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Abstract— This paper considers continuously differentiable
functions of two vector variables that have (possibly a con-
tinuum of) min-max saddle points. We study the asymptotic
convergence properties of the associated saddle-point dynamics
(gradient-descent in the first variable and gradient-ascent in the
second one). We identify a suite of complementary conditions
under which the set of saddle points is asymptotically stable
under the saddle-point dynamics. Our first set of results is
based on the convexity-concavity of the function defining the
saddle-point dynamics to establish the convergence guarantees.
For functions that do not enjoy this feature, our second set of
results relies on properties of the linearization of the dynamics
and the function along the proximal normals to the saddle set.
We also provide global versions of the asymptotic convergence
results. Various examples illustrate our discussion.

I. INTRODUCTION

It is well known that the trajectories of the gradient dynam-
ics of a continuously differentiable function with bounded
sublevel sets converge asymptotically to its set of critical
points, see e.g. [1]. This fact, however, is not in general
true for the saddle-point dynamics (gradient descent in one
variable and gradient ascent in the other) of a continuously
differentiable function of two variables, see e.g. [2], [3]. In
this paper, our aim is to investigate conditions under which
the above statement is true for the case where the critical
points are min-max saddle points and they possibly form
a continuum. Our motivation comes from the applications
of saddle-point (or primal-dual) dynamics to find solutions
of equality constrained optimization problems and Nash
equilibria of zero-sum games.

Literature review: In constrained optimization problems,
the pioneering works [2], [4] popularized the use of the
primal-dual dynamics to arrive at the saddle points of the
Lagrangian. For inequality constrained problems, this dis-
continuous dynamics uses saddle-point information of the
Lagrangian together with a projection operator on the dual
variables to preserve their nonnegativity. Recent works have
further explored the convergence analysis of such dynamics,
both in continuous [5], [6] and discrete [7] time. The work [8]
proposes instead a convergent dynamics continuous in the
state that builds on first- and second-order information of
the Lagrangian. The recent work [9] studies the asymptotic
properties of the saddle-point dynamics when the trajectories
of the dynamics do not converge to the saddle points but
instead show oscillatory behavior.
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In the context of distributed control and multi-agent sys-
tems, an important motivation to study saddle-point dynam-
ics comes from network optimization problems where the
objective function is an aggregate of each agents’ local
objective function and the constraints are given by a set
of conditions that are locally computable at the agent level.
Because of this structure, the saddle-point dynamics of the
Lagrangian for such problems is inherently amenable to a
distributed implementation. This observation explains the
emerging body of work that looks, from this perspective,
at problems in distributed convex optimization [10], [11],
[12], distributed linear programming [13], and applications
to power networks [14], [15], [16] and bargaining prob-
lems [17]. In game theory, it is natural to study the con-
vergence properties of saddle-point dynamics to find the
Nash equilibria of two-person zero-sum games [18], [19].
The works [20], [21] depart from the class of gradient-like
dynamical systems to propose dynamics based on the best-
response map (thus requiring the solution of an optimization
problem at each evaluation) to converge to the set of saddle
points. A majority of these works assume the function
whose saddle points are sought to be convex-concave in
its arguments. Our focus here instead is on the asymptotic
stability of the saddle-point dynamics for a wider class of
functions, without any nonnegativity preserving projection
on the individual variables. Moreover, we explicitly allow
for the possibility of a continuum of saddle points, instead
of isolated ones, and wherever feasible, on establishing
convergence of the trajectories to a point in the set. The
issue of asymptotic convergence, even in the case of standard
gradient systems, is a delicate one when equilibria are a
continuum [22].

