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Abstract— We present provably correct distributed subgradi-
ent methods for general min-max problems with agreement
constraints on a subset of the arguments of both the convex
and concave parts. Applications include separable constrained
minimization problems where each constraint is a sum of
convex functions of local variables for the agents. The proposed
algorithm then reduces to primal-dual updates using local
subgradients and Laplacian averaging on local copies of the
multipliers associated to the global constraints. The frame-
work also encodes minimization problems with semidefinite
constraints, which results in novel distributed strategies that are
scalable if the order of the matrix inequalities is independent
of the network size. Our analysis establishes for the case
of general convex-concave functions the convergence of the
running time-averages of the local estimates to a saddle point
under periodic connectivity of the communication digraphs.
Specifically, choosing the gradient step-sizes in a suitable way,
we show that the evaluation error is proportional to 1/

√
t,

where t is the iteration step.

I. INTRODUCTION

Saddle-point problems arise in constrained optimization via
the Lagrangian formulation and also in min-max problems
in game-theoretic models. Currently, these fields of research
find applications in cooperative control of multi-agent sys-
tems and in large-scale machine learning, motivating the
study of distributed strategies that scale well with the number
of agents, are provably correct, and are robust against a
variety of failures and uncertainties.
Literature review: We build on three related areas: iterative
methods for saddle-point problems [1], [2], dual decomposi-
tions for constrained optimization [3], and consensus-based
distributed optimization algorithms, see [4], [5], [6], [7], [8]
and references therein. Historically, these fields have been
driven by the need of solving constrained optimization prob-
lems and by an effort of parallelizing the computations [9],
[10], leading to the use of consensus approaches that allow
different processors with local memories to update the same
components of a vector by averaging their estimates [11].
Saddle-point problems, or min-max problems, arise in opti-
mization contexts such as worst-case design, exact penalty
functions, duality theory, and zero-sum games, see e.g. [12].
The work [1] studies iterative subgradient methods to find a
saddle point of Lagrangians and establishes convergence to
an arbitrarily small neighborhood depending on the gradient
stepsize. Along these lines, [2] presents an analysis for
general convex-concave functions and studies the evaluation
error of the running time-averages, showing convergence to
an arbitrarily small neighborhood assuming boundedness of
the estimates. In [2], [13], the boundedness of the estimates
in the case of Lagrangians is achieved using a truncated
projection onto a closed set that preserves the dual set,

which [14] shows to be bounded when the strong Slater
condition holds. The bound on the Lagrange multipliers
depends on global information and hence must be known
beforehand for its use in distributed implementations.
In distributed constrained optimization, an important distinc-
tion that determines the technical analysis and the applica-
tions arises depending of whether constraints fall in either
of two categories: the first type concerns the global decision
vector, in which agents need to agree (see e.g., [15], [6],
where all the agents know the constraint, or [16], [17],
[6], where the constraint is given by the intersection of
(abstract) closed convex sets). The second type couples the
local decision vectors across a network (see e.g., [18], [19],
where the inequality constraint is a sum of convex functions
and each one is only known to the corresponding agent,
or [20], where in the case of linear equality constraints
there is a distinction between constraint graph and network
graph). Here, we address a combination of the two types
of constraints, allowing the agreement constraint to play
an independent role on a subset of both the primal and
dual variables. This opens the way to the design of novel
distributed coordination strategies for a suite of constrained
convex optimization problems. The recent work [18] consid-
ers convex-concave functions arising from Lagrangians and
uses primal-dual perturbed methods, which require the extra
updates of the perturbation points to guarantee asymptotic
convergence to a saddle point (as apposed to convergence
of a subsequence). These computations require subgradient
methods or proximal methods that add to the computation
and the communication complexity.
Statement of contributions: We address the design and anal-
ysis of distributed algorithms for constrained optimization
problems under a variety of saddle-point formulations. The
explicit agreement constraints on a subset of the arguments
of both the convex and concave parts allows to distribute
both primal and dual variables independently. For instance,
separable constraints can be decomposed using agreement on
dual variables, while a subset of the primal variables can still
be subject to agreement or eliminated through Fenchel conju-
gation; local constraints can be handled through projections;
and part of the objective can be expressed as a maximization
problem in extra variables. We present projected subgradient
methods with Laplacian averaging, which naturally lend
themselves to distributed implementation, and characterize
their asymptotic convergence properties. The technical anal-
ysis entails computing bounds on the evaluation error with
respect to a saddle point in terms of the disagreement, the
size of the subgradients, the size of the estimates, and the
gradient stepsizes. Finally, under assumptions on the bound-



