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Abstract

This paper studies the asymptotic convergence properties of the primal-dual
dynamics designed for solving constrained concave optimization problems us-
ing classical notions from stability analysis. We motivate the need for this
study by providing an example that rules out the possibility of employing
the invariance principle for hybrid automata to study asymptotic conver-
gence. We understand the solutions of the primal-dual dynamics in the
Caratheodory sense and characterize their existence, uniqueness, and con-
tinuity with respect to the initial condition. We use the invariance principle
for discontinuous Caratheodory systems to establish that the primal-dual op-
timizers are globally asymptotically stable under the primal-dual dynamics
and that each solution of the dynamics converges to an optimizer.
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1. Introduction

The (constrained) primal-dual dynamics is a widespread continuous-time
algorithm for determining the primal and dual solutions of an inequality
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constrained convex (or concave) optimization problem. This dynamics, first
introduced in the pioneering works [1, 2], has been used in multiple ap-
plications, including network resource allocation problems for wireless sys-
tems [3, 4, 5] and distributed stabilization and optimization of power net-
works [6, 7, 8, 9]. The specific structure of the primal-dual dynamics makes
it particularly well-suited for solving in a distributed way networked opti-
mization problems that involve aggregate objective functions with contraints
that can be expressed locally.

Our objective in this paper is to provide a rigorous treatment of the con-
vergence analysis of the primal-dual dynamics using classical notions from
stability analysis. Since this dynamics has a discontinuous right-hand side,
the standard Lyapunov or LaSalle-based stability results for nonlinear sys-
tems, see e.g. [10], are not directly applicable. This observation is at the
basis of the direct approach to establish convergence taken in [1], where
the evolution of the distance of the solution of the primal-dual dynamics to
an arbitrary primal-dual optimizer is approximated using power series ex-
pansions and its monotonic evolution is concluded by analyzing the local
behavior around a saddle point of the terms in the series. Various instances
of this argument are also combined to provide a global convergence result.
Instead, [3] takes an indirect approach to establish asymptotic convergence
based on the use of classical notions such as invariant sets and LaSalle func-
tions. This work models the primal-dual dynamics as a hybrid automaton,
as defined in [11], and employs a LaSalle Invariance Principle to establish the
asymptotic convergence of the solutions. This approach to establish conver-
gence is appealing because of its conceptual simplicity and the versatility of
Lyapunov-like methods in characterizing other properties of the dynamics.
However, the hybrid automaton that corresponds to the primal-dual dynam-
ics is in general not continuous, thereby not satisfying a key requirement of
the invariance principle stated in [11]. The first contribution of this paper is
an example that illustrates this point. Our second contribution is an alterna-
tive proof strategy to arrive at the same convergence results of [3]. We con-
sider an inequality constrained concave optimization problem described by
continuously differentiable functions with locally Lipschitz gradients. Since
the primal-dual dynamics has a discontinuous right-hand side, we start by
specifying the notion of solution in the Caratheodory sense. The main rea-
son for this choice is that the equilibria of the primal-dual dynamics exactly
correspond to the primal-dual optimizers of the corresponding optimization
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problem. We show that the primal-dual dynamics is a particular case of a
projected dynamical system and, using results from [12], we establish that
Caratheodory solutions exist, are unique, and are continuous with respect to
the initial condition. Using these properties, we show that the omega-limit
set of any solution of the primal-dual dynamics is invariant under the dynam-
ics. Finally, we employ the invariance principle for Caratheodory solutions of
discontinuous dynamical systems from [13] to show that the primal-dual op-
timizers are globally asymptotically stable under the primal-dual dynamics
and that each solution of the dynamics converges to an optimizer.

The paper is organized as follows. Section 2 presents basic notation and
preliminary notions on discontinuous dynamical systems. Section 3 intro-
duces the primal-dual dynamics and motivates with an example the need
for a convergence analysis with classical stability tools. Section 4 presents
the main convergence results. Finally, Section 5 gathers our conclusions and
ideas for future work.

2. Preliminaries

This section introduces notation and basic concepts about discontinuous
and projected dynamical systems.

2.1. Notation

We let R, R≥0, R>0, and Z≥1 be the set of real, nonnegative real, positive
real, and positive integer numbers, respectively. We denote by ‖ · ‖ the 2-
norm on Rn. The open ball of radius δ > 0 centered at x ∈ Rn is represented
by Bδ(x). Given x ∈ Rn, xi denotes the i-th component of x. For x, y ∈ Rn,
x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . , n}. We use the shorthand
notation 0n = (0, . . . , 0) ∈ Rn. For a real-valued function V : Rn → R and
α > 0, we denote the sublevel set of V by V −1(≤ α) = {x ∈ Rn | V (x) ≤ α}.
For scalars a, b ∈ R, the operator [a]+b is defined as

[a]+b =

{
a, if b > 0,

max{0, a}, if b = 0.

