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Abstract— This paper addresses the problem of asymptotic
stabilization for linear time-invariant (LTI) systems using event-
triggered control under finite data rate communication - both
in the sense of finite precision data at each transmission and
finite average data rate. Given a prescribed rate of convergence
for asymptotic stability, we introduce an event-triggered control
implementation that opportunistically determines the transmis-
sion instants and the finite precision data to be transmitted
at each transmission. We show that our design exponentially
stabilizes the origin while guaranteeing a positive lower bound
on the inter-transmission times, ensuring that the number
of bits transmitted at each transmission is upper bounded,
and allowing for the possibility of transmitting fewer bits at
any given time if more bits than prescribed were transmitted
on a previous transmission. In our technical approach, we
consider both the case of instantaneous and non-instantaneous
transmissions. Several simulations illustrate the results.

I. INTRODUCTION

In networked control systems (NCS), feedback informa-
tion is communicated over communication channels with
low, time varying and possibly unreliable channel capacity.
Despite the many significant advances in the last decade,
control over networks with communication constraints is still
a challenging problem. Two particular themes of research
that seek to address this problem have received wide interest
- information theoretic approach to control under data rate
constraints and event-triggered control. Although the two
themes share common motivations, they address different
aspects of the problem. We believe that combining the two
themes into an integrated approach provides a more complete
solution to the problem of control under communication.
This paper is a contribution towards this end.

Literature Review: One of the earliest data rate results
appeared in [1]–[3] which employed the idea of countering
the information generated (the growth in the uncertainty of
the system state) with a sufficiently high data rate of the
encoded feedback. This approach was very successful in
providing tight necessary and sufficient conditions on the
bit rate of the encoded feedback for asymptotic stabilization
in the discrete time setting. Subsequently similar ideas were
used to provide data rate theorems also for cases such as
time-varying feedback channels [4] and Markov feedback
channels [5]. In the continuous time setting the problem
has been mainly studied under the assumption of periodic
sampling or aperiodic sampling with known upper and lower
bounds [6], [7] (single input systems), [8] (nonlinear feedfor-
ward systems) and [9] (switched linear systems). More com-
prehensive accounts of this literature may be found in [10],
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[11]. Focusing on the continuous-time setting, it is not known
if and how a best sampling period may be designed or if
state based aperiodic sampling as in event-triggered control
provides any advantages. Additionally, the results in this
theme do not provide (with the exception of [9]) convergence
rates. On the other hand, the event-triggered control literature
(see [12] for a fairly comprehensive list of references) is
focused on goal-driven state-based aperiodic sampling to
minimize the number of transmissions for efficient use of
the communication resources, while largely ignoring the
quantization aspect. Among the exceptions are [13], which
considers static quantization, and [14]–[17], which consider
dynamic quantization. All these works guarantee a positive
lower bound on the inter-transmission times, as is typical
in the event-triggered control literature, and a sufficient
condition on the number of bits per transmission. While
such guarantees are useful, nothing is known about either
necessary or sufficient conditions on the required number of
bits averaged over a finite or infinite time horizon. In fact,
this has been a shortcoming of the event-triggered control
literature on the whole.

Statement of Contributions: We address the problem of
asymptotic stabilization of LTI systems with a prescribed rate
of convergence using event-triggered control and under finite
data rate communication. Our main contributions pertain
to the design of event-triggered controllers that guarantee
exponential convergence with a prescribed rate by adjusting
the data rate in accordance with the state information. We
consider increasingly realistic scenarios, ranging from in-
stantaneous transmissions with arbitrary, but finite data rate,
through instantaneous transmissions with uniformly bounded
data rate, to finally non-instantaneous transmissions with
bounded average data rate. In all cases, our design guarantees
the existence of a positive lower bound on inter-transmission
times and in the latter two cases, ensures that the number of
bits transmitted at each transmission is upper bounded. From
an event-triggered control perspective, our key contribution
is that we adopt the information-theoretic approach to quan-
tization, coding and triggering. This allows us to characterize
sufficient bit rates averaged over time. It also allows the
capability to transmit fewer bits if more bits than prescribed
were transmitted on a previous transmission, a feature which
is useful in NCS with time-varying channel capacity. From
an information-theoretic perspective, our contribution is that
we exploit state-based opportunistic sampling strategies to
guarantee a specified convergence rate. We note that we do
not consider overhead bits associated with addresses, error
correction, or encryption. Proofs are omitted due to space
limitations and will appear elsewhere.