edness of the estimates and the subgradients, we further
bound the cumulative disagreement under joint connectivity
of the communication graphs, regardless of the interleaved
projections, and make a choice of decreasing stepsizes that
guarantees convergence of the evaluation error as 1/

√
t.

II. PRELIMINARIES

Here we introduce basic notation and notions from graph
theory and optimization used throughout the paper.

A. Notational conventions

We denote by Rn the n-dimensional Euclidean space, by
In ∈ Rn×n the identity matrix in Rn, and by 1N ∈ Rn
the vector of all ones. Given two vectors, u, v ∈ Rn, we
denote by u ≥ v the entry-wise set of inequalities ui ≥ vi,
for each i = 1, . . . , n. Given a vector v ∈ Rn, we denote its
Euclidean norm, or two-norm, by ‖v‖2 =

√∑n
i=1 v

2
i and

the one-norm by ‖v‖1 =
∑n
i=1 |vi|. For a closed convex

set S, the orthogonal projection PS(·) onto S is defined as

PS
(
x
)
∈ arg min

x′∈S
‖x− x′‖2. (1)

Given a convex set S ⊆ Rn, a function f : S → R is convex
if f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y) for all α ∈ [0, 1]
and x, y ∈ S . A vector ξx ∈ Rn is a subgradient of f at
x ∈ S if f(y)− f(x) ≥ ξ>x (y−x), for all y ∈ S. We denote
by ∂f(x) the set of all such subgradients. The function f is
concave if −f is convex. A vector ξx ∈ Rn is a subgradient
of f at x ∈ S if −ξx ∈ ∂(−f)(x). For a symmetric matrix
A ∈ Rn×n, we let λmin(A) and λmax(A) denote its minimum
and maximum eigenvalues. A � 0 denotes a symmetric
positive semidefinite matrix. We let Sn�0 denote the set of
all symmetric positive semidefinite matrices.

B. Graph theory

We review basic notions from graph theory following [21].
A (weighted) digraph G := (I, E ,A) is a triplet where
I := {1, . . . , N} is the vertex set, E ⊆ I × I is the edge
set, and A ∈ RN×N≥ 0

is the weighted adjacency matrix with
the property that aij := Aij > 0 if and only if (i, j) ∈ E .
The complete graph is the digraph with edge set I × I.
Given G1 = (I, E1,A1) and G2 = (I, E2,A2), their union is
the digraph G1 ∪ G2 = (I, E1 ∪ E2,A1 + A2). A path is an
ordered sequence of vertices such that any pair of vertices
appearing consecutively is an edge. A digraph is strongly
connected if there is a path between any pair of distinct
vertices. A sequence of digraphs

{
Gt := (I, Et,At)

}
t≥1 is

δ-nondegenerate, for δ ∈ R>0, if the weights are uniformly
bounded away from zero by δ whenever positive, i.e., for
each t ∈ Z≥1, aij,t := (At)ij > δ whenever aij,t > 0. A
sequence {Gt}t≥1 is B-jointly connected, for B ∈ Z≥1, if for
each k ∈ Z≥1, the digraph GkB∪· · ·∪G(k+1)B−1 is strongly
connected. The Laplacian matrix L ∈ RN×N of a digraph G
is L := diag(A1N )−A. Note that L1N = 0N . The weighted
out-degree and in-degree of i ∈ I are, respectively, dout(i) :=∑N
j=1 aij and din(i) :=

∑N
j=1 aji. A digraph is weight-

balanced if dout(i) = din(i) for all i ∈ I, that is, 1>NL = 0N .
For convenience, we let LK := IN − 1

N 1N1
>
N denote the

Laplacian of the complete graph with edge weights 1/N .
Note that LK is idempotent, i.e., L2K = LK. For the sake of
the reader, Table I collects some shorthand notation.

