hybrid systems follow closely the
exposition found in [9]. A hybrid (or cyber-physical) system is a dynamical system
whose state may evolve according to (i) a differential equation ẋ = f(x) when its
state is in some subset, C, of the state-space and (ii) a difference equation x+ = g(x)
when its state is in some other subset, D, of the state-space. Thus, we may represent
a hybrid system by the tuple H = (f, g, C,D) where f : Rd → Rd (resp. g : Rd → Rd)
is called the flow map (resp. jump map) and C ⊆ Rd (resp. D ⊆ Rd) is called the
flow set (resp. jump set). Formally speaking, the evolution of the states of H are
governed by the following equations

ẋ = f(x), x ∈ C,(2.2a)

x+ = g(x), x ∈ D.(2.2b)

A compact hybrid time domain is a subset of R≥0 × N of the form

E = ∪J−1
j=0 ([tj , tj+1], j),

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is a hybrid time domain
if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, . . . , J}) is a compact hybrid time domain. A
function ψ is a solution to the hybrid system (2.2) if

(i) for all j ∈ N such that Ij := {t : (t, j) ∈ dom(ψ)} has non-empty interior

ψ(t, j) ∈ C, ∀t ∈ int(Ij),

ψ̇(t, j) = f(ψ(t, j)), for almost all t ∈ Ij .

(ii) for all (t, j) ∈ dom(ψ) such that (t, j + 1) ∈ dom(ψ)

ψ(t, j) ∈ D,
ψ(t, j + 1) = g(ψ(t, j)).

In (i) above, we say that ψ is flowing and in (ii) we say that ψ is jumping. We call
ψ persistently flowing if it is eventually continuous or if there exists a uniform time
constant τP whereby ψ flows for τP seconds infinitely often. Formally speaking, ψ is
persistently flowing if

(PFi) ([tJ ,∞), J) ⊂ dom(ψ) for some J ∈ N, or
(PFii) there exists τP > 0 and an increasing sequence {jk}∞k=0 ⊂ N such that

([tjk , tjk + τP ], jk) ⊂ dom(ψ) for each k ∈ N.

2.3. Quadratic optimization. Here we introduce some basic definitions and
results regarding mathematical optimization. A detailed exposition on these topics
can be found in [3]. First, a quadratic optimization problem can be denoted by

min cTx+
1

2
xTEx(2.3a)

s.t. Ax = b, x ≥ 0,(2.3b)

where for n,m ∈ N, c, x ∈ Rn, 0 � E = ET ∈ Rn×n, b ∈ Rm, and A ∈ Rm×n. We
call (2.3) the primal problem and its associated dual is defined as

max
z
q(z),

4



where q : Rm → R is given by

q(z) := min
x

{
− 1

2
xTEx− bT z : c+ Ex+AT z ≥ 0

}
.

The solutions to the primal and the dual are related through the so-called Karush-
Kuhn-Tucker (KKT) conditions. A point (x∗, z∗) ∈ Rn × Rm satisfies the KKT
conditions for (2.3) if

c+ Ex∗ +AT z∗ ≥ 0, Ax∗ = b, x∗ ≥ 0,

(c+ Ex∗ +AT z∗)
Tx∗ = 0.

When the primal is feasible with a finite optimal value,
(i) a point (x∗, z∗) satisfies the KKT conditions for (2.3) if and only if x∗ (resp.

z∗) is a solution to the primal (resp. the dual)
(ii) the optimal value of the primal is the optimal value of the dual.

3. Problem statement and network model. This section introduces the
problem of interest. Our main objective is to develop a distributed algorithm for
multi-agent systems that is able to solve general linear programs and takes into ac-
count the discrete nature of inter-agent communication. Given c ∈ Rn, b ∈ Rm, and
A ∈ Rm×n, a linear program in standard form on Rn is defined by

min cTx(3.1a)

s.t. Ax = b, x ≥ 0.(3.1b)

Note that this is a special case of the quadratic program (2.3), where E = 0. We
assume that (3.1) is feasible, with a finite optimal value, and denote by X ⊆ Rn the
set of solutions. Without loss of generality, we assume that

SA #1: ρ(ATA) ≤ 1.

We do this for ease of presentation, as this assumption simplifies the exposition of
the technical treatment. Two reasons justify the generality of SA #1: the results
are easily extensible to the case ρ(ATA) > 1 and Remark 4.5 later presents a O(m)
distributed algorithm that a multi-agent network can run to ensure the assumption
holds.

We next describe the model for the multi-agent network. Consider a collection
of agents with unique identifiers i ∈ {1, . . . , n}. The state of agent i is xi ∈ R. Each
agent i knows ci and the non-zero elements of any row a` of A where a`,i 6= 0 (and
the associated b`). In addition, if xi and xj appear in a common constraint, then i
and j have the ability to communicate with each other at discrete instants of time of
their choosing. We assume communication happens instantaneously and denote by
x̂i the last state transmitted by agent i to its neighboring agents. Our objective is
then to design a distributed algorithm that specifies how agents should update their
own states with the information they possess and when they should broadcast it to
neighboring agents with the ultimate goal of making the aggregate of the agents’ states
x = (x1, . . . , xn) converge to a solution of (3.1). To solve this problem, we take an
approach based on continuous-time computation with discrete-time communication.
Formally, we formulate our approach using the notion of hybrid system described in
Section 2.2 as follows.

Problem 3.1. (Distributed linear programming with event-triggered
communication). Design a hybrid system that, for each i ∈ {1, . . . , n}, takes the

5



form,

ẋi = gi(x̂), if (x, x̂) /∈ Ti,(3.2a)

x̂+
i = xi, if (x, x̂) ∈ Ti,(3.2b)

where gi : Rn → R is agent i’s flow map and Ti ⊆ Rn × Rn is agent i’s trigger set,
which determines when i should broadcast its state, such that

(i) gi is computable by agent i and the inclusion (x, x̂) ∈ Ti is detectable by agent
i using local information and communication, and

(ii) the aggregate of the agents’ states converge to a solution of (3.1).
The interpretation of Problem 3.1 is as follows. Equation (3.2a) models the fact

that agent i ∈ {1, . . . , n} uses the last broadcast states from neighboring agents and
itself to compute the continuous-time flow gi governing the evolution of its state.
In-between two consecutive broadcasts of agent i (i.e., while flowing), there is no
dynamics for its last broadcast state x̂i. Formally, ˙̂xi = 0 if (x, x̂) /∈ Ti. For this
reason, the state evolution is quite easy to compute since it changes according to a
constant rate during continuous flow. Our use of the term “continuous-time flow” is
motivated by the fact that we model the event-triggered design in the hybrid system
framework. Moreover, viewing the dynamics (3.2a) as a continuous-time flow will aid
our analysis in subsequent sections. Equation (3.2b) models the broadcast procedure.
The condition (x, x̂) ∈ Ti is a state-based trigger used by agent i to determine when to
broadcast its current state xi to its neighbors. Since communication is instantaneous,
x+
i = xi if (x, x̂) ∈ Ti. The dynamical coupling between different agents is through

the broadcast states in x̂ only. Note that an agent cannot pre-determine the time of
its next state broadcast because it cannot predict if or when it will receive a broadcast
from a neighbor. For this reason, we call the strategy outlined in Problem 3.1 event-
triggered as opposed to self-triggered.

When we do not specify the continuous-time dynamics of x̂i the reader should
interpret this to mean that ˙̂xi = 0 when (x, x̂) /∈ Ti. Likewise, x+

i = xi when
(x, x̂) ∈ Ti. This convention holds throughout the paper.

4. Continuous-time computation and communication. In this section we
introduce a distributed continuous-time algorithm that requires continuous commu-
nication to solve general linear programs in standard form. We build on this design
in the forthcoming sections to provide an algorithmic solution to Problem 3.1 that
only employs communication at discrete time instants.

We follow a design methodology similar to the one we employed in our previous
work [21]. The reason for the different dynamics proposed here has to do with its
amenability to event-triggered optimization and will become clearer in Section 5.

4.1. Solutions of linear program formulated as saddle points. The gen-
eral approach we use for designing the continuous-time dynamics is to define an aug-
mented Lagrangian function based on a regularization of the linear program and then
derive the natural saddle-point dynamics for that function. More specifically, consider
the following quadratic regularization of (3.1),

min γcTx+
1

2
xTx(4.1a)

s.t. Ax = b, x ≥ 0.(4.1b)

where γ ≥ 0. We use the regularization rather than the original formulation (3.1)
itself because, as we discuss later in Remark 5.4, the resulting saddle-point dynamics

6



is amenable to event-triggered implementation. The following result reveals that this
regularization is exact for suitable values of γ. The result is a modification of [17,
Theorem 1] for linear programs in standard form,, rather than in inequality form.

Lemma 4.1. (Exact regularization). There exists γmin > 0 such that, for γ ≥
γmin, the solution to the regularization (4.1) is a solution to the linear program (3.1).

Proof. We use the fact that a point x∗ ∈ Rn (resp. z∗ ∈ Rm) is a solution to (3.1)
(resp. the dual of (3.1)) if and only if it satisfies the KKT conditions for (3.1),

c+AT z∗ ≥ 0, Ax∗ = b, x∗ ≥ 0, (c+AT z∗)
Tx∗ = 0.(4.2)

We also consider the optimization problem

min
1

2
xTx(4.3a)

s.t. Ax = b, cTx = p, x ≥ 0,(4.3b)

where p is the optimal value of (3.1). Note that the solution to the above problem is a
solution to (3.1) by construction of the constraints. Likewise, (x̄, z̄, w̄) ∈ Rn×Rm×R
are primal-dual solutions to (4.3) if and only if they satisfy the KKT conditions
for (4.3)

x̄+AT z̄ + cw̄ ≥ 0, Ax̄ = b, cT x̄ = p, x̄ ≥ 0, (x̄+AT z̄ + cw̄)T x̄ = 0.(4.4)

Since x̄ is a solution to (3.1), without loss of generality, we suppose that x∗ = x̄.
We consider the cases when (i) w̄ = 0, (ii) w̄ > 0, and (iii) w̄ < 0. In case (i),
combining (4.2) and (4.4), one can obtain for any γ ≥ 0,

γc+ x∗ +AT (γz∗ + z̄) ≥ 0, Ax∗ = b, x∗ ≥ 0, (γc+ x∗ +AT (γz∗ + z̄))Tx∗ = 0.

