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Event-Triggered Stabilization of Linear Systems
Under Bounded Bit Rates

Pavankumar Tallapragada Jorge Cortés

Abstract—This paper addresses the problem of exponential
practical stabilization of linear time-invariant systems with dis-
turbances using event-triggered control and bounded commu-
nication bit rate. We consider both the case of instantaneous
communication with finite precision data at each transmission
and the case of non-instantaneous communication with bounded
communication rate. Given a prescribed rate of convergence,
the proposed event-triggered control implementations oppor-
tunistically determine the transmission instants and the finite
precision data to be transmitted on each transmission. We show
that our design exponentially practically stabilizes the origin
while guaranteeing a uniform positive lower bound on the inter-
transmission and inter-reception times, ensuring that the number
of bits transmitted on each transmission is upper bounded
uniformly in time, and allowing for the possibility of transmitting
fewer bits at any given time if more bits than prescribed were
transmitted earlier. We also characterize the necessary and
sufficient average data rate for exponential practical stabilization.
Several simulations illustrate the results.

I. INTRODUCTION

The digital nature of communication in networked control
systems naturally induces sampling and quantization of sig-
nals. The increasing ubiquity of these systems, particularly in
resource-constrained domains where communication channels
have low, time-varying, and possibly unreliable channel ca-
pacity, has brought to the forefront the need for integrated
and systematic design methodologies that go beyond adhoc
approaches. This paper is a contribution to the modern body
of research that seeks to fundamentally address the problem of
control under constrained resources. Specifically, we seek to
combine the strengths of event-triggered control and informa-
tion theory to efficiently stabilize linear time-invariant systems
under communication constraints.

Literature Review: The need for systems integration and
the importance of bridging the gap between computing, com-
munication, and control in the study of cyberphysical systems
cannot be overemphasized [1], [2]. The present work builds on
two areas of research that address the stabilization of control
systems under limited information from different and comple-
mentary perspectives. In the information-theoretic approach to
control under communication constraints, the focus is on deter-
mining sufficient and necessary conditions on the bit data rates
(i.e., the number of bits transmitted over possibly multiple
transmissions during an arbitrary time interval) that guarantee
stabilization under varying assumptions on the communication
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channels. The works [3], [4] provide comprehensive accounts
of this by now vast literature, and we highlight next a few
references most relevant to the discussion here. Early data
rate results appeared in [5]–[7], which employ the idea of
countering the information generated (the growth in the un-
certainty of the system state) with a sufficiently high data rate
of the encoded feedback. This approach has been successful
in providing tight necessary and sufficient conditions on the
bit rate of the encoded feedback for asymptotic stabilization
in the discrete time setting. Subsequently, similar ideas have
been used to provide data rate theorems also for stochastic rate
channels [8] and extended to vector systems and time-varying
feedback channels [9] and Markov feedback channels [10].
In the continuous-time setting, the problem has been mainly
studied under the assumption of periodic sampling or aperi-
odic sampling with known upper and lower bounds on the
sampling period for single input systems [11], [12], nonlinear
feedforward systems (single input systems [13], and switched
linear systems [14]. In this context, it is not known if and
how a best sampling period may be designed or if state-
based aperiodic sampling can provide any advantages in the
efficiency and performance of the resulting implementation.
With a few exceptions, see e.g., [14], the works above do not
characterize the convergence rates or explore the problem of
guaranteeing a desired performance.

Event-triggered control, instead, seeks to trade computa-
tion and decision-making for less communication, sensing,
or actuation effort, while guaranteeing a desired level of
performance. This literature, see e.g. [15]–[17] and references
therein, exploits the tolerance to measurement errors to design
goal-driven state-based aperiodic sampling for the efficient use
of the system resources. The main focus of this body of work
is on minimizing the number of updates while guaranteeing the
feasibility of the resulting real-time implementation. When in-
terpreted in terms of communication, this results in a paradigm
where one seeks to minimize the number of transmissions
while largely ignoring the quantization aspect and allowing the
data at each transmission to be of infinite precision. Among
the few exceptions, we mention event-triggered schemes with
static logarithmic quantization [18], [19] and dynamic quanti-
zation [20]–[23]. In [18], events are defined as the system state
crossing static quantization cells, communication is assumed to
be instantaneous and there are no disturbances. [19] considers
the problem with modeling errors and communication delays.
Both these papers do not explicitly study the notion of com-
munication bit rate (i.e., the number of bits per transmission).
In [20]–[23], the events are defined as the infinity norm
of the encoding error crossing a fixed or piecewise-constant
threshold. [20] considers instantaneous communication and
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external disturbances, although the use of a fixed threshold
in the event-triggering condition results in practical stability
even under no disturbance. In addition, if the channel imposes
a bound on the communication bit rate, then it also affects the
ultimate bound on the state. [21] addresses the problem for
nonlinear systems and with communication delays, while [22],
[23] extend these results to the case with external disturbance.
All these works guarantee a positive lower bound on the inter-
transmission times, while [20]–[23] also provide a uniform
bound on the communication bit rate. Interestingly, these
references do not address the inverse problem of triggering
and quantization given a limit on the communication bit rate
imposed by the channel. While guarantees on the uniform
boundedness of the communication bit rate are useful, they
do not characterize either necessary or sufficient conditions
on the required data rates, i.e., the number of bits averaged
over a finite or infinite time horizon. In fact, this has been
a shortcoming of the event-triggered control literature on the
whole, where the availability of such analytical results would
be useful in the design of networked control systems as
well as in quantifying their improvement over time-triggered
implementations. Finally, the common underlying approach in
the event-triggered works mentioned above is based on the
notion of input-to-state-stability with respect to measurement
errors for both event-triggering and quantization. This is in
contrast with the information-theoretic data rate approach to
quantization and encoding we adopt in the present work.

Statement of Contributions: This paper designs event-
triggered controllers for linear-time invariant systems under
bounded communication bit rate. We focus on the control
goal of exponential practical stabilization, in the presence of
disturbance and with a prescribed rate of convergence. The
first contribution is the identification of a necessary condition
on the average bit rate required for all solutions of a linear-time
invariant system to exponentially converge with a prescribed
convergence rate. Our second set of contributions pertain to
the design of event-triggered controllers that guarantee expo-
nential convergence with a desired performance by adjusting
the communication rate in accordance with state information
in an opportunistic fashion. We consider increasingly realistic
scenarios, ranging from instantaneous transmissions with ar-
bitrary, but finite communication rate, through instantaneous
transmissions with uniformly bounded communication rate, to
finally non-instantaneous transmissions with arbitrary bounded
communication rate imposed by the channel. In all cases,
our design guarantees the existence of a uniform positive
lower bound on inter-transmission and inter-reception times,
and ensures that the number of bits transmitted at each
transmission is upper bounded. An overarching contribution of
the paper is the introduction of the information-theoretic data
rate approach to quantization and encoding to complement
event-triggering for data rate limited feedback control. From
an event-triggered control perspective, our key contribution
is going beyond the paradigm of infinite precision at each
transmission and adopting the information-theoretic approach
to quantization, encoding, and triggering. This allows us to
characterize necessary and sufficient data rates averaged over
time, and quantify the capability to transmit fewer bits if

more bits than prescribed were transmitted earlier. From an
information-theoretic perspective, our key contribution is the
efficient use of the communication resources by exploiting
state-based opportunistic sampling. This allows us to tune
the operation of the control system to the desired level of
performance and guarantee a desired convergence rate.

Organization: Section II formally states the asymptotic
stabilization problem under event-triggered control and finite
communication bit rate. Section III identifies a necessary
condition on the average bit rate required for all solutions to
asymptotically converge with a prescribed convergence rate.
Sections IV and V present our event-triggered control design
with bounded communication rate under instantaneous and
non-instantaneous communication, respectively. Section VI
presents simulation results. Finally, Section VII gathers our
conclusions and ideas for future work.

Notation: We let R, R≥0, N, and N0 denote the set of
real, nonnegative real, positive integer, and nonnegative integer
numbers, respectively. We let In and 0n ∈ Rn×n denote the
identity and zero matrix, respectively, of dimension n. For
a symmetric matrix A ∈ Rn×n, we let λm(A) and λM (A)
denote its smallest and largest eigenvalues, respectively. For a
symmetric positive definite matrix P ∈ Rn×n and all x ∈ Rn,√

λm(P )‖x‖2 ≤
√
xTPx ≤

√
λM (P )‖x‖2. (1)

Given A1, A2 ∈ Rn×n, A1 ≺ A2 denotes that A1 − A2 is
negative definite. Similarly, the symbols �, � and � stand for
negative semi-definiteness, positive definiteness and positive
semi-definiteness, respectively. We denote by ‖.‖2 and ‖.‖∞
the Euclidean and infinity norm of a vector, respectively, or
the corresponding induced norm of a matrix. For A ∈ Rn×m,
we let A+ denote the pseudoinverse. For A ∈ Rn×n, note that
‖eAτ‖2 ≤ e‖A‖2τ . Finally, for a function f : R 7→ Rn and any
t ∈ R, we let f(t−) denote the limit from the left, lim

s↑t
f(s).

II. PROBLEM STATEMENT

Consider a plant whose dynamics is given by a linear time-
invariant control system,

ẋ(t) = Ax(t) +Bu(t) + v(t), (2)

where x ∈ Rn denotes the state of the plant, u ∈ Rm is the
control input and v ∈ Rn is an unknown disturbance. Here,
A ∈ Rn×n and B ∈ Rn×m are the system matrices. We
assume that the pair (A,B) is stabilizable, i.e., there exists
a control gain matrix K ∈ Rm×n such that the matrix Ā =
A + BK is Hurwitz, and that the disturbance is uniformly
bounded by a known constant, i.e.,

‖v(t)‖2 ≤ ν, ∀t ∈ [0,∞). (3)

Under these assumptions, u(t) = Kx(t) renders the origin
of (2) globally exponentially practically stable.

The plant is equipped with a sensor and an actuator, which
we assume are not co-located. Further, we assume that the
sensor can measure the state exactly, and that the actuator can
exert the input to the plant with infinite precision. However,
the sensor has the ability to transmit state information to the



3

controller at the actuator only at discrete time instants (of its
choice) and using only a finite number of bits. In this sense
we refer to the sensor as the encoder and the actuator as the
decoder. We let {tk}k∈N be the sequence of transmission (or
encoding) times at which the sensor decides to sample the
plant state, encode it, and transmit it. We denote by npk
the number of bits used to encode the plant state at the
transmission time tk. The process of encoding, transmission
by the sensor, reception of a complete packet of encoded data
at the controller, and decoding may take non-zero time. We
let {rk}k∈N be the sequence of reception (or update) times at
which the decoder receives a complete packet of data, decodes
it, and updates the controller state. Therefore, rk ≥ tk. The
kth communication time ∆k , rk − tk is then a function of
tk and the packet size (of npk bits) represented by pk,

∆k = rk − tk , ∆(tk, pk).

