
Distributed line search for multi-agent convex
optimization

Jorge Cortés and Sonia Martı́nez

Abstract This note considers multi-agent systems seeking to optimize a convex ag-
gregate function. We assume that the gradient of this function is distributed, mean-
ing that each agent can compute its corresponding partial derivative with informa-
tion about its neighbors and itself only. In such scenarios, the discrete-time imple-
mentation of the gradient descent method poses the basic challenge of determining
appropriate agent stepsizes that guarantee the monotonic evolution of the objective
function. We provide a distributed algorithmic solution to this problem based on
the aggregation of agent stepsizes via adaptive convex combinations. Simulations
illustrate our results.

1 Introduction

This book chapter is related to Arjan’s longstanding research interests on nonlinear
dynamical systems, systems with interacting continuous and discrete dynamics, and
network modeling, analysis, and control of interconnected complex physical and en-
gineering systems. The first author (JC) was a postdoc researcher with Arjan from
January 2002 to June 2002 at the University of Twente in Enschede, The Nether-
lands. Arjan was a member of the PhD committee of the second author (SM) in
May 2002 in Madrid, Spain, which ended with a long Spanish meal that took hours
to complete. Both authors have always admired the prolific and highly active nature
of Arjan, always sharp in identifying important problems and research areas, and

Jorge Cortés
Department of Mechanical and Aerospace Engineering, UC San Diego, 9500 Gilman Dr, La Jolla,
California, 92093-0411, e-mail: cortes@ucsd.edu

Sonia Martı́nez
Department of Mechanical and Aerospace Engineering, UC San Diego, 9500 Gilman Dr, La Jolla,
California, 92093-0411, e-mail: soniamd@ucsd.edu

1

2 Jorge Cortés and Sonia Martı́nez

his incredible ability to produce impactful work and seminal contributions on which
many other researchers, including the authors, have built.

A popular approach to the coordination of multi-agent systems consists of de-
signing a distributed algorithm that solves an optimization problem encoding the
coordination task. This top-bottom method has been very useful in a variety of net-
worked multi-agent scenarios, including multi-vehicle coordination, network util-
ity maximization, energy dispatch, and information processing by sensor networks.
Due to a lack of centralized authority, the proposed algorithms are to be executed
by employing local information only, which allows for greater scalability and ro-
bustness to agent failure. In this paper, we consider a particular class of convex
optimization problems for which gradient-descent continuous-time algorithms are
naturally distributed, meaning that each agent can compute the partial derivative of
the function to be optimized with information of its neighbors and itself. While the
convergence analysis of these algorithms in continuous time is facilitated by power-
ful concepts and tools from stability theory, their practical implementation needs to
be of discrete-time nature. This requires the determination of an appropriate stepsize
along the descent direction. A common approach to solve this problem is the a priori,
offline determination of the stepsize using global information. In this manuscript, we
instead take the alternative approach of designing distributed procedures that allow
agents to coordinate the computation of appropriate stepsizes.

Literature review. This manuscript is a contribution to the recent body of re-
search on distributed optimization by a network of agents subject to intermittent
interactions. In these works, the objective function can be expressed as a sum of
convex functions and be subject to different inequality and equality constraints;
see for example [11, 15, 6, 12, 20]. Building on consensus-based coordination
rules [2, 14, 13, 10], the aforementioned efforts lead to discrete-time schemes
employing function subgradients. Continuous-time approaches which are robust
to errors due to communication and initialization include [16] on undirected net-
works and [5, 9] on directed networks. With the goal of designing faster algo-
rithms, [17, 18] focus on Newton schemes. Except for [18], which employs a de-
centralized backtracking line-search rule to implement the Armijo rule, and an ear-
lier version [4] of the present work, the aforementioned approaches assume that
agents have access to a common (possibly time-varying) stepsize, determined a
priori, to implement the distributed algorithm. The recent work [7] instead com-
bines continuous-time computation and discrete-time communication to let individ-
ual agents determine autonomously their stepsizes. Our work connects with the liter-
ature on algorithms for gradient-descent methods [1]. The classical steepest-descent
method [3] for unconstrained minimization converges linearly and can show slow
performance. However, the understanding of these algorithms is central for the the-
ory and design of more sophisticated optimization algorithms [8]. It is within this
simple context that we study how a network of agents can determine appropriate
stepsizes in a distributed way.

Statement of contributions. We introduce a class of algorithms that allows a group
of agents to descend a convex objective function by following an aggregated descent
direction. Each agent employs a stepsize that results from a distributed stepsize com-

Distributed line search for multi-agent convex optimization 3

putation subroutine. This strategy takes as inputs the stepsizes computed by each
agent via a line-search procedure. By means of a proper initialization, and after only
a finite number of rounds, the strategy outputs a vector of stepsizes, one per agent,
that agents can readily implement to decrease the function. If let run indefinitely,
the strategy converges to a convex combination of stepsizes that guarantees that the
function decreases via the steepest descent direction or other alternative aggregated
directions of descent.

Organization. Section 2 introduces basic preliminaries. Section 3 states formally
the problem of interest. Section 4 introduces several stepsize aggregation models
for distributed line search based on convex combinations and Section 5 presents a
provable distributed linear iteration algorithm to compute them. Section 6 presents
simulations of the resulting algorithms. We gather our conclusions and ideas for
future work in Section 7.

