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Abstract— This paper considers the dynamic economic dis-
patch problem for a group of generators with storage that
communicate over a weight-balanced strongly connected di-
graph. The objective of the generators is to collectively meet a
certain load profile, specified over a finite time horizon, while
minimizing the aggregate cost. At each time slot, each generator
decides on the amount of generated power and the amount
sent to/drawn from the storage unit. The amount injected
into the grid by each generator to satisfy the load is equal
to the difference between the generated and stored powers.
Additional constraints on the generators include bounds on the
amount of generated power, ramp constraints on the difference
in generation across successive time slots, and bounds on the
amount of power in storage. We synthesize a provably-correct
distributed algorithm that solves the resulting finite-horizon
optimization problem starting from any initial condition. Our
design consists of two interconnected dynamical systems, one
estimating the mismatch in the injection and the total load at
each time slot, and another using this estimate as a feedback to
reduce the mismatch and optimize the total cost of generation,
while meeting the constraints.

I. INTRODUCTION

The current electricity grid is up for a major transformation
to enable the widespread integration of distributed energy
resources and flexible loads to improve efficiency and reduce
emissions without affecting reliability and performance. This
brings in the need for novel coordinated control and opti-
mization strategies which, along with suitable architectures,
can handle uncertainties and variability, are fault-tolerant and
robust, and preserve the privacy of the entities involved.
With this context in mind, our objective here is to provide
a distributed algorithmic solution to the dynamic economic
dispatch with storage problem. We see the availability of
such strategies as a necessary building block in realizing the
vision of the future grid.

Literature review: Static economic dispatch (SED) in-
volves the optimization of the total cost by a group of
generators over a single time slot while collectively meeting
a specified load and respecting individual constraints. Tradi-
tional solutions to the SED problem have been centralized,
but the advent of distributed generation has motivated the
design of decentralized algorithmic solutions, see e.g., [1],
[2], [3] and our own work [4], [5]. As argued in [6], [7], the
dynamic version of the problem, termed dynamic economic
dispatch (DED), results in better grid control capabilities
as it incorporates optimal planning across a time horizon
and specifically accounts for ramp limits in generation and
variability of power commitment from renewable sources.
Conventional solution methods to the DED problem are
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centralized [6]. Recent works [7], [8] have employed model
predictive control (MPC)-based algorithms to deal more
effectively with complex constraints and uncertainty, but the
resulting methods are still centralized and do not provide
theoretical guarantees on the optimality of the solution. The
work [9] proposes a Lagrangian relaxation method to solve
the DED problem, but the implementation requires a master
agent to perform dual updates and communicate with each of
the generators, which in turn solve their respective subprob-
lems. MPC methods have also been employed by [10] in the
dynamic economic dispatch with storage (DEDS) problem,
which adds storage units to the DED problem to lower the
total cost, meet uncertain demand under uncertain generation,
and smooth out the generation profile across time. The
stochastic version of the DEDS problem adds uncertainty in
demand and generation by renewables. Algorithmic solutions
for this problem put the emphasis on breaking down the
complexity to speed up convergence for large-scale problems
and include stochastic MPC [11], dual decomposition [12],
and optimal condition decomposition [13] methods. How-
ever, these methods are either centralized or need a central
master unit to coordinate the decentralized subproblems of
each generator. Finally, [14] considers strategic scenarios
where generators seek to optimize their own profit. Under
a suitable pricing mechanism, the global optimization of the
DEDS problem corresponds to a Nash equilibrium of the
game between the generators and the independent system
operator, albeit no algorithm is provided to compute it.