In general, the time ∆k could include communication time,
computation time and other delays. We use the term instan-
taneous communication to refer to the case ∆ ≡ 0. To keep
things simple, we assume that the encoder and the decoder
have synchronized clocks and that they synchronously update
their states at update times {rk}k∈N. The latter assumption
is justified in situations where the function t 7→ ∆(t, p) is
independent of t or where the encoder and decoder send short
synchronization signals to indicate the start of encoding and
the end of decoding, respectively.

We use dynamic quantization for finite-bit transmissions
from the encoder to the decoder. In dynamic quantization,
there are two distinct phases: the zoom out stage, during
which no control is applied while the quantization domain
is expanded until it captures the system state at time r0 =
t0 ∈ R≥0; and the zoom in stage, during which the encoded
feedback is used to asymptotically stabilize the system. A
detailed description of the zoom out stage can be found in
the literature, e.g., [24]. In this paper, we focus exclusively on
the zoom-in stage, i.e., for t ≥ t0 for which we use a hybrid
dynamic controller. We assume that both the encoder and the
decoder have perfect knowledge of the plant system matrices.
The state of the encoder/decoder is composed of the controller
state x̂ ∈ Rn and an upper bound de ∈ R≥0 on the encoding
error xe , x− x̂. Thus, the actual input to the plant is given
by u(t) = Kx̂(t). During inter-update times, the state of the
dynamic controller evolves as

˙̂x(t) = Ax̂(t) +Bû(t) = Āx̂(t), t ∈ [rk, rk+1) (4a)

Let the encoding and decoding functions at kth iteration be rep-
resented by qE,k : Rn×Rn 7→ Gk and qD,k : Gk×Rn 7→ Rn,
respectively, where Gk is a finite set of 2pk symbols. At tk, the
encoder encodes the plant state as zE,k , qE,k(x(tk), x̂(t−k )),
where x̂(t−k ) is the controller state just prior to the encoding
time tk, and sends it to the controller. This signal is decoded
as zD,k , qD,k(zE,k, x̂(t−k )) by the decoder at time rk. Then
at the update time rk, the sensor and the controller update x̂
using the jump map,

x̂(rk) = eĀ∆k x̂(t−k ) + eA∆k(zD,k − x̂(t−k ))

, qk(x(tk), x̂(t−k )). (4b)

We use the shorthand notation qk : Rn×Rn 7→ Rn to represent
the quantization that occurs as a result of the finite-bit coding.
We allow the quantization domain, the number of bits and
the resulting quantizer, qk, at each transmission instant tk ∈
R≥0 to be variable. Note that the evaluation of the map qk is
inherently from the encoder’s perspective because it depends
on the plan state x(tk), which is unknown to the decoder.
Also, while the encoder could store x̂(t−k ), the decoder has
to infer its value if ∆k > 0. We detail the specifics of the
decoder’s procedure to implement (4b) when communication
is not instantaneous later.

The evolution of the plant state x and the encoding error xe
on the time interval [rk, rk+1) can be written as

ẋ(t) = Āx(t)−BKxe(t) + v(t), (5a)
ẋe(t) = Axe(t) + v(t). (5b)

Note that while the controller state x̂ is known to both the
encoder and the decoder, the plant state (equivalently, the
encoding error xe) is known only to the encoder. However, at
t0, if a bound on ‖xe(t0)‖∞ is available, then both the encoder
and the decoder can compute a bound de(t) on ‖xe(t)‖∞ for
any t ∈ R≥0, as we explain later.

Finally, in order to formalize the control goal, we select
an arbitrary symmetric positive definite matrix Q ∈ Rn×n.
Because Ā is Hurwitz, there exists a symmetric positive
definite matrix P that satisfies the Lyapunov equation

PĀ+ ĀTP = −Q. (6)

Consider then the associated candidate Lyapunov function
x 7→ V (x) = xTPx. Given a desired “control performance”

Vd(t) = (Vd(t0)− V0)e−β(t−t0) + V0 (7)

with V0 ≥ 0 (the steady state value of Vd) and β > 0
(rate of convergence) constants, the control objective is as
follows: recursively determine the sequence of transmission
times {tk}k∈N ⊂ R>0 and encoded messages x̂(tk) so that
V (x(t)) ≤ Vd(t) holds for all t ≥ t0, while also ensuring
that the inter-transmission times {tk−tk−1}k∈N are uniformly
lower bounded by a positive quantity and that the number of
bits transmitted at any instant is uniformly upper bounded.
We structure our solution to this problem in several stages.
Section III presents a necessary condition on the average
bit rate required to meet the control objective under the
assumption of zero disturbance. In Section IV we address
the problem under instantaneous communication. Finally, we
address the problem in all its generality in Section V.

III. LOWER BOUND ON THE NECESSARY DATA RATE

Here we seek to determine the amount of information, in
terms of the number of bits transmitted, necessary to meet the
control goal stated in Section II for arbitrary initial conditions
when no disturbances are present and communication is in-
stantaneous. In the presence of unknown disturbances and/or
non-instantaneous communication, the necessary bit rate is at
least as much as in the case treated here, so our necessary
condition holds in the more general case too. For convenience,
let B(t, t0) denote the number of bits transmitted in the
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time interval [t0, t]. We are also interested in characterizing
the data rate (i.e., the average number of bits transmitted)
asymptotically,

Ras , lim
t→∞

B(t, t0)

t− t0
.

Since encoding is not exact, the decoder at the controller has
knowledge of the plant state only up to some set S(t) ⊂ Rn,
i.e., x(t) ∈ S(t). Equivalently, the decoder has knowledge of
the encoding error xe(t) only up to some set E(t) ⊂ Rn, i.e.,
xe(t) ∈ E(t). Because x̂ is known to both the encoder and
the decoder, S(t) is simply obtained as a coordinate shift of
the set E(t),

S(t) = {ξ ∈ Rn : ξ = x̂(t) + ξe, ξe ∈ E(t)}.

Since xe(tk) ∈ E(tk) for each k ∈ N0, then equation (5b),
with v(t) ≡ 0, implies that, for t ∈ [tk, tk+1),

E(t) = {ξ ∈ Rn : ξ = eA(t−tk)ξ0, ξ0 ∈ E(tk)}. (8)

If A is not Hurwitz, then this set grows with time unless some
new information is communicated to the controller. To meet
the specified control goal, the idea is to keep the encoding error
set E(t) sufficiently small at all times by having the sensor
transmit information to the controller at the time instants tk.

Remark III.1. (Reduction in the Bound on the Encoding
Error with Communication). Suppose the sensor encodes the
state x(tk) at tk using pk bits by partitioning the set E(t−k )
(or equivalently S(t−k ) ) into 2pk subsets in a predetermined
manner. The string of pk bits informs the decoder the specific
subset that x(tk) lies in. Further, suppose that x̂(tk) is chosen
as a nominal point of S(tk) according to some predetermined
rule. Then, note that there is some xe(tk) ∈ E(t−k ) such that,
after performing the quantization,

vol(E(tk)) ≥
vol(E(t−k ))

2pk
,

with the equality being achieved when the quantization (par-
titioning of the quantization domain) is uniform. •

The following result precisely characterizes the number of
bits that must be transmitted to make it possible for the set
S(t) (which has the same volume as E(t)) to be contained
in Vd(t) = {ξ ∈ Rn : V (ξ) ≤ Vd(t)} as a means to ensure
for every solution satisfying V (x(t0)) ≤ Vd(t0) at time t0 to
also satisfy x(t) ∈ Vd(t) for all t ≥ t0. Note that Vd(t) is a
sub-level set of the quadratic function V (x) = xTPx. Thus,
Vd(t) is an n-dimensional ellipsoid whose volume is given by

vol(Vd(t)) = cP (Vd(t))
n
2 (9)

where cP is a constant of proportionality that depends on the
matrix P . Now, we are ready to state the result.

Proposition III.2. (Necessary Number of Bits Transmitted and
Asymptotic Data Rate). Consider the system (2), with v(t) ≡ 0
and V0 = 0, and under the feedback law u(t) = Kx̂(t), where
t 7→ x̂(t) evolves according to (4). A necessary condition for
all solutions satisfying V (x(t0)) ≤ Vd(t0) at time t0 to satisfy

V (x(t)) ≤ Vd(t) for t ≥ t0 is

B(t, t0) ≥
(

tr(A) +
nβ

2

)
log2(e)(t− t0)

+ log2

(
vol(E(t0))

cP (Vd(t0))
n
2

)
. (10)

Consequently, Ras ≥
(

tr(A) + nβ
2

)
log2(e).

Proof: Given a sequence of transmission times {tk}k∈N,
we deduce from (8) that for t ∈ [tk, tk+1),

vol(E(t))

vol(E(tk))
= det

(
eA(t−tk)

)
= etr(A)(t−tk),

where vol(S) denotes the volume of the set S. Further, if
B(t, t0) number of bits are transmitted in the time interval
[t0, t], then as a consequence of Remark III.1 it follows that
there exists some x(t0) such that

vol(E(t)) ≥ etr(A)(t−t0) vol(E(t0))

2B(t,t0)
, (11)

Next, note that in order for all solutions satisfying
V (x(t0)) ≤ Vd(t0) at time t0 to satisfy V (x(t)) ≤ Vd(t)
for t ≥ t0, it must hold true that S(t) is a subset of Vd(t)
for t ≥ t0. In particular, this implies that the volume of S(t)
(which is the same as that of E(t)) is no larger than the volume
of the set Vd(t). Using Vd(t) = Vd(t0)e−β(t−t0) and (9), one
can deduce that

vol(Vd(t)) = cP (Vd(t0))
n
2 e−

nβ
2 (t−t0).

Combining these observations with (11), we get

2B(t,t0) ≥ etr(A)(t−t0) vol(E(t0))

vol(Vd(t))

=
e(tr(A)+nβ

2 )(t−t0) vol(E(t0))

cP (Vd(t0))
n
2

,

from which the result follows.

There are a few observations of note regarding Proposi-
tion III.2. First, the condition is dependent on the control goal
but not on the control input itself. Since the result only relies
on comparing the volumes of the sets S(t) and Vd(t), rather
than on ensuring the stricter condition S(t) ⊂ Vd(t) for t ≥ t0,
it remains to be seen how a necessary or even a sufficient
bit rate condition would depend on the control gain K and
the sequence of communication times {tk}k∈N0 . In general, a
time-triggered implementation with the given control goal and
communication constraints could be very conservative. This
motivates our forthcoming investigation of event-triggered
designs. Furthermore, note that Proposition III.2 is a necessary
condition to meet the control goal for every possible solution.
It is true that if the decoder at the controller were deciding the
transmission time instants, then the condition S(t) ⊂ Vd(t),
t ≥ t0, would have to be enforced (given that it has no access
to the actual plant state). However, when the encoder at the
sensor is deciding the transmission time instants, as in our
case, then it is sufficient to ensure x(t) ∈ Vd(t), t ≥ t0.
This is yet another significant motivation to investigate event-
triggered designs under bounded data rate constraints.
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IV. EVENT-TRIGGERED CONTROL WITH BOUNDED DATA
RATE AND INSTANTANEOUS COMMUNICATION

In this section, we seek to design event-triggered laws for
deciding the transmission times and the number of bits used
per transmission based on feedback. We achieve this by letting
the encoder at the sensor, which has access to the exact
plant state, make these decisions in an opportunistic fashion.
Here, we consider the simplified scenario of instantaneous
communication and tackle the more general case of non-
instantaneous communication in the next section.