2 Preliminaries

This section presents basic notions from graph theory, optimization via gradient
descent, and line search.

2.1 Notation

We employ Rn
>0 (resp. Rn

≥0) to denote the positive orthant (resp. the nonnegative
orthant) of Rn. We use the notation 1n ∈ Rn

>0 (resp. 1n−1 ∈ Rn−1
>0) for the vector

(1, . . . ,1)T (resp. 1n−1 = (1, . . . ,1)T). We denote the eigenvalues of a square matrix
M ∈ Rn×n as λi(M), i ∈ {1, . . . ,n}. We assume that the eigenvalues are indexed so
that Re(λ1(M)) ≤ Re(λ2(M)) ≤ ·· · ≤ Re(λn(M)), where Re denotes the real part
of a complex number. We denote by In the identity matrix of dimension n×n. The
spectral radius of M is ρ(M) = maxi∈{1,...,n} |λi(M)|. The essential spectral radius
of a matrix M with ρ(M) = 1 is ρess(M) = maxi∈{1,...,n}{|λi(M)| | λi(M) 6= 1}. The
notation M ≥ 0 means that M is positive semidefinite. In particular, M1 ≥M2 if and
only if M1−M2 ≥ 0. A matrix M ∈ Rn×n is Metzler if all its off-diagonal elements
are nonnegative. A matrix M ∈ Rn×n

≥0 is irreducible if, for any nontrivial partition
J∪K of the index set {1, . . . ,n}, there exist j ∈ J and k ∈K such that m jk 6= 0. We let
span{w1, . . . ,wl} denote the vector space generated by the vectors w1, . . . ,wl ∈ Rn.
Given g : R→ R and h : R→ R, we denote g(r) ∈ O(h(r)) if and only if there is
C > 0 and r0 such that |g(r)| ≤C|h(r)|, for all r ≥ r0.

4 Jorge Cortés and Sonia Martı́nez

2.2 Graph-theoretic notions

We present some basic notions from algebraic graph theory following the exposition
in [2]. An undirected graph, or simply graph, is a pair G = (V,E), where V is a
finite set called the vertex set and E is the edge set consisting of unordered pairs
of vertices. For i, j ∈ V and i 6= j, the set {i, j} denotes an undirected edge, and
i and j are neighbors. We let NG(i) denote the set of neighbors of ui in G. The
graph G is connected if for any pair of nodes i, j there exists a sequence of edges
{i, i1},{i1, i2}, . . . ,{ik, j} connecting i with j. The adjacency matrix of a graph G is
a non-negative symmetric matrix A = (ai j) ∈ Rn×n

≥0 such that ai j 6= 0 if and only if
{i, j} is an edge of the graph. Here, we consider ai j = 1, when {i, j} ∈ E. Consider
the diagonal matrix D = diag(A1n). The Laplacian matrix of G is defined as L =
D−A, which is a symmetric and positive semi-definite matrix. Note that L has an
eigenvalue at 0 and 1n is the corresponding eigenvector. A graph G is connected if
and only if L is irreducible and 0 is a simple eigenvalue. Finally, a map g : Rn→Rn

is distributed over G if, for all j ∈ {1, . . . ,n}, the component g j can be expressed as
g j(x) = g j(xi1 , . . . ,xin j

), where NG(j) = {i1, . . . , in j}, for all x ∈ Rn.

2.3 Directions of descent and line search

Given a continuously differentiable function f : Rn → R, we let ∇ f : Rn → Rn

denote its gradient

∇ f (x) =
(

∂ f
∂x1

(x), . . . ,
∂ f
∂xn

(x)
)
.

Throughout the paper, we use the notation ∇i f to refer to the ith component of ∇ f .
Given a function f : Rn→R and x ∈Rn, v ∈Rn is a direction of descent of f at x if
there exists T > 0 such that

f (x+δv)< f (x), δ ∈ (0,T).

If f is continuously differentiable at x, this is equivalent to saying that ∇ f (x)T v < 0.
The procedure of calculating the actual step δ to be taken in the direction v is called
line search. The choice of a stepsize and a direction that guarantees the reduction of
the function at each iterate leads to various gradient algorithms. In particular, one
could aim to find the best stepsize that optimizes the decrease in the value of f along
a direction v, i.e.,

εv = argminδ∈[0,∞) f (x+δv). (1)

Let hv(δ) = f (x+δv). For a continuously differentiable function, it is not difficult
to see that the stepsize (1) is characterized by the equation

Distributed line search for multi-agent convex optimization 5

h′v(εv) = ∇ f (x+ εvv)T v = 0. (2)

The choice v = ∇ f (which corresponds to the direction that instantaneously de-
scends f the most) leads to the steepest-descent method,

xk+1 = xk−αk∇ f (xk), k ≥ 0,

which locally converges to the set of minimizers of f .