Statement of contributions: Our starting point is the formu-
lation of the DEDS problem for a group of power generators
communicating over a weight-balanced strongly connected
digraph. Since the individual cost functions are convex
and all constraints are linear, the problem is convex in its
decision variables (the power to be injected and the power
to be sent to storage by each generator at each time slot).
Using an exact penalty function approach, we reformulate
the DEDS problem as an optimization that retains the load
constraints but strips off the inequality constraints. The
structure of the modified problem guides our design of
the provably-correct distributed strategy termed “dynamic
average consensus (dac) + Laplacian nonsmooth gradient
(L∂) + nonsmooth gradient (∂)” dynamics to solve the DEDS
problem starting from any initial condition. Our algorithm
design consists of two interconnected systems. A first block
allows generators to track, using dac, the mismatch be-
tween the current total power injected and the load for
each time slot of the planning horizon. A second block has
two components, one that minimizes the total cost while
keeping the total injection constant (employing Laplacian-
nonsmooth-gradient dynamics on injection variables and



nonsmooth-gradient dynamics on storage variables) and an
error-correcting component that uses the mismatch estimated
by the dac system to push the total injection towards the load
for each time slot. Simulations illustrate our results. Proofs
are omitted for space reasons and will appear elsewhere.

Notation: Let R, R≥0, R>0, R<0, Z≥1 denote the set
of real, nonnegative real, positive real, negative real and
positive integer numbers, respectively. The 2- and ∞-norm
on Rn are denoted by ‖ · ‖ and ‖ · ‖∞, respectively. Let
B(x, δ) = {y ∈ Rn | ‖y − x‖ < δ} denote the open ball
centered at x ∈ Rn with radius δ > 0. Given r ∈ R, we
denote Hr = {x ∈ Rn | 1>n x = r}. For a symmetric
matrix A ∈ Rn×n, the minimum eigenvalue of A is λmin(A).
The Kronecker product of A ∈ Rn×m and B ∈ Rp×q is
A ⊗ B ∈ Rnp×mq . We use notation 0n = (0, . . . , 0) ∈ Rn,
1n = (1, . . . , 1) ∈ Rn, and In ∈ Rn×n for the identity
matrix. For x ∈ Rn and y ∈ Rm, the vector (x; y) ∈ Rn+m
denotes their concatenation. Given x, y ∈ Rn, xi denotes
the i-th component of x, and x ≤ y denotes xi ≤ yi for i ∈
{1, . . . , n}. For h > 0, given y ∈ Rnh and k ∈ {1, . . . , h},
the vector containing the nk − n + 1 to nk components of
y is y(k) ∈ Rn, and so, y = (y(1); y(2); . . . ; y(h)). We let
[u]+ = max{0, u} for u ∈ R. Finally, a set-valued map
f : Rn ⇒ Rm associates to each point in Rn a set in Rm.

II. PRELIMINARIES

This section introduces concepts from graph theory, non-
smooth analysis, differential inclusions, and optimization.

Graph theory: Following [15], a weighted directed graph,
is a triplet G = (V, E ,A), where V is the vertex set,
E ⊆ V × V is the edge set, and A ∈ Rn×n≥0 is the adjacency
matrix with the property that aij > 0 if (vi, vj) ∈ E and
aij = 0, otherwise. A path is an ordered sequence of vertices
such that any consecutive pair of vertices is an edge. A
digraph is strongly connected if there is a path between any
pair of distinct vertices. For a vertex vi, N out(vi) = {vj ∈
V | (vi, vj) ∈ E} and N in(vi) = {vj ∈ V | (vj , vi) ∈ E}
are the sets of out- and in-neighbors. The weighted out-
degree and in-degree of vi, i ∈ {1, . . . , n}, are respectively,
dout(vi) =

∑n
j=1 aij and din(vi) =

∑n
j=1 aji. The Laplacian

matrix is L = Dout − A, where Dout is the diagonal matrix
defined by (Dout)ii = dout(vi), for all i ∈ {1, . . . , n}. Note
that L1n = 0. If G is strongly connected, then zero is a simple
eigenvalue of L. G is weight-balanced if dout(v) = din(v), for
all v ∈ V . Equivalently, G is weight-balanced if and only if
1>n L = 0 if and only if L + L> is positive semidefinite.
If G is weight-balanced and strongly connected, then zero
is a simple eigenvalue of L + L> and, for x ∈ Rn one can
deduce from [16, Chapter 8] that