A. Requirements on the Encoding Scheme

Here, we specify the basic requirements of the encoding
scheme essential for our purposes. Consider the system defined
by (5) where the controller state evolves according to (4).
Assume that, at the beginning t0 ∈ R≥0 of the zoom in
stage, the encoder and decoder have a common knowledge of
a constant de(t0) such that ‖xe(t0)‖∞ ≤ de(t0). Given this
common knowledge, the encoder and the decoder inductively
construct a signal de(.) such that ‖xe(t)‖∞ ≤ de(t) is satisfied
for all t ≥ t0 as follows. First, note that as a consequence of
(5b), we have that

xe(t) = eA(t−tk)xe(tk) +

∫ t

tk

eA(t−s)v(s)ds,

which in turn implies

‖xe(t)‖∞ ≤ ‖eA(t−tk)xe(tk)‖∞ +

∫ t

tk

‖eA(t−s)v(s)‖2ds

≤ ‖eA(t−tk)‖∞‖xe(tk)‖∞ +

∫ t

tk

e‖A‖2(t−s)νds,

where ν is the uniform bound on the disturbance v, cf. (3).
Now, assuming that the encoder and the decoder know
de(tk) ≥ 0 at time tk such that ‖xe(tk)‖∞ ≤ de(tk), then
both can compute

de(t) , ‖eA(t−tk)‖∞de(tk) +
ν

‖A‖2
[e‖A‖2(t−tk) − 1], (12a)

for t ∈ [tk, tk+1). The above discussion guarantees that
‖xe(t)‖∞ ≤ de(t) for t ∈ [tk, tk+1). Next, at time tk+1, if
npk+1 is the number of bits used to quantize and transmit
information, then the encoder and the decoder update the value
of de(tk+1) by the jump,

de(tk+1) =
1

2pk+1
de(t

−
k+1). (12b)

Assuming the quantization at time tk is such that ‖xe(tk)‖∞ ≤
de(tk) given ‖xe(tk)‖∞ ≤ de(t

−
k ), then it is straightforward

to verify by induction that the so constructed signal de ensures
‖xe(t)‖∞ ≤ de(t) for all t ≥ t0.

As an example, we next specify (up to the number of bits) an
encoding scheme that satisfies the above requirements. Given
de(tk) such that ‖xe(tk)‖∞ ≤ de(tk), for k ∈ N0, the plant
state satisfies

x(t) ∈ S(x̂(t), de(t)) = {ξ ∈ Rn : ‖ξ − x̂(t)‖∞ ≤ de(t)},

for all t ∈ [tk, tk+1). At time tk+1, the sensor/encoder encodes
the plant state and transmits using npk+1 bits. In this encoding
scheme, the set S(x̂(t−k+1), de(t

−
k+1)) is divided uniformly into

2npk+1 hypercubes and x̂(tk+1) is chosen as the centroid of the
hypercube containing the plant state x(tk+1). This results in
de(tk+1) being updated as in (12b). Formally, we can express
the quantization at time tk as

qk(x(tk), x̂(t−k )) ∈ argmin
ξ∈Xk

{‖x(tk)− ξ‖∞}, (13)

where Xk is the set of centroids of the 2npk hypercubes that
the set S(x̂(t−k ), de(t

−
k )) is divided into. We assume that if

x(tk) lies on the boundary of two or more hypercubes, then
the encoder and decoder choose the value of qk(x(tk), x̂(t−k ))
according to a common deterministic rule. As a result, given
x̂(t0) and de(t0) at time t0, x̂(t) and de(t) are known to both
the encoder and the decoder at all times t ≥ t0.

In the remainder of the paper, we make no reference to this
specific encoding scheme. Instead it is sufficient for us to use
the properties of the encoding scheme specified by (12).

B. Event-Triggered Design with Arbitrary Finite Data Rate

Here, we solve the problem stated in Section II in a way
that guarantees that the number of bits at each transmission
is finite, although not necessarily uniformly upper bounded
across all transmissions. We build on these developments in
Section IV-C to address the problem when there exists an
explicit uniform bound across all transmissions.

We start by defining the performance-trigger function, mea-
suring the difference between the quadratic Lyapunov function
V and the desired performance Vd,

hV (t) = V (x(t))− Vd(t).

We use this function to determine the transmission times in
an opportunistic fashion in the following result.

Theorem IV.1. (Control with Arbitrary Finite Data Rate).
Consider the system (2) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈N0 determined recursively by

tk+1 = min
{
t ≥ tk : hV (t) ≥ 0, ḣV (t) ≥ 0

}
. (14)

Assume the encoding scheme is such that (12) holds for all
t ≥ t0. Further assume that V (x(t0)) ≤ Vd(t0) and that

W ,
λm(Q)

λM (P )
− aβ > 0, (15a)√

V0 ≥
2‖P‖2ν

σ(a− 1)β
√
λm(P )

, (15b)

where a > 1 and σ ∈ (0, 1) are arbitrary constants. If the
number of bits pkn transmitted at time tk satisfies

pk ≥ pk ,

⌈
log2

(
de(t

−
k )

c
√
Vd(tk)

)⌉
, (16)

where c , W
√
λm(P )

2
√
n‖PBK‖2

, then the following holds:
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(i) the inter-transmission times {Tk}k∈N , {tk+1 − tk}k∈N
have a uniform positive lower bound,

(ii) the origin is exponentially practically stable for the
closed-loop system, with V (x(t)) ≤ Vd(t) for all t ≥ t0.

Proof: We first show that if the number of bits pkn
transmitted at tk satisfy (16), then the inter-event time tk+1−tk
is strictly positive. From (16), we deduce

2pk ≥ 2(pk−pk)

(
de(t

−
k )

c
√
Vd(tk)

)
.

Then, (12b) and the fact that pk − pk ≥ 0 in turn imply that
for k ∈ N

de(tk) ≤
c
√
Vd(tk)

2(pk−pk)
≤ c
√
Vd(tk). (17)

Next, from (5a), the derivative of V along the flow of the plant
dynamics is

V̇ (t) = −xT (t)Qx(t)− 2xT (t)PBKxe(t) + 2xT (t)Pv(t)

≤ − λm(Q)

λM (P )
V (x(t)) + 2

√
V (x(t))√
λm(P )

‖PBK‖2‖xe(t)‖2+

2

√
V (x(t))√
λm(P )

‖P‖2ν (18)

where we have used the fact that P satisfies (6) as well as (1)
and (3). Then, using the definition of de(t) and c, the derivative
of hV along the flow of the plant dynamics is

ḣV (t) ≤ − λm(Q)

λM (P )
V (x(t)) +

W

c

√
V (x(t))de(t)+

2

√
V (x(t))√
λm(P )

‖P‖2ν + β(Vd(t)− V0).

Evaluating at time tk, for k ∈ N, using (17), the definition of
W in (15a), and the fact that V (x(tk)) = Vd(tk) from (14),
we obtain

ḣV (tk) = ḣV (t)
∣∣∣
t=tk

≤
(
− λm(Q)

λM (P )
+W + 2

‖P‖2√
λm(P )

ν√
Vd(tk)

)
Vd(tk)+

β(Vd(tk)− V0)

≤
(
− (a− 1)β + 2

‖P‖2√
λm(P )

ν√
V0

)
Vd(tk)− βV0,

where we have used in the second inequality that Vd(t) ≥ V0

for all time t ≥ t0. Finally, invoking (15b), we have

ḣV (tk) ≤ −(1− σ)(a− 1)βVd(tk)− βV0. (19)

Since ḣV (tk) is strictly negative and hV is a continuous
function, we deduce that the inter-event time tk+1 − tk is
strictly positive.

Next, we establish the existence of a uniform positive lower
bound on the inter-event times. To do so, we first provide
an alternative description of the triggering function hV . We

begin by rewriting the system dynamics (5) in terms of ζ(t) ,
[x(t)T , xe(t)

T ]T as

ζ̇(t) =

[
ẋ(t)
ẋe(t)

]
=

[
Ā −BK
0n A

] [
x(t)
xe(t)

]
+

[
In
In

]
v(t)

, Aζ(t) +

[
In
In

]
v(t).

Next, in terms of the variable τ , t− tk, we see that

ζ(τ + tk) = eAτζ(tk) +

∫ τ

0

eA(τ−s)
[
In
In

]
v(s)ds

, eAτζ(tk) +D(τ),

from which we rewrite the triggering function hV as

hV (τ + tk) = ζ(tk)TR1(τ)ζ(tk) + 2ζ(tk)T eA
T τCTPCD(τ)

+D(τ)TCTPCD(τ)− V0(1− e−βτ ),

R1(τ) , eA
T τCTPCeAτ − CTPCe−βτ ,

where C =
[
In 0n

]
and we have used Vd(t) = Vd(tk)e−βτ+

V0(1 − e−βτ ) = V (x(tk))e−βτ + V0(1 − e−βτ ). Note that
R1(τ) is symmetric. From (17), we have

‖xe(tk)‖2 ≤
√
n‖xe(tk)‖∞ ≤

√
nde(tk) ≤ c

√
n
√
V (x(tk)).

This can be expressed as

ζ(tk)TR2ζ(tk) ≥ 0, (20)

R2 ,

[
c2nP 0n

0n −In

]
.

Note that R2(τ) is also symmetric. Next, since we know that
V (x(tk)) = Vd(tk) ≥ V0 for each k ∈ N, we also have

ζ(tk)TCTPCζ(tk)− V0 ≥ 0. (21)

Therefore, our objective can be equivalently formulated as
finding a lower bound on τ > 0 such that hV (τ+tk) = 0 under
the constraints (20) and (21). Notice that τ 7→ hV (τ + tk) is
a continuous function with ḣV (tk) < 0 by (19). Therefore,
ḣV has to evolve from its initial negative value to zero before
hV (τ + tk) = 0 is satisfied. We build on this observation to
identify the lower bound. Note,

ḣV (τ + tk) = ζ(tk)TR3(τ)ζ(tk) + η(τ)T ζ(tk) + γ(τ),

where

R3(τ) , AT eA
T τCTPCeAτ + eA

T τCTPCeAτA
+ βCTPCe−βτ .

η(τ) , 2
[
AT eA

T τCTPC + eA
T τCTPCA

]
D(τ)+

2eA
T τCTPC

[
In
In

]
v(τ),

γ(τ) , 2D(τ)TCTPC
(
AD(τ) +

[
In
In

]
v(τ)

)
− βV0e

−βτ .

Note that R3(τ) is symmetric. According to this expression,
if we define for each τ ∈ R≥0,

M(τ) , max{ξTR3(τ)ξ + η(τ)T ξ + γ(τ) :

ξTR2ξ ≥ 0, ξTCTPCξ − V0 ≥ 0},
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the time it takes ḣV (τ+tk) to reach zero is lower bounded by

τ∗1 , min {τ ≥ 0 :M(τ) ≥ 0} .