For vectors a, b ∈ Rn, [a]+b denotes the vector whose i-th component is [ai]
+
bi

,
i ∈ {1, . . . , n}. For a set S ∈ Rn, its interior, closure, and boundary are
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denoted by int(S), cl(S), and bd(S), respectively. Given two sets X and Y ,
a set-valued map f : X ⇒ Y associates to each point in X a subset of Y . A
map f : Rn → Rm is locally Lipschitz at x ∈ Rn if there exist δx, Lx > 0 such
that ‖f(y1) − f(y2)‖ ≤ Lx‖y1 − y2‖ for any y1, y2 ∈ Bδx(x). If f is locally
Lipschitz at every x ∈ K ⊂ Rn, then we simply say that f is locally Lipschitz
on K. The map f is Lipschitz on K ⊂ Rn if there exists a constant L > 0
such that ‖f(x)−f(y)‖ ≤ L‖x−y‖ for any x, y ∈ K. Note that if f is locally
Lipschitz on Rn, then it is Lipschitz on every compact set K ⊂ Rn.

2.2. Discontinuous dynamical systems

Here we present basic concepts on discontinuous dynamical systems fol-
lowing [13, 14]. Let f : Rn → Rn and consider the differential equation

ẋ = f(x). (1)

A map γ : [0, T ) → Rn is a (Caratheodory) solution of (1) on the interval
[0, T ) if it is absolutely continuous on [0, T ) and satisfies γ̇(t) = f(γ(t))
almost everywhere in [0, T ). A set S ⊂ Rn is invariant under (1) if every
solution starting from any point in S remains in S. For a solution γ of (1)
defined on the time interval [0,∞), the omega-limit set Ω(γ) is defined by

Ω(γ) = {y ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim
k→∞

tk =∞ and lim
k→∞

γ(tk) = y}.

If the solution γ is bounded, then Ω(γ) 6= ∅ by the Bolzano-Weierstrass theo-
rem [15]. These notions allow us to characterize the asymptotic convergence
properties of the solutions of (1) via invariance principles. Given a continu-
ously differentiable function V : Rn → R, the Lie derivative of V along (1)
at x ∈ Rn is LfV (x) = ∇V (x)>f(x). The next result is a simplified version
of [13, Proposition 3] which is sufficient for our convergence analysis later.

Proposition 2.1. (Invariance principle for discontinuous Caratheodory sys-
tems): Let S ∈ Rn be compact and invariant. Assume that, for each point
x0 ∈ S, there exists a unique solution of (1) starting at x0 and that its omega-
limit set is invariant too. Let V : Rn → R be a continuously differentiable
map such that LfV (x) ≤ 0 for all x ∈ S. Then, any solution of (1) starting
at S converges to the largest invariant set in cl({x ∈ S | LfV (x) = 0}).
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2.3. Projected dynamical systems

Projected dynamical systems are a particular class of discontinuous dy-
namical systems. Here, following [12], we gather some basic notions that
will be useful later to establish continuity with respect to the initial condi-
tion of the solutions of the primal-dual dynamics. Let K ⊂ Rn be a closed
convex set. Given a point y ∈ Rn, the (point) projection of y onto K is
projK(y) = argminz∈K ‖z − y‖. Note that projK(y) is a singleton and the
map projK is Lipschitz on Rn with constant L = 1 [16, Proposition 2.4.1].
Given x ∈ K and v ∈ Rn, the (vector) projection of v at x with respect
to K is

ΠK(x, v) = lim
δ→0+

projK(x+ δv)− x
δ

.

Given a vector field f : Rn → Rn and a closed convex polyhedron K ⊂ Rn,
the associated projected dynamical system is

ẋ = ΠK(x, f(x)), x(0) ∈ K, (2)

Note that, at any point x in the interior of K, we have ΠK(x, f(x)) = f(x).
At any boundary point of K, the projection operator restricts the flow of
the vector field f such that the solutions of (2) remain in K. Therefore, in
general, (2) is a discontinuous dynamical system. The next result summa-
rizes conditions under which the (Caratheodory) solutions of the projected
system (2) exist, are unique, and continuous with respect to the initial con-
dition.

Proposition 2.2. (Existence, uniqueness, and continuity with respect to
the initial condition [12, Theorem 2.5]): Let f : Rn → Rn be Lipschitz on K.
Then,

(i) (existence and uniqueness): for any x0 ∈ K, there exists a unique
solution t 7→ x(t) of the projected system (2) with x(0) = x0 defined
over the domain [0,∞),

(ii) (continuity with respect to the initial condition): given a sequence of
points {xk}∞k=1 ⊂ K with limk→∞ xk = x, the sequence of solutions
{t 7→ γk(t)}∞k=1 of (2) with γk(0) = xk for all k, converge to the solution
t 7→ γ(t) of (2) with γ(0) = x uniformly on every compact set of [0,∞).
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3. Problem statement