3 Problem statement

Consider a network of n agents, indexed by i ∈ {1, . . . ,n}, with interaction topology
described by a graph G. The network state, denoted x, belongs to Rn. Agent i is re-
sponsible for the ith component xi ∈R. The results that follow can also be extended
to scenarios where each agent supervises several components of the vector x ∈ Rn,
but here we keep the exposition simple. Consider a convex function f : Rn → R
whose gradient ∇ f : Rn → Rn distributed over G. Thus, each agent i ∈ {1, . . . ,n}
can compute

vi(x) = (0, . . . ,∇i f (x), . . . ,0), (3)

with information from its neighbors in G. The next result states that the line search
procedure for f and each direction vi can be carried out in a distributed way.

Lemma 1. (Individual agent stepsize computation): Let f : Rn → R be continu-
ously differentiable and assume ∇ f : Rn → Rn is distributed over G. Let x ∈ Rn

and i ∈ {1, . . . ,n} with vi(x), as defined in (3), be non-vanishing. Then, the optimal
stepsize εvi(x) along vi(x) and the associated decrease ∆vi(x) in the value of f can be
computed with knowledge only of {xi}∪{x j | j ∈NG(i)}.
Proof. For simplicity, we use the shorthand notation hi, εi, and ∆i to denote hvi(x),
εvi(x), and ∆vi(x) respectively. Note that (2) in this case reduces to

h′i(εi) = ∇i f (x+ εivi(x))T
∇i f (x) = 0. (4)

The only difference between x+ εivi(x) and x is in the ith component, which agent
i is responsible for. Since the gradient of f is distributed over G, agent i has all
the information required to solve equation (4). A similar argument holds for the
associated decrease in the value of f ,

∆i = f (x)− f (x+ εivi(x))

= hi(0)−hi(εi) =−
∫

εi

0
h′i(δ)dδ

=−
∫

εi

0
∇i f (x+δvi(x))T

∇i f (x)dδ , (5)

which completes the result. ut

6 Jorge Cortés and Sonia Martı́nez

Note that the line search procedure performed by agent i assumes that all other
agents remain fixed. The problem of interest in this paper is the following.

Distributed line-search computation problem. Let x ∈ Rn. Given δi such that
f (x + δivi(x)) < f (x), where vi(x) is given as in (3) for all i ∈ {1, . . . ,n}, de-
sign a distributed algorithm that allows the group of agents to agree on stepsizes
(ε1, . . . ,εn) ∈ Rn

≥0 such that

f (x+ ε1v1(x)+ · · ·+ εnvn(x))< f (x).

In particular, a solution such that εi = ε for all i ∈ {1, . . . ,n}, solves the distributed
steepest-descent line-search computation problem.

We make the following considerations regarding the above problem. First, note
that the choice εi = δi, i ∈ {1, . . . ,n}, is not a solution in general. In principle, there
are several ways to approach this problem. For instance, one can resort to parallel
algorithms to identify those agents that maximize the function decrease and coor-
dinate their changes in state accordingly via leader election. Instead, here we look
for solutions that allow all agents to simultaneously contribute to the decrease of the
function.

4 Weighted network-aggregated stepsizes

The next result provides guidance as to how the problem stated can be solved.
Lemma 2 determines how stepsizes based on a convex combination guarantee the
decrease of the cost function.

Lemma 2. (Network-aggregated stepsize): Let f : Rn → R be convex. For x ∈ Rn,
let w1, . . . ,wn ∈ Rn be directions of descent of f from x. Let δi ∈ R>0 be a stepsize
such that f (x+δiwi)< f (x), for each i∈{1, . . . ,n}. Let µi ∈ [0,1], for i∈{1, . . . ,n},
such that µ1 + · · ·+µn = 1. Then µ1δ1w1 + · · ·+µnδnwn is an aggregated direction
of descent of f from x, and f (x+δ ∑

n
i=1 µiδiwi)< f (x).

Proof. The result follows from the following relations

f

(
x+

n

∑
i=1

µiδiwi

)
= f

(
n

∑
i=1

µi(x+δiwi)

)

≤
n

∑
i=1

µi f (x+δiwi)<
n

∑
i=1

µi f (x) = f (x),

where we have used the fact that f is convex in the first inequality. ut

Note that the aggregation procedure in Lemma 2 reduces the size of the agent
stepsizes, i.e., µiδi < δi, i ∈ {1, . . . ,n}. This makes sense as the individual agent
stepsizes have been computed with the overly optimistic assumption that nobody
else would change its state. This reduction in stepsize is the price that the agents have

Distributed line search for multi-agent convex optimization 7

to pay to make sure the aggregate function decreases. The following are particular
cases of stepsizes that we consider in the sequel. With the notation of Lemma 2, let
wi = vi(x) be given by (3). The common network-aggregated stepsize vector is

µi =

1
δi

1
δ1
+ · · ·+ 1

δn

, i ∈ {1, . . . ,n}. (6)

By using this stepsize vector, agents decrease the function along ∇ f (x). The
proportional-to-cost network-aggregated stepsize vector is

µi =
∆i

∆1 + · · ·+∆n
, i ∈ {1, . . . ,n}, (7)

where ∆i = fi(x)− fi(x+ δivi(x)), for i ∈ {1, . . . ,n}. Finally, the proportional-to-
state network-aggregated stepsize vector is

µi =
di

d1 + · · ·+dn
, i ∈ {1, . . . ,n}, (8)

where di = δi‖vi(x)‖, for i ∈ {1, . . . ,n}. Note that the weights defined in (7) are
larger for those agents who offer a larger decrease in the value of the objective
function. Thus, they encode a type of “proportional fairness” in the way that each
agent can decrease the cost function. A similar consideration applies to (8). We call
the resulting direction of descent proportional-to-cost (resp. proportional-to-state)
direction of descent.