The Lagrangian of the maximization problem in the definition
of M is

Lτ (ξ, µ1, µ2) = ξTΦ(τ)ξ + η(τ)T ξ + γ(τ)− µ2V0,

Φ(τ) , R3(τ) + µ1R2 + µ2C
TPC,

and its dual function is

gτ (µ1, µ2) = sup
ξ∈R2n

Lτ (ξ, µ1, µ2)

=

{
− 1

4η(τ)TΦ(τ)+η(τ) + γ(τ)− µ2V0, if (22) holds,
∞, otherwise

where (22) is defined by

Φ(τ) � 0 and Φ(τ)η(τ) 6= 0. (22)

Consequently,

M(τ) ≤ min
µ1≥0
µ2≥0

gτ (µ1, µ2).

Now, since we want to find a lower bound on inter-
transmission times for all disturbance signals v(.) satisfy-
ing (3), we restrict our attention to τ for which Φ(τ) ≺ 0
(because if Φ(τ) does have zero eigenvalues, then it is possible
that a disturbance signal exists so that Φ(τ)η(τ) = 0). We
show later that there is no loss of generality in doing so. Note
that when Φ(τ) ≺ 0, then Φ+ = Φ−1.

Now, our next task is to find a bound on gτ (µ1, µ2)
independent of the disturbance. First, note that

‖D(τ)‖2 ≤
√

2

∫ τ

0

e‖A‖2(τ−s)νds =

√
2ν

‖A‖2
(e‖A‖2τ − 1).

Then, we note that ‖η(τ)‖2 ≤ η̃(τ), with

η̃(τ) ,
(

2
√

2‖AT eA
T τCTPC + eA

T τCTPCA‖2
(e‖A‖2τ − 1)

‖A‖2
+ 2
√

2‖eA
T τCTPC‖2

)
ν.

Similarly, |γ(τ)| ≤ γ̃(τ), with

γ̃(τ) , 4‖CTPC‖2
ν2

‖A‖2
e‖A‖2τ (e‖A‖2τ − 1)− βV0e

−βτ .

Thus, if Φ(τ) ≺ 0 then

gτ (µ1, µ2) ≤ g̃τ (µ1, µ2) ,
1

4
λM (Φ−1)η̃2(τ) + γ̃(τ)− µ2V0

=
1

4λm(Φ)
η̃2(τ) + γ̃(τ)− µ2V0.

From this expression, we deduce that

τ∗1 ≥ τ∗2 , min
{
τ ≥ 0 : min

µ1≥0
µ2≥0

g̃τ (µ1, µ2) ≥ 0
}
.

Note that g̃τ , as a function of τ , is continuous. Thus, to show
that τ∗2 is positive, it is sufficient to ensure that g̃0(µ1, µ2) < 0

for some µ1, µ2 ≥ 0. Clearly, γ̃(0) ≤ 0 and thus it is sufficient
to show that Φ(0) ≺ 0. Note that

Φ(0) =

[
−Q+ (β + µ1c

2n+ µ2)P −PBK
−(PBK)T −µ1In

]
,

whose Schur complement form [25] is

C = −Q+
(
β + µ1

W 2λm(P )

4‖PBK‖22
+ µ2

)
P+

1

µ1
(PBK)(PBK)T .

Letting µ1 =
‖PBK‖22
λm(P )

r and using (15a), we see that

C ≺
(
−(W + (a− 1)β) +

W 2

4
r + µ2

)
P +

λm(P )

r
In

≺ 1

r

(
−(W + (a− 1)β + µ2)r +

W 2

4
r2 + 1

)
P.

Since −µ1In ≺ 0, the condition C ≺ 0 guarantees that Φ(0) is
negative definite. Clearly, there exists a choice of µ2 ≥ 0 such
that the quadratic expression of r within the braces has two
distinct positive zeros, between which C is negative definite.
Thus, Φ(0) ≺ 0 and, by the discussion above, τ∗2 is positive.
Since Tk ≥ τ∗1 ≥ τ∗2 , for k ∈ N, this proves claim (i). As
a consequence, we have that V (x(t)) ≤ Vd(t) = (Vd(t0) −
V0)e−β(t−t0) + V0 for all t ≥ t0, which proves claim (ii).

Remark IV.2. (Tighter uniform bound on inter-transmission
times). Following the argument in the proof of Theorem IV.1,
one can obtain a better uniform lower bound on the inter-
transmission times by reasoning directly on the time it takes
hV (τ+tk) to reach zero. Following steps analogous to those in
the proof, one can define a maximization problem whose dual
function g̃τ is similar in form to g̃τ . Then, the same reasoning
leads to the lower bound

τ∗ = min
{
τ ≥ τ∗2 : min

µ1≥0
µ2≥0

g̃τ (µ1, µ2) ≥ 0
}
. •

Remark IV.3. (No disturbance case). In the special case of no
disturbance, ν = 0, the statement of Theorem IV.1 still holds
true. However, its proof needs to be modified in case V0 = 0
because the constraint (21) reduces to the trivial constraint. If
V0 = ν = 0, we have

hV (τ + tk) = ζ(tk)TR1(τ)ζ(tk),

ḣV (τ + tk) = ζ(tk)TR3(τ)ζ(tk).

It is important to note that the zero crossing times of these
functions, given any initial condition, are independent of
‖ζ(tk)‖2. Therefore, in this case, we replace the constraint (21)
by ζ(tk)T ζ(tk) = 1. With this in place, one can show that
Tk ≥ τ∗ > 0, for all k ∈ N, with

τ∗ = min

{
τ > τ∗1 :

(
min
µ1≥0

λM (R1(τ) + µ1R2)
)
≥ 0

}
,

τ∗1 = min

{
τ ≥ 0 :

(
min
µ1≥0

λM (R3(τ) + µ1R2)
)
≥ 0

}
. •

The quantity pk in Theorem IV.1 can be interpreted as the
minimum number of bits to be transmitted sufficient to ensure
that, after transmission, ḣV (tk) < 0. The recursive nature of
the inequalities (16) can be leveraged to better understand the
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relationship across different times among the bounds on the
number of bits sufficient for stability. First, using (12a), we
can upper bound pk+1, for each k ∈ N0, as follows,

pk+1≤
⌈

log2

(‖eATk‖∞de(tk) + ν
‖A‖2 (e‖A‖2Tk − 1)

c
√

(Vd(tk)− V0)e−βTk + V0

)⌉
.

(23)

In order to provide an intuitive interpretation, we assume in
the following two results that there is no disturbance in the
system (ν = 0 and V0 = 0). The following result states that
the upper bound (23) can be made smaller if more bits have
been transmitted in the past.

Corollary IV.4. (Less bits are sufficient now if more bits were
transmitted before). Under the assumptions of Theorem IV.1
and no disturbances, the following holds for any k ∈ N,

pk+1 ≤ log2

(
e(‖A‖2+ β

2 )(tk+1−t0)
)

+ (k + 1)−
k∑
i=1

pi.

Proof: Using (17) in (23) (with ν = 0 and V0 = 0),
together with the fact that Vd(tk+1) = Vd(tk)e−βTk , for k ∈
N, implies

pk+1 ≤

⌈
log2

(
‖eATk‖∞
2(pk−pk)

√
Vd(tk)

Vd(tk+1)

)⌉

≤ log2

(
‖eATk‖∞
e
−β
2 Tk

)
− (pk − pk) + 1

≤ log2

(
e‖A‖2Tk

e
−β
2 Tk

)
− (pk − pk) + 1,

which, when recursively expanded, gives the stated result.

The next result gives insight into the total number of bits
sufficient for stability as a function of time.

Corollary IV.5. (Upper bound on the bit rate sufficient for
stability). Under the assumptions of Theorem IV.1 and no
disturbances, the following holds for any k ∈ N,

n(pk +

k−1∑
i=1

pi)

≤ n
(
‖A‖2 +

β

2

)
log2(e)(tk − t0)+n log2

(
de(t0)

c
√
Vd(t0)

)
+n.

≤ n log2

(
e(‖A‖2+ β

2 )(tk−t0)
)

+n log2

(
de(t0)

c
√
Vd(t0)

)
+n.

Proof: Using (12) (with ν = 0 and V0 = 0) recursively
gives

de(t
−
k ) = ‖eATk−1‖∞de(tk−1) =

‖eATk−1‖∞de(t−k−1)

2pk−1

=

k−1∏
i=1

‖eATi‖∞
2pi

‖eAT0‖∞de(t0)

≤ e‖A‖2(tk−t0)∏k−1
i=1 2pi

de(t0),

for k ∈ N. Substituting this bound in (16) (and multiplying
by n to give us the number of bits), we arrive at

npk ≤ n

⌈
log2

(
e‖A‖2(tk−t0)de(t0)

e
−β
2 (tk−t0)c

√
Vd(t0)

)⌉
− n

k−1∑
i=1

pi,

where we have used Vd(tk) = Vd(t0)e−β(tk−t0). Upper
bounding the d.e function and rearranging the terms yields
the result.

This result is interesting for two reasons. First, observe that
the upper bound on the number of bits to be transmitted up to
time tk, for any k ∈ N, to meet the control goal depends only
on the length of the time interval tk− t0, the initial conditions
de(t0) and Vd(t0) and the plant system matrix. Second, the
expression, albeit only being valid at the transmission times
{tk}k∈N0

, has a similar form to the lower bound (10) on
the number of bits transmitted over the time interval [t0, t]
stated in Proposition III.2. In fact, the occurrence of ‖A‖2 in
Corollary IV.5 is a by-product of our use of the norm ‖.‖∞
and hypercubes as our quantization domains. In comparison
with (10), n‖A‖2 plays the role of tr(A). Similarly, de(t0)n is
proportional to the volume vol(E(t0)) of the hypercube E(t0).

C. Event-Triggered Design with Uniform Bound on Data Rate

In this section, we expand on our previous discussion to
solve the problem stated in Section II with a uniform bound
on the number of bits per transmission. This is particularly
relevant in cases where the communication channel imposes
a hard bound, say p̄, on the number of bits that can be
transmitted at each time. Before getting into the technical
details, we briefly lay out the rationale behind our design.
As a consequence of the hard limit on the channel capacity, a
transmission at a time tk ∈ R>0 can be caused by any of the
following two reasons:

(Ti) the system trajectory hits the limit of the required perfor-
mance guarantee, i.e., hV (tk) = 0, as in (14), or

(Tii) even though hV (tk) < 0, the number of bits required later
to keep hV from going positive would be larger than the
channel capacity.

To design an appropriate trigger for (Tii), we need to properly
characterize the time it takes hV to evolve from a negative
value to zero. This information will allow us to determine the
minimum number of bits to be transmitted so that hV takes at
least a certain pre-designed time to reach zero. Our trigger for
(Tii) would then be simply ‘transmit if this minimum number
of bits reaches the maximum channel capacity’.