Statement of contributions: We study the asymptotic con-
vergence properties of the saddle-point dynamics of continu-
ously differentiable functions of two (vector) variables. The
dynamics consists of gradient descent in the first variable and
gradient ascent in the second variable. Under the assumption
that the set of min-max saddle points of the function is
nonempty, our contributions consist of identifying conditions
on the function such that the trajectories of the saddle-point
dynamics provably converge to the set of saddle points,
and possibly to a point in the set. Our first contribution
is regarding functions that are locally convex-concave on
the set of saddle points. We show that asymptotic stability
of the set of saddle points is guaranteed if either the
convexity or concavity properties are strict, and convergence
is pointwise. Furthermore, motivated by equality constrained
optimization problems, we show that the same conclusions



on convergence hold for functions that depend linearly on
one of its arguments if the strictness requirement is dropped.
Our second contribution pertains to functions that lack the
convex-concave property. We study the linearization of the
dynamics and use results from center manifold theory to
identify conditions on the eigenvalues of the linearization
at the saddle points to guarantee convergence. Our third
contribution is motivated by the observation that there exist
continuously differentiable functions that do not fall into
the hypotheses of our first two contributions but still enjoy
the desired asymptotic convergence guarantees. We reason
with the variation of the function and its Hessian along
the proximal normal directions to the set of saddle points.
Specifically, we assume polynomial bounds for these vari-
ations and derive an appropriate relationship between these
bounds that ensure asymptotic convergence. When discussing
each contribution, we extend the conditions to obtain global
convergence wherever feasible. Various examples illustrate
the application of our results. For reasons of space, the proofs
are omitted and will appear elsewhere.

Organization: Section II introduces notation and basic
preliminaries. Section III presents the saddle-point dynamics
and the problem statement. Section IV deals with the case of
convex-concave functions. For the case when this property
does not hold, Section V relies on linearization techniques
and proximal normals to establish convergence. Finally,
Section VI gathers our conclusions and ideas for future work.

II. PRELIMINARIES

This section introduces basic preliminaries on proximal
calculus and saddle points. We start with some notational
conventions. Let R and R≥0 be the set of real and nonnega-
tive real numbers, respectively. Given two sets A1,A2 ⊂ Rn
the set A1+A2 represents the sum {x+y | x ∈ A1, y ∈ A2}.
We denote by ‖ · ‖ the 2-norm on Rn and also the induced
2-norm on Rn×n. Let Bδ(x) represent the open ball centered
at x ∈ Rn of radius δ > 0. Given x ∈ Rn, xi denotes the
i-th component of x. For vectors u ∈ Rn and w ∈ Rm,
the vector (u;w) ∈ Rn+m denotes their concatenation. For
A ∈ Rn×n, we use A � 0 (resp. A � 0) to denote the fact
that A is positive (resp. negative) semidefinite. The range
and the null spaces of A are represented by range(A) and
null(A), respectively. The eigenvalues of A are λi(A) for i ∈
{1, . . . , n}. If A is symmetric, λmax(A) and λmin(A) repre-
sent the maximum and minimum eigenvalues, respectively. A
set S ⊂ Rn is path connected if for any two points a, b ∈ S
there exists a continuous map γ : [0, 1] → S such that
γ(0) = a and γ(1) = b. A set Sc ⊂ S ⊂ Rn is an isolated
path connected component of S if it is path connected and
there exists an open neighborhood U of Sc in Rn such that
U ∩ S = Sc. For a real-valued function F : Rn × Rm → R,
we denote the partial derivative of F with respect to the first
argument by ∇xF and with respect to the second argument
by ∇zF . The higher-order derivatives follow the convention
∇xzF = ∂2F

∂x∂z , ∇xxF = ∂2F
∂x2 , and so on. The restriction of

f : Rn → Rm to a subset S ⊂ Rn is denoted by f|S . The

Jacobian of a continuously differentiable map f : Rn → Rm
at x ∈ Rn is denoted Df(x) ∈ Rm×n. Finally, for a real-
valued function V : Rn → R and α > 0, we denote the
sublevel set of V by V −1(≤α) = {x ∈ Rn | V (x) ≤ α}.