λ2(L + L>)
∥∥∥x− 1

n
(1>n x)1n

∥∥∥2 ≤ x>(L + L>)x, (1)

with λ2(L+L>) the smallest non-zero eigenvalue of L+L>.
Nonsmooth analysis: Here, we introduce some notions on

nonsmooth analysis from [17]. A function f : Rn → Rm is
locally Lipschitz at x ∈ Rn if there exist L, ε ∈ R>0 such
that ‖f(y) − f(y′)‖ ≤ L‖y − y′‖, for all y, y′ ∈ B(x, ε).
A function f : Rn → R is regular at x ∈ Rn if, for all

v ∈ Rn, the right directional derivative and the generalized
directional derivative of f at x along the direction v coincide,
see [17] for these definitions. A convex function is regular.
A set-valued map H : Rn ⇒ Rn is upper semicontinuous
(u.s.c) at x ∈ Rn if, for all ε ∈ R>0, there exists δ ∈ R>0

such that H(y) ⊂ H(x) +B(0, ε) for all y ∈ B(x, δ). Also,
H is locally bounded at x ∈ Rn if there exist ε, δ ∈ R>0

such that ‖z‖ ≤ ε for all z ∈ H(y), and all y ∈ B(x, δ).
Given a locally Lipschitz function f : Rn → R, let Ωf be the
set (of measure zero) of points where f is not differentiable.
The generalized gradient ∂f : Rn ⇒ Rn of f is

∂f(x) = co{limi→∞∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where co is the convex hull and S ⊂ Rn is any set of measure
zero. The set-valued map ∂f is locally bounded, u.s.c, and
takes non-empty compact convex values. For f : Rn×Rm →
R, (x, y) 7→ f(x, y), the partial generalized gradient with
respect to x and y are denoted by ∂xf and ∂yf , respectively.

Differential inclusions: We gather here tools from [17], [5]
regarding the properties of differential inclusions,

ẋ ∈ F (x), (2)

where F : Rn ⇒ Rn is a set-valued map. A solution
of (2) on [0, T ] ⊂ R is an absolutely continuous map
x : [0, T ]→ Rn that satisfies (2) for almost all t ∈ [0, T ]. If
F is locally bounded, u.s.c, and takes non-empty, compact,
and convex values, then existence of solutions is guaranteed.
The equilibria of (2) is Eq(F ) = {x ∈ Rn | 0 ∈ F (x)}.

Constrained optimization and exact penalty functions:
Here, we introduce some notions on constrained convex
optimization problems and exact penalty functions [18], [19].
Consider the optimization problem,

minimize f(x), (3a)
subject to g(x) ≤ 0m, h(x) = 0p, (3b)

where f : Rn → R, g : Rn → Rm, are continuously
differentiable and convex, and h : Rn → Rp with p ≤ n
is affine. The refined Slater condition is satisfied by (3) if
there exists x ∈ Rn such that h(x) = 0p, g(x) ≤ 0m, and
gi(x) < 0 for all nonaffine functions gi. The refined Slater
condition implies that strong duality holds. A point x ∈ Rn
is a Karush-Kuhn-Tucker (KKT) point of (3) if there exist
Lagrange multipliers λ ∈ Rm≥0 and ν ∈ Rp such that

g(x) ≤ 0m, h(x) = 0p, λ>g(x) = 0,

∇f(x) +
∑m
i=1 λi∇gi(x) +

∑p
i=1 νi∇hi(x) = 0.

If strong duality holds then, a point is a solution of (3) if and
only if it is a KKT point. The optimization (3) satisfies the
strong Slater condition with parameter ρ ∈ R>0 and feasible
point xρ ∈ Rn if g(xρ) < −ρ1m and h(xρ) = 0p.