1) Bound on the time to reach the limit on performance
guarantee: We begin by providing a lower bound on the time
it takes the performance-trigger function to reach zero from a
negative value. In our discussion, instead of dealing with hV
directly, we find it more convenient analyzing the function

b(t) ,
V (x(t))

Vd(t)
. (24)

Both functions capture the same information: in fact, hV (t) =
0 is equivalent to b(t) = 1, and hV (t) < 0 is equivalent to
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b(t) < 1. The following result provides an upper bound on
the value of b that is convenient for our purposes.

Lemma IV.6. (Upper bound on performance ratio). Given
tk ∈ R>0 such that b(tk) ≤ 1, then

b(τ + tk) ≤ b̃(τ, b(tk), ε(tk)),

for τ ≥ 0, where

ε(t) ,
de(t)

c
√
Vd(t)

, b̃(τ, b0, ε0) ,
f1(τ, b0, ε0)

f2(τ)
, (25)

f1(τ, b0, ε0) , b0 +
Wε0
w + θ

(e(w+θ)τ − 1) +
c1 − c2
w

(ewτ − 1)

+
c2

w + ‖A‖2
(e(w+‖A‖2)τ − 1),

f2(τ) , ewτ ,

with w , λm(Q)
λM (P ) − β > 0, θ , ‖A‖2 + β

2 and

c1 ,
2‖P‖2√
λm(P )

ν√
V0

, c2 ,
W

c‖A‖2
ν√
V0

.

Proof: We start by noting that w > 0 follows from (15a).
Similarly to the derivation of (12a), we have for t ∈ [tk, tk+1),

‖xe(t)‖2 = ‖eA(t−tk)‖2‖xe(tk)‖2 +
ν

‖A‖2
[e‖A‖2(t−tk) − 1]

≤
√
ne‖A‖2(t−tk)c

√
Vd(tk)ε(tk)

+
ν

‖A‖2
[e‖A‖2(t−tk) − 1],

where we have used de(tk) = cε(tk)
√
Vd(tk). Substituting

this expression in (18), we have for t ∈ [tk, tk+1)

V̇ (t) ≤ − λm(Q)

λM (P )
V (x(t)) + 2

√
V (x(t))√
λm(P )

‖P‖2ν

+W
√
V (x(t))e‖A‖2(t−tk)

√
Vd(tk)ε(tk)

+
W

c

√
V (x(t))

ν

‖A‖2
(e‖A‖2(t−tk) − 1).

From the definition (24) of b, we compute

ḃ =
V̇ Vd − V V̇d

V 2
d

=
V̇

Vd
+ βb

(Vd − V0)

Vd
≤ V̇

Vd
+ βb,

where the inequality follows from the fact that Vd is always
positive and greater than V0. Substituting in this equation the
upper bound for V̇ obtained above, we get

ḃ ≤ −wb+
2‖P‖2√
λm(P )

ν
√
b√
Vd

+Wε(tk)eθτ
√
b+

W

c‖A‖2
ν
√
b√
Vd

(e‖A‖2τ − 1),

where t = τ + tk. We can further simplify this by noting that
our region of interest is when the value of b belongs to [0, 1],
in which

√
b ≤ 1, and that Vd(t) ≥ V0 for all time t ≥ t0.

Thus,

ḃ ≤ −wb+Wε(tk)eθτ + c1 + c2(e‖A‖2τ − 1).

Thus, letting

db̃

dτ
, −wb̃+Wε(tk)eθτ + c1 + c2(e‖A‖2τ − 1), (26)

the result follows from the Comparison Lemma [26].

Motivated by Lemma IV.6, we formally define the function

Γ1(b0, ε0) , min{τ ≥ 0 : b̃(τ, b0, ε0) = 1,
db̃

dτ
≥ 0}. (27)

Thus, Γ1(b0, ε0) is a lower bound on the time it takes b
to evolve to 1 starting from b(tk) = b0 and ε(tk) = ε0.
The following result captures some useful properties of this
function.

Lemma IV.7. (Properties of the function Γ1). The following
holds true,

(i) Γ1(1, 1) > 0.

(ii) If b1 ≥ b0 and ε1 ≥ ε0, then Γ1(b0, ε0) ≥ Γ1(b1, ε1). In
particular, if b0 ∈ [0, 1], then Γ1(b0, ε0) ≥ Γ1(1, ε0).

(iii) For T > 0, if b0 ∈ [0, 1] and

ε0 ≤ ρT (b0) ,
(w + θ)(1− b0)

W (e(w+θ)T − 1)
+ 1, (28)

then Γ1(b0, ε0) ≥ min{Γ1(1, 1), T}.

Proof: To show (i), note that b̃(0, 1, 1) = 1 and

db̃

dτ
(0, 1, 1) = −w +W + c1.

Using (15b), we deduce that this value is strictly negative,
and therefore Γ1(1, 1) > 0. (ii) follows from the fact that b̃ is
an increasing function of its second and third arguments. To
show (iii), observe that

b̃(τ, b0, ε0)− b̃(τ, 1, 1)

= e−wτ
[
(b0 − 1) +

W (ε0 − 1)

w + θ
(e(w+θ)τ − 1)

]
≤ e−wτ

[
(b0 − 1) +

1− b0
e(w+θ)T − 1

(e(w+θ)τ − 1)

]
. (29)

Since b0 ≤ 1, we see that for all τ ∈ [0,min{Γ1(1, 1), T}],
b̃(τ, b0, ε0) ≤ b̃(τ, 1, 1) ≤ 1, from which the claim follows.

2) Trigger design and analysis: The analysis of Sec-
tion IV-C1 sets the basis for computing the minimum number
of bits that guarantee that the performance specification is
met for a certain pre-designed time. Specifically, define the
channel-trigger function

hch(t) ,
ε(t)

ρT (b(t))
=

de(t)

c
√
Vd(t)ρT (b(t))

, (30)

where T > 0 is a fixed design parameter. Lemma IV.7(iii)
implies that, if hch(tk) ≤ 1, then b(t) ≤ 1 for at least t ∈
[tk, tk + min{T,Γ1(1, 1)}). Building on this observation, our
trigger for (Tii) is then transmit if hch(t)/2p̄ = 1, i.e., when
‘the number of bits required to have the value of hch smaller
than or equal to 1 just after transmission’ is no more than np̄,
the upper bound imposed by the channel.
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The next result provides an upper bound on the function hch

and is useful later when establishing a uniform lower bound
on the inter-transmission times for our design.

Lemma IV.8. (Upper bound on channel-trigger function).
Given tk ∈ R>0 such that b(tk) ≤ 1, then

hch(τ + tk) ≤ h̄ch(τ, b(tk), ε(tk), ε(tk)),

for τ ≥ 0, where

h̄ch(τ, b0, ε0, ψ0)

,
‖eAτ‖∞e

β
2 τψ0

ρT (b̃(τ, b0, ε0))
+

ν(e‖A‖2τ − 1)

c‖A‖2ρT (b̃(τ, b0, ε0))
√
V0

. (31)

Proof: From its definition, we can bound hch using (12a),
the fact that ρT is a decreasing function and Lemma IV.6 as,

hch(τ + tk) ≤
‖eAτ‖∞de(tk) + ν

‖A‖2 (e‖A‖2τ − 1)

cρT (b̃(τ, b(tk), ε(tk))
√
Vd(τ + tk)

.

The result now follows by further simplifying this expression
expanding Vd(τ+tk) = Vd(tk)e−βτ+V0(1−e−βτ ), observing
that V0 ≥ 0 and Vd(t) ≥ V0 for all t ≥ t0, and using the
definition of ε.

Given Lemma IV.8, we define the function

Γ2(b0, ε0, ψ0) , min{τ ≥ 0 :
h̄ch(τ, b0, ε0, ψ0)

2p̄
= 1},

which is a lower bound on the time it takes hch(τ+tk) to reach
2p̄ given b(tk) = b0 and ε(tk) = ε0. Note that the argument ψ0

in the definitions of h̄ch and Γ2 is redundant for our purposes
here, but will play an important role later when discussing the
case of non-instantaneous communication.

We are now ready to present the main result of this section.

Theorem IV.9. (Control under Bounded Channel Capacity).
Consider the system (2) under the feedback law u = Kx̂, with
t 7→ x̂(t) evolving according to (4) and the sequence {tk}k∈N0

determined recursively by

tk+1 = min{t ≥ tk : hV (t) ≥ 0, ḣV (t) ≥ 0

OR
hch(t)

2p̄
≥ 1}, (32)

where np̄ is the upper bound on the number of bits that can
be sent per transmission and T > 0 in the definition (30) of
hch is a design parameter. Assume the encoding scheme is
such that (12) is satisfied for all t ≥ t0. Further assume that
V (x(t0)) ≤ Vd(t0), hch(t0) ≤ 2p̄ and that (15a)-(15b) hold.
Let pk be given by

pk ,

⌈
log2

(
de(t

−
k )

cρT (b(tk))
√
Vd(tk)

)⌉
, (33)

where recall c =
W
√
λm(P )

2
√
n‖PBK‖2

. Then, the following hold:

(i) p1 ≤ p̄. Further for each k ∈ N, if pk ∈ N∩[pk, p̄], then
pk+1 ≤ p̄.

(ii) the inter-transmission times {Tk = tk+1 − tk}k∈N have
a uniform positive lower bound,

(iii) the origin is exponentially practically stable for the
closed-loop system, with V (x(t)) ≤ Vd(t) = (Vd(t0) −
V0)e−β(t−t0) + V0 for all t ≥ t0.

Proof: Since V (x(t0)) ≤ Vd(t0) and hch(t0) ≤ 2p̄, the
trigger (32) implies that p1 ≤ p̄. Similarly, if for each k ∈ N,
pk ∈ N∩[pk, p̄], then (32) implies pk+1 ≤ p̄, which proves (i).

To show (ii), we study each of the two conditions that
define (32). Regarding the condition on the performance-
trigger function, note that Γ1(b(tk), ε(tk)) is, by definition, a
lower bound on the time it takes the condition to be enabled.
Since (32) guarantees that hch(t−k ) ≤ 2p̄ and, as a result,
hch(tk) ≤ 1 (with equality holding when pk = pk), we have
ε(tk) ≤ ρT (b(tk)). Therefore, Lemma IV.7 guarantees that
Γ1(b(tk), ε(tk)) ≥ min{Γ1(1, 1), T} > 0 for k ∈ N. Regard-
ing the condition on the channel-trigger function in (32), note
that Γ2(b(tk), ε(tk), ε(tk)) is, by definition, a lower bound on
the time it takes the condition to be enabled. We therefore
focus on upper bounding the function h̄ch that defines Γ2.
First, notice that for b0 ≤ 1 and ε0 ≤ ρT (b0), (29) implies
that b̃(τ, b0, ε0) ≤ b̃(τ, 1, 1) for all τ ∈ [0,min{Γ1(1, 1), T}].
The fact that ρT is decreasing then implies that the second
term in the definition (31) of h̄ch can be bounded by,

ν(e‖A‖2τ − 1)/c

‖A‖2ρT (b̃(τ, b0, ε0))
√
V0

≤ φ2(τ) ,
ν(e‖A‖2τ − 1)/c

‖A‖2ρT (b̃(τ, 1, 1))
√
V0

,

for τ ∈ [0,min{Γ1(1, 1), T}]. Next, we turn our attention to
the first term in the definition (31) of h̄ch. Let c3 be the neg-
ative of the coefficient of b0 in the definition (28) of ρT (b0).
Observe that for b0 ≥ 0, ε0 ≥ 0 and τ ∈ [0,min{Γ1(1, 1), T}],
we have

d

dτ

ψ0

ρT (b̃(τ, b0, ε0))

=
ψ0c3

ρT (b̃(τ, b0, ε0))2
[−wb̃+Wε0e

θτ + c1 + c2(e‖A‖2τ − 1)]

≤ ψ0c3[Wε0e
θτ + c1 + c2(e‖A‖2τ − 1)],

where we have used (26) and the facts that b̃(τ, b0, ε0) ≤
b̃(τ, 1, 1) ≤ 1 for all τ ∈ [0,min{Γ1(1, 1), T}] and ρT (y) ≥ 1
for y ∈ [0, 1]. Then, the Comparison Lemma [26] implies that

ψ0

ρT (b̃(τ, b0, ε0))
≤ ψ0

ρT (b0)
+

ψ0c3

[
Wε0
θ

(eθτ − 1) +
c2
‖A‖2

(e‖A‖2τ − 1) + (c1 − c2)τ

]
.