Notation: We let R, R≥0, N, and N0 denote the set of real,
nonnegative real, positive integer, and nonnegative integer
numbers, respectively. For a symmetric matrix P ∈ Rn×n,
we let λm(P ) and λM (P ) denote its smallest and largest
eigenvalues, respectively. We denote by ‖.‖2 and ‖.‖∞ the
Euclidean and infinity norm of a vector, respectively, or the
corresponding induced norm of a matrix. For A ∈ Rn×n,
note that ‖eAτ‖2 ≤ e‖A‖2τ . Finally, for f : R 7→ Rn and
t ∈ R, we let f(t−) denote the limit from the left, lim

s↑t
f(s).

II. PROBLEM STATEMENT

Consider a linear time-invariant control system,

ẋ(t) = Ax(t) +Bu(t) (1)

where x ∈ Rn is the plant state and u ∈ Rm is the control
input, while A ∈ Rn×Rn and B ∈ Rn×Rm are the system
matrices. We assume that the pair (A,B) is stabilizable, i.e.,
there exists a control gain K ∈ Rm×Rn such that the matrix
Ā = A+BK is Hurwitz. Under these assumptions, u(t) =
Kx(t) renders the origin globally exponentially stable.

Description of the NCS: We assume that the plant is
equipped with a sensor and an actuator that are not co-
located with each other. Further, we assume that the sensor
can measure the state exactly, and that the actuator can exert
the input to the plant with infinite precision. However, the
sensor can transmit state information to the controller at the
actuator only at discrete time instants (of its choice) and
using only a finite number of bits. In this sense, we refer to
the sensor as the encoder and the actuator as the decoder. We
let {tk}k∈N be the sequence of transmission (or encoding)
times at which the sensor samples the plant state, encodes it,
and transmits it. We denote by npk the number of bits used
to encode the plant state at the transmission time tk. The
process of encoding, transmission by the sensor, reception
of a complete packet of encoded data at the controller, and
decoding may take non-zero time. Thus, we let {rk}k∈N be
the sequence of reception (or update) times at which the
decoder receives a complete packet of data, decodes it, and
updates the controller state. Therefore, rk ≥ tk. The kth

communication time ∆k , rk − tk is then a function of tk
and the packet size (of npk bits) represented by pk,

∆k = rk − tk , ∆(tk, pk).

We use the term instantaneous communication to refer to
the case ∆ ≡ 0. For simplicity, we assume that the encoder
and the decoder have synchronized clocks and that they
synchronously update their states at update times {rk}k∈N.
This assumption is justified in situations where the function
t 7→ ∆(t, p) is independent of t or where the encoder and
decoder send short synchronization signals to indicate the
start of encoding and the end of decoding, respectively.

Coding Scheme: We use dynamic quantization as the basis
for finite-bit transmissions from the encoder to the decoder.
In dynamic quantization, there are two distinct phases: the
zoom out stage, during which no control is applied while
the quantization domain is expanded until it captures the
system state at time r0 = t0 ∈ R≥0; and the zoom in stage,

during which the encoded feedback is used to asymptotically
stabilize the system. A detailed description of the zoom
out stage can be found in the literature, e.g., [18]. In this
paper, we focus exclusively on the zoom-in stage, i.e., for
t ≥ t0. For the task of asymptotic stabilization, we use a
hybrid dynamic controller. We assume that both the encoder
and the decoder have perfect knowledge of the plant system
matrices. The state of the encoder/decoder is composed of
the controller state x̂ ∈ Rn and an upper bound de ∈ R≥0

on the encoding error xe , x − x̂. Thus, the actual input
to the plant is given by u(t) = Kx̂(t). During inter-update
times, the state of the dynamic controller evolves as