The above conditions reveal that (x∗, γz∗ + z̄) satisfy the KKT conditions for (4.1).
Thus, x∗ (which is a solution to (3.1)) is the solution to (4.1) and this would complete
the proof. Next, consider case (ii). If γ = γmin := w̄ > 0, the conditions (4.4) can be
manipulated to give

γc+ x∗ +AT z̄ ≥ 0, Ax∗ = b, x∗ ≥ 0, (γc+ x∗ +AT z̄)Tx∗ = 0.

This means that (x∗, z̄) satisfy the KKT conditions for (4.1). Thus, x∗ (which is a
solution to (3.1)) is the solution to (4.1) and this would complete the proof. Now, for
any γ ≥ γmin, there exists an η ≥ 0 such that γ = γmin + η = w̄+ η. Combining (4.2)
and (4.4), one can obtain

γc+ x∗ +AT (ηz∗ + z̄) ≥ 0, Ax∗ = b, x∗ ≥ 0

(γc+ x∗ +AT (ηz∗ + z̄)Tx∗ = 0.

This means that (x∗, ηz∗ + z̄) satisfy the KKT conditions for (4.1). Thus, x∗ (which
is a solution to (3.1)) is the solution to (4.1) and this would complete the proof. Case
(iii) can be considered analogously to case (ii) with γmin := −w̄. This completes the
proof.

The actual value of γmin in Lemma 4.1 is somewhat generic in the following sense:
if one replaces c in (4.1) by γ̄c for some γ̄ > 0, then the regularization is exact for
γ ≥ γmin

γ̄ . Therefore, to ease notation, we make the following standing assumption,

SA #2: γmin ≤ 1.

7



This justifies our focus on the case γ = 1. Our next result establishes a correspon-
dence between the solution of (4.1) and the saddle points of an associated augmented
Lagrangian function.

Lemma 4.2. (Solutions of (4.1) as saddle points). For K ≥ 0, consider the
augmented Lagrangian function LK : Rn × Rm → R associated to the optimization
problem (4.1) with γ = 1,

LK(x, z) = cTx+
1

2
xTx+

1

2
(Ax− b)T (Ax− b) + zT (Ax− b) +K1

T max{0,−x}.

Then, LK is convex in x and concave in z. Let x∗ ∈ Rn (resp. z∗ ∈ Rm) be the
solution to (4.1) (resp. a solution to the dual of (4.1)). Then, for K > ‖c + x∗ +
AT z∗‖∞, the following holds,

(i) (x∗, z∗) is a saddle point of LK ,
(ii) if (x̄, z̄) is a saddle point of LK , then x̄ = x∗ is the solution of (4.1).

Proof. For any x ∈ Rn,

LK(x, z∗) = cTx+
1

2
xTx+

1

2
(Ax− b)T (Ax− b) + zT∗ (Ax− b) +K1

T max{0,−x}

≥ cTx+
1

2
xTx+ zT∗ (Ax− b) + ‖c+ x∗ +AT z∗‖∞x

≥ cTx+
1

2
xTx+ zT∗ (Ax− b)− (c+ x∗ +AT z∗)

Tx

≥ cTx+
1

2
xTx+ zT∗ A(x− x∗)− (c+ x∗ +AT z∗)

T (x− x∗)

≥ cTx+
1

2
xTx− (c+ x∗)

T (x− x∗)

≥ cTx∗ +
1

2
(x− x∗)T (x− x∗) +

1

2
xT∗ x∗

≥ cTx∗ +
1

2
xT∗ x∗ = LK(x∗, z∗).(4.5)

For any z, it is easy to see that LK(x∗, z) = LK(x∗, z∗). Thus (x∗, z∗) is a saddle
point of LK .

Let us now prove (ii). As a necessary condition for (x̄, z̄) to be a saddle point of
LK , it must be that ∂zL

K(x̄, z̄) = Ax̄− b = 0 as well as LK(x∗, x̄) ≥ LK(x̄, z̄) which
means that

cTx∗ +
1

2
xT∗ x∗ ≥ cT x̄+

1

2
x̄T x̄+K1

T max{0,−x̄}.(4.6)

If x̄ ≥ 0 then cTx∗ + 1
2x

T
∗ x∗ ≥ cT x̄ + 1

2 x̄
T x̄ and thus x̄ would be a solution to (4.1).

8



Consider then that x̄ 6≥ 0. Then,

cT x̄+
1

2
x̄T x̄ = cTx∗ +

1

2
xT∗ x∗ + (c+ x∗)

T (x̄− x∗) +
1

2
(x̄− x∗)T (x̄− x∗)

≥ cTx∗ +
1

2
xT∗ x∗ + (c+ x∗)

T (x̄− x∗)

≥ cTx∗ +
1

2
xT∗ x∗ − zT∗ A(x̄− x∗) + (c+ x∗ +AT z∗)

T (x̄− x∗)

≥ cTx∗ +
1

2
xT∗ x∗ − zT∗ (Ax̄− b) + (c+ x∗ +AT z∗)

T x̄

≥ cTx∗ +
1

2
xT∗ x∗ − ‖c+ x∗ +AT z∗‖∞max{0,−x̄}

> cTx∗ +
1

2
xT∗ x∗ −K1

T max{0,−x̄},

contradicting (4.6). Thus, x̄ ≥ 0 and must be the solution to (4.1).

4.2. Distributed continuous-time dynamics. Given the results in Lemmas 4.1
and 4.2, a sensible strategy to find a solution of (3.1) is to employ the saddle-point
dynamics associated to the augmented Lagrangian function LK . Formally, we set

ẋ ∈ −∂xLK(x, z),(4.7a)

ż = ∂zL
K(x, z).(4.7b)

This dynamics is well-defined since LK is a locally Lipschitz function. For an ap-
propriate choice of the parameter K, one can establish the asymptotic convergence
of trajectories of the saddle-point dynamics to a point in the set X × Rm. However,
we build the event-triggered implementation on a different dynamics that does not
require precise knowledge of K. The following result reveals that one can characterize
certain elements of the saddle-point dynamics, regardless of K, which will allow us to
design a discontinuous dynamics later.

Lemma 4.3. (Generalized gradients of the Lagrangian). Let f : Rn×Rm →
Rn be defined by f(x, z) = −(AT z + c + x) − AT (Ax − b). Given a compact set
X × Z ⊂ Rn≥0 × Rm, let

K∗(X × Z) := max
(x,z)∈X×Z

‖f(x, z)‖∞.

Then, if K ≥ K∗(X × Z), for each (x, z) ∈ X × Z, ∂zL
K(x, z) = {Ax− b} and there

exists a ∈ −∂xLK(x, z) ⊂ Rn such that, for each i ∈ {1, . . . , n},

ai =

{
fi(x, z), if xi > 0,

max{0, fi(x, z)}, if xi = 0.

Proof. Let (x, z) ∈ Rn × Rm. It is straightforward to see that ∂zL
K(x, z) =

{Ax− b} for any K. Next, note that for any a ∈ −∂xLK(x, z), we have

−a− (AT z + c+ x)−AT (Ax− b) ∈ K∂max{0,−x},(4.8)

or, equivalently, −a + f(x, z) ∈ K∂max{0,−x}. For any i ∈ {1, . . . , n} such that
xi > 0, the corresponding set in the right-hand side of (4.8) is the singleton 0 and
therefore ai = fi(x, z). On the other hand, if xi = 0, then

−ai + fi(x, z) ∈ [−K, 0].

9



If fi(x, z) ≥ 0, the choice ai = fi(x, z) satisfies the equation. Conversely, if fi(x, z) <
0, then ai = 0 satisfies the equation for all K ≥ K∗(X×Z) by definition of K∗(X×Z).
This completes the proof.

As suggested previously, the above result enables us to propose an alternative
continuous-time (discontinuous) dynamics to solve (3.1) that does not require knowl-
edge of K. Specifically, Lemma 4.3 implies that, on a compact set, the trajectories of
the dynamics

ẋi =

{
fi(x, z), if xi > 0,

max{0, fi(x, z)}, if xi = 0,
(4.9a)

ż = Ax− b,(4.9b)

with i ∈ {1, . . . , n}, are trajectories of (4.7). That is, any bounded trajectory of (4.9)
is also a trajectory of (4.7). As a consequence, the convergence properties of the
saddle-point dynamics are also inherited by (4.9) and this is the dynamics that we
design an event-triggered implementation for in the next sections. Besides the stan-
dard considerations in designing an event-triggered implementation (such as ensuring
convergence and preventing arbitrarily fast broadcasting), we face several unique chal-
lenges including the fact that the equilibria of (4.9) are not known a priori as well as
having to account for the switched nature of the dynamics.

We conclude this section by discussing the distributed implementation of (4.9)
based on the network model of Section 3.