Defining now

φ(τ, φ0) , ‖eAτ‖∞e
β
2 τφ1(τ, φ0) + φ2(τ)

with

φ1(τ, φ0) , φ0 + φ0ρT (0)c3

[
WρT (0)

θ
(eθτ − 1) +

c2
‖A‖2

(e‖A‖2τ − 1) + (c1 − c2)τ

]
.

we deduce, for ε0 ≤ ρT (b0) and τ ∈ [0,min{Γ1(1, 1), T}],

h̄ch(τ, b0, ε0, ψ0) ≤ φ
(
τ,

ψ0

ρT (b0)

)
, (34)
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where we have used ρT (b0) ≤ ρT (0). Note that since we
are interested in lower bounding Γ2(b(tk), ε(tk), ε(tk)) with
ε(tk) ≤ ρT (b(tk)), we can focus on the case ψ0 = ε0 ≤
ρT (b0), which leads to the bound

h̄ch(τ, b0, ε0, ψ0) ≤ φ
(
τ, 1
)
.

Thus h̄ch is bounded by a function that depends only on τ
and is equal to 1 at τ = 0. Hence, we deduce the existence of
a uniform positive lower bound on the function Γ2(b0, ε0, ψ0)
for b0 ∈ [0, 1] and ψ0 = ε0 ≤ ρT (b0). Thus Tk = tk+1 −
tk ≥ min{T,Γ1(b(tk), ε(tk)),Γ2(b(tk), ε(tk), ε(tk)}, for k ∈
N has a uniform positive lower bound, proving (ii). Claim (iii)
follows by noting that (i) and (ii) imply b(t) ≤ 1, t ≥ t0.

The quantity pk in Theorem IV.9 has now a slightly
different interpretation than in Theorem IV.1: it essentially
corresponds to the minimum number of bits sufficient to
ensure that, after transmission, hV remains negative for the
next min{T,Γ1(b(tk), ε(tk)) units of time in the absence of
further actions.

V. EVENT-TRIGGERED CONTROL WITH BOUNDED DATA
RATE AND NON-INSTANTANEOUS COMMUNICATION

Here we design event-triggered laws for deciding the trans-
mission times and the number of bits used per transmission
when communication is not instantaneous. Such scenarios
are common when the model available for the communica-
tion channel specifies a capacity in terms of bit rates. In
this case, we need to distinguish between the time when
the encoder/sensor transmits from the time when the de-
coder/controller receives a complete packet of data. This
corresponds to the setup of Section II in its full generality.

A. Information Consistency Between Encoder and Decoder

Given the difference between transmission and communica-
tion times, the first problem we tackle is making sure that the
information (the state estimate x̂ and the upper bound de on
the encoding error xe) used by the encoder and the decoder
is consistent. The mechanisms described here rely critically
on the assumptions of synchronized clocks assumption and
common knowledge of the communication time, cf. Section II.
According to the problem statement, the encoder encodes
its message at tk and sends npk bits which are received
completely by the decoder at rk ≥ tk. Algorithms 1 and 2
describe, respectively, how the encoder and the decoder update
x̂ and de synchronously at the time instants rk.

It is interesting to note that, as described above, the al-
gorithms are also applicable in the case of instantaneous
communication. The idea of Step 6 in each algorithm is to
propagate zD,k forward in time so that it may be used from
time rk onwards (in the case of instantaneous communication,
note that x̂(rk) = zD,k). We next establish that Algorithms 1
and 2 provide consistent signals t 7→ x̂(t), t 7→ de(t) to the
encoder and the decoder.

Lemma V.1. (Consistency of Algorithms 1 and 2). If initially
the encoder and the decoder share identical values for x̂(t0)
and de(t0) then Algorithms 1 and 2 result in consistent x̂(t)

Algorithm 1 : Update of encoder variables

At t = t0 = r0, the encoder initializes
1: δ0 ← de(t0) {store initial bound on encoding error}

At t ∈ {tk}k∈N, the encoder sets
2: zk ← x̂(t−k ) {store encoder variable}
3: zE,k ← qE,k(x(tk), zk)

{encode plant state with pk bits}
4: δk ← de(t

−
k )/2pk {compute bound on encoding error}

At t ∈ {rk}k∈N, the encoder sets
5: zD,k ← qD,k(zE,k, zk) {decode plant state at tk}
6: x̂(rk)←eĀ∆kzk+eA∆k (zD,k − zk)

{update controller state}
7: de(rk)← ‖eA∆k‖∞δk + ν

‖A‖2
[e‖A‖2∆k − 1]

{update bound on encoding error}

Algorithm 2 : Update of decoder variables

At t = t0 = r0, the decoder initializes
1: δ0 ← de(t0) {store initial bound on encoding error}

At t ∈ {rk}k∈N, the decoder sets
2: zk ← e−Ā∆k x̂(r−k ) {compute encoder state at tk}
3: zE,k {received from the encoder}
4: δk ← 1

2pk

(
‖eA(t−

k
−tk−1)‖∞δk−1 + ν

‖A‖2
[e‖A‖2(t−

k
−tk−1) − 1]

)
{compute bound on encoding error at tk}

5: zD,k ← qD,k(zE,k, zk) {decode plant state at tk}
6: x̂(rk)←eĀ∆kzk+eA∆k (zD,k − zk)

{update controller state}
7: de(rk)← ‖eA∆k‖∞δk + ν

‖A‖2
[e‖A‖2∆k − 1]

{update bound on encoding error}

and de(t) signals for all t ≥ t0. Further, t 7→ x̂(t) evolves
according to (4) and ‖xe(t)‖∞ ≤ de(t) with de(t) defined for
t ∈ [rk, rk+1) for k ∈ N0 as

de(t) , ‖eA(t−tk)‖∞δk +
ν

‖A‖2
[e‖A‖2(t−tk) − 1], (35a)

δk+1 =
1

2pk+1
de(t

−
k+1). (35b)

Proof: It is sufficient to show that the encoder and the
decoder have the same signals after running their respective
algorithms at {rk}k∈N. Thus, we will show the equivalence
of the corresponding steps of the two algorithms. The encoder
and decoder steps will be prefixed by ‘E’ and ‘D’ respectively.
Steps E1 and D1 are identical initialization of the variable δ0.
Step D2 is simply running (4) backwards in time to obtain
x̂(t−k ). In D3, zE is simply the message received from the
encoder that is encoded in E3. In D4, notice that the terms
within the parenthesis add up to de(t−k ). Steps D5 through D7
are exactly identical to steps E5 through E7, respectively with
identical data. As a consequence, x̂(t) and de(t) values at the
encoder and decoder are synchronized for all time t ≥ t0.
Further, from Steps 6 of the algorithms it is easy to see that
t 7→ x̂(t) evolves according to (4). It is also easy to see that
de(t) definition in (35) is consistent with the its jump updates
in the algorithms. It remains to be shown that ‖xe(t)‖∞ ≤
de(t) for all t ≥ t0.

First, observe that as a consequence of the fact that x(t) =
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x̂(t) + xe(t), (4a) and (5b) we have that

x(t) = eĀ(t−tk)x̂(t−k ) + eA(t−tk)xe(t
−
k ) +

∫ t

tk

eA(t−s)v(s)ds.

Specifically, letting zk = x̂(t−k ) as in Step 2 of the algorithms,
consider the solution y(.) that starts at zD,k at tk and under
zero disturbance, i.e.,

y(t) = eĀ(t−tk)zk + eA(t−tk)(zD,k − zk)

and specifically from Step 6 of the algorithms, we have
x̂(rk) = y(rk). Further, given that ‖x(t−k ) − zD,k‖∞ ≤ δk,
then we have

xe(rk) = x(rk)− y(rk)

= eA∆k(x(t−k )− zD,k) +

∫ rk

tk

eA(rk−s)v(s)ds,

which implies that

‖xe(rk)‖∞ ≤ ‖eA∆k‖∞δk +
ν

‖A‖2
[e‖A‖2∆k − 1] = de(rk)

which is exactly the quantity in Steps E7 and D7. For
t ∈ [rk, rk+1) for k ∈ N0 clearly ‖xe(t)‖∞ ≤ de(t), which
completes the proof.

Note that although de is updated by a jump at {rk}k∈N, the
reference time in (35a) is still tk. The reason for this is that
using instead the reference time rk would result in a larger
encoding error bound.

B. Trigger design and analysis

The basic underlying idea behind our event-triggered design
in the scenario of non-instantaneous communication is to
anticipate ahead of time the zero crossings of the performance-
trigger function hV and the channel-trigger function hch − 1
after transmitting at most np̄ number of bits. Noting the update
rule that gives de(rk) in Algorithms 1 and 2 and following
arguments analogous to those of Lemma IV.8, we see that

hch(rk) ≤ h̄ch

(
∆k, b(t

−
k ), ε(t−k ),

ε(t−k )

2pk

)
.

Unlike in the case of instantaneous communication, we need
to distinguish between the third and the fourth argument
in h̄ch because the transmitted bits do not affect the value
of ε until rk. If we can ensure that hch(rk) ≤ 1, then the
definition (27) of Γ1 and Lemma IV.7 guarantee hV ≤ 0 until
rk + min{Γ1(1, 1), T}. To anticipate hch(rk) ≤ 1, we define

Γ̃2(b0, ε0, ψ0) , min{τ ≥ 0 : h̄ch(τ, b0, ε0, ψ0) = 1}. (36)

From (34) we have that for (2p̄ψ0) = ε0 ≤ ρT (b0),
Γ̃2(b0, ε0, ψ0) ≥ min{Γ1(1, 1), T, T ∗} with

T ∗ , min{τ ≥ 0 : φ
(
τ, 1/(2p̄)

)
= 1}.

Given this discussion, we make the following assumption on
the function ∆ that describes the communication channel.