M = 1
N
1N1

>
N LK = IN −M Lt = diag(At1N )− At

M = M⊗ Id LK = LK ⊗ Id Lt = Lt ⊗ Id

TABLE I: Notation for graph matrices employed along the
paper, where the dimension d depends on the context.

C. Optimization and saddle points

For any function L : W ×M → R, the max-min inequal-
ity [22, Sec 5.4.1] states that

inf
w∈W

sup
µ∈M

L(w, µ) ≥ sup
µ∈M

inf
w∈W

L(w, µ). (2)

When equality holds, we say that L satisfies the strong
max-min property or the saddle-point property. A point
(w∗, µ∗) ∈ W ×M is called a saddle point if

w∗ = inf
w∈W

L(w, µ∗) and µ∗ = sup
µ∈M

L(w∗, µ).

[12, Sec. 2.6] discusses sufficient conditions to guarantee the
existence of saddle points. Note that the existence of saddle
points implies the strong max-min property. Given functions
f : Rn → R, g : Rm → R and h : Rp → R, the Lagrangian
for the problem

min
w∈Rn

f(w) s.t. g(w) ≤ 0, h(w) = 0,

is defined as L(w, µ, λ) = f(w) + µ>g(w) + λ>h(w) for
(µ, λ) ∈ Rm≥0 × Rp. In this case, inequality (2) is called
weak-duality, and if the equality is satisfied, then we say
that strong-duality (or Lagrangian duality) holds. The point
(w∗, µ∗, λ∗) is a saddle point for the Lagrangian if and
only if w∗ solves the constrained minimization problem and
(µ∗, λ∗) solves the dual problem, which is maximizing the
dual function q(µ, λ) := infw∈Rn L(w, µ, λ) over Rm≥0×Rp.
The vectors (µ∗, λ∗) are called Lagrange multipliers or
optimal dual vectors.

III. DISTRIBUTED ALGORITHMS FOR SADDLE-POINT
PROBLEMS UNDER AGREEMENT CONSTRAINTS

This section describes the problem of interest. Given closed
convex sets W ⊆ Rdw , D ⊆ RdD , M ⊆ Rdµ , Z ⊆ Rdz ,
and the function φ : W × DN ×M × ZN → R which is
jointly convex on the first two arguments and jointly concave
on the last two arguments, we seek to solve the constrained
saddle-point problem:

min
w∈W ,D∈DN

D
i=Dj , ∀i,j

max
µ∈M , z∈ZN

zi=zj , ∀i,j

φ(w,D,µ, z), (3)

where D := (D1, . . . , DN ) and z := (z1, . . . , zN ). The moti-
vation for the consideration of explicit agreement constraints
comes from various applications in network optimization
and machine learning. In such scenarios, global decision
variables that affect local objective functions and constraints
can be duplicated into distinct ones so that each agent



has its own local version to operate with, and agreement
constraints are imposed to ensure the equivalence to the
original optimization problem. We present examples of this
procedure next.