Lemma 2.1: (Bound on Lagrange multiplier [20, Remark
2.3.3]): Assume that (3) satisfies strong Slater condition with
parameter ρ ∈ R>0 and feasible point xρ ∈ Rn. Then, any
primal-dual optimizer (x, λ, ν) of (3) satisfies

‖λ‖∞ ≤
f(xρ)− f(x)

ρ
.



We use an exact penalty function to eliminate the inequality
constraints in (3) while keeping the equality constraints
intact. To this end, we follow [19] to construct a nonsmooth
exact penalty function f ε : Rn → R, f ε(x) = f(x) +
1
ε

∑m
i=1[gi(x)]+, with ε > 0, and define

minimize f ε(x), (4a)
subject to h(x) = 0p. (4b)

Note that f ε is convex as f and t 7→ 1
ε [t]+ are convex.

Hence, the problem (4) is convex. The next result, see
e.g. [19, Proposition 1], identifies conditions under which
the solutions of the problems (3) and (4) coincide.

Proposition 2.2: (Equivalence of (3) and (4)): Assume (3)
has nonempty, compact solution set, and satisfies the refined
Slater condition. Then, (3) and (4) have the same solutions
if 1

ε > ‖λ‖∞, for some Lagrange multiplier λ ∈ Rm≥0 of (3).

III. PROBLEM STATEMENT

Consider a network of n ∈ Z≥1 power generators with
communication topology described by a strongly connected
and weight-balanced digraph G = (V, E ,A). Each generator
corresponds to a vertex. An edge (i, j) represents the capa-
bility of j to transmit information to i. Each generator i is
equipped with a storage unit with minimum and maximum
capacities Cmi ∈ R≥0 and CMi ∈ R>0, resp. The group
collectively aims to meet a power demand profile during a
finite-time horizon K = {1, . . . , h} specified by l ∈ Rh

>0,
i.e., l(k) is the demand at time slot k ∈ K. We assume the
load profile is known to an arbitrarily selected generator r.
Along with load satisfaction, the group aims to minimize the
total generation cost and satisfy individual constraints.

Each generator decides at every time slot in K, the amount
of power it generates, the portion of it that it injects into
the grid to meet the load, and the remaining part that it
sends to the storage unit. Specifically, we let I(k)i ∈ R and
S
(k)
i ∈ R denote the power injected into the grid and the

power sent to the storage, resp., by the generator i at time
slot k. The power generated by i at k is then I

(k)
i + S

(k)
i .

For convenience, we denote by I(k) = (I
(k)
1 , . . . , I

(k)
n ) ∈ Rn

and S(k) = (S
(k)
1 , . . . , S

(k)
n ) ∈ Rn the collective injected and

stored power at time k, resp. The load satisfaction at each
time slot reads as 1>n I

(k) = l(k), for all k ∈ K. The cost of
generation for i at time k is given by f (k)i : R→ R≥0, which
is assumed to be convex and continuously differentiable.
Thus, the cost incurred by i at time k to generate power
I
(k)
i + S

(k)
i is f

(k)
i (I

(k)
i + S

(k)
i ). We denote the network

cost function at time k by f (k) : Rn → R≥0, i.e., given
(I(k), S(k)) the network cost at time slot k is

f (k)(I(k) + S(k)) =
∑n
i=1 f

(k)
i (I

(k)
i + S

(k)
i ).

Similarly, the cumulative cost of generation for the network
across the entire time horizon is f : Rnh → R≥0 defined
as f(x) =

∑h
k=1 f

(k)(x(k)). Hence, given the injection
and storage values I = (I(1), . . . , I(h)) ∈ Rnh and S =
(S(1), . . . , S(h)) ∈ Rnh, the total cost incurred is

f(I + S) =
∑h
k=1 f

(k)(I(k) + S(k)).