This section reviews the primal-dual dynamics for solving constrained
optimization problems and justifies the need to rigorously characterize its
asymptotic convergence properties. Consider the concave optimization prob-
lem on Rn,

maximize f(x), (3a)

subject to g(x) ≤ 0m, (3b)

where the continuously differentiable functions f : Rn → R and g : Rn →
Rm are strictly concave and convex, respectively, and have locally Lipschitz
gradients. The Lagrangian of the problem (3) is given as

L(x, λ) = f(x)− λ>g(x), (4)

where λ ∈ Rm is the Lagrange multiplier corresponding to the inequality
constraint (3b). Note that the Lagrangian is concave in x and convex (in
fact linear) in λ. Assume that the Slater’s conditions is satisfied for the
problem (3), that is, there exists x ∈ Rn such that g(x) < 0m. Under this
assumption, the duality gap between the primal and dual optimizers is zero
and a point (x∗, λ∗) ∈ Rn×Rm

≥0 is a primal-dual optimizer of (3) if and only
if it is a saddle point of L over the domain Rn × Rm

≥0, i.e.,

L(x, λ) ≤ L(x∗, λ∗) and L(x∗, λ) ≥ L(x∗, λ∗),

for all x ∈ Rn and λ ∈ Rm
≥0. For convenience, we denote the set of saddle

points of L (equivalently the primal-dual optimizers) by X× Λ ⊂ Rn × Rm.
Furthermore, (x∗, λ∗) is a primal-dual optimizer if and only if it satisfies the
following Karush-Kuhn-Tucker (KKT) conditions (cf. [17, Chapter 5]),

∇f(x∗)−
m∑
i=1

(λ∗)i∇gi(x∗) = 0, (5a)

g(x∗) ≤ 0m, λ∗ ≥ 0m, λ>∗ g(x∗) = 0. (5b)

6



Given this characterization of the solutions of the optimization problem, it
is natural to consider the primal-dual dynamics on Rn × Rm

≥0 to find them

ẋ = ∇xL(x, λ) = ∇f(x)−
m∑
i=1

λi∇gi(x), (6a)

λ̇ = [−∇λL(x, λ)]+λ = [g(x)]+λ . (6b)

When convenient, we use the notation Xp-d : Rn × Rm
≥0 → Rn × Rm to refer

to the dynamics (6). Given that the primal-dual dynamics is discontinuous,
we consider solutions in the Caratheodory sense. The reason for this is that,
with this notion of solution, a point is an equilibrium of (6) if and only if it
satisfies the KKT conditions (5).

Our objective is to establish that the solutions of (6) exist and asymp-
totically converge to a solution of the concave optimization problem (3) us-
ing classical notions and tools from stability analysis. Our motivation for
this aim comes from the conceptual simplicity and versatility of Lyapunov-
like methods and their amenability for performing robustness analysis and
studying generalizations of the dynamics. One way of tackling this prob-
lem, see e.g., [3], is to interpret the dynamics as a state-dependent switched
system, formulate the latter as a hybrid automaton as defined in [11], and
then employ the invariance principle for hybrid automata to characterize its
asymptotic convergence properties. However, this route is not valid in gen-
eral because one of the key assumptions required by the invariance principle
for hybrid automata is not satisfied by the primal-dual dynamics. The next
example justifies this claim.

Example 3.1. (The hybrid automaton corresponding to the primal-dual dy-
namics is not continuous): Consider the concave optimization problem (3)
on R with f(x) = −(x − 5)2 and g(x) = x2 − 1, whose set of primal-dual
optimizers is X × Λ = {(1, 4)}. The associated primal-dual dynamics takes
the form

ẋ = −2(x− 5)− 2xλ, (7a)

λ̇ = [x2 − 1]+λ . (7b)

We next formulate this dynamics as a hybrid automaton as defined in [11,
Definition II.1]. The idea to build the hybrid automaton is to divide the
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state space R × R≥0 into two domains over which the vector field (7) is
continuous. To this end, we define two modes represented by the discrete
variable q, taking values in Q = {1, 2}. The value q = 1 represents the mode
where the projection in (7b) is active and q = 2 represents the mode where
it is not. Formally, the projection is active at (x, λ) if [g(x)]+λ 6= g(x), i.e,
λ = 0 and g(x) < 0. The hybrid automaton is then given by the collection
H = (Q,X, f, Init, D,E,G,R), where Q = {q} is the set of discrete variables,
taking values in Q; X = {x, λ} is the set of continuous variables, taking
values in X = R× R≥0; the vector field f : Q×X→ TX is defined by

f(1, (x, λ)) =

[
−2(x− 5)− 2xλ

0

]
,

f(2, (x, λ)) =

[
−2(x− 5)− 2xλ

x2 − 1

]
;

Init = X is the set of initial conditions; D : Q ⇒ X specifies the domain of
each discrete mode,

D(1) = (−1, 1)× {0}, D(2) = X \D(1),

i.e., the dynamics is defined by the vector field (x, λ) → f(1, (x, λ)) over
D(1) and by (x, λ)→ f(2, (x, λ)) over D(2); E = {(1, 2), (2, 1)} is the set of
edges specifying the transitions between modes; the guard map G : Q ⇒ X
specifies when a solution can jump from one mode to the other,

G(1, 2) = {(1, 0), (−1, 0)}, G(2, 1) = (−1, 1)× {0},

i.e., G(q, q′) is the set of points where a solution jumps from mode q to
mode q′; and, finally, the reset map R : Q×X ⇒ X specifies that the state
is preserved after a jump from one mode to another,

R((1, 2), (x, λ)) = R((2, 1), (x, λ)) = {(x, λ)}.