A. Proximal calculus

We present here a few notions on proximal calculus
following [23]. Given a closed set E ⊂ Rn and a point
x ∈ Rn\E , the distance from x to E is,

dE(x) = min
y∈E
‖x− y‖. (1)

We let projE(x) denote the set of points in E that are closest
to x, i.e., projE(x) = {y ∈ E | ‖x− y‖ = dE(x)} ⊂ E . For
y ∈ projE(x), the vector x−y is a proximal normal direction
to E at y and any nonnegative multiple ζ = t(x−y), t ≥ 0 is
called a proximal normal (P -normal) to E at y. The distance
function dE might not be differentiable in general (unless E
is convex), but is globally Lipschitz and regular [23, p. 23].
For a locally Lipschitz function f : Rn → R, the generalized
gradient ∂f : Rn ⇒ Rn is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co denotes convex hull, S ⊂ Rn is any set of measure
zero, and Ωf is the set (of measure zero) of points where
f is not differentiable. In the case of the distance function,
one can compute [23, p. 99] the generalized gradient to be,

∂dE(x) = co{x− y | y ∈ projE(x)}. (2)

B. Saddle points

Here, we provide basic definitions pertaining to the notion
of saddle points. A point (x∗, z∗) ∈ Rn×Rm is a (local) min-
max saddle point of a continuously differentiable function
F : Rn×Rm → R if there exist open neighborhoods Ux∗ ⊂
Rn of x∗ and Uz∗ ⊂ Rm of z∗ such that

F (x∗, z) ≤ F (x∗, z∗) ≤ F (x, z∗), (3)

for all z ∈ Uz∗ and x ∈ Ux∗ . The point (x∗, z∗) is a global
min-max saddle point of F if Ux∗ = Rn and Uz∗ = Rm.
Min-max saddle points are a particular case of the more
general notion of saddle points. We focus here on min-max
saddle points motivated by problems in constrained opti-
mization and zero-sum games, whose solutions correspond to
min-max saddle points. With a slight abuse of terminology,
throughout the paper we refer to them simply as saddle
points. We denote by Saddle(F ) the set of saddle points
of F . From (3), for (x∗, z∗) ∈ Saddle(F ), the point x∗ ∈ Rn
(resp. z∗ ∈ Rm) is a local minimizer (resp. local maximizer)
of the map x 7→ F (x, z∗) (resp. z 7→ F (x∗, z)). Each saddle
point is a critical point of F , i.e., ∇xF (x∗, z∗) = 0 and
∇zF (x∗, z∗) = 0. Additionally, if F is twice continuously
differentiable, then ∇xxF (x∗, z∗) � 0 and ∇zzF (x∗, z∗) �
0. Also, if ∇xxF (x∗, z∗) ≺ 0 and ∇zzF (x∗, z∗) � 0, then
the inequalities in (3) are strict.

A function F : Rn × Rm → R is locally convex-



concave at a point (x̃, z̃) ∈ Rn × Rm if there exists an
open neighborhood U of (x̃, z̃) such that for all (x̄, z̄) ∈ U ,
the functions x 7→ F (x, z̄) and z 7→ F (x̄, z) are convex
over U ∩ (Rn × {z̄}) and concave over U ∩ ({x̄} × Rm),
respectively. If in addition, either x 7→ F (x, z̃) is strictly
convex in an open neighborhood of x̃, or z 7→ F (x̃, z) is
strictly concave in an open neighborhood of z̃, then F is
locally strictly convex-concave at (x̃, z̃). F is locally (resp.
locally strictly) convex-concave on a set S ⊂ Rn × Rm if
it is so at each point in S. F is globally convex-concave if
in the local definition U = Rn × Rm. Finally, F is globally
strictly convex-concave if it is globally convex-concave and
for any (x̄, z̄) ∈ Rn × Rm, either x 7→ F (x, z̄) is strictly
convex or z 7→ F (x̄, z) is strictly concave.

III. PROBLEM STATEMENT

Here we formulate the problem statement. Given a con-
tinuously differentiable function F : Rn × Rm → R, we
consider its saddle-point dynamics (i.e., gradient-descent in
one argument and gradient-ascent in the other),

ẋ = −∇xF (x, z), (4a)
ż = ∇zF (x, z). (4b)

When convenient, we use the shorthand notation Xsp : Rn×
Rm → Rn × Rm to refer to this dynamics. Our aim is to
provide conditions on F under which the trajectories of its
saddle-point dynamics (4) locally asymptotically converge to
its set of saddle points, and possibly to a point in the set.
We are also interested in identifying conditions to establish
global asymptotic convergence. Throughout our study, we
assume that the set Saddle(F ) is nonempty. Our forthcoming
discussion is divided in two threads, one for the case of
convex-concave functions, cf. Section IV, and another for
the case of general functions, cf. Section V. To deal with the
latter, we use linearization techniques and also reason with
proximal normals to the set of saddle points. In each case,
illustrative examples show the applicability of the results.