Remark 4.4. (Distributed implementation via virtual agents). Note that
the dynamics (4.9) possess auxiliary variables z ∈ Rm corresponding to the Lagrange
multipliers of the optimization problem. For the purpose of analysis, we consider m
virtual agents with identifiers {n+ 1, . . . , n+m}, where virtual agent n+ ` updates
the state z` ∈ R and has knowledge of the data a` ∈ Rn and b` ∈ R. It is important
to observe that, in an actual implementation, the state and dynamics of virtual agent
n+ ` can be stored and implemented by any of the real agents with knowledge of a`
and b`. For each ` ∈ {1, . . . ,m}, the set of agents

{i ∈ {1, . . . , n} : a`,i 6= 0} ∪ {n+ `},

can communicate their state information to each other. In words, if xi and xj appear
in constraint `, then agents i, j, and n + ` can communicate with each other. The
neighbor set of i, denoted Ni, is the set of all agents that i can communicate with.
The set of real (resp. virtual) neighbors of i is N x

i := Ni ∩ {1, . . . , n} (resp. N z
i :=

Ni ∩ {n + 1, . . . , n + m}). Under these assumptions, it is straightforward to verify
that agent i ∈ {1, . . . , n} can compute fi(x, z) using local information and can thus
implement (4.9a). Likewise, a virtual agent n+ ` ∈ {n+ 1, . . . , n+m} can compute
and implement its corresponding dynamics ż` = aT` x − b` in (4.9b). The network
structure described here is quite natural for many real-world network optimization
problems that can be formulated as linear programs. •

Remark 4.5. (Distributed algorithm to enforce SA #1). Given the model
described in Remark 4.4, we explain briefly here how agents can implement a simple
pre-processing algorithm based on max-consensus to ensure that ρ(ATA) ≤ 1. For
each row a` of the matrix A, the virtual agent n+ ` can compute the `th row of ATA.
Then, this agent stores the following estimate of the spectral radius,

ρ̂n+` = (ATA)(`,`) +
∑

i∈{1,...,n}\{`}

|(ATA)(`,i)|.

10



The virtual agents use these estimates as an initial point in the standard max-
consensus algorithm [5]. In O(m) steps, the max-consensus converges to a point
ρ∗ ≥ ρ(ATA), where the inequality is a consequence of the Gershgorin Circle The-
orem [13, Corollary 6.1.5]. Then, each virtual agent scales its corresponding row of
A and entry of b by 1/ρ∗, and communicates this new data to its neighbors. The
resulting linear program is min{cTx : Ãx = b̃, x ≥ 0}, with Ã = A/ρ∗ and b̃ = b/ρ∗.
Both the solutions and optimal value of the new linear program are the same as the
original linear program and, by construction, ρ(ÃT Ã) ≤ 1. •

5. Algorithm design with centralized event-triggered communication.
Here, we build on the discussion of Section 4 to address the main objective of the
paper as outlined in Problem 3.1. Our starting point is the distributed continuous-
time algorithm (4.9), which requires continuous-time communication. Our approach is
divided in two steps because of the complexity of the challenges (e.g., asymptotic con-
vergence, asynchronism, and Zeno behavior) involved in going from continuous-time
to opportunistic discrete-time communication. In this section, we design a centralized
event-triggered scheme that the network can use to determine in an opportunistic way
when information should be updated. In the next section, we build on this develop-
ment to design a distributed event-triggered communication scheme that individual
agents can employ to determine when to share information with their neighbors.

The problem we solve in this section can be formally stated as follows.

Problem 5.1. (Linear programming with centralized event-triggered
communication). Identify a set T c ⊆ Rn≥0 × Rm × Rn≥0 × Rm such that the hybrid
system that, for i ∈ {1, . . . , n}, takes the form,

ẋi =

{
fi(x̂, ẑ), x̂i > 0,

max{0, fi(x̂, ẑ)}, x̂i = 0,
(5.1a)

ż = Ax̂− b,(5.1b)

if (x, z, x̂, ẑ) 6∈ T c and

(x̂+, ẑ+) = (x, z),(5.1c)

if (x, z, x̂, ẑ) ∈ T c, makes the aggregate x ∈ Rn of the real agents’ states converge to
a solution of the linear program (3.1).

We refer to the set T c in Problem 5.1 as the centralized trigger set. Note that,
in this centralized formulation of the problem, we do not require individual agents,
but rather the network as a whole, to be able to detect whether (x, z, x̂, ẑ) ∈ T c. In
addition, when this condition is enabled, state broadcasts among agents are performed
synchronously, as described by (5.1c). Our strategy to design T c is to first identify a
candidate Lyapunov function and study its evolution along the trajectories of (5.1).
We then synthesize T c based on the requirement that our Lyapunov function decreases
along the trajectories of (5.1) and conclude with a result showing that the desired
convergence properties are attained.

Before we introduce the candidate Lyapunov function, we present an alternative
representation of (5.1a)-(5.1b) that will be useful in our analysis later. Given (x̂, ẑ) ∈
R≥0×Rm, let σ(x̂, ẑ) be the set of agents i for which ẋi = fi(x̂, ẑ) in (5.1a). Formally,

σ(x̂, ẑ) =
{
i ∈ {1, . . . , n} : fi(x̂, ẑ) ≥ 0 or x̂i > 0

}
.

11



Next, let Iσ(x̂,ẑ) ∈ Rn×n be defined by

(Iσ(x̂,ẑ))i,j =

{
0, if i 6= j or i /∈ σ(x̂, ẑ),

1, otherwise.

Note that this matrix is an identity-like matrix with a zero (i, i)-element if i /∈ σ(x̂, ẑ).
The matrix Iσ(x̂,ẑ) has the following properties,

Iσ(x̂,ẑ) � 0, Iσ(x̂,ẑ) = ITσ(x̂,ẑ), I2
σ(x̂,ẑ) = Iσ(x̂,ẑ), ρ(Iσ(x̂,ẑ)) ≤ 1.

Then, a compact representation of (5.1a)-(5.1b) is

(ẋ, ż) = F (x̂, ẑ) := (Iσ(x̂,ẑ)f(x̂, ẑ), Ax̂− b),

where F = (Fx, Fz) : Rn≥0 × Rm → Rn × Rm.

5.1. Candidate Lyapunov function and its evolution. Now let us define
and analyze the candidate Lyapunov function that we use to design the trigger set T c.
The overall Lyapunov function is the sum of 2 separate functions V1 and V2, that we
introduce next. To define V1 : Rn × Rm → R≥0, fix K > ‖c + x∗ + AT z∗‖∞ where
x∗ (resp. z∗) is the solution to (4.1) (resp. any solution of the dual of (4.1)) and let
(x̄, z̄) be a saddle-point of LK. Then

V1(x, z) =
1

2
(x− x̄)T (x− x̄) +

1

2
(z − z̄)T (z − z̄).

Note that V1 ≥ 0 is smooth with compact sublevel sets. Next, V2 : Rn × Rm → R≥0

is given by

V2(x, z) =
1

2
f(x, z)T Iσ(x,z)f(x, z) +

1

2
(Ax− b)T (Ax− b).

Note that V2 ≥ 0 but, due to the state-dependent matrix Iσ(x,z), is only piecewise
smooth. In this sense V2 can be viewed as a collection of multiple (smooth) Lyapunov
functions, each defined on a neighborhood where σ is constant. Also, V −1

2 (0) is, by
definition, the set of saddle-points of LK (cf. Lemma 4.3). It turns out that the
negative terms in the Lie derivative of V1 alone are insufficient to ensure that V1 is
always decreasing given any practically implementable trigger design (by practically
implementable we mean a trigger design that does not demand arbitrarily fast state
broadcasting). The analogous statement regarding V2 is also true which is why we
consider instead a candidate Lyapunov function V : Rn × Rm → R≥0 that is their
sum

V (x, z) = (V1 + V2)(x, z).

The following result states an upper bound on LFV in terms of the state errors in x
and z.

Proposition 5.2. (Evolution of V ). Let X × Z ⊆ Rn≥0 × Rm be compact and
suppose that (x, z, x̂, ẑ) ∈ X × Z ×X × Z is such that σ(x̂, ẑ) ⊆ σ(x, z) and

σ(x, z) = lim
α→0

σ(x+ αFx(x̂, ẑ), z + αFz(x̂, ẑ)).(5.2)

12



Then LFV (x, z) exists and

LFV (x, z) ≤ −1

2
f(x̂, ẑ)T Iσ(x̂,ẑ)f(x̂, ẑ)− 1

4
(Ax̂− b)T (Ax̂− b) + 40eTx ex + 20eTz ez

+ 15f(x, z)T Iσ(x,z)\σ(x̂,ẑ)f(x, z),(5.3)

where ex = x− x̂ and ez = z − ẑ.
Proof. For convenience, we use the shorthand notation p = σ(x, z) and p̂ =

σ(x̂, ẑ). Consider first V1, which is differentiable and thus LFV1(x, z) exists,

LFV1(x, z) = (x− x̄)T Ip̂f(x̂, ẑ) + (z − z̄)T (Ax̂− b)
= (x̂− x̄)T Ip̂f(x̂, ẑ) + (ẑ − z̄)T (Ax̂− b) + eTx Ip̂f(x̂, ẑ) + eTz (Ax̂− b).(5.4)

Since X × Z is compact, without loss of generality assume that K ≥ K∗(X × Z) so
that −Ip̂f(x̂, ẑ) ∈ ∂xLK(x̂, ẑ), cf. Lemma 4.3. This, together with the fact that LK is
convex in its first argument, implies

LK(x̂, ẑ) ≤ LK(x̄, ẑ)− (x̂− x̄)T Ip̂f(x̂, ẑ).

Since LK is linear in z, we can write

LK(x̂, ẑ) = LK(x̂, z̄) + (ẑ − z̄)T (Ax̂− b).

Substituting these expressions into (5.4), we get

LFV1(x, z) ≤ LK(x̄, ẑ)− LK(x̂, z̄) + eTx Ip̂f(x̂, ẑ) + eTz (Ax̂− b)

≤ cT x̄+
1

2
x̄T x̄− cT x̂− 1

2

n∑
i=1

x̂T x̂− z̄T (Ax̂− b)−K1T max{0,−x̂}

− 1

2
(Ax̂− b)T (Ax̂− b) + eTx Ip̂f(x̂, ẑ) + eTz (Ax̂− b).