We are now ready to show that the hybrid automaton is not continuous in
the sense defined by [11, Definition III.3]. This notion plays a key role in the
study of omega-limit sets and their stability, and is in fact a basic assumption
of the invariance principle developed in [11, Theorem IV.1]. Roughly speak-
ing, H is continuous if two solutions starting close to one another remain
close to one another. Therefore, to disprove the continuity of H, it is enough
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Figure 1: An illustration depicting the vector field (7) in the range (x, λ) ∈ [0, 1.6]×[0, 0.2].
As shown (with a red streamline), there exists a solution of (7) that starts at a point
(x(0), λ(0)) with x(0) < 1 and λ(0) > 0 such that it remains in the domain λ > 0 at all
times except at one time instant t when (x(t), λ(t)) = (1, 0).

to show that there exist two solutions that start arbitrarily close and yet
experience mode transitions at time instances that are not arbitrarily close.

Select an initial condition (x(0), λ(0)) ∈ (0, 1)×(0,∞) that gives rise to a
solution of (7) that remains in the set (0, 1)× (0,∞) for a finite time interval
(0, t), t > 0, satisfies (x(t), λ(t)) = (1, 0), and stays in the set (1,∞)× (0,∞)
for some finite time interval (t, T ), T > t. The existence of such a solution
becomes clear by plotting the vector field (7), see Figure 1. Note that by
construction, this is also a solution of the hybrid automaton H. This solution
starts and remains in domain D(2) for the time interval [0, T ] and so it
does not encounter any jumps in its discrete mode. Further, by observing
the vector field, we deduce that in every neighborhood of (x(0), λ(0)), there
exists a point (x̃, λ̃) such that a solution of (7) (that is also a solution of H)
starting at this point reaches the set (0, 1)×{0} in finite time t1 > 0, remains
in (0, 1)×{0} for a finite time interval [t1, t2], and then enters the set (1,∞)×
(0,∞) upon reaching the point (1, 0). Indeed, this is true whenever x̃ < x(0)
and λ̃ < λ(0). Such a solution of H starts in D(2), enters D(1) in finite time
t1, and returns to D(2) at time t2. Thus, the value of the discrete variable
representing the mode of the solution switches from 2 to 1 and back to 2,
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whereas the solution starting at (x(0), λ(0)) never switches mode. This shows
that the hybrid automaton is not continuous. •

Interestingly, even though the hybrid automaton H described in Exam-
ple 3.1 is not continuous, one can infer from Figure 1 that two solutions of (7)
remain close to each other if they start close enough. This suggests that con-
tinuity with respect to the initial condition might hold provided this notion
is formalized the way it is done for traditional nonlinear systems (and not as
done for hybrid automata where both discrete and continuous states have to
be aligned). The next section shows that this in fact is the case. This, along
with the existence and uniqueness of solutions, allows us to characterize the
asymptotic convergence properties of the primal-dual dynamics.

4. Convergence analysis of primal-dual dynamics

In this section we show that the solutions of the primal-dual dynam-
ics (6) asymptotically converge to a solution of the constrained optimization
problem (3). Our proof strategy is to employ the invariance principle for
Caratheodory solutions of discontinuous dynamical systems stated in Propo-
sition 2.1. Our first step is then to verify that all its hypotheses hold.

We start by stating a useful monotonicity property of the primal-dual
dynamics with respect to the set of primal-dual optimizers X × Λ. This
property can be found in [1, 3] and we include here its proof for completeness.

Lemma 4.1. (Monotonicity of the primal-dual dynamics with respect to
primal-dual optimizers): Let (x∗, λ∗) ∈ X×Λ and define V : Rn×Rm → R≥0,

V (x, λ) =
1

2

(
‖x− x∗‖2 + ‖λ− λ∗‖2

)
. (8)

Then LXp-d
V (x, λ) ≤ 0 for all (x, λ) ∈ Rn × Rm

≥0.

Proof. By definition of LXp-d
V , we have

LXp-d
V (x, λ) = (x− x∗)>∇xL(x, λ) + (λ− λ∗)>[−∇λL(x, λ)]+λ

= (x− x∗)>∇xL(x, λ)− (λ− λ∗)>∇λL(x, λ)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)).
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Since L is concave in x and convex in λ, applying the first order condition of
concavity and convexity for the first two terms of the above expression yields
the following bound

LXp-d
V (x, λ) ≤ L(x, λ)− L(x∗, λ) + L(x, λ∗)− L(x, λ)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ))

= L(x∗, λ∗)− L(x∗, λ) + L(x, λ∗)− L(x∗, λ∗)

+ (λ− λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)).