IV. CONVERGENCE ANALYSIS FOR CONVEX-CONCAVE
FUNCTIONS

This section presents conditions for the asymptotic stabil-
ity of saddle points under the saddle-point dynamics (4) that
rely on the convexity-concavity properties of the function.

A. Stability under strict convexity-concavity

Our first result provides conditions that guarantee the local
asymptotic stability of the set of saddle points.

Proposition 4.1: (Local asymptotic stability of the set of
saddle points via convexity-concavity): For F : Rn ×Rm →
R continuously differentiable and locally strictly convex-
concave on Saddle(F ), each isolated path connected compo-
nent of Saddle(F ) is locally asymptotically stable under the
saddle-point dynamics Xsp and, moreover, the convergence
of each trajectory is to a point.

The result above shows that each saddle point is stable
and that each path connected component of Saddle(F ) is
asymptotically stable. Note that each saddle point might not
be asymptotically stable. However, if a component consists
of a single point, then that point is asymptotically stable.
Interestingly, a close look at the proof of Proposition 4.1
reveals that, if the assumptions hold globally, then the
asymptotic stability of the set of saddle points is also global,
as stated next.

Corollary 4.2: (Global asymptotic stability of the set of
saddle points via convexity-concavity): For F : Rn ×Rm →
R continuously differentiable and globally strictly convex-
concave, Saddle(F ) is globally asymptotically stable under
the saddle-point dynamics Xsp and the convergence of tra-
jectories is to a point.

Remark 4.3: (Relationship with results on primal-dual dy-
namics): Corollary 4.2 is an extension to more general
functions and less stringent assumptions of the results stated
for Lagrangian functions of constrained convex (or concave)
optimization problems in [10], [2], [5] and cost functions
of differential games in [19]. In [2], [5], for a concave
optimization, the matrix ∇xxF is assumed to be negative
definite at every saddle point and in [10] the set Saddle(F ) is
assumed to be singleton. The work [19] assumes a sufficient
condition on the cost functions to guarantee convergence that
in the current setup is equivalent to having ∇xxF and ∇zzF
positive and negative definite, respectively. •

B. Stability under convexity-linearity or linearity-concavity

In this section, we study the asymptotic convergence
properties of the saddle-point dynamics when the convexity-
concavity of the function is not strict but, instead, the func-
tion depends linearly on its second argument. The analysis
follows analogously for functions that are linear in the first
argument and concave in the other. The consideration of
this class of functions is motivated by equality constrained
optimization problems.

Proposition 4.4: (Local asymptotic stability of the set of
saddle points via convexity-linearity): For continuously dif-
ferentiable F : Rn × Rm → R, if

(i) F is locally convex-concave on Saddle(F ) and linear
in z,

(ii) for each (x∗, z∗) ∈ Saddle(F ), there exists a neighbor-
hood Ux∗ ⊂ Rn of x∗ where, if F (x, z∗) = F (x∗, z∗)
with x ∈ Ux∗ , then (x, z∗) ∈ Saddle(F ),

then each isolated path connected component of Saddle(F )
is locally asymptotically stable under the saddle-point dy-
namics Xsp and, moreover, the convergence of trajectories is
to a point.

The next result extends the conclusions of Proposition 4.4
globally when the assumptions hold globally.

Corollary 4.5: (Global asymptotic stability of the set of
saddle points via convexity-linearity): For continuously dif-



ferentiable F : Rn × Rm → R, if

(i) F is globally convex-concave and linear in z,
(ii) for each (x∗, z∗) ∈ Saddle(F ), if F (x, z∗) =

F (x∗, z∗), then (x, z∗) ∈ Saddle(F ),

then Saddle(F ) is globally asymptotically stable under the
saddle-point dynamics Xsp and, moreover, convergence of
trajectories is to a point.