From the analysis in the proof of Lemma 4.2, inequality (4.5) showed that

cT x̄+
1

2
x̄T x̄

≤ cT x̂+
1

2
x̂T x̂+ z̄T (Ax̂− b) +

1

2
(Ax̂− b)T (Ax̂− b) +K1T max{0,−x̂},

where we use the fact that x̄ is also a solution to (4.1), cf. Lemma 4.2. Therefore,

LFV1(x, z) ≤ −1

2
(Ax̂− b)T (Ax̂− b) + eTx Ip̂f(x̂, ẑ) + eTz (Ax̂− b)

≤ −1

2
(Ax̂− b)T (Ax̂− b) +

κ

2
(Ax̂− b)T (Ax̂− b)

+
κ

2
f(x̂, ẑ)T Ip̂f(x̂, ẑ) +

1

2κ
eTx ex +

1

2κ
eTz ez,(5.5)

where we have used Lemma A.1. Next, let us consider V2. We begin by showing
that (5.2) is sufficient for LFV2(x, z) to exist. Since σ is a discrete set of indices, for
the limit in (5.2) to exist, there must exist an ᾱ > 0 such that

σ(x, z) = σ(x+ αFx(x̂, ẑ), z + αFz(x̂, ẑ)),

13



for all α ∈ [0, ᾱ]. This means that one can substitute Iσ(x,z) for Iσ(x+αFx(x̂,ẑ),z+αFz(x̂,ẑ))

in the definition of the Lie derivative (2.1). Since Iσ(x,z) is constant with respect to
α, it is straightforward to see that

LFV2(x, z) =
1

2
∇(f(x, z)T Ipf(x, z))TF (x̂, ẑ) +

1

2
∇((Ax− b)T (Ax− b))TF (x̂, ẑ).

Thus,

LFV2(x, z) = f(x, z)T Ip(Dxf(x, z)Fx(x̂, ẑ) +Dzf(x, z)Fz(x̂, ẑ)) + (Ax− b)TAFx(x̂, ẑ)

= −f(x, z)T Ip(A
TA+ I)Ip̂f(x̂, ẑ)− f(x, z)T IpA

T (Ax̂− b)
+ (Ax− b)TAIp̂f(x̂, ẑ).(5.6)

Due to the assumption that p̂ ⊆ p, we can write Ip = Ip̂ + Ip\p̂. Also, f(x, z) can be
written equivalently in terms of the errors ex, ez as

f(x, z) = f(x̂, ẑ)−AT ez − ex −ATAex.

Likewise, Ax− b = Ax̂− b+Aex. Substituting these quantities into (5.6),

LFV2(x, z) = −(f(x̂, ẑ)−AT ez − ex −ATAex)T Ip̂(A
TA+ I)Ip̂f(x̂, ẑ)

− f(x, z)T Ip\p̂(A
TA+ I)Ip̂f(x̂, ẑ)

− (f(x̂, ẑ)−AT ez − ex −ATAex)T Ip̂A
T (Ax̂− b)

− f(x, z)T Ip\p̂A
T (Ax̂− b) + (Ax̂− b+Aex)TAIp̂f(x̂, ẑ).(5.7)

We now derive upper bounds for a few terms in (5.7). For example,

eTz AIp̂A
TAIp̂f(x̂, ẑ) ≤ 1

2κ
eTz ez +

κ

2
f(x̂, ẑ)T Ip̂A

TAIp̂A
TAIp̂A

TAIp̂f(x̂, ẑ)

≤ 1

2κ
eTz ez +

κ

2
f(x̂, ẑ)T Ip̂f(x̂, ẑ),

where we have used Lemma A.1 and Theorem A.2 along with the facts that ρ(ATA) =
ρ(AAT ) ≤ 1 and ρ(Ip̂) ≤ 1. Likewise,

eTx Ip̂A
TAIp̂f(x̂, ẑ) ≤ 1

2κ
eTx ex +

κ

2
f(x̂, ẑ)T Ip̂A

TAIp̂A
TAIp̂f(x̂, ẑ)

≤ 1

2κ
eTx ex +

κ

2
f(x̂, ẑ)T Ip̂f(x̂, ẑ),

and

f(x, z)T Ip\p̂A
T (Ax̂− b) ≤ 1

2κ
f(x, z)T Ip\p̂f(x, z) +

κ

2
(Ax̂− b)TAAT (Ax̂− b)

≤ 1

2κ
f(x, z)T Ip\p̂f(x, z) +

κ

2
(Ax̂− b)T (Ax̂− b).

Repeatedly bounding every term in (5.7) in an analogous way (which we omit for the
sake of space and presentation) and adding the bound (5.5), we attain the following
inequality

LFV (x, z) ≤ −(1− 5κ)f(x̂, ẑ)T Ip̂f(x̂, ẑ)− 1

2
(1− 5κ)(Ax̂− b)T (Ax̂− b)

+
3

2κ
f(x, z)T Ip\p̂f(x, z) +

4

κ
eTx ex +

2

κ
eTz ez.

14



Equation (5.3) follows by choosing κ = 1
10 , completing the proof.

The reason why we have only considered the case σ(x̂, ẑ) ⊆ σ(x, z) (and not the
more general case of σ(x̂, ẑ) 6= σ(x, z)) when deriving the bound (5.3) in Proposi-
tion 5.2 is the following: our distributed trigger design later (specifically, the trigger
sets T 0

i introduced in Section 6) ensures that σ(x̂, ẑ) ⊆ σ(x, z) always. For this reason,
we need not know how V evolves in the more general case.

5.2. Centralized trigger set design and convergence analysis. Here, we
use our knowledge of the evolution of the function V , cf. Proposition 5.2, to design
the centralized trigger set T c. Our approach is to incrementally design subsets of
T c and then combine them at the end to define T c. The main observation that we
base our design on is the following: The first two terms in the right-hand-side of (5.3)
are negative and thus desirable and the rest are positive. However, following a state
broadcast, the positive terms become zero. This motivates our first trigger set that
should belong to T c,

(5.8) T c,e := {(x, z, x̂, ẑ) ∈ (Rn≥0 × Rm)2 : Ax̂− b 6= 0 or Iσ(x̂,ẑ)f(x̂, ẑ) 6= 0, and

1

8
(Ax̂− b)T (Ax̂− b) +

1

4
f(x̂, ẑ)T Iσ(x̂,ẑ)f(x̂, ẑ) ≤ 20eTz ez + 40eTx ex}.

The numbers 1
8 and 1

4 in the inequalities that define T c,e are design choices that
we have made to ease the presentation. Any other choice in (0, 1) is also possible,
with the appropriate modifications in the ensuing exposition. Note that, when both
Ax̂− b = Iσ(x̂,ẑ)f(x̂, ẑ) = 0, no state broadcasts are required since the system is at a
(desired) equilibrium.

Likewise, after a state broadcast, σ(x, z) = σ(x̂, ẑ) and Iσ(x,z)\σ(x̂,ẑ) = 0 which
means that the last term in (5.3) is also zero. For this reason, define

T c,σ := {(x, z, x̂, ẑ) ∈ (Rn≥0 × Rm)2 : σ(x, z) 6= σ(x̂, ẑ)},(5.9)

which prescribes a state broadcast when the mode σ changes.
We require one final trigger for the following reason. While the set Rn≥0 × Rm is

invariant under the continuous-time dynamics (4.9), this does not hold any more in
the event-triggered case because agents use outdated state information. To preserve
the invariance of this set, we define

T c,0 := {(x, z, x̂, ẑ) ∈ (Rn≥0 × Rm)2 : ∃i ∈ {1, . . . , n} s.t. x̂i > 0, xi = 0}.(5.10)

If this trigger is activated by some agent i’s state becoming zero, then it is easy to see
from the definition of the dynamics (5.1a) that ẋi ≥ 0 after the state broadcast and
thus xi remains non-negative. Finally, the overall centralized trigger set is

T c := T c,e ∪ T c,σ ∪ T c,0.(5.11)

The following result characterizes the convergence properties of (5.1) under the cen-
tralized event-triggered communication scheme specified by (5.11).

Theorem 5.3. (Convergence of the centralized event-triggered design).
If ψ is a persistently flowing solution of (5.1) with T c defined as in (5.11), then there
exists a point (x∗, z

′) ∈ X × Rm such that,

ψ(t, j)→ (x∗, z
′, x∗, z

′) as t+ j −→∞, (t, j) ∈ dom(ψ).

15



Proof. Let (t, j) 7→ ψ(t, j) = (x(t, j), z(t, j), x̂(t, j), ẑ(t, j)). We begin the proof
by showing that V is non-increasing along ψ. To this end, it suffices to prove
that (a) LFV (x(t, j), z(t, j)) ≤ 0 when ψ is flowing and LFV (x(t, j), z(t, j)) ex-
ists, (b) V (x(t, j), z(t, j)) ≤ limτ→t− V (x(t, j), z(t, j)) when ψ(t, j) is flowing but
LFV (x(t, j), z(t, j)) does not exist, and (c) V (x(t, j+1), z(t, j+1)) ≤ V (x(t, j), z(t, j))
when ψ is jumping.

We begin with (a) and consider (t, j) ∈ dom(ψ) for which ψ is flowing. Then,
the interval Ij := {t : (t, j) ∈ dom(ψ)} has non-empty interior and t ∈ int(Ij). This
means that ψ(t, j) /∈ T c and, in particular, σ(x(t, j), z(t, j)) = σ(x̂(t, j), ẑ(t, j)) by
construction of T c,σ. Also, let X×Z be a compact set such that ψ(t, j) ∈ X×Z×X×
Z. Therefore, the conditions of Proposition 5.2 are satisfied and LFV (x(τ, j), z(τ, j))
exists for all τ ∈ int(Ij). Using (5.3), it holds that

LFV (x(t, j), z(t, j)) ≤ −1

8
(Ax̂(t, j)− b)T (Ax̂(t, j)− b)

− 1

4
f(x̂(t, j), ẑ(t, j))T Iσ(x̂(t,j),ẑ(t,j))f(x̂(t, j), ẑ(t, j)),

where we have used (i) the fact that, since σ(x(t, j), z(t, j)) = σ(x̂(t, j), ẑ(t, j)), the
last quantity in (5.3) is zero and (ii) the bound on 20eTx ex + 40eTz ez in the definition
of T c,e. Clearly, in this case, LFV (x(t, j), z(t, j)) ≤ 0 when ψ(t, j) ∈ X ×Z ×X ×Z.