Note that the functions {f (k)}k∈K and f are also convex and
continuously differentiable. Next, we describe the physical
constraints on the generators. Each generator’s power must
belong to the range [Pmi , P

M
i ] ⊂ R>0, representing lower

and upper bounds on the amount of power it can generate
at each time slot. Each generator i also respects upper and
lower ramp constraints: the change in the generation level
from any time slot k to k + 1 is upper and lower bounded
by Rui ∈ R>0 and −Rli ∈ R<0, resp. At each time slot,
the power injected into the grid by each generator must be
nonnegative, i.e., I(k)i ≥ 0. Also, the amount of power stored
in any storage unit i at any time slot k ∈ K must belong
to the range [Cmi , C

M
i ]. Finally, we assume that before the

time slot k = 1, each storage unit i starts with some stored
power S(0)

i ∈ [Cmi , C
M
i ]. With the above model, the dynamic

economic dispatch with storage (DEDS) problem is formally
defined by the following convex optimization problem,

minimize
(I,S)∈R2nh

f(I + S), (5a)

subject to for k ∈ K,
1>n I

(k) = l(k), (5b)

Pm ≤ I(k) + S(k) ≤ PM , (5c)

Cm ≤ S(0) +
∑k
k′=1 S

(k′) ≤ CM , (5d)

0n ≤ I(k), (5e)
for k ∈ K \ {h},
−Rl ≤ I(k+1)+S(k+1)−I(k)−S(k) ≤ Ru. (5f)

We refer to (5b)–(5f) as the load, box, storage limits, injec-
tion, and ramp constraints, resp. We denote by FDEDS and
F∗DEDS the feasibility set and the solution set of the DEDS
problem (5), resp., and assume them to be nonempty. Since
FDEDS is compact, so is F∗DEDS. Moreover, the refined Slater
condition is satisfied for DEDS as all constraints (5b)–(5f)
are affine. Additionally, we assume that the DEDS problem
satisfies the strong Slater condition with parameter ρ ∈ R>0

and feasible point (Iρ, Sρ) ∈ R2nh. Our goal is to design
a distributed algorithmic solution that allows the network of
generators interacting over G to solve the DEDS problem.

IV. DISTRIBUTED ALGORITHM FOR THE DEDS PROBLEM

Our design strategy builds on an alternative formulation
of the optimization problem using penalty functions (cf.
Section IV-A). This step allows us to get rid of the inequality
constraints, resulting into an optimization whose particular
structure guides our algorithmic design (cf. Section IV-B).

A. Alternative formulation of the DEDS problem: The
procedure here follows closely the theory of exact penalty
functions outlined in Section II. For an ε ∈ R>0, consider
the modified cost function f ε : Rnh × Rnh → R≥0,

f ε(I, S) = f(I + S) +
1

ε

( h∑
k=1

1>n
(
[T

(k)
1 ]+ + [T

(k)
2 ]++

[T
(k)
3 ]+ + [T

(k)
4 ]+ + [T

(k)
5 ]+

)
+

h−1∑
k=1

1>n
(
[T

(k)
6 ]+ + [T

(k)
7 ]+

))
,



where

T
(k)
1 = Pm − I(k) − S(k), T

(k)
2 = I(k) + S(k) − PM ,

T
(k)
3 = Cm − S(0) −

∑k
k′=1 S

(k′),

T
(k)
4 = S(0) +

∑k
k′=1 S

(k′) − CM , T (k)
5 = −I(k),

T
(k)
6 = −Rl − I(k+1) − S(k+1) + I(k) + S(k),

T
(k)
7 = I(k+1) + S(k+1) − I(k) − S(k) −Ru. (6)

This cost contains the penalty terms for all the inequality
constraints of the DEDS problem. Note that f ε is locally
Lipschitz, jointly convex in I and S, and regular. Thus, the
partial generalized gradients ∂If ε and ∂Sf ε take nonempty,
convex, compact values and are locally bounded and u.s.c.
Consider the modified DEDS problem

minimize f ε(I, S), (7a)

subject to 1>n I
(k) = l(k), ∀k ∈ K. (7b)

The next result provides a criteria for selecting the penalty
parameter ε such that the modified DEDS problem and the
DEDS problem have the exact same solutions. The proof is
a direct application of Lemma 2.1 and Proposition 2.2 using
the fact that the DEDS problem satisfies the strong Slater
condition with parameter ρ and feasible point (Iρ, Sρ).