Lemma 2 paves the way for performing line search in a distributed way. Using
this result, the agents in the network can collectively fuse their stepsizes in order
to guarantee that the resulting network state after updates by all agents decreases
the value of the objective function. Remarkably, this is accomplished without the
need to share the individual directions of motion of the agents. In particular, the
aggregated stepsize models (6)-(8) take into account the current network state in the
determination of the appropriate stepsizes. The challenge is then to perform these
stepsize aggregations in a distributed way. We address this in the following section.

5 Adaptive algorithm for distributed stepsize computation

One can implement a number of distributed algorithms to compute the stepsizes (6)-
(8) across the whole network. For instance, average consensus could be employed
to compute the corresponding aggregate sums in the denominators of these expres-
sions. This, together with knowledge of the size of the network, would allow each
agent to compute the aggregated stepsize. However, the convergence of these algo-
rithms is typically asymptotic, and so it may appear impractical to execute one at
each state through the evolution of the network. Instead, we would like to find dis-
tributed algorithms that, for each x ∈Rn, even if not implementing exactly the mod-

8 Jorge Cortés and Sonia Martı́nez

els (6)-(8), (i) can guarantee that the function decreases and (ii) approach asymptot-
ically the directions of descent and stepsizes provided in Lemma 2.

5.1 Distributed computation of convex combinations

We note that the aggregated stepsize models (6)-(8) have a similar structure that can
be captured as follows: given a vector y ∈ Rn

>0, compute the aggregated vector

(yT 1n)
−1y.

Each model corresponds to a different choice of vector y. Specifically, the choice
y = (1

δ1
, . . . , 1

δn
) corresponds to the common network-aggregated stepsize vector,

the choice y = ∆ corresponds to the proportional-to-cost network-aggregated step-
size vector, and the choice y = (1

δ1
, . . . , 1

δn
) corresponds to the proportional-to-state

network-aggregated stepsize vector.
In this section, we propose a continuous-time distributed algorithm that allows

each agent to compute its component of the aggregated vector (yT 1n)
−1y. Define

the matrix Q(y) ∈ Rn×n such that

Qi j(y) =−yiy j, for (i, j) ∈ E

Qii(y) = ∑
j∈NG(i)

y2
j , for i ∈ {1, . . . ,n}.

Three important properties of the matrix Q(y) are that: (i) Q(y) = Q(y)T , (ii)−Q(y)
is Metzler, and (iii) Q(y) is irreducible (because G is connected). Consider the func-
tion V : Rn→ R, given by V (µ) = 1

2 µT Q(y)µ . Since the network interaction graph
G is undirected, it is easy to verify that V (µ) = 1

2 ∑
n
i=1 ∑ j∈NG(i)(y jµi− yiµ j)

2.
Let us now define the quadratic program

minimize
1
2

µ
T Q(y)µ, (9a)

subject to 1T
n µ = 1. (9b)

The next result shows that the aggregated vector is the unique solution of this pro-
gram.

Lemma 3. The unique solution to (9) is given by µ? = (yT 1n)
−1y.

Proof. It is easy to check that µ? is a solution to the quadratic program (9). First,
it holds that (µ?)T 1n = (yT 1n)

−1(yT 1n) = 1. Secondly, note that (y jµ
?
i − yiµ

?
j)

2 =

(yT 1n)
−1(y jyi− yiy j)

2 = 0, thus µ? attains the minimum value of V . To see that µ?

is unique, let us study the critical points of V . Any critical point satisfies ∇V (µ) =
Q(y)µ = 0. Let β =mini∈{1,...,n}∑ j∈NG(i) y2

j +1, and consider the matrix β In−Q(y).
Since−Q(y) is Metzler and irreducible, then β In−Q(y) is a positive and irreducible

Distributed line search for multi-agent convex optimization 9

matrix. By the Perron-Frobenius theorem [19], there exists a unique eigenvector of
β In−Q(y) with positive entries whose corresponding eigenvalue is simple. It is easy
to see that Q(y)y = 0, and y ∈ Rn

>0, thus y is the Perron eigenvector of β In−Q(y)
and β the corresponding simple eigenvalue. Therefore, 0 is a simple eigenvalue
of Q(y) and any critical point of V is of the form ty, with t ∈ R. The solutions
to (9) must additionally satisfy the constraint (ty)T 1n = t(yT 1n) = 1. Equivalently,
t = (yT 1n)

−1, and, thus, µ? = ty = (yT 1n)
−1y is the unique solution to (9). ut

It is easy to see that Q(y)µ? = 0. Lemma 3 encodes key properties of Q(y) and
leads us to design the following distributed algorithm,

µ̇ =−LQ(y)µ, µ(0) = µ0, (10)

where µ0 ∈ Rn
>0 satisfies µT

0 1n = 1. In coordinates, this can be rewritten as

µ̇i =− ∑
j∈NG(i)

ai j(∇ jV (µ)−∇iV (µ)),

µi(0) = µ0,i,

where ∇iV (µ)= 2∑k∈NG(i)(y
2
k µi−yiykµk), leading to a distributed algorithm over G.