˙̂x(t) = Ax̂(t) +Bu(t) = Āx̂(t), t ∈ [rk, rk+1). (2a)

Let us denote the encoding and decoding functions for the
kth iteration by qE,k : Rn × Rn 7→ Gk and qD,k : Gk ×
Rn 7→ Rn, respectively, where Gk is a finite set of 2pk

symbols. At tk, the encoder encodes the plant state as zE,k ,
qE,k(x(tk), x̂(t−k )), where x̂(t−k ) is the controller state just
prior to the encoding time tk, and sends it to the controller.
This signal is decoded as zD,k , qD,k(zE,k, x̂(t−k )) by the
decoder at time rk. Then at the update time rk, the sensor
and the controller update x̂ using the jump map,

x̂(rk) = eĀ∆k x̂(t−k ) + eA∆k(zD,k − x̂(t−k ))

, qk(x(tk), x̂(t−k )). (2b)

where the notation qk : Rn × Rn 7→ Rn represents the
quantization that occurs as a result of the finite-bit coding.
We allow the quantization domain, the number of bits and the
resulting quantizer, qk, at each transmission instant tk ∈ R≥0

to be variable. Note that the evaluation of the map qk is
inherently from the encoder’s perspective because it depends
on the plant state x(tk), which is unknown to the decoder.
Also, while the encoder could store x̂(t−k ), the decoder has
to infer its value if ∆k > 0. We detail the specifics of the
decoder’s procedure to implement (2b) when communication
is not instantaneous later.

The evolution of the plant state x and the encoding error xe
on the time interval [rk, rk+1) can be written as

ẋ(t) = Āx(t)−BKxe(t), (3a)
ẋe(t) = Axe(t). (3b)

Note that while the controller state x̂ is known to both the
encoder and the decoder, the plant state (equivalently, the
encoding error xe) is known only to the encoder. However,
at t0, if a bound on ‖xe(t0)‖∞ is available, then both the
encoder and the decoder can compute a bound de(t) on
‖xe(t)‖∞ for any t ∈ R≥0, as we explain later.

Finally, in order to formalize the control goal, we select
an arbitrary symmetric positive definite matrix Q ∈ Rn×n.
Because Ā is Hurwitz, there exists a symmetric positive
definite matrix P that satisfies the Lyapunov equation

PĀ+ ĀTP = −Q. (4)

Consider then the associated candidate Lyapunov function
x 7→ V (x) = xTPx. Given a desired “control performance”

Vd(t) = Vd(t0)e−β(t−t0) (5)



with β > 0 (rate of convergence) a constant, the control
objective is as follows: recursively determine the sequence
of transmission times {tk}k∈N ⊂ R>0 and finite bit messages
encoding x̂(tk) so that V (x(t)) ≤ Vd(t) holds for all
t ≥ t0, while also ensuring that the inter-transmission
times {tk − tk−1}k∈N are uniformly lower bounded by a
positive quantity and that the number of bits transmitted
at any instant is uniformly upper bounded. We structure
our solution to this problem in two stages, depending on
whether communication is instantaneous (Section III) or non-
instantaneous (Section IV).

III. EVENT-TRIGGERED CONTROL WITH BOUNDED DATA
RATE AND INSTANTANEOUS COMMUNICATION

Consider the system defined by (3) where the controller
state evolves according to (2). Given the control goal of Sec-
tion II, our task is to determine the sequences of transmission
times {tk} and encoded transmissions {x̂(tk)}.