Lemma 4.1: (Equivalence of DEDS and modified DEDS
problems): Let (I∗, S∗) ∈ F∗DEDS. Then, the optimizers of
the problems (5) and (7) are the same for ε ∈ R>0 satisfying

ε <
ρ

f(Iρ + Sρ)− f(I∗ + S∗)
. (8)

As a consequence, if ε satisfies (8) then, writing the La-
grangian and the KKT conditions for (7) gives the following
characterization of the solution set of the DEDS problem

F∗DEDS ={(I, S) ∈ R2nh | 1>n I(k) = l(k) for all k ∈ K,
0 ∈ ∂Sf ε(I, S), and ∃ν ∈ Rh such that

(ν(1)1n; . . . ; ν(h)1n) ∈ ∂If ε(I, S)}. (9)

Recall that F∗DEDS is bounded. Next, we stipulate a mild reg-
ularity assumption on this set which implies that perturbing
it by a small parameter does not result into an unbounded
set. This property is of use in our convergence analysis later.

Assumption 4.2: (Regularity of F∗DEDS): For p ∈ R≥0,
define the map p 7→ F(p) ⊂ R2nh as

F(p) ={(I, S) ∈ R2nh |
∣∣∣1>n I(k) − l(k)∣∣∣ ≤ p for all k ∈ K,

0 ∈ ∂Sf ε(I, S) + pB(0, 1), and ∃ν ∈ Rh such that

(ν(1)1n; . . . ; ν(h)1n) ∈ ∂If ε(I, S) + pB(0, 1)}.

Note that F(0) = F∗DEDS. Then, there exists a p̄ > 0 such
that F(p) is bounded for all p ∈ [0, p̄). •

B. The dac+(L∂, ∂) coordination algorithm: Here, we
present our distributed algorithm and establish its asymptotic
convergence to the set of solutions of the DEDS problem
starting from any initial condition. The design of this rou-
tine combines ideas of Laplacian-gradient dynamics [4] and
dynamic average consensus algorithms [21]. Consider the

set-valued dynamics,

İ ∈ −(Ih ⊗ L)∂If
ε(I, S) + ν1z, (10a)

Ṡ ∈ −∂Sf ε(I, S), (10b)
ż = −αz − β(Ih ⊗ L)z − v + ν2(l ⊗ er − I), (10c)
v̇ = αβ(Ih ⊗ L)z, (10d)

where α, β, ν2, ν2 ∈ R>0 are design parameters and er ∈ Rn
is the unit vector along the r-th coordinate. This dynamics
can be understood as an interconnected system with two
parts: the (I, S)-component seeks to adjust the injection lev-
els to satisfy the load profile and search for the optimizers of
the DEDS problem while the (z, v)-component corresponds
to the dynamic average consensus part, with z(k)i aiming to
track the difference between the load l(k) and the current
injection level 1>n I

(k) for generator i. Our terminology
dac+(L∂, ∂) dynamics to refer to (10) is motivated by this
“dynamic average consensus in (z, v)+ Laplacian gradient in
I + gradient in S” structure. For convenience, we denote (10)
by the set-valued map Xdac+(L∂,∂) : R4nh ⇒ R4nh. Note that
Eq(Xdac+(L∂,∂)) = F∗DEDS and since ∂If

ε and ∂Sf
ε are

locally bounded, u.s.c and take nonempty convex compact
values, the solutions of Xdac+(L∂,∂) exist (cf. Section II).

Remark 4.3: (Distributed implementation of the
dac+(L∂, ∂) dynamics): Writing the (z, v) dynamics
componentwise, note that for each i and each k, (ż

(k)
i , v̇

(k)
i )

can be computed using (z
(k)
i , {z(k)j }j∈N out , v

(k)
i , I

(k)
i ) only.