Note that the dynamical system (10) leaves µ(t)T 1n = 1 invariant for all t ∈R≥0.
This can be verified by noting that µ̇(t)T 1n = (µ(t))T QL1n = 0. The following
result holds.

Lemma 4. For any µ0 ∈ Rn
>0 such that µT

0 1n = 1, the solution of (10) converges
asymptotically to µ?, the solution to the quadratic program (9).

Proof. The main part of the proof will follow from the application of the LaSalle In-
variance Principle with the Lyapunov function V . First, since V is a sum of squares,
it is positive semidefinite. Second, V̇ =−(∇V)T LQµ =−µT QLQµ ≤ 0. Third, we
see next that lim‖µ‖→+∞ V (µ) = +∞ over the line µT 1n = 1. When ‖µ‖ → +∞,
note that either V (µ)→ 0 or to V (µ)→+∞. But if V (µ)→ 0, then it must be that
yiµ j−y jµi→ 0 for all i∈ {1, . . . ,n} and j ∈NG(i). That is, we converge to solution
of (9) with arbitrarily large norm. However, this is a contradiction since the solution
of (9) is unique, and there are no solutions with arbitrarily large norm.

We can now apply the LaSalle Invariance Principle over the space µT 1n = 1.
It follows that the trajectories of (10) converge to the largest invariant set of
µT 1n = 1 contained in V̇ (µ) = −µT Q(y)LQ(y)µ = 0. Since L = LT and is posi-
tive semidefinite, there exist a unique square root L1/2 of L such that L = L1/2L1/2

and which is positive semi-definite and symmetric [19, Theorem 3.5]. Therefore,
we have V̇ (µ) = −(L1/2Q(y)µ)T (L1/2Q(y)µ) = 0, which implies L1/2Q(y)µ = 0
and L1/2L1/2Q(y)µ = LQ(y)µ = 0. From the fact that the graph is connected and
undirected, L has a simple eigenvalue at 0 with eigenvector 1n, thus Q(y)µ = α1n,
for some α ∈ R.

On the other hand, since y is the Perron eigenvector of Q(y), and Q(y) =Q(y)T , it
holds that 0= yT Q(y)µ =αyT 1n. From the fact that yT 1n > 0, we have α = 0. Since

10 Jorge Cortés and Sonia Martı́nez

0 is a simple eigenvalue of Q(y), and Q(y)µ = 0, it follows that µ = ty. Finally, the
property µT 1n = 1 implies µ = µ?. ut

5.2 Discrete-time implementation and rate of convergence

This section focuses on the discrete-time implementation of the dynamics (10) and,
particularly, on the study of its rate of convergence. This is motivated by two con-
siderations. First, as designed, the algorithm is in continuous time, which requires
a continuous flow of information among the agents. Second, the algorithm does not
leave Rn

≥0 invariant because the matrix −LQ is not positive. This means that, even
though µT 1n is conserved, the algorithm cannot be stopped anytime and guarantee
that the output is an appropriate convex combination of stepsizes.

Our approach proceeds by using a first-order Euler discretization of (10),

µ
k+1 = (In−hLQ(y))µk, (11)

where µ0 ∈ Rn
>0 satisfies (µ0)T 1n = 1. It can be seen that (µk+1)T 1n = (µk)T (In−

hQ(y)L)1n = (µk)T 1n = 1. The next result provides a sufficient condition on the
stepsize h that guarantees convergence.

Lemma 5. For any µ0 ∈Rn
>0 such that (µ0)T 1n = 1, the solution of (11) converges

asymptotically to µ? = (yT 1n)
−1y under the assumption that

h <
2

λn(L)λn(Q(y))
.

Moreover, the essential spectral radius of In − hLQ(y) is upper bounded by 1−
hλ2(L)λ2(Q(y)).

Proof. Recall that 0 is a simple eigenvalue of Q(y) and y is the corresponding
eigenvector. Thus, 1 is an eigenvalue of In − hLQ(y) with eigenvector y. In or-
der for the discrete-time system to be convergent to span{y}, we need to guaran-
tee that ‖λi(In − hLQ(y))‖ < 1, for all i ≥ 2. Observe that λn−i(In − hLQ(y)) =
1−hλi(LQ(y)), i ∈ {1, . . . ,n}.

By [19, Theorem 2.8], λi(AB) = λi(BA) for any two pairs of square matrices
A,B. Since L is symmetric and positive semidefinite, there exists a unique L1/2 such
that L = L1/2L1/2, where L1/2 positive semidefinite and symmetric; see [19, Theo-
rem 3.5]. Thus, λi(LQ(y)) = λi(L1/2L1/2Q(y)) = λi(L1/2Q(y)L1/2), i ∈ {1, . . . ,n}.
Since L1/2Q(y)L1/2 is symmetric and positive semidefinite, the eigenvalues of
LQ(y) are real and positive.