A. Requirements on the Encoding Scheme

First, we specify the requirements of the encoding scheme
essential for our purposes. Assume that, at t = t0 ∈ R≥0,
the beginning of the zoom in stage, the encoder and decoder
have a common knowledge of a constant de(t0) such that
‖xe(t0)‖∞ ≤ de(t0). Given this common knowledge, the
encoder and the decoder inductively construct a signal de(.)
such that ‖xe(t)‖∞ ≤ de(t) is satisfied for all t ≥ t0 as
follows. First, note that as a consequence of (3b), we have

‖xe(t)‖∞ ≤ ‖eA(t−tk)‖∞‖xe(tk)‖∞.

Now, assuming that the encoder and the decoder know
de(tk) ≥ 0 at time tk such that ‖xe(tk)‖∞ ≤ de(tk), then
both can compute

de(t) , ‖eA(t−tk)‖∞de(tk), (6a)

for t ∈ [tk, tk+1). The above discussion guarantees that
‖xe(t)‖∞ ≤ de(t) for t ∈ [tk, tk+1). Next, at time tk+1,
if npk+1 is the number of bits used to quantize and transmit
information, then the encoder and the decoder update the
value of de(tk+1) by the jump,

de(tk+1) =
1

2pk+1
de(t

−
k+1). (6b)

Assuming the quantization at time tk is such that
‖xe(tk)‖∞ ≤ de(tk) given ‖xe(tk)‖∞ ≤ de(t

−
k ), then it is

straightforward to verify by induction that the so constructed
signal de ensures ‖xe(t)‖∞ ≤ de(t) for all t ≥ t0.

As an example, we next specify (up to the number of bits)
an encoding scheme that satisfies the above requirements.
Given de(tk) such that ‖xe(tk)‖∞ ≤ de(tk), for k ∈ N0,
the plant state satisfies

x(t) ∈ S(x̂(t), de(t)) = {ξ ∈ Rn : ‖ξ − x̂(t)‖∞ ≤ de(t)},

for all t ∈ [tk, tk+1). At time tk+1, the sensor/encoder
encodes the plant state and transmits using npk+1 bits. In this
encoding scheme, the set S(x̂(t−k+1), de(t

−
k+1)) is divided

uniformly into 2npk+1 hypercubes and x̂(tk+1) is chosen
as the centroid of the hypercube containing the plant state

x(tk+1). This results in de(tk+1) being updated as in (6b).
Formally, we can express the quantization at time tk as

qk(x(tk), x̂(t−k )) ∈ argmin
ξ∈Xk

{‖x(tk)− ξ‖∞}, (7)

where Xk is the set of centroids of the 2npk hypercubes that
the set S(x̂(t−k ), de(t

−
k )) is divided into. We assume that if

x(tk) lies on the boundary of two or more hypercubes, then
the encoder and decoder choose the value of qk(x(tk), x̂(t−k ))
according to a common deterministic rule. As a result, given
x̂(t0) and de(t0) at time t0, x̂(t) and de(t) are known to
both the encoder and the decoder at all times t ≥ t0.

In the remainder of the paper, we make no reference to
this specific encoding scheme. Instead it is sufficient for us
to use the properties of the encoding scheme specified by (6).

B. Event-Triggered Design with Arbitrary Finite Data Rate

We first address the problem under the condition of
arbitrary finite data rate, without imposing an explicit uni-
form bound across all transmissions. Consider the Lyapunov
function V (x) = xTPx, and let

h1(t) = V (x(t))− Vd(t). (8)

Next, let the time instants {tk} be given recursively as

tk+1 = min{t ≥ tk : h1(t) ≥ 0, ḣ1(t) ≥ 0}. (9)

Now, we are ready to present the first result.
Theorem 3.1 (Control with Arbitrary Finite Data Rate):

Consider the system (1) under the feedback law
u(t) = Kx̂(t), where t 7→ x̂(t) evolves according
to (2) with the sequence {rk} identical to {tk} and
determined recursively by (9). Assume that the encoding
scheme is such that (6) holds for all t ≥ 0. Further assume
that V (x(t0)) ≤ Vd(t0) and that