Hence, (10c) and (10d) can be implemented in a distributed
manner where each generator only requires information
from its out-neighbors. Further, f ε can be written as

f ε(I, S) =
∑n
i=1 f

ε
i (I

(1)
i , . . . , I

(h)
i , S

(1)
i , . . . , S

(h)
i ).

Thus, if ζ1 ∈ ∂If ε(I, S) and ζ2 ∈ ∂Sf ε(I, S) then, for all
k ∈ K, (ζ1)

(k)
i , (ζ2)

(k)
i ∈ R only depend on the state of unit i,

i.e., (I
(1)
i , . . . , I

(h)
i , S

(1)
i , . . . , S

(h)
i ) and are computable by i.

Hence, the S-dynamics depends on each i’s own state and
for the I-dynamics, i needs its out-neighbors’ information.•

Next, we establish the convergence of the dac+(L∂, ∂)
dynamics. The proof involves a refinement of the LaSalle
Invariance Principle for differential inclusions from [5].

Theorem 4.4: (Convergence of the dac+(L∂, ∂) dynamics
to the solutions of the DEDS problem): Let F∗DEDS satisfy
Assumption 4.2, ε satisfy (8), and α, β, ν1, ν2 > 0 satisfy

ν1
βν2λ2(L + L>)

+
ν22λmax(L>L)

2α
< λ2(L + L>). (11)

Then, any trajectory of (10) starting in Rnh ×Rnh ×Rnh ×
(H0)h converges to F∗aug = {(I, S, z, v) ∈ F∗DEDS × {0} ×
Rnh | v = ν2(l ⊗ er − I)}.

V. SIMULATIONS

Here, we show the application of the dac+(L∂, ∂) dynam-
ics to solve the DEDS problem for 6 generators communi-
cating over a digraph with adjacency matrix in Table II(b).

1) Case 1: Constant cost across time slots: The planning
horizon is h = 5 with load profile l is given in Figure 1(a).
Generators have storage capacities CM = 1001n and Cm =



S(0) = 51n. For each generator, the cost is quadratic and it
remains constant across time. Table I details the cost function
coefficients, box and ramp constraints taken from [8].

Unit ai bi ci Pm
i PM

i Rl
i Ru

i

1 240 7.0 0.0070 100 500 120 80
2 200 10.0 0.0095 50 200 90 50
3 220 8.5 0.0090 80 300 100 65
4 200 11.0 0.0090 50 150 90 50
5 220 10.5 0.0080 50 200 90 50
6 190 12.0 0.0075 50 120 90 50

TABLE I
COST COEFFICIENTS (ai, bi, ci) AND BOUNDS PM

i , Pm
i , Rl

i , Ru
i . THE

COST FUNCTION OF i IS fi(Pi) = ai + biPi + ciP
2
i .

Figures 2(a) and 2(b) illustrate the evolution of the total
power injected at each time slot and the total cost incurred
by the network, resp., along a trajectory of the dynamics. As
established in Theorem 4.4 and shown in Figure 2 (c)-(h), the
total injection asymptotically converges to the load profile l,
the total aggregate cost converges to the minimum 59459
and the converged solution satisfies the constraints (5c)-(5f).
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Fig. 1. (a) Load profile l = (950, 980, 1100, 1070, 900) over a 5 time-
slot horizon and (b) dependence of the aggregate cost as a function of the
storage capacity available at each generator. In (b), cost functions at time
slots k = 1, 2 are given in Table II(a) and at time slots k = 3, 4, 5 are
given in Table I. Box and ramp constraints given in Table I.

2) Case 2: Changing cost across time slots: Here, we
retain the setup of Case 1 except for the cost functions: for
k = 1, 2, the cost is defined by (ā, b̄, c̄) given in Table II(a)
and, for k = 3, 4, 5, the cost is given by (a, b, c), cf. Table I.
With these costs, producing energy is cheaper earlier than
later which can be attributed to evolving sunlight or changing
wind patterns. Figure 3 (g)-(i) show the converged values
that satisfies all the constraints with the total cost 51833. As
expected, the network generates more energy than required
initially to store it and use it later when the cost is higher.