Let λ2(Q(y))> 0 be the second smallest eigenvalue of Q(y). It is easy to see that
Q(y)−λ2(Q(y))In is positive semidefinite. Thus,

Distributed line search for multi-agent convex optimization 11

L1/2Q(y)L1/2 ≥ L1/2Q(y)L1/2

−L1/2(Q(y)−λ2(Q(y))In)L1/2 = λ2(Q(y))L.

From here we obtain

λi(LQ(y)) = λi(L1/2Q(y)L1/2)≥ λ2(Q(y))λi(L),

for i ∈ {1, . . . ,n}. A similar reasoning leads to the upper bound λi(LQ(y)) ≤
λi(L)λn(Q(y)), i ∈ {1, . . . ,n}.

Thus, for convergence, it is sufficient to show that 2 > hλi(LQ(y))> 0, for i≥ 2.
From the upper inequality above, the sufficient condition hλn(L)λn(Q(y)) < 2 fol-
lows, leading to the equation stated in the lemma. The above inequalities also guar-
antees that 0 is a simple eigenvalue of LQ(y), since λ2(LQ(y))≥ λ2(L)λ2(Q(y))>
0. The dynamic system (11) will converge to λ = ty for some t ∈ R such that
λ T 1n = tyT 1n = 1. Thus, it must be that t = (yT 1n)

−1, and that µ = µ?. Finally,
the essential spectral radius of the matrix In− hLQ(y), is its second largest eigen-
value, that is, ρess(In−hLQ(y))≤ 1−λ2(L)λ2(Q(y)). ut

Using the bound on the essential spectral radius of In− hLQ(y), we next deter-
mine a bound on the rate of convergence of the algorithm as follows.

Lemma 6. Let r > 0, and let Tr > 0 be the time it takes (11) to reach and remain in
the ball of center µ? with radius r. Then

Tr ∈ O
(

1
hλ2(L)λ2(Q(y))

log
(
‖µ0−F?µ0‖2

r

))
,

where F? = yzT

zT y and z is the right eigenvector of In−hLQ(y) with eigenvalue 1.

Proof. Bounding the eigenvalues of the matrix In−hQ(y)L by those of Q(y) and L
as in the proof of Lemma 5 one can prove that there exists an eigenvector z such that
zT (In−hQ(y)L) = zT . Thus, the following holds

lim
`→+∞

(In−hLQ(y))` = F? =
yzT

zT y
.

The rate of convergence of the discrete-time system will be determined by the expo-
nential convergence factor of (In−hLQ(y))−F?. This factor is equal to the essential
spectral radius of In−hLQ(y), see [2, Lemma 1.75].

Now, given µ?, consider the ball centered at µ? and radius r. Then, the time Tr it
takes the discrete-time system to reach and remain this ball from the initial condition
µ0 satisfies

Tr ∈ O
(

1
hλ2(L)λ2(Q(y))

log
(
‖µ0−F?µ0‖2

r

))
,

see [2, Lemma 1.74]. ut

12 Jorge Cortés and Sonia Martı́nez

Remark 1 (Extension to y∈Rn
≥0). In the previous two subsections we have assumed

that yi > 0 for all i∈ {1, . . . ,n}. The results can be extended for the case when yi = 0,
for some i ∈ {1, . . . ,n}, by assuming that these nodes act as a relay between any of
their neighbors in G = (V,E). To see this, without loss of generality, suppose y1 = 0
only for i = 1. In this case, the matrix Q(y) will have an additional eigenvector, e1 =
(1,0, . . . ,0)T ∈Rn, with zero eigenvalue. Consider the graph G = (V ,E) where V =
{2, . . . ,n}, and {i, j} ∈ E if and only if {i, j} ∈ E or {1, i}, {1, j} ∈ E. Let L be the
associated graph Laplacian. Let Q(y) be the restriction of Q(y) over Rn \ span{e1}.
System (11) can be replaced by

µ
k+1
1 = µ

k
1 ,

µ
k+1 = (In−hLQ(y))µk,

where a similar bound for h as in Lemma 5 can be taken, and (µ0)T 1n = 1. The
analysis of the subsystem in µ is similar to the one in µ in (11). First, it can be seen
that (µk)T 1n = 1 for all k≥ 1. More precisely, (µk+1)T 1n = µ

k+1
1 +(µk+1)T 1n−1 =

µk
1 +(µk)T (In− hLQ(y))T 1n−1 = µk

1 +(µk)T 1n−1 = 1. In particular, we have that
(µ0)T 1n−1 is conserved. The analysis of the system, is similar to the previous
discrete-time implementation, and it can be seen that it converges to the convex
combination µ? = (µ0

1 ,µ
?), where

µ
?
i =

(µ0)T 1n−1

yT 1n
yi, i ∈ {2, . . . ,n}. •

5.3 Distributed line-search computation algorithm

Building on the results from Sections 5.1 and 5.2, we describe here a distributed
algorithm that allows agents to adapt their step-sizes and solve approximately the
distributed (steepest-descent) line-search computation problem. Agents start from
an initial condition µ0 such that µT

0 1n = 1 (e.g., µ0 =
1
n 1n). Note that the assumption

that agents know n is necessary since it is equal to the dimension of x ∈ Rn. Then,
agents implement (11) for an agreed number of rounds N that guarantees µk

i ≥ 0,
for all i ∈ {1, . . . ,n}. The algorithm is formally described in Algorithm 1.