Example 4.6: (Saddle-point dynamics for convex opti-
mization): Consider the following convex optimization prob-
lem on R3,

minimize (x1 + x2 + x3)2, (5a)
subject to x1 = x2. (5b)

The set of solutions of this optimization is {x ∈ R3 | 2x1 +
x3 = 0, x2 = x1}, with Lagrangian

L(x, z) = (x1 + x2 + x3)2 + z(x1 − x2), (6)

where z ∈ R is the Lagrange multiplier. The set of saddle
points of L (which correspond to the set of primal-dual
solutions to (5)) are Saddle(L) = {(x, z) ∈ R3 ×R | 2x1 +
x3 = 0, x1 = x2, and z = 0}. However, L is not strictly
convex-concave and hence, it does not satisfy the hypotheses
of Corollary 4.2. While L is globally convex-concave and
linear in z, it does not satisfy assumption (ii) of Corollary 4.5.
Therefore, to identify a dynamics that renders Saddle(L)
asymptotically stable, we form the augmented Lagrangian

L̃(x, z) = L(x, z) + (x1 − x2)2, (7)

that has the same set of saddle points as L. Note that L̃ is
globally convex-concave (this can be seen by computing its
Hessian) and is linear in z. Moreover, given any (x∗, z∗) ∈
Saddle(L), we have L̃(x∗, z∗) = 0, and if L̃(x, z∗) =
L̃(x∗, z∗) = 0, then (x, z∗) ∈ Saddle(L). By Corollary 4.5,
the trajectories of the saddle-point dynamics of L̃ converge
to a point in S and hence, solve the optimization problem (5).
Figure 1 illustrates this fact. •
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Fig. 1. (a) Trajectory of the saddle-point dynamics of the augmented
Lagrangian L̃ in (7) for the optimization problem (5). The initial condition
is (x, z) = (1,−2, 4, 8). The trajectory converges to (−1.5,−1.5, 3, 0) ∈
Saddle(L). (b) Evolution of the objective function of the optimization (5)
along the trajectory. The value converges to the minimum, 0.

Remark 4.7: (Relationship with results on primal-dual dy-
namics – cont’d): The work [5, Section 4] considers concave
optimization problems under inequality constraints where

the objective function is not strictly concave. The paper
studies a discontinuous dynamics based on the saddle-point
information of an augmented Lagrangian combined with a
projection operator that restricts the dual variables to the
nonnegative orthant. For the concave optimization problem
formulated with equality constraints, we have verified that
the augmented Lagrangian satisfies the hypotheses of Corol-
lary 4.5, implying that the dynamics Xsp renders the primal-
dual optima of the problem asymptotically stable. •.

V. CONVERGENCE ANALYSIS FOR GENERAL FUNCTIONS

We study here the convergence properties of the saddle-
point dynamics associated to functions that are not convex-
concave. Our first result gives conditions for local asymptotic
stability based on the linearization of the dynamics and
properties of the eigenvalues of the Jacobian at the saddle
points.

Proposition 5.1: (Local asymptotic stability of manifold of
saddle points via linearization): Given F : Rn × Rm → R,
let S ⊂ Saddle(F ) be a p-dimensional manifold of saddle
points. Assume F is thrice continuously differentiable on a
neighborhood of S and that the Jacobian of Xsp at each point
in S has no eigenvalues in the imaginary axis other than 0,
which is semisimple with multiplicity p. Then, S is locally
asymptotically stable under the saddle-point dynamics Xsp
and the trajectories converge to a point.

Next, we provide a sufficient condition under which, the
Jacobian of Xsp for a function F that is linear in z does
not have any eigenvalue on the imaginary axis excluding 0.

Lemma 5.2: (Sufficient condition for absence of imaginary
eigenvalues of the Jacobian of Xsp): Let F be linear in z.
Then, the Jacobian of Xsp at any (x∗, z∗) ∈ Saddle(F )
has no eigenvalues on the imaginary axis except for 0 if
range(∇zxF (x∗, z∗)) ∩ null(∇xxF (x∗, z∗)) = {0}.

The following example illustrates an application of the
above two results to a nonconvex constrained optimization
problem.