(A) For any t ∈ R≥0, ∆(t, 1) ≥ 0. Also, if s1 ≤ s2,
then ∆(t, s1) ≤ ∆(t, s2). Given p̄ ∈ N, there exists
TM ∈ R≥0 with TM < min{Γ1(1, 1), T, T ∗} such that
∆(t, p̄) ≤ TM for all t ≥ 0.

Hence the event-triggering rule in this scenario must anticipate
at least TM units of time ahead the zero crossing of hV
and anticipate hch(rk) ≥ 1 even after having transmitted
the maximum number of bits, np̄, at tk. In other words, we
want to ensure hch(rk) ≤ 1 so that hV < 0 for at least all
t ∈ [rk, tk+1). The fact that TM < min{Γ1(1, 1), T, T ∗} then
ensures that tk+1 − rk > 0.

Our problem then reduces to checking the zero-crossing of
the functions Γ1−TM , and Γ̃2−TM . However, computing the
functions Γ1 and Γ̃2 repeatedly as part of the event-triggering
rule would impose an unnecessary computational burden. For
this reason, we seek a way to check the conditions without
having to explicitly compute Γ1 and Γ̃2. The following result
provides a solution for the case of Γ1.

Lemma V.2. (Algebraic Condition to Check if hV < 0 for
the next T ◦ units of time). Let T ◦ > 0. For any b0 ∈ [0, 1],
Γ1(b0, ε0) > T ◦ if and only if b̃(T ◦, b0, ε0) < 1. Further, the
corresponding statement with the inequalities reversed and the
one in which the inequalities are replaced by equality are true.

Proof: Given (27) and considering b0 and ε0 as parame-
ters, it is sufficient to show that the equation b̃(τ, b0, ε0) = 1
has at most one solution in the interval (0,∞). Recall the
functions f1 and f2 in the definition of b̃ of Lemma IV.6. Con-
sidering b0 and ε0 as parameters, note that the solutions of the
equation b̃(τ, b0, ε0) = 1 are exactly those of f1(τ, b0, ε0) =
f2(τ), while b̃(τ, b0, ε0) < 1 iff f1(τ, b0, ε0) < f2(τ).

Since w > 0, f2 is monotonically increasing. Next, note that
θ = ‖A‖2+β/2 > 0. Thus, f1 contains the dominant exponent
and hence there is a τ1(ε0) ≥ 0 such that ḟ1(τ, b0, ε0) > ḟ2(τ)
for all τ > τ1(ε0) and ḟ1(τ, b0, ε0) < ḟ2(τ) for all τ < τ1(ε0).
Thus, for each b0 ∈ [0, 1), there exists a unique solution for
b̃(τ, b0, ε0) = 1. For b0 = 1 and τ1(ε0) > 0 there exists a
unique solution to the problem. For b0 = 1 and τ1(ε0) ≤ 0
there exists no solution and f1(τ, b0, ε0) > f2(τ) for all τ > 0.
In each scenario the claim of the lemma follows directly.

Next, we make a similar observation about Γ2.

Lemma V.3. (Algebraic Condition to Check the Sign of
Γ̃2 − T ◦). Let T ◦ > 0. For any b0 ∈ [0, 1] and ε0 ∈ [0, 1],
Γ̃2(b0, ε0, ψ0) > T ◦ if and only if h̄ch(T ◦, b0, ε0, ψ0) < 1.
Further, the corresponding statement with the inequalities
reversed and the one in which the inequalities are replaced
by equality are true.

Proof: Again, considering b0 and ε0 as parameters, it is
sufficient to show that h̄ch(τ, b0, ε0, ψ0) = 1 has a unique
solution. We show the uniqueness through a contradiction
argument. Suppose there exists a τ∗ > Γ̃2(b0, ε0, ψ0) such that
h̄ch(τ∗, b0, ε0, ψ0) = 1. Since h̄ch is a continuous function,
it must then have a local maximum in the time interval
[Γ̃2(b0, ε0), τ∗]. Notice from (31) that the numerator of h̄ch is
a monotonously increasing function of time τ . Next, since b̃ 7→
ρT (b̃) is a decreasing function it follows that b̃(., b0, ε0) must
have a local maximum in the time interval [Γ̃2(b0, ε0), τ∗].
Thus, considering b0 and ε0 as parameters, notice that

db̃

dτ
= −wb̃+Wε0e

θτ + c1 + c2(e‖A‖2τ − 1),
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while the second derivative is

d2b̃

dτ2
= −w db̃

dτ
+Wε0θe

θτ + c2‖A‖2e‖A‖2τ .

Then notice that the second derivative at any critical point of
b̃ is positive since the first term vanishes at a critical point of
b̃, the second term is positive for any τ because θ > 0 and
c2‖A‖2 ≥ 0 by definition. Thus b̃ as a function of τ has no
local maximum. Thus, this contradiction proves the result.

We are finally ready to present the main result of the section.

Theorem V.4. (Bounded Data and Communication Rate).
Consider the system (2) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈N0 determined recursively by

tk+1 = min{t ≥ rk : b̃(TM , b(t), ε(t)) ≥ 1 OR (37)
h̄ch(TM , b(t), ε(t), (ε(t)/2

p̄)) ≥ 1},

where np̄ is the upper bound on the number of bits that can be
sent per transmission, T > 0 in the definition (31) of h̄ch is a
design parameter, and TM is as given in Assumption (A). Let
{rk}k∈N0

be given as r0 = t0 and rk = tk + ∆k for k ∈ N.
Assume the encoding scheme is such that (35) is satisfied
for all t ≥ t0. Further assume that V (x(t0)) ≤ Vd(t0),
h̄ch(TM , b(t0), ε(t0), (ε(t0)/2p̄)) ≤ 1 and that (15a)-(15b)
hold. Let pk be given by

pk,min{p ∈ N : h̄ch(TM , b(tk), ε(tk), ε(tk)
2p ) ≤ 1}. (38)

Then, the following hold:

(i) p1 ≤ p̄. Further for each k ∈ N, if pk ∈ N∩[pk, p̄], then
pk+1 ≤ p̄.

(ii) the inter-transmission times {Tk = tk+1 − tk}k∈N and
inter-reception times {Rk , rk+1 − rk}k∈N have a
uniform positive lower bound,

(iii) the origin is exponentially practically stable for the
closed-loop system, with V (x(t)) ≤ Vd(t) = (Vd(t0) −
V0)e−β(t−t0) + V0 for all t ≥ t0.

Proof: Since V (x(t0)) ≤ Vd(t0) and
h̄ch(TM , b(t0), ε(t0), (ε(t0)/2p̄)) ≤ 1, the trigger (37) implies
that p1 ≤ p̄. Similarly, if for each k ∈ N, pk ∈ N∩[pk, p̄],
then (37) implies pk+1 ≤ p̄, which proves (i).

Regarding (ii), note that Assumption (A) implies that rk −
tk ≥ 0 for k ∈ N. Therefore, it is enough to show that there
exists a uniform lower bound on tk+1 − rk. Notice that (38)
implies that

h̄ch(TM , b(t
−
k ), ε(t−k ), (ε(t−k )/2pk)) ≤ 1,

which in turn implies, as a consequence of the fact that ∆k ≤
TM and Lemma V.3, that Γ̃2(b(t−k ), ε(t−k ), (ε(t−k )/2pk)) −
∆k ≥ 0. Invoking Lemma V.3 once more, we see that

hch(rk) ≤ h̄ch(∆k, b(t
−
k ), ε(t−k ), (ε(t−k )/2pk)) ≤ 1.

In other words, ε(rk) ≤ ρT (b(rk)). Now, let us pick
T̃ ∈ (0, T ) and notice that Lemma IV.7 guarantees that
for all ε0 ≤ ρT̃ (b0), Γ1(b0, ε0) ≥ min{Γ1(1, 1), T̃}. Since
T̃ ∈ (0, T ), there exists a constant $ ∈ (0, 1) such that

ε(rk) ≤ $ρT̃ (b(rk)). Thus, again for all ε0 ≤ ρT̃ (b0), we
have that Γ̃2(b0, ε0, ψ0) ≥ min{Γ1(1, 1), T̃ , T •}, with

T • , min{τ ≥ 0 : φ
(
τ,$/(2p̄)

)
= 1}.

Since TM < T by Assumption (A), there exists a choice
of T̃ ∈ (TM , T ) such that TM < min{Γ1(1, 1), T̃ , T •}.
Thus, by Lemma V.3, we have that for all ε0 ≤ ρT̃ (b0),
h̄ch(TM , b0, ε0, (ε0/2

p̄)) < 1. As a consequence, for k ∈ N0,
tk+1 − rk is uniformly lower bounded by the time it takes
ε(t)

ρT̃ (b(t))
to evolve from $ to 1, which in turn can be shown

to have a uniform positive lower bound following arguments
analogous to those in the proof of Theorem IV.9.

Regarding (iii), note that from the triggering rule (37), we
see that b̃(TM , b(tk), ε(tk)) ≤ 1, which from Lemma V.2
implies that Γ1(b(tk), ε(tk)) ≥ TM . In other words, V (x(t)) ≤
Vd(t) (i.e., b(t) ≤ 1) for at least all t ∈ [tk, rk] for any
k ∈ N0. Since h̄ch(TM , b(t0), ε(t0), (ε(t0)/2p̄)) ≤ 1 it means
that ε(r0) ≤ ρT (b(r0)). Further, we have already seen that for
any k ∈ N, ε(rk) ≤ ρT (b(rk)). Therefore, for any k ∈ N0,
Γ1(b(rk), ε(rk)) ≥ Γ1(1, 1) > 0. This means V (x(t)) ≤ Vd(t)
(i.e., b(t) ≤ 1) for at least all t ∈ [rk, tk+1]. Putting these two
facts together with (ii) concludes the proof.

Despite its appearance, note that the event-triggering
rule (37) in Theorem V.4 is a generalization of the rule (32)
in Theorem IV.9. In fact, when communication is instanta-
neous, TM = 0, and we have b̃(TM , b(t), ε(t)) = b(t) and
h̄ch(TM , b(t), ε(t), (ε(t)/2

p̄)) = hch(t)/(2p̄). Finally, note that
the condition b(t) ≥ 1 is equivalent to hV (t) ≥ 0. The next
result upper bounds pk in terms of the history of the number
of bits transmitted.

Corollary V.5. (Upper bound on pk in terms of the history
of the number of bits transmitted). Under the assumptions of
Theorem V.4, the following holds for any k ∈ N,

pk ≤ log2

(
eθTM

ρT (b̃(TM , b(t
−
k ), ε(t−k ))− α(TM )

)
+ 1

+ log2

(
eθ(tk−t0)∏k−1
j=1 2pj

ε(t0) +

k−1∑
i=0

k−1∏
j=i+1

eθTj

2pj
α(Ti)

)
,

with α(τ) ,
ν(e‖A‖2τ − 1)

c‖A‖2
√
V0

.