W ,
λm(Q)

λM (P )
− aβ > 0, (10)

where a > 1 is an arbitrary constant. If the number of bits
pkn transmitted at time tk satisfies

pk ≥ pk ,

⌈
log2

(
de(t

−
k )

c
√
Vd(tk)

)⌉
, (11)

where c , W
√
λm(P )

2
√
n‖PBK‖2

, then the following hold:

(i) the inter-transmission times {tk+1− tk} for k ∈ N have
a uniform positive lower bound,

(ii) the origin is exponentially stable for the closed loop
system with V (x(t)) ≤ Vd(t) for all t ≥ t0.

The quantity pk in Theorem 3.1 can be interpreted as
the minimum number of bits to be transmitted sufficient to
ensure that, after transmission, ḣ1(tk) < 0. The recursive
nature of the inequalities (11) can be leveraged to better
understand the relationship across different times among the
bounds on the number of bits sufficient for stability. The
following result says that the upper bound on pk at time tk
would be smaller if more bits were transmitted in the past.



Corollary 3.2: (Less bits are sufficient now if more bits
were transmitted before). Under the assumptions of Theo-
rem 3.1, the following holds for any k ∈ N,

pk+1 ≤ log2

(
e(‖A‖2+ β

2 )(tk+1−t0)
)

+ (k + 1)−
k∑
i=1

pi.

The next result gives insight into the total number of bits
sufficient for stability as a function of time.

Corollary 3.3: (Upper bound on the bit rate sufficient
for stability). Under the assumptions of Theorem 3.1, the
following holds for any k ∈ N,

n(pk +

k−1∑
i=1

pi)

≤ n
(
‖A‖2 +

β

2

)
log2(e)(tk − t0)+n log2

(
de(t0)

c
√
Vd(t0)

)
+n.

C. Event-Triggered Design with Uniform Data Rate

Note that while Theorem 3.1 guarantees that the number of
bits per transmission is finite, it does not guarantee a uniform
bound on it. The result is not useful if the communication
channel imposes an upper bound on the number of bits per
transmission. This is the problem that we next address. We
start by relaxing the triggering condition so that at time
instants tk, V (x(tk)) ≤ Vd(tk), i.e. b(tk) ≤ 1 where

b(t) ,
V (x(t))

Vd(t)
(12)

First we want to estimate the time it takes b(t) to evolve
from b(tk) ≤ 1 to 1 given ε(tk), where ε(.) is defined as

ε(t) ,
de(t)

c
√
Vd(t)

. (13)

It is easy to show that the Lie derivative of V along the
trajectories of the closed loop system, between discrete
updates, is bounded as

V̇ ≤ − λm(Q)

λM (P )
V (x(t))+

+W
√
V (x(t))eα(A)(t−tk)ε(tk)

√
Vd(tk)

as a result of which, we have

ḃ =
V̇ Vd − V V̇d

V 2
d

=
V̇ + βV

Vd
≤ −wb+Wε(tk)eθτ

√
b

where w ,
(
λm(Q)

λM (P )
− β

)
, θ , α(A) + (β/2) and τ ,

(t − tk). Assuming (10) holds, both w > 0 and W > 0.
Then for b ∈ [0, 1], our region of interest, we have

ḃ ≤ −wb+Wε(tk)eθτ

Then, by the Comparison Lemma, we have that b(τ + tk) ≤
b̃(τ, b(tk), ε(tk)), where

b̃(τ, b0, ε0) , e−wτ b0 +
Wε0
w + θ

e−wτ [e(w+θ)τ − 1] (14)

If we fix τ and ε(tk), then b̃(τ) is an increasing function
of the initial condition b(tk). Similarly, if we fix τ and
b(tk) then b̃(τ) is an increasing function of ε(tk). Now, the
following definition will be useful

Γ̃1(b0, ε0) , min{τ ≥ 0 : b̃(τ, b0, ε0) = 1,
˙̃
b ≥ 0}, (15)

which is a lower bound on the time it takes b to evolve to
1 starting from b(tk) = b0 and ε(tk) = ε0. Then, for all
b0 ∈ [0, 1], we have