A. Optimization problems with separable constraints

We illustrate here how optimization problems with con-
straints given by a sum of convex functions can be re-
formulated in the form (3) to make them amenable to
distributed algorithmic solutions. Consider a group of agents
{1, . . . , N}, and let f i : Rni×RdD → R and the components
of gi : Rni × RdD → Rm be convex functions associated to
agent i ∈ {1, . . . , N}. These functions depend on both a
local decision vector wi ∈ Wi, with Wi ⊆ Rni convex, and
on a global decision vector D ∈ D, with D ⊆ RdD convex.
The separable optimization problem then reads as

min
wi∈Wi, ∀i

D∈D

N∑
i=1

f i(wi, D)

s.t. g1(w1, D) + · · ·+ gN (wN , D) ≤ 0. (4)

This problem can be reformulated as a constrained saddle-
point problem as follows. One first constructs the correspond-
ing Lagrangian function and introduces copies {zi}Ni=1 of
the Lagrange multiplier z associated to the global constraint
in (4), associates each zi to gi, and imposes the agreement
constraint zi = zj for all i, j. Similarly, we also introduce
copies {Di}Ni=1 of the global decision vector D subject to
agreement, Di = Dj for all i, j. The saddle point exists
and gives a solution of the optimization (4) if strong duality
holds. Formally, we have

min
wi∈Wi
D∈D

max
z∈Rm

≥0

N∑
i=1

f i(wi, D) + z>
N∑
i=1

gi(wi, D) (5a)

= min
wi∈Wi
D∈D

max
zi∈Rm

≥0

zi=zj , ∀i,j

N∑
i=1

(
f i(wi, D) + zi

>
gi(wi, D)

)
(5b)

= min
wi∈Wi

D
i∈D

D
i=Dj , ∀i,j

max
zi∈Rm

≥0

zi=zj , ∀i,j

N∑
i=1

(
f i(wi, Di) + zi

>
gi(wi, Di)

)
.

(5c)

This formulation has its roots in the classical dual de-
compositions surveyed in [3, Ch. 2]. (See also [23, Sec.
1.2.3] and [24, Sec. 5.4] for the particular case of resource
allocation.) While [3], [23] suggest to broadcast a centralized
update of the multiplier, and the method in [24] has an
implicit projection onto the probability simplex, this formu-
lation has the multiplier associated to the global constraint
estimated in a decentralized way. The recent work [18]
implicitly rests on the above formulation.

B. Optimization problems with semidefinite constraints

Consider now an optimization problem analogous to (4) but
with a semidefinite constraint,

min
wi∈Wi, ∀i

N∑
i=1

f i(wi)

s.t. C −A1w1 + · · ·+ANwN � 0, (6)

where {Ai}Ni=1, C are symmetric matrices in Rd×d and
Wi ⊆ R for each i ∈ {1, . . . , N}. Choosing symmetric
matrices {Ci}Ni=1 such that

∑N
i=1 C

i = C, we can formulate
this problem as

min
wi∈Wi, ∀i

max
Z∈Sd�0

N∑
i=1

f i(wi) + Z>
N∑
i=1

(Ci −Aiwi) (7a)

= min
wi∈Wi, ∀i

max
Zi∈Sd�0, ∀i
Zi=Zj , ∀i,j

N∑
i=1

(
f i(wi) + Zi

>
(Ci −Aiwi)

)
.

(7b)

To motivate this dual decomposition in optimization prob-
lems with quasi-convex objectives, we examine the following
example taken from [25, p. 51].

Example III.1. (Convex fractional program): Let c, d ∈
RN , b ∈ Rm and A ∈ Rm×N . Assuming that d>x > 0
whenever Ax− b ≥ 0, we have

min
x∈RN

(c>x)2

d>x

s.t. Ax− b ≥ 0 ⇔

min
x∈RN , t∈R

t

s.t. Ax− b ≥ 0[
t c>x
c>x d>x

]
� 0,

(8)

where we think of x = (x1, . . . , xN ) as the aggregate
of decision vectors across the network. Then we introduce
copies {ti}Ni=1 of the resulting primal variable subject to
agreement, and split the constraints accordingly,

min
x∈RN ,ti∈R,
ti=tj ,∀i,j

∑
ti
N

s.t.