Define the shorthand notation M1 = L(x∗, λ∗) − L(x∗, λ), M2 = L(x, λ∗) −
L(x∗, λ∗), and M3 = (λ−λ∗)>([−∇λL(x, λ)]+λ +∇λL(x, λ)), so that the above
inequality reads

LXp-d
V (x, λ) ≤M1 +M2 +M3.

Since λ∗ is a minimizer of the map λ→ L(x∗, λ) over the domain Rm
≥0 and x∗

is a maximizer of the map x → L(x, λ∗), we obtain M1,M2 ≤ 0. Replacing
−∇λL(x, λ) = g(x), one can write M3 =

∑m
i=1 Ti, where for each i,

Ti = (λi − (λ∗)i)([gi(x)]+λi − gi(x)).

If λi > 0, then [gi(x)]+λi = gi(x) and so Ti = 0. If λi = 0, then λi − (λ∗)i ≤ 0
and [gi(x)]+λi − gi(x) ≥ 0, which implies that Ti ≤ 0. Therefore, we get
M3 ≤ 0, and the result follows. �

Using the above property, we next show the existence, uniqueness, and
continuity of the solutions of Xp-d starting from Rn × Rm

≥0.

Lemma 4.2. (Existence, uniqueness, and continuity of solutions of the primal-
dual dynamics): Starting from any point (x, λ) ∈ Rn×Rm

≥0, a unique solution
t 7→ γ(t) of the primal-dual dynamics Xp-d exists and remains in (Rn×Rm

≥0) ∩
V −1(≤ V (x, λ)). Moreover, if a sequence of points {(xk, λk)}∞k=1 ⊂ Rn×Rm

≥0
converge to (x, λ) as k → ∞, then the sequence of solutions {t 7→ γk(t)}∞k=1

of Xp-d starting at these points converge uniformly to the solution t 7→ γ(t)
on every compact set of [0,∞).

Proof. Our proof strategy consists of expressing the primal-dual dynam-
ics Xp-d as a projected dynamical system and then using Proposition 2.2.
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A minor technical hurdle in this process is ensuring the Lipschitz property
of the vector field. We tackle this by using the monotonicity property of
the primal-dual dynamics stated in Lemma 4.1. Consider the vector field
X : Rn × Rm → Rn × Rm defined by

X(x, λ) =

[
∇xL(x, λ)
−∇λL(x, λ)

]
. (9)

Our first step is to show that Xp-d(x, λ) = ΠRn×Rm≥0
((x, λ), X(x, λ)) for all

(x, λ) ∈ Rn × Rm
≥0. To see this, note that the maps Xp-d and X take the

same values over int(Rn×Rm
≥0) = Rn×Rm

>0. Now consider any point (x, λ) ∈
bd(Rn×Rm

≥0). Let I ⊂ {1, . . . ,m} be the set of indices for which λi = 0 and

(−∇λL(x, λ))i < 0. Then, there exist δ̃ > 0 such that, for all δ ∈ [0, δ̃) and
for any j ∈ {1, . . . , n+m}, we have

(projRn×Rm≥0
((x, λ) + δX(x, λ)))j =

{
0, if j − n ∈ I,
(x, λ)j + δ(X(x, λ))j, otherwise .

Consequently, using the definition of the projection operator, cf. Section 2.3,
we get

(ΠRn×Rm≥0
((x, λ), X(x, λ)))j =

{
0, if j − n ∈ I,
(X(x, λ))j, otherwise ,

which implies Xp-d(x, λ) = ΠRn×Rm≥0
((x, λ), X(x, λ)) for all (x, λ) ∈ bd(Rn ×

Rm
≥0).

Note that, even though we have written the primal-dual dynamics Xp-d

as a projected dynamical system, we cannot yet apply Proposition 2.2, as
the vector field X may not be Lipschitz on the whole Rn × Rm

≥0. However,
Lemma 4.1 indicates that a solution of Xp-d (if it exists) remains in a bounded
set, which we know explicitly. This implies that, given a starting point, there
exists a bounded set such that the values of the vector field outside this set
do not affect the solution starting at that point and hence, the vector field
can be modified at the outside points without loss of generality to obtain
the Lipschitz property. We make this construction explicit next. Consider
(x(0), λ(0)) ∈ Rn×Rm

≥0 and let ε > 0. Define V0 = V (x(0), λ(0)), where V is
given in (8), and let Wε = V −1(≤ V0 + ε). Note that Wε is convex, compact,
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and V −1(≤ V0) ⊂ int(Wε). Let XWε : Rn ×Rm → Rn ×Rm be a vector field
defined as follows: equal to X on Wε and, for any (x, λ) ∈ (Rn × Rm) \Wε,

XWε(x, λ) = X(projWε
(x, λ)).