Next, consider (b). Since V1 is smooth, LFV1(x(t, j), z(t, j)) exists, however,
when V2(x(t, j), z(t, j)) is discontinuous, LFV (x(t, j), z(t, j)) does not. This happen
at any (t, j) ∈ dom(ψ) for which (i) Ij (as defined previously) has non-empty interior
and (ii) σ(x(t, j), z(t, j)) 6= limτ→t− σ(x(τ, j), z(τ, j)) (cf. Proposition 5.2). Note that
condition (i) ensures that the limit in condition (ii) is well-defined. For purposes of
presentation, define the sets

S+ := σ(x(t, j), z(t, j)) \ limτ→t−σ(x(τ, j), z(τ, j)),

S− := limτ→t−σ(x(τ, j), z(τ, j)) \ σ(x(t, j), z(t, j)).

Note that one of S+,S− may be empty. We can write

V2(x(t, j), z(t, j)) = limτ→τ−V2(x(τ, j), z(τ, j))

+
1

2

∑
i∈S+fi(x(t, j), z(t, j))2 − 1

2

∑
i∈S−fi(x(t, j), z(t, j))2.

For each i ∈ S+, it must be that fi(x(t, j), z(t, j)) = 0 since fi(x̂(t, j), ẑ(t, j)) < 0 and
f, x, z are continuous. Moreover, the last term in the right-hand-side of the above
expression is non-positive. Thus, V2(x(t, j), z(t, j)) ≤ limτ→t− V2(x(τ, j), z(τ, j)).

Next, when ψ is jumping, as is case (c), V (x(t, j), z(t, j)) = V (x(t, j+1), z(t, j+1)
because (x(t, j + 1), z(t, j + 1)) = (x(t, j), z(t, j)) according to (5.1c).

To summarize, V (x(t, j), z(t, j)) is non-increasing when ψ(t, j) ∈ X ×Z×X ×Z.
Without loss of generality, we choose X×Z = V −1(≤ c), where c = V (x(0, 0), z(0, 0)).
X × Z is compact because the sublevel sets of V1 are compact, and X × Z ×X × Z
is invariant so as not to contradict V (x(t, j), z(t, j)) being non-increasing on X ×Z ×
X × Z. Thus, V (x(t, j), z(t, j)) is non-increasing at all times and ψ is bounded.

Now we establish the convergence property of (5.1). First note that, in this
preliminary design, ψ being persistently flowing implies also that the Lie derivative
of V along F exists for τP time on those intervals of persistent flow. This is because
ψ flowing implies that σ is constant and thus the Lie derivative of V along F exists

16



(cf. (5.2)). There are two possible characterizations of persistently flowing ψ as given
in Section 2. Consider (PFi). By the boundedness of ψ just established, it must be
that for all t ≥ tJ

0 = ẋ(t, j) = Iσ(x̂(tJ ,J),ẑ(tJ ,J))f(x̂(tJ , J)), ẑ(tJ , J)),

0 = ż(t, j) = Ax̂(tJ , J)− b.

By Lemma 4.3 this means that (x̂(tJ , J), ẑ(tJ , J)) is a saddle-point of LK (without
loss of generality, we assume that K ≥ K∗(X×Z)). Applying Lemma 4.2 reveals that
x̂(tJ , J) ∈ X . Since x̂(t, j) is a sampled version of x(tJ , J) it is clear that x(tJ , J) ∈ X
as well, and since their dynamics are stationary in finite time, they converge to a
point, completing the proof.

Consider then (PFii), the second characterization of persistently flowing. We
have established that {V (x(tjk , jk), z(tjk , jk))}∞k=0 is non-increasing. Since it is also
bounded from below by 0, by the monotone convergence theorem there exists a V∗ ∈
[0, c] such that limk→∞ V (x(tjk , jk), z(tjk , jk)) = V∗. Thus

V (x(tjk , jk), z(tjk , jk))− V (x(tjk+1
, jk+1), z(tjk+1

, jk+1))→ 0.

Let δ > 0 and consider κ ∈ N such that

V (x(tjk , jk), z(tjk , jk))− V (x(tjk+1
, jk+1), z(tjk+1

, jk+1)) < δ,

for all k ≥ κ. By the bound established on LFV (x(t, jk), z(t, jk)), which exists for all
(t, jk) ∈ ([tjk , tjk + τP ), jk), it holds that,

V (x(tjk+1
,jk+1), z(tjk+1

, jk+1))

≤ V (x(tjk , jk), z(tjk , jk))− 1

8
(Ax̂(tjk , jk)− b)T (Ax̂(tjk , jk)− b)τP

− 1

4
f(x̂(tjk , jk), ẑ(tjk , jk))T Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f(x̂(tjk , jk), ẑ(tjk , jk))τP .

Therefore, V (x(tjk , jk), z(tjk , jk)) − V (x(tjk+1
, jk+1), z(tjk+1

, jk+1)) < δ for all k ≥ κ
implies that

f(x̂(tjk , jk), ẑ(tjk , jk))T Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f(x̂(tjk , jk), ẑ(tjk , jk)) ≤ 4δτP ,

(Ax̂(tjk , jk)− b)T (Ax̂(tjk , jk)− b) ≤ 8δτP ,

for all k ≥ κ. Since τP is a uniform constant and δ > 0 can be taken arbitrarily small,
we deduce

Iσ(x̂(tjk ,jk),ẑ(tjk ,jk))f(x̂(tjk , jk), ẑ(tjk , jk))→ 0 and Ax̂(tjk , jk)− b→ 0,

as k →∞. By Lemma 4.3, this means that (x̂(tjk , jk), ẑ(tjk , jk)) converges to the set
of saddle-points of LK. The same argument holds for x(tjk , jk) since x̂(tjk , jk) is a
sampled version of that state.

Finally, we establish the convergence to a point. By the Bolzano-Weierstrass The-
orem, there exists a subsequence {jk`} such that (x(tjk`

, jk`), z(tjk`
, jk`)) converges to

a saddle-point (x̄′, z̄′) of LK. Fix δ′ > 0 and let `∗ be such that

‖(x(tjk`
, jk`), z(tjk`

, jk`))− (x̄′, z̄′)‖2 < δ′,

17



for all ` ≥ `∗. Consider the function W = W1 + V2 where

W1(x, z) =
1

2
(x− x̄′)T (x− x̄′) +

1

2
(z − z̄′)T (z − z̄′).

Let c′ = W (x(tjk`∗
, jk`∗ ), z(tjk`∗

, jk`∗ )) and X ′ × Z ′ = W−1(≤ c′). Repeating the

previous analysis, but for W instead of V , we deduce that X ′ × Z ′ × X ′ × Z ′ is
invariant. Consequently, ‖(x(t, j), z(t, j))− (x̄′, z̄′)‖2 < δ′ for all (t, j) ∈ dom(ψ) such
that t+ j ≥ tjk`∗

+ jk`∗ . Since δ′ > 0 is arbitrary, it holds that

ψ(t, j)→ (x̄′, z̄′, x̄′, z̄′) as t+ j −→∞, (t, j) ∈ dom(ψ).

Since (x̄′, z̄′) is a saddle-point of LK and, without loss of generality K ≥ K∗(X × Z),
applying Lemma 4.2 reveals that x̄′ ∈ X , which completes the proof.

Remark 5.4. (Motivation for quadratic regularization of linear pro-
gram). Here we revisit the claim made in Section 4 that using the saddle-point
dynamics derived for the original linear program (3.1) would not be amenable to an
event-triggered implementation. If we were to follow the same design methodology
for such dynamics, we would find that the bound on the Lie derivative of V would
resemble (5.3), but without the non-positive term −f(x̂, ẑ)T Iσ(x̂,ẑ)f(x̂, ẑ). Following
the same methodology to identify the trigger set, one would then use the trigger

1

8
(Ax̂− b)T (Ax̂− b) ≤ 20eTz ez + 40eTx ex,

to define T c,e and ensure that the function V does not increase. However, this trigger
may easily result in continuous-time communication: consider a scenario where Ax̂−
b = 0, but the state x is still evolving. Then the trigger would require continuous-time
broadcasting of x to ensure that ex remains zero. •

6. Algorithm design with distributed event-triggered communication.
In this section, we provide a distributed solution to Problem 3.1, e.g., a coordination
algorithm to solve linear programs requiring only communication at discrete instants
of time triggered by criteria that agents can evaluate with local information. Our
strategy to accomplish this is to investigate to what extent the centralized triggers
identified in Section 5.2 can be implemented in a distributed way. In turn, making
these triggers distributed poses the additional challenge of dealing with the asyn-
chronism in the state broadcasts across different agents, which raises the possibility
of non-persistency in the solutions. We deal with both issues in our forthcoming
discussion and establish the convergence of our distributed design.

6.1. Distributed trigger set design. Here, we design distributed triggers that
individual agents can evaluate with the local information available to them to guar-
antee the monotonically decreasing evolution of the candidate Lyapunov function V .
Our design methodology builds on the centralized trigger sets T c,e, T c,σ, and T c,0
of Section 5.2. As a technical detail, the distributed algorithm that results from this
section has an extended state which, for ease of notation, we denote by

ξ = (x, z, s, q, r, x̂, ẑ) ⊆ Ξ := Rn≥0 × Rm × Rn≥0 × {0, 1}(n+m)×n × Rn+m × Rn≥0 × Rm.

The meaning and dynamics of states s, q, and r will be revealed as they become
necessary in our development.

18



We start by showing how the inequality that defines whether the network state
belongs to the set T c,e in (5.8) can be distributed across the group of agents. Given
µ1, . . . , µn+m > 0, consider the following trigger set for each agent,

T ei :=

{
{ξ ∈ Ξ : fi(x̂, ẑ) 6= 0 and (ex)2

i ≥ µifi(x̂, ẑ)2}, if i ≤ n,

{ξ ∈ Ξ : aTi−nx̂− bi−n 6= 0 and (ez)
2
i−n ≥ µi(aTi−nx̂− bi−n)2}, if i ≥ n+ 1.