Γ̃1(b0, ε0) ≥ Γ̃1(1, ε0) ≥ Γ̃1(1, 1) > 0, ∀ε0 ∈ [0, 1],

which implies that if b(tk) ∈ [0, 1] and ε(tk) ∈ [0, 1] then
b(t) ≤ 1 for at least all t ∈ [tk, tk+Γ̃1(1, 1]. Thus, we would
like our trigger to ensure that ‘the number of bits required
to have the value of ε smaller than or equal to 1 just after
transmission’ is no more than np̄, the upper bound imposed
by the channel. Therefore, we define {tk} recursively as

tk+1 = min{t ≥ tk : h1(t) ≥ 0, ḣ1(t) ≥ 0 OR ε(t) ≥ 2p̄}
(16)

where p̄n is the upper bound on the number of bits that can
be transmitted per transmission. Analogous to Γ̃1, we define
the following function that gives us the time it takes for ε to
evolve to 2p̄ from an initial value ε0.

Γ2(ε0) , min{τ ≥ 0 : ε(τ + tk) = 2p̄, ε(tk) = ε0} (17)

= min{τ ≥ 0 : ‖eAτ‖∞e(β/2)τ ε0 = 2p̄}. (18)

We are now ready to present the next result, whose proof
mainly relies on showing that the functions Γ̃1 and Γ2 are
uniformly lower bounded for b0, ε0 ∈ [0, 1].

Theorem 3.4 (Control under Bounded Channel Capacity):
Consider the system (1) under the feedback law
u(t) = Kx̂(t), where t 7→ x̂(t) evolves according
to (2) with the sequence {rk} identical to {tk} and
determined recursively by (16). Assume that the encoding
scheme is such that (6) holds for all t ≥ 0. Further assume
that V (x(t0)) ≤ Vd(t0), ε(t0) ≤ 2p̄ and that (10) holds.
Suppose that the number of bits pkn transmitted at time tk
satisfies pk ∈ N∩[pk, p̄] with pk given by (11) and where p̄
is the uniform upper bound on pk imposed by the channel.
Then, the following hold:

(i) the inter-transmission times {tk+1− tk} for k ∈ N have
a uniform positive lower bound,

(ii) the origin is exponentially stable for the closed loop
system with V (x(t)) ≤ Vd(t) for all t ≥ t0.

IV. EVENT-TRIGGERED CONTROL WITH BOUNDED DATA
RATE AND NON-INSTANTANEOUS COMMUNICATION

Here we design event-triggered laws for deciding the trans-
mission times and the number of bits used per transmission
when communication is not instantaneous. This corresponds
to the setup of Section II in its full generality.

The encoder quantizes at tk as described earlier and sends
npk bits which are received completely by the decoder at
rk ≥ tk. However, the discrete update of x̂ and de are per-
formed synchronously by the encoder and the decoder at time
instants rk according to Algorithms 1 and 2, respectively.



Algorithm 1 : Update of encoder variables

At t = tk , store the encoder variable x̂(tk), encode the plant state x(t) us-
ing npk bits. δk is the new bound on xe(tk).
1: Set zk ← x̂(tk)
2: zE,k ← qE,k(x(tk), zk)
3: Set δk ← de(t

−
k )/2pk

At t = rk , decode the message zE,k and map forward in time to obtain
x̂(rk) and de(rk).
4: zD,k ← qD,k(zE,k, zk)

5: x̂(rk)← eĀ∆kzk + eA∆k (zD,k − zk)
6: de(rk)← ‖eA∆k‖∞δk

Algorithm 2 : Update of decoder variables

At t = rk , map x̂(r−k ) and de(r
−
k ) back in time to obtain zk and δk ,

decode the received message zE,k and map forward in time to obtain x̂(rk)
and de(rk).
1: Set zk ← e−Ā∆k x̂(r−k )

2: Set δk ← ‖eA(tk−rk−1)‖∞de(rk−1)/2
pk

3: Execute steps 4 through 6 of the encoder algorithm

Note that Step 5 in Algorithm 1 is a consequence of the fact
that x(t) = x̂(t) + xe(t) and (2a) and (3b). The decoder
makes all the computations at t = rk as in Algorithm 2.