Example 5.3: (Saddle-point dynamics for nonconvex opti-
mization): Consider the following constrained optimization
on R3,

minimize (‖x‖ − 1)2, (8a)
subject to x3 = 0.5. (8b)

The optimizers are {x ∈ R3 | x3 = 0.5, x21 + x22 = 0.75}.
The Lagrangian L : R3 × R→ R

L(x, z) = (‖x‖ − 1)2 + z(x3 − 0.5),

and its set of saddle points is the one-dimensional manifold
Saddle(L) = {(x, z) ∈ R3 × R | x3 = 0.5, x21 + x22 =
0.75, z = 0}. The saddle-point dynamics of L takes the



form

ẋ = −2
(

1− 1

‖x‖

)
x− [0, 0, z]>, (9a)

ż = x3 − 0.5. (9b)

Note that Saddle(L) is nonconvex and that L is nonconvex
in its first argument on any neighborhood of any saddle
point. Therefore, results that rely on the convexity-concavity
properties of L are not applicable to establish the asymp-
totic convergence of (9). This can, however, be established
through Proposition 5.1 by observing that the Jacobian of
Xsp at any point of Saddle(L) has 0 as an eigenvalue with
multiplicity one and the rest of the eigenvalues have negative
real parts as the hypotheses of Lemma 5.2 are met. Figure 2
illustrates in simulation the convergence of the trajectories
to a saddle point. •
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Fig. 2. (a) Trajectory of the saddle-point dynamics (9) for the Lagrangian of
the constrained optimization problem (8). The initial condition is (x, z) =
(0.9, 0.7, 0.2, 0.3). The trajectory converges to (0.68, 0.53, 0.50, 0) ∈
Saddle(L). (b) Evolution of the objective function of the optimization (8)
along the trajectory. The value converges to the minimum, 0.

There are functions that do not satisfy the hypotheses
of Proposition 5.1 whose saddle-point dynamics still seems
to enjoy local asymptotic convergence properties. As an
example, consider the function F : R2 × R→ R,

F (x, z) = (‖x‖ − 1)4 − z2‖x‖2, (10)

whose set of saddle points is the one-dimensional manifold
Saddle(F ) = {(x, z) ∈ R2×R | ‖x‖ = 1, z = 0}. The Jaco-
bian of the saddle-point dynamics at any (x, z) ∈ Saddle(F )
has −2 as an eigenvalue and 0 as the other eigenvalue,
with multiplicity 2, which is greater than the dimension
of S (and therefore Proposition 5.1 cannot be applied).
Simulations show that the trajectories of the saddle-point
dynamics asymptotically approach Saddle(S) if the initial
condition is close enough to this set. Our next result allows
us to formally establish this fact by studying the behavior of
the function along the proximal normals to Saddle(F ).

Proposition 5.4: (Asymptotic stability of manifold of sad-
dle points via proximal normals): Let F : Rn ×Rm → R be
twice continuously differentiable and S ⊂ Saddle(F ) be a
closed set. Assume there exist constants λM , k1, k2, α1, β1 >
0 and Lx, Lz, α2, β2 ≥ 0 such that, for every (x∗, z∗) ∈ S
and every proximal normal η = (ηx, ηz) ∈ Rn×Rm to S at

(x∗, z∗) with ‖η‖ = 1, it holds that the functions

[0, λM ) 3 λ 7→ F (x∗ + ληx, z∗),

[0, λM ) 3 λ 7→ F (x∗, z∗ + ληz),

are convex and concave, respectively, with

F (x∗ + ληx, z∗)− F (x∗, z∗) ≥ k1‖ληx‖α1 , (11a)

F (x∗, z∗ + ληz)− F (x∗, z∗) ≤ −k2‖ληz‖β1 , (11b)

and, for all λ ∈ [0, λM ) and all t ∈ [0, 1],

‖∇xzF (x∗+tληx, z∗+ληz)−∇xzF (x∗+ληx, z∗+tληz)‖
≤ Lx‖ληx‖α2 + Lz‖ληz‖β2 . (12)

Then, S is locally asymptotically stable under the saddle-
point dynamics Xsp if the following are true

(a) either Lx = 0 or α1 ≤ α2 + 1, (13a)
(b) either Lz = 0 or β1 ≤ β2 + 1. (13b)

Moreover, the convergence of the trajectories is to a point if
every point of S is stable and the convergence is global if
for every λM ∈ R≥0 there exist k1, k2, α1, β1 > 0 such that
along with Lx = Lz = 0 they satisfy the above hypotheses.