The different aggregated stepsize models (6)-(8) are captured in the algorithm
via R. In this way, the choice yi =

1
δi

leads to DISTRIBUTED WEIGHTED STEP-
SIZE (and results in the steepest descent direction). As N grows, this leads to the
common network-aggregated stepsize vector (6). The choice yi = ∆i, i ∈ {1, . . . ,n}
as in (7) leads to the DISTRIBUTED WEIGHTED STEPSIZE for the proportional-to-
cost descent direction. As N grows, this leads to the proportional-to-cost network
aggregated stepsize vector (7). Finally, the choice yi(f ,x) = di, i ∈ {1, . . . ,n} as
in (8) leads to the DISTRIBUTED WEIGHTED STEPSIZE for the proportional-to-state
descent direction. As N grows, this leads to the proportional-to-state network aggre-
gated stepsize vector (7).

Distributed line search for multi-agent convex optimization 13

Algorithm 1: DISTRIBUTED WEIGHTED STEPSIZE

Executed by: Each agent i ∈ {1, . . . ,n}
Data: the function f , the state x, the number of rounds N ∈ N∪{0}, and aggregated stepsize

model R

1 set vi(x) =−(0, . . . ,0,∇i f (x),0, . . . ,0)
2 compute stepsize δi = εi > 0 satisfying ∇i f (x+ εivi(x))T ∇i f (x) = 0
3 set yi corresponding to aggregated stepsize model R, send yi to neighbors, receive
{y j | j ∈NG(i)}, and compute Qi j(y) for j ∈NG(i)

4 set µ0
i = 1

n
5 for l ∈ {1, . . . ,N} do
6 µ l

i = ((In−hLQ(y))µ l−1)i

7 send µ l
i to neighbors, receive {µ l

j | j ∈NG(i)}
8 end
9 set m0

i = µN
i

10 send m0
i to neighbors, receive {m0

j | j ∈NG(i)}
11 for l ∈ {1, . . . ,N} do
12 ml

i = min{ml−1
i ,ml−1

j | j ∈NG(i)}
13 send ml

i to neighbors, receive {ml
j | j ∈NG(i)}

14 end
15 while mn

i < 0 do
16 reassign µN

i = ((In−hLQ(y))µN)i

17 reset m0
i = µN

i
18 send m0

i to neighbors, receive {m0
j | j ∈NG(i)}

19 for l ∈ {1, . . . ,N} do
20 ml

i = min{ml−1
i ,ml−1

j | j ∈NG(i)}
21 send ml

i to neighbors, receive {ml
j | j ∈NG(i)}

22 end
23 end
24 change state from xi to xi +µN

i δi∇i f (x)

The DISTRIBUTED WEIGHTED STEPSIZE algorithm can be informally described
as follows. In order to implement a step of the gradient-descent algorithm, each
agent outputs first a set of stepsizes µN

i , i ∈ {1, . . . ,n}. These stepsizes are obtained
after applying (11) during N iterations. After this, if all of the µN

i are positive or
zero, which happens when mn

i = min j{1,...,n} µN
j ≥ 0, for all i ∈ {1, . . . ,n}, then

the gradient-descent procedure can be safely implemented. Otherwise, agents it-
erate (11) additional times until the property µN

i ≥ 0, i ∈ {1, . . . ,n} holds. The algo-
rithm assumes that yi > 0, for all i ∈ {1, . . . ,n}. When yi = 0, agent i should relay
information from neighbors to other neighbors at any communication round.

14 Jorge Cortés and Sonia Martı́nez

6 Simulations

In this section, we include some numerical experiments on a simple mathematical
example to illustrate the results. We consider a network of 8 agents subject to a
fixed topology corresponding to the graph G depicted in Figure 1(a). The function
to be optimized f : R8 → R8 is defined as f (x) = xT (In + L)x+ qT x, where q =
(1,−1,2,1,0,−1,1,0) ∈ R8 and L is the graph Laplacian associated with G. It is
straightforward to verify that f is convex and distributed over G.

5

1

4

2

3

8
6

7

(a)
10 15 20 25

20

40

60

80

(b)
10 15 20 25

20

40

60

80

(c)

Fig. 1 (a) Undirected graph describing the interaction topology of network of 8 agents and evolu-
tion of various algorithms along (b) the steepest descent direction and (c) the proportional-to-cost
descent direction. Centralized steepest descent is shown in blue. In (b), the conservative steepest
descent with stepsize (6) is shown in red, and the algorithm DISTRIBUTED WEIGHTED STEPSIZE
for the steepest descent direction with N = 4 is shown in green. In (c), the proportional-to-cost
descent method with stepsize (7) is shown in red, and the algorithm DISTRIBUTED WEIGHTED
STEPSIZE for proportional-to-cost descent with N = 4 is shown in green.