Notice that the variables v, δ and ṽ computed by the
encoder and the decoder are the same, and hence x̂(t) and
de(t) at the encoder and decoder are synchronized for all
time. In fact, the decoder algorithm, between the discrete
updates, evolves the coding variables as

de(t) , ‖eA(t−tk)‖∞δk, ∀t ∈ [rk, rk+1) (19a)

δk+1 =
1

2pk+1
de(t

−
k+1) (19b)

As a result, given x̂(t0) and de(t0), x̂(t) and de(t) are known
to both the encoder and the decoder at all times t ≥ t0.

Next, we make an assumption regarding the function ∆.
(A1) For any given t, if s1 ≤ s2 then ∆(t, s1) ≤ ∆(t, s2).

There exists ∆m > 0 such that ∆m ≤ ∆(t, 1) for all
t ≥ 0. Given p̄ ∈ N, there exists ∆∗ ∈ R≥0 with
∆∗ ≤ min{Γ̃1(1, 1),Γ2(1)}, such that ∆(t, p̄) ≤ ∆∗

for all t ≥ 0.
The basic idea behind the design of event-triggering rule in
this scenario is to anticipate the zero crossings of h1(t) and
ε(t)−2p̄ functions at least ∆∗ units of time ahead. Thus, the
problem reduces to the checking of the zero crossings of the
functions Γ̃1(b(t), ε(t))−∆∗ and Γ2(ε(t))−∆∗, respectively.
While the latter function is precisely computable the former
requires solving a transcendental equation. To overcome this,
we make the following observation.

Lemma 4.1: Suppose that ∆ > 0 be any number. For any
b0 ∈ [0, 1] and ε0 ∈ [0, 1], Γ̃1(b0, ε0) > ∆ if and only if
b̃(∆, b0, ε0) < 1. Further, the corresponding statement with
the inequalities reversed and the one in which the inequalities
are replaced by equality are true. �

Since ε evolves monotonously between discrete updates,
the condition Γ2(ε(t)) ≥ ∆∗ is equivalent to R(∆∗)ε(t) ≥
2p̄, where R(∆) , ‖eA∆‖∞e(β/2)∆. Hence, we recursively

determine the transmission time instants {tk} as

tk+1 = min{t ≥ rk : b̃(∆∗, b(t), ε(t)) ≥ 1, OR
R(∆∗)ε(t) ≥ 2p̄}. (20)

Now we present the final result.
Theorem 4.2 (Bounded Data and Communication Rate):

Consider the system (1) under the feedback law
u(t) = Kx̂(t), where t 7→ x̂(t) evolves according
to (2) with {tk} determined recursively by (20) where ∆∗ is
as given in Assumption (A1). Let {rk} be given as r0 = t0
and rk = tk + ∆k for k ∈ N. Assume that the encoding
scheme is such that (19) holds for all t ≥ 0. Further assume
that V (x(t0)) ≤ Vd(t0), ε(t0) ≤ 2p̄ and that (10) hold. Let
pk be given by

pk ,

⌈
log2 (R(∆∗)ε(tk))

⌉
. (21)

Then, the following hold:
(i) p1 ≤ p̄. Further for each k ∈ N, if pk ∈ N∩[pk, p̄], then

pk+1 ≤ p̄.
(ii) the inter-transmission times {tk+1 − tk} and inter-

reception times {rk+1 − rk} for k ∈ N have a uniform
positive lower bound,

(iii) the origin is exponentially stable for the closed loop
system with V (x(t)) ≤ Vd(t) for all t ≥ t0.