Intuitively, the hypotheses of Proposition 5.4 imply that
along the proximal normal to the saddle set, the convexity
(resp. concavity) in the x-coordinate (resp. z-coordinate) is
‘stronger’ than the influence of the x- and z-dynamics on
each other, represented by the off-diagonal Hessian terms.
When this coupling is absent (i.e., ∇xzF ≡ 0), the x- and z-
dynamics are independent of each other and they function as
individually aiming to minimize (resp. maximize) a function
of one variable, thereby, reaching a saddle point. Note that
the assumptions of Proposition 5.4 do not imply that F is
locally convex-concave. As an example, we will see next that
the F given in (10) satisfies the assumptions while it is not
convex-concave in any neighborhood of any saddle point.

Example 5.5: (Convergence guarantee by proximal normal
based analysis): Consider the function F defined in (10).
Consider a saddle point (x∗, z∗) = (cos θ, sin θ, 0) ∈
Saddle(F ), where θ ∈ [0, 2π). Let

η = (ηx, ηz) = ((a1 cos θ, a1 sin θ), a2),

with a1, a2 ∈ R and a21 + a22 = 1, be a proximal normal to
Saddle(F ) at (x∗, z∗). Note that the function λ 7→ F (x∗ +
ληx, z∗) = (λa1)4 is convex, satisfying (11a) with k1 = 1
and α1 = 4. The function λ 7→ F (x∗, z∗ + ληz) = −(λa2)2

is concave, satisfying (11b) with k2 = 1, β1 = 2. Also, given
any λM > 0, we can write

‖∇xzF (x∗ + tληx, z∗ + ληz)−∇xzF (x∗ + ληx, z∗ + tληz)‖
= ‖ − 4(λa2)(1 + tλa1)

(
cos θ
sin θ

)
+ 4(tλa2)(1 + λa1)

(
cos θ
sin θ

)
‖,

≤ ‖4(λa2)(1 + tλa1)− 4(tλa2)(1 + λa1)‖,
≤ 8(1 + λa1)(λa2) ≤ Lz(λa2),

for λ ≤ λM , where Lz = 8(1 + λMa1). This implies
that Lx = 0, Lz 6= 0 and β2 = 1. Therefore, the



conditions (13) are satisfied and Proposition 5.4 establishes
the asymptotic convergence of the saddle-point dynamics.
Figure 3 illustrates this fact. Note that since Lz 6= 0, we
cannot guarantee global convergence. •
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Fig. 3. (a) Trajectory of the saddle-point dynamics for the function defined
by (10). The initial condition is (x, z) = (0.1, 0.2, 4). The trajectory
converges to (0.49, 0.86, 0) ∈ Saddle(F ). (b) Evolution of the function F
along the trajectory. The value converges to 0, the value that the function
takes on its saddle set.

Interestingly, Propositions 5.1 and 5.4 complement each
other. The function (10) satisfies the hypotheses of Propo-
sition 5.4 but not those of Proposition 5.1. Conversely, the
Lagrangian of the optimization (8) satisfies the hypotheses
of Proposition 5.1 but not those of Proposition 5.4.

VI. CONCLUSIONS

We have studied the asymptotic stability of the saddle-
point dynamics associated to a continuously differentiable
function. We have identified a set of complementary condi-
tions under which the trajectories of the dynamics provably
converge to the set of saddle points of the function and,
wherever feasible, we have also established global stability
guarantees. Our first class of convergence results is based on
the convexity-concavity properties of the function defining
the dynamics. When these properties are not met, our sec-
ond class of results explore the existence of convergence
guarantees using linearization techniques and the proper-
ties of the function along proximal normals to the set of
saddle points. Several examples illustrate the applicability
of our results, with special attention to finding primal-dual
solutions of constrained optimization problems. Future work
will characterize the robustness properties of the dynamics
against disturbances, study the case of nonsmooth functions
(where the associated saddle-point dynamics takes the form
of a differential inclusion involving the generalized gradient
of the function), and explore the application of our results
to optimization problems with inequality constraints. We
also plan to build on our results to synthesize distributed
algorithmic solutions for networked optimization problems
in power networks.
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