Proof: Using (25) and (35) recursively along with the fact

that Vd(t) ≥ V0 for all t ≥ t0 and the definition θ = ‖A‖2+
β

2
gives for k ∈ N

ε(t−k ) ≤ eθTk−1
ε(t−k−1)

2pk−1
+ α(Tk−1)

≤ eθTk−1

2pk−1

[eθTk−2

2pk−2
ε(t−k−2) + α(Tk−2)

]
+ α(Tk−1)

≤ eθ(tk−t0)∏k−1
j=1 2pj

ε(t0) +

k−1∑
i=0

k−1∏
j=i+1

eθTj

2pj
α(Ti). (39)

Next, observe that, for each k ∈ N, ε(t−k ) ≥ ρT (b(t−k )).
If this were not the case, then Γ1(b(t−k ), ε(t−k )) ≥
min{Γ1(1, 1), T} by Lemma IV.7, and on the other hand
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Γ̃2(b(t−k ), ε(t−k ), ε(t−k )/2p̄) ≥ min{Γ1(1, 1), T, T ∗} > TM .
These two conditions together would imply, by Lemmas V.2
and V.3, that neither of the conditions in the trigger (37) is
satisfied at t = t−k , which is a contradiction.

Now, since Theorem V.4 guarantees b(t) ≤ 1 for all
t ≥ t0 and since ρT (y) ≥ 1 for all y ∈ [0, 1], we have
ε(t−k ) ≥ 1. Next, the trigger (37) and Theorem V.4(i) ensure
that h̄ch(TM , b(t

−
k ), ε(t−k ), (ε(t−k )/2p̄)) ≤ 1, i.e.,

eθTM
ε(t−k )

2p̄
+ α(TM ) ≤ ρT (b̃(TM , b(t

−
k ), ε(t−k )).

Rearranging the terms, we have

ρT (b̃(TM , b(t
−
k ), ε(t−k ))−α(TM ) ≥ eθTM

2p̄
ε(t−k ) ≥ eθTM

2p̄
> 0,

where we have used ε(t−k ) ≥ 1. Now (38) implies that

eθTM
ε(t−k )

2(pk−1)
+ α(TM ) ≥ ρT (b̃(TM , b(t

−
k ), ε(t−k )),

which in turn implies that

2pk ≤
2eθTM ε(t−k )

ρT (b̃(TM , b(t
−
k ), ε(t−k ))− α(TM )

.

In other words,

pk ≤ log2(ε(t−k ))+log2

(
2eθTM

ρT (b̃(TM , b(t
−
k ), ε(t−k ))− α(TM )

)
.

Substituting (39) (and multiplying by n to give us the number
of bits) yields the result.

Although this result does not explicitly give a data rate as
in Corollary IV.5, it provides an implicit characterization of it.
This becomes more clear in the absence of disturbances.

Corollary V.6. (Upper bound on sufficient bit rate in the ab-
sence of disturbances). Under the assumptions of Theorem V.4
and no disturbance, the following holds for any k ∈ N,

n
(
pk +

k−1∑
i=1

pi

)
≤ n

[
log2

(
eθTM

ρT (b̃(TM , b(t
−
k ), ε(t−k ))

)
+ 1 + θ log2(e)(tk − t0) + log2(ε(t0))

]
.

Proof: In the no disturbance case, ν = 0 and the
second term of (35a) vanishes, which justifies α(τ) ≡ 0 in
Corollary V.5 even in the case V0 = 0. As a result, we have

pk ≤ log2

(
eθTM

ρT (b̃(TM , b(t
−
k ), ε(t−k ))

)
+ 1

+ log2

(
eθ(tk−t0)∏k−1
j=1 2pj

ε(t0)

)
.

Multiplying by n and rearranging the terms yields the suffi-
cient bit rate in the statement.

Notice that the effect of non-instantaneous communication,
through TM , in Corollary V.6 only has a transient effect on the
sufficient bit rate. When TM = 0, the first term is non-positive
(recall ρT ≥ 1) and we recover the result of Corollary IV.5.

VI. SIMULATIONS

In this section, we illustrate our results in simulation
for three scenarios: instantaneous communication with no
disturbance and non-instantaneous communication with and
without disturbance. We begin by describing the problem data.
Consider the system on R2 given by (2) with

A =

[
1 −2
1 4

]
, B =

[
0
1

]
, K =

[
2 −8

]
.

The plant matrix A has eigenvalues at 2 and 3, while the
control gain matrix K places the eigenvalues of the matrix
Ā = A + BK at −1 and −2. We select the matrix Q = I2,
for which the solution to the Lyapunov equation (6) is

P =

[
2.2500 −0.9167
−0.9167 0.5833

]
.

The desired control performance is specified by

Vd(t0) = 1.1V (x(t0)), β = 0.8
λm(Q)

λM (P )
,

and V0 chosen according to (15b) in each scenario. We set
a = 1.2 in (15a), so that W > 0, and assume, without loss
of generality, t0 = 0. We choose the design parameter T =
0.5 × Γ1(1, 1). The initial condition is x(t0) = (6,−4), and
the encoder and decoder use the information

x̂(t0) = (0, 0), de(t0) = 2‖x(t0)− x̂(t0)‖∞.

Finally, in each scenario, the number of bits transmitted at
each transmission time, npk, is npk, the minimum number of
bits as prescribed by (33) and (38), respectively.

Instantaneous communication and no disturbance: in this
scenario, we let ν = V0 = 0, for which we obtain
Γ1(1, 1) = 0.5699. We present simulations for two cases,
p̄ = 12 and p̄ = 20, where np̄ = 2p̄ is the uniform upper
bound on the number of bits per transmission imposed by the
communication channel.
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Fig. 1. Instantaneous communication and no disturbance: evolution of Vd
and V under the event-triggered design (32) for (a) p̄ = 12 and (b) p̄ = 20.

Figure 1 shows the evolution of V and Vd in both cases.
As established in Theorem IV.9, the desired convergence rate
is guaranteed in each case. In the case of p̄ = 12, it turns out
that pk = p̄ for each k ∈ N. On the other hand, in the case
when p̄ = 20, the performance of V with respect to Vd plays
a more relevant role in determining the transmission times
in (32). In fact, in the presented simulation, pk < p̄ on all
transmissions, as depicted in Figure 2(a). Figure 2(b) shows
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the interpolated plot of the total number of bits transmitted
for both cases, p̄ = 12 and p̄ = 20. Although in reality
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Fig. 2. For the event-triggered implementations shown in Figure 1, (a) shows
the number of bits on each transmission in the case p̄ = 20 and (b) shows the
interpolated plot of the total number of bits transmitted for the cases p̄ = 12
and p̄ = 20.

the total number of bits transmitted as a function of time
is piecewise constant, the interpolated plots enable a more
insightful comparison. In the case p̄ = 20, after having
transmitted more bits initially than for p̄ = 12, the gap in the
cumulative bit counts diminishes eventually. Finally, during
the time interval [0, 40], the number of transmissions, average
inter-transmission time, and minimum inter-transmission time
in the case of p̄ = 12 are 18, 2.3211 and 1.8248, respectively.
In the case of p̄ = 20, these quantities are 15, 2.7310 and
2.4384, respectively.

Non-instantaneous communication and non-zero distur-
bance: in this scenario, we let ν = 0.01 and, following (15b)
with σ = 0.9, we set V0 = 5.3942, for which we obtain
Γ1(1, 1) = 0.0172. The actual disturbance signal employed in
the simulation is

v1(t) = ν sin(0.5t), v2(t) = ν cos(0.5t).

We present a simulation for the case p̄ = 20. We choose
TM = 0.5 ×min{Γ1(1, 1), T, T ∗} = 1.2699 × 10−4 and the
communication time ∆k = rk − tk = TM for all k ∈ N
(consequently, note that Rk = Tk for k ∈ N0). Figure 3
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Fig. 3. Non-instantaneous communication and non-zero disturbance: evolu-
tion of Vd and V under the event-triggered design (37) for p̄ = 20.

shows the evolution of V and Vd, which is in accordance with
Theorem V.4. Figure 4 displays the evolution of the number of
bits transmitted. During the time interval [0, 40], the number
of transmissions is 21, with an average inter-transmission
interval of 1.9048, and a minimum inter-transmission interval
of 1.6479.

Non-instantaneous communication and no disturbance: in
this scenario, we let ν = V0 = 0, p̄ = 20 and TM = 1.2699×
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Fig. 4. For the event-triggered implementation shown in Figure 3 with
p̄ = 20, (a) shows the number of bits on each transmission and (b) shows
the interpolated plot of the total number of bits transmitted.

10−4. The values of Γ1(1, 1) and T are as in the case of
instantaneous communication with no disturbance. We choose
the communication time as ∆k = rk−tk = TM for all k ∈ N.
To illustrate Corollary V.6, we compare the results of two
simulations: in “Sim1” we choose pk = pk for all k ∈ N while
in “Sim2” we choose pk = p̄ for k ∈ {1, 2, 3, 4} and pk = pk
for all k ∈ [5,∞)∩N. Figure 5(a) shows the number of bits on
each transmission for “Sim2” while Figure 5(b) compares the
interpolated total number of bits transmitted in “Sim1” and
“Sim2”. Notice that until 5th transmission time of “Sim2”,
the cumulative bit count for “Sim2” exceeds that of “Sim1”
but the gap is immediately closed at that time and thereafter
remains slightly lower than that of “Sim1”. This demonstrate
the ability of the event-trigger design to transmit fewer bits
if more bits than prescribed were transmitted in the past. We
also see that the data rate, as interpreted in Corollary V.6,
remains approximately fixed irrespective of the past history of
transmitted bit count as long as the constraints of Theorem V.4
are respected. We did not observe a similar behavior in the
scenario with disturbance.
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Fig. 5. For non-instantaneous communication without disturbance and p̄ =
20, (a) shows the number of bits on each transmission for “Sim2” (b) shows a
comparison plot of the interpolated total number of bits transmitted in “Sim1”
and “Sim2”.

VII. CONCLUSIONS

We have studied the problem of exponential practical sta-
bilization of linear-time invariant systems, in the presence of
disturbance, and under bounded communication bit rate. Our
event-triggered design opportunistically determines the times
for communication as well as the numbers of bits to be trans-
mitted at each time. Given a uniform bound on the norm of the
disturbance and a prescribed rate of convergence, the control
strategy proposed here asymptotically confines the plant to a
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compact set, guarantees a uniform positive lower bound on
inter-transmission and inter-reception communication times,
and ensures that the number of bits transmitted at each
transmission is uniformly upper bounded. These guarantees are
valid for instantaneous transmissions with finite precision data
as well as for non-instantaneous transmissions with bounded
communication rate. The combination of elements from event-
triggered control and information theory has also enabled
us to guarantee an arbitrarily prescribed convergence rate
(something not typically ensured in the information-theoretic
approach) and characterize necessary and sufficient conditions
on the number of bits required for stabilization under oppor-
tunistic transmissions (an issue mostly overlooked in event-
triggered control). Future work will further explore the char-
acterization of data rates under disturbances, the suppression
of the synchronization requirement between the encoder and
the decoder to maintain a synchronized quantization domain,
the extension of the results to stochastic time-varying commu-
nication channels, and, more generally, the understanding of
the trade-offs between system performance and timeliness and
size of transmissions.
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