N∑
i=1

ai xi − b
N ≥ 0

N∑
i=1

([ 1
N 0
0 0

]
ti +

[
0 ci
ci di

]
xi

)
� 0,

where ai is the ith column of A. The resulting min-max
problem has the form in (3),

min
x∈RN ,ti∈R,
ti=tj ,∀i,j

max
λi∈Rm

≥0, Z
i∈S2�0

λi=λj , Zi=Zj ,∀i,j

{ N∑
i=1

ti
N +

N∑
i=1

λi
>
( bN − a

i xi)

−
N∑
i=1

trace
(
Zi
([ 1

N 0
0 0

]
ti +

[
0 ci
ci di

]
xi

))}
. •



C. Saddle-point dynamics with Laplacian averaging

We propose a projected subgradient method for constrained
saddle-point problems of the form (3). The agreement con-
straints are addressed via Laplacian averaging, allowing the
design of distributed algorithms when the convex-concave
functions are separable as in the cases above.

ŵt+1 = wt − ηtgwt
(9a)

D̂t+1 = Dt − σLtDt − ηtgDt
(9b)

µ̂t+1 = µt + ηtgµt
(9c)

ẑt+1 = zt − σLtzt + ηtgzt (9d)

(wt+1,Dt+1,µt+1, zt+1) =PS
(
ŵt+1, D̂t+1, µ̂t+1, ẑt+1

)
,

where Lt = Lt ⊗ IdD or Lt = Lt ⊗ Idz , depending on the
context, and Lt is the Laplacian matrix for the communica-
tion graph Gt that might change over time; σ is a design
parameter, {ηt}t≥1 are the learning rates;

gwt
∈ ∂wφ(wt,Dt,µt, zt),

gDt
∈ ∂Dφ(wt,Dt,µt, zt),

gµt ∈ ∂µφ(wt,Dt,µt, zt),

gzt ∈ ∂zφ(wt,Dt,µt, zt),

and PS represents the orthogonal projection onto the closed
convex set S := W × DN × M × ZN . This class of
algorithms particularize to a novel class of primal-dual
consensus-based subgradient methods when the convex-
concave function takes the Lagrangian form in (5c).

IV. CONVERGENCE ANALYSIS

Here we present our technical analysis on the convergence
properties of the dynamics (9). Our starting point is the
assumption that a solution to (3) exists, namely, a saddle
point (w∗,D∗,µ∗, z∗) of φ on S := W ×DN ×M ×ZN
under the agreement condition on DN and ZN . That is, with
D∗ = D∗⊗1N and z∗ = z∗⊗1N for some (D∗, z∗) ∈ D×Z .
We then study the evolution of the running time-averages

wav
t+1 =

1

t

t∑
s=1

ws, D
av
t+1 =

1

t

t∑
s=1

Ds,

µav
t+1 =

1

t

t∑
s=1

µs, zav
t =

1

t

t−1∑
s=1

zs,

towards the saddle point. Our strategy is the following. In
Section IV-A, we bound the saddle-point evaluation error

tφ(wav
t+1,D

av
t+1,µ

av
t+1, z

av
t+1)− tφ(w∗,D∗,µ∗, z∗). (10)

in terms of the following quantities: the initial conditions, the
size of the states of the dynamics, the size of the subgradi-
ents, and the cumulative disagreement of the running time-
averages. Then, in Section IV-B we bound the cumulative
disagreement in terms of the size of the subgradients and
the learning rates. Finally, in Section IV-C we establish
the saddle-point evaluation convergence result using the
assumption that the estimates generated by the dynamics (9),
as well as the subgradient sets, are uniformly bounded.

(This assumption can be met in applications by designing
projections that preserve the saddle points, particularly in
the case of distributed constrained optimization.)

A. Saddle-point error in terms of the disagreement

Here, we bound the saddle-point evaluation error of the
running time-averages in terms of the disagreement.