V. SIMULATIONS

Here, we present an example with simulations only for
the scenario corresponding to Theorem 3.4, due to space
constraints. Consider the system given by (1) with

A =

[
1 −2
1 4

]
, B =

[
0
1

]
, K =

[
2 −8

]
The plant matrix A has eigenvalues at 2 and 3, while the
control gain matrix K places the eigenvalues of the matrix
Ā = (A + BK) at −1 and −2. The other parameters and
the initial conditions have been chosen as follows.

Q = I2, β = 0.9
λm(Q)

λM (P )
, a = 1.1,

x(t0) =
[
6 −4

]T
, x̂(t0) =

[
5 −3

]T
de(t0) = 1.1‖x(t0)− x̂(t0)‖∞, Vd(t0) = 1.2V (x(t0))

We present simulations for two cases, p̄ = 12 and p̄ = 20,
where np̄ (here n = 2) is the uniform upper bound on the
number of bits per transmission that is imposed by the com-
munication channel. Figures 1a and 1b show the evolution
of V (x(t)) and Vd(t) for p̄ = 12 and p̄ = 20 respectively.
We see that in each case, the desired convergence rate is
guaranteed. Note that in the simulation for p̄ = 12, V (x(t))
is always strictly lesser than Vd(t). Hence, in this case
pk = p̄ = 12 for each transmission k. For any p̄ ≤ 12 similar
behavior was observed, and since in these cases only the
second condition in the triggering rule (16) is ever satisfied,
this results in periodic transmission instants. However, in the
case of p̄ = 20, pk for each k was chosen as pk (see (11)).
In this simulation, this quantity is strictly less than p̄ on all
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Fig. 1: The evolution of the Lyapunov function V (x(t)) and
Vd(t) for (a) p̄ = 12 and (b) p̄ = 20.

transmissions except one (see Figure 2a). Figure 2b shows
the interpolated plot of the total number of bits transmitted
in each of the cases with p̄ = 12 and p̄ = 20. In reality,
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Fig. 2: (a) Number of bits transmitted on each transmission in
the case of p̄ = 20. (b) Interpolated plot of the total number
of bits transmitted for cases with p̄ = 12 and p̄ = 20.

the total number of bits transmitted as a function of time is
piecewise constant. However, the interpolated plots enable a
more insightful comparison.

In the case of p̄ = 20, after having transmitted more bits
initially than for p̄ = 12, the gap in the cumulative bit counts
is not only recovered but also reversed as time progresses.
From Figure 1 we see that in the case of p̄ = 12, the control
goal is over-met at the cost of increased communication of
information as seen in Figure 2b. On the other hand, with
p̄ = 20 lesser communication resources are used over time
while still meeting the control goal satisfactorily.

VI. CONCLUSIONS

We have addressed the problem of asymptotic stabilization
for LTI systems with a prescribed rate of convergence using
event-triggered control under finite data rate communica-
tion. Our design exponentially stabilizes the origin with a
prescribed rate of convergence, guarantees a positive lower
bound on inter-transmission and inter-reception communica-
tion times, and ensures that the number of bits transmitted
at each transmission is upper bounded. These guarantees are
valid for instantaneous transmissions with finite precision
data as well as for non-instantaneous transmissions with
finite average data rate. The combination of elements from
event-triggered control and information theory has allowed
us to (i) guarantee an arbitrarily prescribed convergence
rate (something not typically ensured in the information-
theoretic approach) and (ii) characterize sufficient conditions
on the time-average usage of the network resources (an issue

mostly overlooked in the event-triggered control literature).
Future work will be devoted to address the limitations of
our approach (specifically, the conservativeness in some of
the bounds, the restriction ε(tk) ≤ 1, and the requirement of
synchronized clocks between the encoder and the decoder to
maintain a synchronized quantization domain) and the exten-
sion to stochastic time-varying communication channels, and
in general, to further understanding the trade-offs between
system performance and timeliness and size of transmissions.
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