If each µi ≤ 1
160 and (x, z, x̂, ẑ) is such that the inequalities defining each T ei do not

hold, then it is clear that (x, z, x̂, ẑ) /∈ T c,e. To ensure convergence of the resulting
algorithm, we later characterize the specific ranges for the design parameters {µi}n+m

i=1 .
Next, we show how the inclusion of the network state in the triggered set T c,0

defined in (5.10) can be easily evaluated by individual agents with partial information.
In fact, for each i ∈ {1, . . . , n}, define the set

T 0
i := {ξ ∈ Ξ : x̂i > 0 but xi = 0}.

Clearly, (x, z, x̂, ẑ) ∈ T c,0 if and only if there is i ∈ {1, . . . , n} such that ξ ∈ T 0
i .

The triggered set T c,σ defined in (5.9) presents a greater challenge from a dis-
tributed computation viewpoint. The problem is that, in the absence of fully up-to-
date information from its neighbors, an agent will fail to detect the mode switches
that characterize the definition of this set. The specific scenario we refer to is the
following: assume agent i ∈ {1, . . . , n} has xi = 0 and the information available to it
confirms that its state should remain constant, i.e., with fi(x̂, ẑ) < 0. If the condition
fi(x, z) ≥ 0 becomes true as the network state evolves, this fact is undetectable by
i with its outdated information. In such a case, i /∈ σ(x̂, ẑ) but i ∈ σ(x, z), meaning
that the equality σ(x, z) = σ(x̂, ẑ) defining the trigger set T c,σ would not be not en-
forced. To deal with this issue, we first need to understand the effect that a mismatch
in the modes has on the evolution of the candidate Lyapunov function V . We address
this in the following result.

Proposition 6.1. (Bound on evolution of candidate Lyapunov function
under mode mismatch). Suppose that (x̂, ẑ) ∈ Rn≥0 × Rm is such that i /∈ σ(x̂, ẑ)
for some i ∈ {1, . . . , n} and let t 7→ (x(t), z(t)) be the solution to

(ẋ, ż) = F (x̂, ẑ),

starting from (x̂, ẑ). Let T > 0 be the minimum time such that i ∈ σ(x(T ), z(T )).
Then, for any ν > 0, and all t such that t− T < ν

2
√

2
, the following holds,

fi(x(t), z(t))2 ≤ ν2f(x̂, ẑ)T Iσ(x̂,ẑ)∩Nx
i
f(x̂, ẑ) + ν2(Ax̂− b)T IN z

i
(Ax̂− b).

Proof. We use the shorthand notation p̂ = σ(x̂, ẑ) and p(t) = σ(x(t), z(t)). Since
i /∈ p̂, it must be that x̂i = 0 and fi(x̂, ẑ) < 0. Moreover, if i ∈ p(T ), it must be, by
continuity of t 7→ (x(t), z(t)) and (x, z) 7→ f(x, z), that fi(x(T ), z(T )) = 0. Let us
compute the Taylor expansion of t 7→ fi(x(t), z(t)) using t = T as the initial point. For
technical reasons, we actually consider the equivalent mapping t 7→ I{i}f(x(t), z(t))
instead,

I{i}f(x(t), z(t)) = I{i}f(x(T ), z(T )) +DxI{i}f(x(T ), z(T ))TFx(x̂, ẑ)(t− T )

+DzI{i}f(x(T ), z(T ))TFz(x̂, ẑ)(t− T )

= I{i}(A
TA+ I)Ip̂f(x̂, ẑ)(t− T ) + I{i}A

T (Ax̂− b)(t− T ),

19



where the equality holds because the higher order terms are zero. Thus,

f(x(t), z(t))T I{i}f(x(t), z(t)) = f(x̂, ẑ)T Ip̂(A
TA+ I)I{i}(A

TA+ I)Ip̂f(x̂, ẑ)(t− T )2

+ 2f(x̂, ẑ)T Ip̂(A
TA+ I)I{i}A

T (Ax̂− b)(t− T )2

+ (Ax̂− b)TAI{i}AT (Ax̂− b)(t− T )2.

Using Lemma A.1 with κ = 1
2 and exploiting the consistency between the matrix A

and the neighbors of i, we obtain

f(x(t), z(t))T I{i}f(x(t), z(t))

≤ 2f(x̂, ẑ)T Ip̂(A
TA+ I)I{i}(A

TA+ I)Ip̂f(x̂, ẑ)(t− T )2

+ 2(Ax̂− b)TAI{i}AT (Ax̂− b)(t− T )2

≤ 2f(x̂, ẑ)T Ip̂∩Nx
i

(ATA+ I)2Ip̂∩Nx
i
f(x̂, ẑ)(t− T )2

+ 2(Ax̂− b)T IN z
i
AAT IN z

i
(Ax̂− b)(t− T )2

≤ 8f(x̂, ẑ)T Ip̂∩Nx
i
f(x̂, ẑ)(t− T )2 + 2(Ax̂− b)T IN z

i
(Ax̂− b)(t− T )2

≤ 8(t− T )2(f(x̂, ẑ)T Ip̂∩Nx
i
f(x̂, ẑ) + (Ax̂− b)T IN z

i
(Ax̂− b)).

Using the bound t− T ≤ ν
2
√

2
in the statement of the result completes the proof.

The importance of Proposition 6.1 comes from the following observation: given
the upper bound on the evolution of the candidate Lyapunov function V obtained in
Proposition 5.2, one can appropriately choose the value of ν so that the negative terms
in (5.3) can compensate for the presence of the last term due to a mode mismatch
of finite time length. This observation motivates the introduction of the following
trigger sets, which cause neighbors to send synchronized broadcasts periodically to
an agent if its state remains at zero. First, if an agent i’s state is zero and it has not
received a synchronized broadcast from its neighbors for τi time (here, τi > 0 is a
design parameter), it triggers a broadcast to notify its neighbors that it requires new
states. This behavior is captured by the trigger set

T request
i :=

{
{ξ ∈ Ξ : xi = 0 and si ≥ τi}, if i ≤ n,

∅, if i ≥ n+ 1.

where we use the state si to denote the time since i has last sent a broadcast. On the
receiving end, if i receives a broadcast request from a neighbor j, then it should also
broadcast immediately,

T send
i := {ξ ∈ Ξ : ∃j ∈ N x

i s.t. qi,j = 1}.

where qi,j ∈ {0, 1} is a state with qi,j = 1 indicating that j has requested a broadcast
from i.

Our last component of the distributed trigger design addresses the problem posed
by the asynchronism in state broadcasts. In fact, given that agents determine au-
tonomously when to communicate with their neighbors, this may cause non-persistence
in the resulting network evolution. As an example, consider a scenario where succes-
sive state broadcasts by one agent cause another neighboring agent to generate a
state broadcast of its own after increasingly smaller time intervals, and vice versa. To
address this problem, we provide a final component to the design of the distributed
trigger set as follows,

T synch
i := {ξ ∈ Ξ : 0 ≤ ri ≤ rmin

i },

20



where ri represents the time elapsed between when agent i received a state broadcast
from a neighbor and i’s last broadcast. We use ri = −1 to indicate that i has not
received a broadcast from a neighbor since its own last state broadcast. The thresh-
old rmin

i > 0 is a design parameter (smaller values result in less frequent updates).
Intuitively, this trigger means that if an agent broadcasts its state and in turn receives
a state broadcast from a neighbor faster than some tolerated rate, the agent broad-
casts its state immediately again. The effect of this trigger is that, if broadcasts start
occurring too frequently in the network, neighboring agents’ broadcasts synchronize.
This emergent behavior is described in more depth in the proof of Theorem 6.3 later.

Finally, the overall distributed trigger set for each i ∈ {1, . . . , n+m} is,

Ti := T ei ∪ T 0
i ∪ T

request
i ∪ T send

i ∪ T synch
i .(6.1)

6.2. Distributed algorithm and convergence analysis. We now state the
distributed algorithm and its convergence properties which are the main contributions
of this paper.

Algorithm 6.2. (Distributed linear programming with event-triggered
communication). For each agent i ∈ {1, . . . , n+m}, if ξ /∈ Ti then

ẋi =

{
fi(x̂, ẑ), if x̂i > 0,

max{0, fi(x̂, ẑ)}, if x̂i = 0,
if i ≤ n(6.2a)

żi−n = aTi−nx̂− bi−n, if i ≥ n+ 1(6.2b)

ṡi =

{
1, if si < τi,

0, if si ≥ τi,
for all i(6.2c)

and, if ξ ∈ Ti, then

x̂+
i = xi if i ≤ n(6.2d)

ẑ+
i−n = zi−n, if i ≥ n+ 1(6.2e)

(s+
i , r

+
i , r

+
j ) = (0,−1, sj), for all i and all j ∈ Ni(6.2f)

q+
j,i = 1, if ξ ∈ T request

i and for all j ∈ Ni(6.2g)

q+
i,j = 0, if ξ ∈ T send

i and for all j ∈ N x
i(6.2h)

The entire network state is given by ξ ∈ Ξ. However, the local state of an individual
agent i ∈ {1, . . . , n} consists of xi, x̂i, si, ri, and ∪j∈Nx

i
{qi,j}. Likewise, the local state

of agent i ∈ {n + 1, . . . , n + m} consists of zi−n, ẑi−n, si, ri, and ∪j∈Nx
i
{qi,j}. These

latter agents may be implemented as virtual agents as described in Remark 4.4. Then,
recalling the assumptions on local information outlined in Section 3, it is straightfor-
ward to see that the coordination algorithm (6.2) can be implemented by the agents
in a distributed way. We are now ready to state our main convergence result.

Theorem 6.3. (Distributed triggers - convergence and persistently flow-
ing solutions). For each i ∈ {1, . . . , n+m}, let 0 < µi ≤ 1

160 and

0 < rmin
i ≤ τi <

1√
960|Ni|maxj∈Ni |Nj |

.