Unit āi b̄i c̄i
1 200 5.0 0.0060
2 100 3.0 0.0090
3 200 7.5 0.0090
4 180 6.0 0.0090
5 200 9.0 0.0080
6 180 12.0 0.006

(a)


0 2 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0


(b)

TABLE II
COST COEFFICIENTS (āi, b̄i, c̄i) AND THE ADJACENCY MATRIX.

In Case 2, we have also studied the effect of storage
capacity on the optimal total cost incurred by the network. As
expected, cf. Figure 1(b), the optimal cost decreases as the
storage capacity increases because higher capacity enables
the network to produce more at lower cost.

VI. CONCLUSIONS

We have formulated the DEDS problem for a group
of generators with storage capabilities that communicate
over a strongly connected, weight-balanced digraph. Using
exact penalty functions we have provided an alternative
formulation of the problem that lead to the design of the
distributed dac+(L∂, ∂) dynamics. We have established that
this dynamics converges to the set of solutions of the problem
from any initial condition. For future work, we plan to extend
our formulation to include power flow equations, constraints
on the power lines, and various losses. Further, we wish to
design robust distributed algorithms for stochastic versions
of the problem that include uncertainties in load profiles, cost
functions, and availability of generators across time slots.
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Fig. 2. Illustration of the execution of dac+(L∂, ∂) dynamics for a network of 6 generators with communication topology given by the adjacency matrix
in Table II(b). Table I gives the box constraints, the ramp constraints, and the cost functions. The load profile is given in Figure 1(a) and CM = 1001n,
Cm = S(0) = 51n. Plots (a) and (b) show the time evolution of the total injection at each time slot and the aggregate cost along a trajectory of the
dac+(L∂, ∂) dynamics starting at I(0) = (PM , PM , Pm, Pm, PM ), S(0) = z(0) = v(0) = 0nh. The parameters are ε = 0.007, α = 4, β = 10,
and ν1 = ν2 = 0.7 (which satisfy (8) and (11)). Plots (c) to (h) illustrate the obtained solution, that is exactly same as that obtained from centralized
solvers. Plots (d) and (e) show the power injected and power sent to storage across the time horizon, with unique colors for each generator. These values
add up to the generation in (c). The collective behavior is given in (f)-(h), where we plot the total power generated, the total power sent to storage, and
the aggregate of the power stored in the storage units, resp. Since the time-independent cost is quadratic with positive coefficients and the storage capacity
is large enough, one can show that the optimal policy is to produce the same power, i.e., 1

4

∑4
k=1 l

(k), at each slot k = 1, . . . , 4, as seen in plot (c) and
(f). The initial excess generation (due to the lower load) at slots k = 1, 2 is stored and used in slots k = 3, 4, 5, as indicated in plots (g) and (h).
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Fig. 3. Solution, as determined by the dac+(L∂, ∂) dynamics, of the DEDS problem for the setup described in Figure 2 but with time-dependent
quadratic cost functions. The cost functions are determined by the coefficients (ā, b̄, c̄) (cf. Table II(a)) for time slots k = 1, 2 and the coefficients (a, b, c)
(cf. Table I) for k = 3, 4, 5. This example illustrates further the importance of storage. With lower cost functions in slots 1 and 2, the generators produce
even more power (as compared to the solution in Figure 2) in the first two slots, using the excess stored power in later time slots when the cost is high.

[17] J. Cortés, “Discontinuous dynamical systems - a tutorial on solutions,
nonsmooth analysis, and stability,” IEEE Control Systems Magazine,
vol. 28, no. 3, pp. 36–73, 2008.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[19] D. P. Bertsekas, “Necessary and sufficient conditions for a penalty
method to be exact,” Mathematical Programming, vol. 9, no. 1, pp. 87–
99, 1975.

[20] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Min-
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