The vector field XWε is Lipschitz on the domain Rn ×Rm. To see this, note
that X is Lipschitz on the compact set Wε with some Lipschitz constant
K > 0 because f and g have locally Lipchitz gradients. Let (x1, λ1), (x2, λ2) ∈
Rn × Rm. Then,

‖XWε(x1, λ1)−XWε(x2, λ2)‖ = ‖X(projWε
(x1, λ1))−X(projWε

(x2, λ2))‖
≤ K‖projWε

(x1, λ1)− projWε
(x2, λ2)‖

≤ K‖(x1, λ1)− (x2, λ2)‖.

The last inequality follows from the Lipschitz property of the map projWε

(cf. Section 2.3).

Next, we employ Proposition 2.2 to establish the existence, uniqueness,
and continuity with respect to the initial condition of the solutions of the
projected dynamical system associated with XWε and Rn × Rm

≥0. Our proof
then concludes by showing that in fact all solutions of the projected system
starting inWε∩Rn×Rm

≥0 are in one-to-one correspondence with the solutions

of Xp-d starting in Wε ∩ Rn × Rm
≥0. Let XWε

p-d : Rn × Rm
≥0 → Rn × Rm be the

map obtained by projecting XWε with respect to Rn × Rm
≥0,

XWε
p-d(x, λ) = ΠRn×Rm≥0

((x, λ), XWε(x, λ)),

for all (x, λ) ∈ Rn × Rm
≥0. Since Xp-d is the projection of X with respect to

Rn×Rm
≥0, we deduce that XWε

p-d = Xp-d over the setWε∩Rn×Rm
≥0. Since XWε

is Lipschitz, following Proposition 2.2, we obtain that starting from any point
in Rn × Rm

≥0, a unique solution of XWε
p-d exists over [0,∞) and is continuous

with respect to the initial condition. Consider any solution t 7→ (x̃(t), λ̃(t)) of
XWε

p-d that starts inWε ∩Rn×Rm
≥0. Note that since the solution is absolutely

continuous and V is continuously differentiable, the map t 7→ V (x̃(t), λ̃(t))
is differentiable almost everywhere on [0,∞), and hence

d

dt
V (x̃(t), λ̃(t)) = LXWεp-d

V (x̃(t), λ̃(t)),

13



almost everywhere on [0,∞). From Lemma 4.1 and the fact that LXWεp-d
V and

LXp-d
V are the same overWε∩Rn×Rm

≥0, we conclude that V is non-increasing
along the solution. This means the solution remains in the setWε∩Rn×Rm

≥0.

Finally, since XWε
p-d and Xp-d are same on Wε ∩ Rn × Rm

≥0, we conclude that

t 7→ (x̃(t), λ̃(t)) is also a solution of Xp-d. Therefore, starting at any point in
Wε ∩ Rn × Rm

≥0, a solution of Xp-d exists. Using Lemma 4.1, one can show
that, if a solution of Xp-d that starts from a point in Wε ∩ Rn × Rm

≥0 exists,

then it remains inWε∩Rn×Rm
≥0 and so is a solution of XWε

p-d . This, combined

with the uniqueness of solutions of XWε
p-d , implies that a unique solution of

Xp-d exists starting from any point in Wε ∩ Rn × Rm
≥0. In particular, this

is true for the point (x(0), λ(0)). Finally, from the continuity of solutions
of XWε

p-d and the one-to-one correspondence of solutions of Xp-d and XWε
p-d

starting Wε ∩ Rn × Rm
≥0, we conclude the continuity with respect to initial

condition for solutions of Xp-d starting in V −1(x(0), λ(0)). Since (x(0), λ(0))
is arbitrary, the result follows. �

The next result uses the continuity property with respect to the initial
condition of the primal-dual dynamics to show that the omega-limit set of
any solution is invariant. This ensures that all hypotheses of the invariance
principle for Caratheodory solutions of discontinuous dynamical systems, cf.
Proposition 2.1, are satisfied.

Lemma 4.3. (Omega-limit set of solution of primal-dual dynamics is in-
variant): The omega-limit set of any solution of the primal-dual dynamics
starting from any point in Rn × Rm

≥0 is invariant under (6).