Let ψ be a solution of (6.2), with each set Ti defined by (6.1). Then,
(i) if ψ is persistently flowing, there exists a point (x∗, z) ∈ X × Rm such that,

(x(t, j), z(t, j))→ (x∗, z
′) as t+ j −→∞, (t, j) ∈ dom(ψ),

21



(ii) if there exists δP > 0 such that, for any time (t′, j′) ∈ dom(ψ) where ψ(t′, j′) ∈
T 0
i for some i ∈ {1, . . . , n}, it holds that ψ(t, j) /∈ T 0

i for all (t, j) ∈ ((t′, t′ +
δP ]× N) ∩ dom(ψ), the solution ψ is persistently flowing.

Proof. The proof of the convergence result in (i) follows closely the argument we
employed to establish Theorem 5.3. One key difference is that the intervals on which
ψ flows do not necessarily correspond to the intervals on which LFV exists. This
is because the value of σ may change even though ψ still flows. However, since the
dynamics (ẋ, ż) = F (x̂, ẑ) is constant on periods of flow it is easy to see that there
can be at most n agents added to σ in any given period of flow. This means that, if
ψ is persistently flowing according to the characterization (PFii), the Lie derivative
LFV exists persistently often for periods of length τP /n (since σ must be constant
for an interval of length at least τP /n persistently often). Thus, let us consider a time
(t, j) such that (t, j) ∈ (tj , tj + τp/n)×{j} ⊂ dom(ψ) and LFV (x(t, j), z(t, j)) exists.
Note that, if ψ is persistently flowing according to the characterization (PFi), we may
take τP = ∞ and the following analysis holds. To ease notation, denote p(t, j) =
σ(x(t, j), z(t, j)) and p̂(t, j) = σ(x̂(t, j), ẑ(t, j)). Then, following the exposition in
the proof of Theorem 5.3, one can see that, due to trigger sets T ei and T 0

i and the
conditions on µi,

LFV (x(t, j), z(t, j)) ≤ −1

4
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f(x̂(t, j), ẑ(t, j))

− 1

8
(Ax̂(t, j)− b)T (Ax̂(t, j)− b)

+ 15f(x(t, j), z(t, j))Ip(t,j)\p̂(t,j)f(x(t, j), z(t, j)).(6.3)

We focus on the last term, which is the only positive one. If i ∈ p(t, j) \ p̂(t, j),
then it must be that x̂i = 0 and thus i is receiving state broadcasts from its neigh-
bors every τi seconds by design of T request

i and {T send
j }j∈Ni

. Therefore, the maxi-
mum amount of time that any i remains in p(t, j) \ p̂(t, j) is τi seconds. Since each

τi <
1√

960|Ni|maxj∈Ni
|Nj |

, we apply Proposition 6.1 using ν < 2
√

2√
960|Ni|maxj∈Ni

|Nj |
to

obtain

fi(x(t, j), z(t, j))2 <
1

120|Ni|maxj∈Ni
|Nj |

(
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)∩Nx

i
f(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T IN z
i

(Ax̂(t, j)− b)
)
.

From the above bound it is clear that

f(x(t, j), z(t, j))Ip(t,j)\p̂(t,j)f(x(t, j), z(t, j))

<
1

120

∑
i∈p(t,j)\p̂(t,j)

1

|Ni|maxj∈Ni
|Nj |

(
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)∩Nx

i
f(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T IN z
i

(Ax̂(t, j)− b)
)

<
1

120

∑
i∈{1,...,n}

1

|Ni|
∑
k∈Nj

1

|Nj |
(
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f(x̂(t, j), ẑ(t, j))

+ (Ax̂(t, j)− b)T (Ax̂(t, j)− b)
)

<
1

120

(
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f(x̂(t, j), ẑ(t, j)) + (Ax̂(t, j)− b)T (Ax̂(t, j)− b)

)
,

22



which, when combined with (6.3), reveals that there exists some ε > 0 such that

LFV (x(t, j), z(t, j))

≤ −ε
(
f(x̂(t, j), ẑ(t, j))T Ip̂(t,j)f(x̂(t, j), ẑ(t, j)) + (Ax̂(t, j)− b)T (Ax̂(t, j)− b)

)
.

The remainder of the convergence proof now follows in the same way as the proof of
Theorem 5.3.

Next, we prove (ii) by contradiction. Suppose that the conditions in (ii) are
satisfied but ψ is not persistently flowing. Then, for any ε > 0, there exists Tε such
that for every (t, j) ∈ dom(ψ) with t + j ≥ Tε, the time between state broadcasts is
less than ε. Choose

ε < min
{ 1

n+ 1
min
i
rmin
i ,min

i
τi,

1

n+ 1
δP ,min

i

√
µi

}
.

Then, we can show that all the state broadcasts in the network are synchronized
from Tε time forward due to the trigger sets T synch

i : by our choice of ε, there are at
least (n+ 1)ε broadcasts every mini r

min
i seconds. This means that at least one agent

has broadcast twice in the last mini r
min
i seconds. Accordingly, all the neighbors of

that agent synchronously broadcast their state at the same time due to the trigger
sets T synch

i . Propagating this logic to the second-hop neighbors and so on, one can
see that the entire network is synchronously broadcasting its state and this will be
true for all t+ j ≥ Tε. Let us then explore the possible causes of the next broadcast.
Clearly, the next broadcast will not be due to any T synch

i , since agent broadcasts are

synchronized already. Likewise, it will not be due to any T request
i or T send

i since, by

construction, mini τi > ε time must have elapsed before T request
i is enabled by any

agent. By assumption, only n broadcasts due to the T 0
i can occur in δP seconds.

Without loss of generality, we can assume that the next broadcast due to one of T 0
i

does not occur for another δP
n+1 > ε time. This leaves the T ei trigger sets. Let us

look at the evolution of (ex)i for any given i ∈ {1, . . . , n}. Since i has not received a
broadcast from its neighbors, the evolution of (ex)i is

(ex)i(t, j) = fi(x̂, ẑ)(t− tj).

Therefore, for T ei to have been enabled, mini
√
µi > ε time must have elapsed (the

same conclusion holds for i ∈ {n+1, . . . , n+m}). This means that the next broadcast
is not triggered in ε time, contradicting the definition of ε, and this completes the
proof.

As shown in the proof of Theorem 6.3, the triggers defined by T ei , T request
i , T send

i ,

and T synch
i do not cause non-persistency in the solutions of (6.2). If we had used (3.1)

in our derivation instead of (4.1), the resulting design would not have enjoyed this
attribute, cf. Remark 5.4. In our experience, the hypothesis in Theorem 6.3(ii) is
always satisfied with δP =∞, which suggests that all solutions of (6.2) are persistently
flowing.

Remark 6.4. (Robustness to perturbations). We briefly comment here on
the robustness properties of the coordination algorithm (6.2) against perturbations.
These may arise in the execution as a result of communication noise, measurement
error, modeling uncertainties, or disturbances in the dynamics, among other reasons.
A key advantage of modeling the execution of the coordination algorithm in the hy-
brid systems framework described Section 2.2 is that there exist a suite of established
robustness characterizations for such systems. In particular, it is fairly straightfor-
ward to verify that (6.2) is a ‘well-posed’ hybrid system, as defined in [8], and as a

23



consequence of this fact, the convergence properties stated in Theorem 6.3(i) remain
valid if the hybrid system (6.2) is subjected to sufficiently small perturbations (see
e.g., [8, Theorem 7.21]). Moreover, in our previous work [21], we have shown that the
continuous-time dynamics (4.9) (upon which our distributed algorithm with event-
triggered communication is built) is integral-input-to-state stable, and thus robust to
disturbances of finite energy. We believe that the coordination algorithm (6.2) in-
herits this desirable property, although we do not characterize this explicitly here for
reasons of space. Nevertheless, Section 7 below illustrates the algorithm performance
under perturbation in simulation. •

7. Simulations. Here we illustrate the execution of the coordination algorithm
(6.2) with event-triggered communication in a multi-agent assignment example. The
multi-agent assignment problem we consider is a resource allocation problem where
N tasks are to be assigned to N agents. Each potential assignment of a task to an
agent has an associated benefit and the global objective of the network is to maximize
the sum of the benefits in the final assignment. The assignment of an agent to a task
is managed by a broker and the set of all brokers use the strategy (6.2) to find the
optimal assignment. Presumably, a broker is only concerned with the assignments of
the agent and task that it manages and not the assignments of the entire network.
Additionally, there may exist privacy concerns that limit the amount of information
that a network makes available to any individual broker. These are a couple of reasons
why a distributed algorithm is well-suited to solve this problem.

Agents Tasks

A1
5

15 20

10

T1

A2 T2

(a) Assignment graph

B2,1

B1,1 B1,2

B2,2

(b) Communication between brokers

Fig. 7.1. (a) shows the assignment graph with agents A1 and A2 in blue, tasks T1 and T2 in
red, and the benefit of a potential assignment as edge weights. (b) shows the connectivity among
brokers. Broker Bi,j is responsible for determining the potential assignment of task Tj to agent Ai.
The dashed nodes represent the virtual brokers whose states correspond to the components of the
Lagrange multipliers z in (6.2), see Remark 4.4.