We implement the algorithm in two scenarios. First, we consider DISTRIBUTED
WEIGHTED STEPSIZE for the steepest descent direction. Figure 1(b) compares how
the function decreases under the centralized steepest descent method (blue), the con-
servative steepest descent method if all agents had the information to compute the
stepsize in (6) (red), and the algorithm DISTRIBUTED WEIGHTED STEPSIZE for the
steepest descent direction with N = 4 (green) and an appropriate h. After N = 4, all
weights µN

i have become positive. As the plot shows, both the conservative steep-
est descent method and its decentralized version are very close even if the number
of rounds (N = 4) used to compute the stepsizes in a distributed way is small. The
differences between the centralized steepest descent method and the other two are
to be expected, as the common network-aggregated stepsize vector (6) is more con-
servative in order to guarantee that the function is still decreased.

Second, we consider DISTRIBUTED WEIGHTED STEPSIZE for proportional-to-
cost descent. Figure 1(c) compares the evolution of the gradient algorithms fol-
lowing the steepest descent (blue), the decentralized proportional-to-cost descent
method if all agents had the information to compute the stepsize as in (7) (red), and
DISTRIBUTED WEIGHTED STEPSIZE for proportional-to-cost descent with N = 4
(green) and an appropriate h. After N = 4, all weights µN

i are already positive. Sim-
ilarly as before, and as expected, the function is decreased less rapidly by means of
the conservative proportional-to-cost descent direction method and its decentralized

Distributed line search for multi-agent convex optimization 15

version via DISTRIBUTED WEIGHTED STEPSIZE when compared to the centralized
steepest descent method. However the previous two are relatively close even though
the number of rounds N = 4 used in DISTRIBUTED WEIGHTED STEPSIZE is low.

7 Conclusions

We have considered networked scenarios where a group of agents seeks to optimize
a convex aggregate function using gradient information. We have presented a novel
distributed algorithm for the computation of aggregated stepsizes that guarantee the
decrease of the objective function. We have analyzed the properties of this strategy
when implemented both in continuous and discrete time, and characterized its rate
of convergence. With a proper initialization, the algorithm gives rise to a convex
combination after a finite number of rounds, and can therefore be implemented to
fuse the stepsizes of individual agents. Simulations illustrate the results. Future work
will be devoted to the analytical characterization of the performance of the proposed
strategies, the consideration of scenarios with switching and state-dependent inter-
action graphs, and the design of distributed line search strategies for higher-order
(e.g., Newton) schemes.

Acknowledgments

Both authors wish to thank Jon Nicolás and Alexandra Cortés-Martı́nez for con-
stant inspiration and joy. This work was partially supported by grants NSF CMMI-
1300272 (JC) and AFOSR-11RSL548 (SM).

References

1. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Athena Scientific, 1997.

2. F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic Networks. Ap-
plied Mathematics Series. Princeton University Press, 2009. Electronically available at
http://coordinationbook.info.

3. A. Cauchy. Méthode générale pour la résolution des systems d’equations simultanées.
Comptes rendus de l’Académie des Sciences, 25:46–89, 1847.

4. J. Cortés and S. Martı́nez. Distributed line search via dynamic convex combinations. In IEEE
Conf. on Decision and Control, pages 2346–2351, Florence, Italy, 2013.

5. B. Gharesifard and J. Cortés. Distributed continuous-time convex optimization on weight-
balanced digraphs. IEEE Transactions on Automatic Control, 59(3):781–786, 2014.

6. B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgradient method for
distributed optimization in networked systems. SIAM Journal on Control and Optimization,
20(3):1157–1170, 2009.

16 Jorge Cortés and Sonia Martı́nez

7. S. S. Kia, J. Cortés, and S. Martı́nez. Distributed convex optimization via continuous-time
coordination algorithms with discrete-time communication. Automatica, 55:254–264, 2015.

8. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 2 edition, 1984.
9. D. Mateos-Núñez and J. Cortés. Noise-to-state exponentially stable distributed convex op-

timization on weight-balanced digraphs. SIAM Journal on Control and Optimization, 2014.
Submitted.

10. M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multiagent Networks. Applied
Mathematics Series. Princeton University Press, 2010.

11. A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

12. A. Nedic, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimization in multi-
agent networks. IEEE Transactions on Automatic Control, 55(4):922–938, 2010.

13. R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

14. W. Ren and R. W. Beard. Distributed Consensus in Multi-Vehicle Cooperative Control. Com-
munications and Control Engineering. Springer, 2008.

15. P. Wan and M. D. Lemmon. Event-triggered distributed optimization in sensor networks. In
Symposium on Information Processing of Sensor Networks, pages 49–60, San Francisco, CA,
2009.

16. J. Wang and N. Elia. A control perspective for centralized and distributed convex optimization.
In IEEE Conf. on Decision and Control, pages 3800–3805, Orlando, Florida, 2011.

17. F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato. Newton-Raphson
consensus for distributed convex optimization. In IEEE Conf. on Decision and Control, pages
5917–5922, Orlando, Florida, December 2011.

18. M. Zargham, A. Ribeiro, and A. Jadbabaie. A distributed line search for network optimization.
In American Control Conference, pages 472–477, Montreal, Canada, 2012.

19. F. Zhang. Matrix Theory. Basic Results and Techniques. Universitext. Springer, 2 edition,
2011.

20. M. Zhu and S. Martı́nez. On distributed convex optimization under inequality and equality
constraints. IEEE Transactions on Automatic Control, 57(1):151–164, 2012.