Proof. For (x(0), λ(0)) ∈ Rn × Rm
≥0, let t 7→ (x(t), λ(t)) be the solu-

tion of Xp-d starting at (x(0), λ(0)) and let Ω(x, λ) be its omega-limit set.
Since every solution of Xp-d is bounded (cf. Lemma 4.2), the set Ω(x, λ)
is nonempty. Let (x̄, λ̄) ∈ Ω(x, λ). From the definition of omega-limit set
(cf. Section 2.2), there exists a sequence {tk}∞k=1 with limk→∞ tk = ∞ such
that limk→∞(x(tk), λ(tk)) = (x̄, λ̄). From Lemma 4.2, we know that (x̄, λ̄) ∈
(Rn×Rm

≥0)∩V −1(≤ V (x(0), λ(0))) and thus a unique solution of Xp-d exists
starting at (x̄, λ̄). We denote it by t 7→ φ(t), φ(0) = (x̄, λ̄), We need to show
that φ(t) ∈ Ω(x, λ) for all t ≥ 0. Pick any t̃ ∈ [0,∞). Consider the sequence
of solutions {t 7→ (xk(t), λk(t))}∞k=1 where (xk(0), λk(0)) = (x(tk), λ(tk)) for
all k ∈ Z≥1. Since (xk(0), λk(0)) → (x̄, λ̄), by the continuity property of
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solutions (cf. Lemma 4.2), the sequence of solutions {t 7→ (xk(t), λk(t))}∞k=1

converges uniformly to t 7→ φ(t) over the interval [0, t̃]. In particular, from
uniqueness of solutions, we have

φ(t̃) = lim
k→∞

(xk(t̃), λk(t̃)) = lim
k→∞

(x(tk + t̃), λ(tk + t̃)),

or equivalently, φ(t̃) ∈ Ω(x, λ). Since t̃ is arbitrary, we deduce that φ(t) ∈
Ω(x, λ) for all t ≥ 0, concluding the proof. �

We are now ready to establish our main result, the asymptotic conver-
gence of the solutions of the primal-dual dynamics to a solution of the con-
strained optimization problem.

Theorem 4.4. (Convergence of the primal-dual dynamics to a primal-dual
optimizer): The set of primal-dual solutions of (3) is globally asymptotically
stable on Rn×Rm

≥0 under the primal-dual dynamics (6), and the convergence
of each solution is to a point.

Proof. Let (x∗, λ∗) ∈ X×Λ and consider the function V defined in (8). For
δ > 0, consider the compact set S = V −1(≤ δ)∩(Rn×Rm

≥0). From Lemma 4.2,
we deduce that a unique solution of Xp-d exists starting from any point in S,
which remains in S. Moreover, from Lemma 4.3, the omega-limit set of each
solution starting from any point in S is invariant. Finally, from Lemma 4.1,
LXp-d

V (x, λ) ≤ 0 for all (x, λ) ∈ S. Therefore, Proposition 2.1 implies that
any solution of Xp-d staring in S converges to the largest invariant set M
contained in cl(Z), where Z = {(x, λ) ∈ S | LXp-d

V (x, λ) = 0}. From the
proof of Lemma 4.1, LXp-d

V (x, λ) = 0 implies

L(x∗, λ∗)− L(x∗, λ) = 0,

L(x, λ∗)− L(x∗, λ∗) = 0,

(λi − (λ∗)i)([gi(x)]+λi − gi(x)) = 0, for all i ∈ {1, . . . ,m}.

Since f is strictly concave, so is the function x 7→ L(x, λ∗) and thus L(x, λ∗) =
L(x∗, λ∗) implies x = x∗. The equality L(x∗, λ∗) − L(x∗, λ) = 0 implies
λ>g(x∗) = 0. Therefore Z = {(x, λ) ∈ S | x = x∗, λ

>g(x∗) = 0} is closed.
Let (x∗, λ) ∈ M ⊂ Z. The solution of Xp-d starting at (x∗, λ) remains in M
(and hence in Z) only if ∇f(x∗) −

∑m
i=1 λi∇gi(x∗) = 0. This implies that
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(x∗, λ) satisfies the KKT conditions (5) and hence, M ⊂ X × Λ. Since the
initial choice δ > 0 is arbitrary, we conclude that the set X × Λ is globally
asymptotically stable on Rn × Rm

≥0. Finally, we show that the convergence
is to a point in X × Λ. We do so by establishing that the omega-limit set
Ω(x, λ) ⊂ X × Λ of any solution t 7→ (x(t), λ(t)) of Xp-d is a singleton.
By contradiction, assume that (x1, λ1), (x2, λ2) ∈ Ω(x, λ) with (x1, λ1) 6=
(x2, λ2), and define the functions V1, V2 : Rn × Rm → R≥0 by,

V1(x, λ) =
1

2
(‖x− x1‖2 + ‖λ− λ1‖2),

V2(x, λ) =
1

2
(‖x− x2‖2 + ‖λ− λ2‖2).