We consider an assignment problem with 2 agents (denoted by A1 and A2) and 2
tasks (denoted by T1 and T2) as shown in Figure 7.1(a). The assignment problem is
to be solved by a set of 4 brokers as shown in Figure 7.1(b). In general, the number of
brokers is the number of edges in the assignment graph. Broker Bi,j is responsible for
determining the potential assignment of task Tj to agent Ai and has state xi,j ∈ {0, 1}.
Here, xi,j = 1 means that task Tj is assigned to agent Ai (with associated benefit
ci,j ∈ R≥0) and xi,j = 0 means that they are not assigned to each other. We formulate

24



the multi-agent assignment problem as the following optimization problem,

max c1,1x1,1 + c1,2x1,2 + c2,1x2,1 + c2,2x2,2(7.1a)

s.t. x1,1 + x1,2 = 1(7.1b)

x2,1 + x2,2 = 1(7.1c)

x1,1 + x2,1 = 1(7.1d)

x1,2 + x2,2 = 1(7.1e)

x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}.(7.1f)

Constraints (7.1b)-(7.1c) (resp. (7.1d)-(7.1e)) ensure that each agent (resp. task) is
assigned to one and only one task (resp. agent). Note that the connectivity between
brokers shown in Figure 7.1(b) is consistent with the requirements for a distributed
implementation as specified by the constraint equations of (7.1). It is known, see
e.g., [23], that the relaxation xi,j ≥ 0 of the constraints (7.1f) gives rise to a linear
program with an optimal solution that satisfies xi,j ∈ {0, 1}. Thus, for our purposes,
we solve instead the following linear program

min − 5x1,1 − 15x1,2 − 20x2,1 − 10x2,2(7.2a)

s.t. x1,1 + x1,2 = 1(7.2b)

x2,1 + x2,2 = 1(7.2c)

x1,1 + x2,1 = 1(7.2d)

x1,2 + x2,2 = 1(7.2e)

x1,1, x1,2, x2,1, x2,2 ≥ 0,(7.2f)

where we have also converted the maximization into a minimization by considering
the negative of the objective function and substituted the values of the benefits given
in Figure 7.1(a). Clearly, the linear program (7.2) is in standard form. Its solution
set is X = {x∗}, with x∗ = (x∗1,1, x

∗
1,2, x

∗
2,1, x

∗
2,2) = (0, 1, 1, 0), corresponding to the

optimal assignment consisting of the pairings (A1,T2) and (A2,T1).

Figure 7.2 shows the group of brokers executing the distributed coordination algo-
rithm (6.2) with event-triggered communication. Figure 7.3 illustrates the algorithm
performance in the presence of additive white noise on the state broadcasts. The con-
vergence in this case shows the algorithm robustness to sufficiently small disturbances,
as pointed out in Remark 6.4.

8. Conclusions and future work. We have studied the design of distributed
algorithms for networks of agents that seek to collectively solve linear programs in
standard form and rely on discrete-time communication. Our algorithmic solution has
agents executing a distributed continuous-time dynamics and deciding in an oppor-
tunistic and autonomous way when to broadcast updated state information to their
neighbors. Our methodology combines elements from linear programming, switched
and hybrid systems, event-triggered control, and Lyapunov stability theory to provide
provably correct centralized and distributed strategies. We have rigorously charac-
terized the asymptotic convergence of persistently flowing executions to a solution of
the linear program. We have also identified a sufficient condition for executions to be
persistently flowing, and based on it, we conjecture that they all are. Future work
will be devoted to establish that all solutions are persistently flowing, rigorously char-
acterize the input-to-state stability properties of the proposed algorithm, extend our

25



Time (s)

x
(t

)

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

x(t)

x̂(t)

(a) Broker state trajectories

0 5 10 15
10

11

12

13

14

15

16

17

18

19

20

21

Time (s)

z
(t

)

(b) Virtual broker state trajectories

Time (s)

V

0 2 4 6 8 10 12 14

1450

1500

1550

1600

1650

0 0.1 0.2 0.3 0.4 0.5 0.6
1400

1450

1500

1550

1600

1650

(c) Evolution of V

Time (s)

T
o
ta

l
#

o
f

b
ro

a
d
c
a
st

s

0 5 10 15
0

200

400

600

800

1000

1200

1400

1600

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

(d) Cumulative number of broadcasts

Fig. 7.2. Simulation results of brokers implementing (6.2) to solve the multi-agent assignment
problem (7.2). (a) shows the state trajectories of the brokers, with an inlay displaying the transient
response in detail. The brokers’ state is x = (x1,1, x1,2, x2,1, x2,2) and the inlay also shows the
evolution of the broadcast states, x̂ = (x̂1,1, x̂1,2, x̂2,1, x̂2,2) in dashed lines. The aggregate of the
brokers’ states converge to the unique solution X = {(0, 1, 1, 0)}. (b) shows the evolution of the
virtual brokers’ states. The Lyapunov function V is discontinuous but decreasing, as evidenced
in (c). The cumulative number of broadcasts appears roughly linear and the execution is clearly
persistently flowing. Each inlay shows the transient in detail.

approach to event-triggered strategies for general switched systems, and implement
the results on a multi-agent testbed.

Appendix.
The following two results are used extensively in the proof of Proposition 5.2 and

elsewhere in the paper.
Lemma A.1. (Young’s inequality [10]). Let d1, d2 ∈ N and µ ∈ Rd1 , M ∈

Rd1×d2 , ν ∈ Rd2 . Then, for any κ > 0,

µTMν ≤ κ

2
νTMTMν +

1

2κ
µTµ.

Theorem A.2. (Cauchy Interlacing Theorem [13, Theorem 4.3.15]).
For a matrix 0 � A ∈ Rd×d, let 0 ≤ λ1 ≤ · · · ≤ λd denote its eigenvalues. For
p ∈ {1, . . . , d}, let Ap be the matrix obtained by zeroing out the pth row and column

26



0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

x
(t

)

(a) Noisy broker state trajectories

0 5 10 15
10

11

12

13

14

15

16

17

18

19

20

21

Time (s)

z
(t

)

(b) Noisy virtual broker state trajectories

Fig. 7.3. Simulation results of brokers implementing (6.2) to solve the multi-agent assignment
problem (7.2) under additive noise in the communication channels. In this simulation, broadcasts
of information are corrupted by noise which is normally distributed with zero mean and standard
deviation 1. The network state converges to a neighborhood of the optimal solution and the optimal
assignment can easily be deduced.

of A, and let 0 = µ1 ≤ · · · ≤ µd denote its eigenvalues. Then µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤
· · · ≤ µd ≤ λd.

REFERENCES

[1] D. P. Bertsekas and D. A. Castañón, Parallel synchronous and asynchronous implementa-
tions of the auction algorithm, Parallel Computing, 17 (1991), pp. 707–732.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, 1997.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2009.
[4] M. Burger, G. Notarstefano, F. Bullo, and F. Allgower, A distributed simplex algo-

rithm for degenerate linear programs and multi-agent assignment, Automatica, 48 (2012),
pp. 2298–2304.

[5] J. Cortés, Distributed algorithms for reaching consensus on general functions, Automatica,
44 (2008), pp. 726–737.

[6] D. Feijer and F. Paganini, Stability of primal-dual gradient dynamics and applications to
network optimization, Automatica, 46 (2010), pp. 1974–1981.

[7] B. Gharesifard and J. Cortés, Distributed continuous-time convex optimization on weight-
balanced digraphs, IEEE Transactions on Automatic Control, 59 (2014), pp. 781–786.

[8] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems, IEEE Control
Systems Magazine, 29 (2009), pp. 28–93.

[9] , Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University
Press, 2012.

[10] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press,
Cambridge, UK, 1952.

[11] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, An introduction to event-
triggered and self-triggered control, in IEEE Conf. on Decision and Control, Maui, HI,
2012, pp. 3270–3285.

[12] J. P. Hespanha, Uniform stability of switched linear systems: Extensions of LaSalle’s Invari-
ance Principle, IEEE Transactions on Automatic Control, 49 (2004), pp. 470–482.

[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[14] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, Subgradient methods and

consensus algorithms for solving convex optimization problems, in IEEE Conf. on Decision
and Control, Cancun, Mexico, 2008, pp. 4185–4190.

[15] S. S. Kia, J. Cortés, and S. Mart́ınez, Distributed convex optimization via continuous-time
coordination algorithms with discrete-time communication, Automatica, (2014). Submit-
ted.

[16] D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applica-
tions, Birkhäuser, 2003.

27



[17] O. L. Mangasarian and R. R. Meyer, Nonlinear perturbation of linear programs, SIAM
Journal on Control and Optimization, 17 (1979), pp. 745–752.

[18] M. Mazo Jr. and P. Tabuada, Decentralized event-triggered control over wireless sen-
sor/actuator networks, IEEE Transactions on Automatic Control, 56 (2011), pp. 2456–
2461.

[19] A. Nedic and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization,
IEEE Transactions on Automatic Control, 54 (2009), pp. 48–61.

[20] M. G. Rabbat and R. D. Nowak, Quantized incremental algorithms for distributed optimiza-
tion, IEEE Journal on Selected Areas in Communications, 23 (2005), pp. 798–808.

[21] D. Richert and J. Cortés, Robust distributed linear programming, IEEE Transactions on
Automatic Control, (2013). Submitted. Available at http://carmenere.ucsd.edu/jorge.

[22] S. Samar, S. Boyd, and D. Gorinevsky, Distributed estimation via dual decomposition, in
European Control Conference, Kos, Greece, July 2007, pp. 1511–1516.

[23] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 2000.
[24] P. Wan and M. D. Lemmon, Event-triggered distributed optimization in sensor networks,

in Symposium on Information Processing of Sensor Networks, San Francisco, CA, 2009,
pp. 49–60.

[25] X. Wang and M. D. Lemmon, Event-triggering in distributed networked control systems, IEEE
Transactions on Automatic Control, 56 (2011), pp. 586–601.

[26] E. Wei and A. Ozdaglar, Distributed alternating direction method of multipliers, in IEEE
Conf. on Decision and Control, Maui, HI, 2012, pp. 5445–5450.

[27] L. Xiao, M. Johansson, and S. P. Boyd, Simultaneous routing and resource allocation via
dual decomposition, IEEE Transactions on Communications, 52 (2004), pp. 1136–1144.

[28] M. Zhu and S. Mart́ınez, An approximate dual subgradient algorithm for distributed non-
convex constrained optimization, IEEE Transactions on Automatic Control, 58 (2013),
pp. 1534–1539.

28

http://carmenere.ucsd.edu/jorge