Since (x1, λ1), (x2, λ2) ∈ X × Λ, the above discussion implies that the sets
V −11 (≤ δ) and V −12 (≤ δ) are invariant under Xp-d, for any δ > 0. Pick δ <
1
2
(‖(x1, λ1)−(x2, λ2)‖). Since, (x1, λ1) ∈ Ω(x, λ), the solution t 7→ (x(t), λ(t))

enters V −11 (≤ δ) at some finite time t1 ∈ [0,∞) and remains there afterwards
because of the invariance of the set. Similarly, for (x2, λ2), there exists a finite
time t2 ∈ [0,∞) such that (x(t), λ(t)) ∈ V −12 (≤ δ) for all t ≥ t2. Therefore,
for t ≥ max{t1, t2}, the solution belongs to V −11 (≤ δ)∩ V −12 (≤ δ) = ∅, which
is a contradiction. This concludes the proof. �

Remark 4.5. (Alternative proof strategy via evolution variational inequal-
ities): We briefly describe here an alternative proof strategy to the one we
have used here to establish the asymptotic convergence of the primal-dual
dynamics. The Caratheodory solutions of the primal-dual dynamics can also
be seen as solutions of an evolution variational inequality (EVI) problem [18].
Then, one can show that the resulting EVI problem has a unique solution
starting from each point in Rn ×Rm

≥0, which moreover remains in Rn ×Rm
≥0.

With this in place, the LaSalle Invariance Principle [18, Theorem 4] for the
solutions of the EVI problem can be applied to conclude the convergence to
the set of primal-dual optimizers. •

Remark 4.6. (Primal-dual dynamics with gains): In power network opti-
mization problems [7, 8, 9] and network congestion control problems [19, 20],
it is common to see generalizations of the primal-dual dynamics involving
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gain matrices. Formally, these dynamics take the form

ẋ = K1∇xL(x, λ), (10a)

λ̇ = K2[−∇λL(x, λ)]+λ , (10b)

where K1 ∈ Rn×n and K2 ∈ Rm×m are diagonal, positive definite matrices.
In such cases, the analysis performed here can be replicated following the
same steps but using instead the Lyapunov function

V ′(x, λ) =
1

2
((x− x∗)>K−11 (x− x∗) + (λ− λ∗)>K−12 (λ− λ∗)),

to establish the required monotonicity and convergence properties of (10). •

Remark 4.7. (Partial primal-dual dynamics): In certain power network op-
timization problems [8, 21], the Lagrangian might not be strictly concave (or
strictly convex) in the primal variable. In those cases, a possible way of
finding the optimizers is to employ a partial primal-dual dynamics obtained
from a reduced Lagrangian. Specifically, for problem (3), assume the state is
partitioned into two components, x = (x1, x2) where x1 ∈ Rr and x2 ∈ Rn−r,
with r ∈ Z≥1, and consider the reduced Lagrangian

L̃(x1, λ) = max
x2∈Rn−r

L((x1, x2), λ) = L((x1, x
∗
2(x1, λ)), λ),

where x∗2(x1, λ) is a maximizer of the function x2 7→ L((x1, x2), λ) for fixed
x1 and λ. Assume the following holds

(i) (x∗1, λ
∗) ∈ Rr × Rm

≥0 is a saddle point of L̃ over the domain Rr × Rm
≥0

only if (x∗1, x
∗
2(x
∗
1, λ
∗), λ∗) is a saddle point of the Lagrangian L over the

domain Rn × Rm
≥0,

(ii) the map x1 7→ L̃(x1, λ) is strictly concave or the map λ 7→ L̃(x1, λ) is
strictly convex.

Then, any solution t 7→ (x1(t), λ(t)) of the primal-dual dynamics for the
reduced Lagrangian L̃, starting from Rr × Rm

≥0, will converge to the saddle

points of L̃. This solution augmented with the map t 7→ x∗2(x1(t), λ(t)), that
gives the maximizer of the function x2 7→ L((x1(t), x2), λ(t)) at each time
t, results into the trajectory t 7→ (x1(t), x

∗
2(x1(t), λ(t)), λ(t)) that converges

asymptotically to the primal-dual optimizers of (3). A common scenario in
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which assumptions (i) and (ii) mentioned above hold (see, e.g., [8, 21]) is
when the Lagrangian L is separable in the primal variables, taking the form

L((x1, x2), λ) = L1(x1, λ) + L2(x2, λ),

where L1 and L2 are concave (resp. convex) in the primal (resp. dual)
variable, and either the map x1 7→ L1(x1, λ) is strictly concave or the map
λ 7→ L1(x1, λ) is stictly convex. •

5. Conclusions

We have considered the primal-dual dynamics for a general constrained
concave optimization problem and established the asymptotic convergence of
its Caratheodory solutions to a primal-dual optimizer using classical notions
from stability theory. Our technical approach has employed results from pro-
jected dynamical systems to establish existence, uniqueness, and continuity
of the solutions, and the invariance principle for discontinuous Caratheodory
systems to characterize their asymptotic convergence. We have also shown
by means of a counterexample how a proof strategy based on interpreting the
primal-dual dynamics as a hybrid automaton is not valid in general because
of the lack of continuity (understood in the hybrid sense) of the solutions.
The technical approach presented in the paper opens up the possibility of
rigorously characterizing the robustness properties of the primal-dual dy-
namics against unmodeled dynamics, disturbances, and noise. Motivated by
applications to power networks, we also plan to explore the design of discon-
tinuous dynamics that can find the solutions to semidefinite programs and
quadratically constrained quadratic programs.
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