Lemma IV.1. (Evaluation error of the states in terms of
the disagreement): Let the sequence {(wt,Dt,µt, zt)}t≥1
be generated by the coordination algorithm (9) over a
sequence of arbitrary weight-balanced digraphs {Gt}t≥1
such that supt≥1 λmax(Lt) ≤ Λ, and with

σ ≤
(

max
{
dout,t(k) : k ∈ I, t ∈ Z≥1

})−1
. (11)

Then, for any sequence of learning rates {ηt}t≥1 ⊂ R>0

and any (wp,Dp) ∈W ×DN , the following holds:

2(φ(wt,Dt,µt, zt)− φ(wp,Dp,µt, zt)) (12)

≤ 1
ηt

(
‖wt −wp‖22 − ‖wt+1 −wp‖22

)
+ 1

ηt

(
‖MDt −Dp‖22 − ‖MDt+1 −Dp‖22

)
+ 6ηt‖gwt

‖22 + 6ηt‖gDt
‖22

+ 2‖gDt‖2(2 + σΛ)‖LKDt‖2 + 2‖gDt‖2‖LKDp‖2.

Also, for any (µp, zp) ∈M ×ZN , the analogous holds,

2(φ(wt,Dt,µt, zt)− φ(wt,Dt,µp, zp)) (13)

≥ − 1
ηt

(
‖µt − µp‖22 − ‖µt+1 − µp‖22

)
− 1

ηt

(
‖Mzt − zp‖22 − ‖Mzt+1 − zp‖22

)
− 6ηt‖gµt

‖22 − 6ηt‖gzt‖22
− 2‖gzt‖2(2 + σΛ)‖LKzt‖2 − 2‖gzt‖2‖LKzp‖2.

In the previous result we have obtained inequalities on the
evaluation error of the states of the dynamics with respect to
a generic point in the variables of the convex and concave
parts. Next, we obtain analogous bounds for the sum over
time of these evaluation errors with respect to the same
generic points and the running time-averages.

Lemma IV.2. (Cumulative evaluation error of the states
with respect to running time-averages in terms of dis-
agreement): Under the same assumptions of Lemma IV.1, for
any (wp,Dp,µp, zp) ∈W ×DN ×M ×ZN , the difference

t∑
s=1

φ(ws,Ds,µs, zs)− tφ(wp,Dp,µ
av
t+1, z

av
t+1)

is upper-bounded by u(t,wp,Dp)
2 , while the difference

t∑
s=1

φ(ws,Ds,µs, zs)− tφ(wav
t+1,D

av
t+1,µp, zp)



is lower-bounded by − u(t,µp,zp)
2 , where

u(t,wp,Dp) ≡ u
(
t,wp,Dp, {ws}ts=1, {Ds}ts=1

)
(14)

=

t∑
s=2

(
‖ws −wp‖22 + ‖MDs −Dp‖22

)(
1
ηs
− 1

ηs−1

)
+ 2

η1

(
‖w1‖22 + ‖wp‖22 + ‖D1‖22 + ‖Dp‖22

)
+ 6

t∑
s=1

ηs(‖gws
‖22 + ‖gDs

‖22)

+ 2(2 + σΛ)

t∑
s=1

‖gDs‖2‖LKDs‖2 + 2‖LKDp‖2
t∑

s=1

‖gDs‖2,

(15)

and u(t,µp, zp) ≡ u
(
t,µp, zp, {µs}ts=1, {zs}ts=1

)
.

Next we combine the pair of inequalities obtained above to
derive the saddle-point evaluation error of the running time-
averages.

Proposition IV.3. (Saddle-point evaluation error of
running time-averages): Under the same hypotheses of
Lemma IV.1, for any saddle point (w∗,D∗,µ∗, z∗) of φ on
W ×DN×M×ZN with D∗ = D∗⊗1N and z∗ = z∗⊗1N
for some (D∗, z∗) ∈ D × Z , the following holds:

− u(t,µ∗, z∗)− u(t,wav
t+1,D

av
t+1)

≤ 2tφ(wav
t+1,D

av
t+1,µ

av
t+1, z

av
t+1)− 2tφ(w∗,D∗,µ∗, z∗)

≤ u(t,w∗,D∗) + u(t,µav
t+1, z

av
t+1) . (16)

B. Cumulative disagreement

Here we bound the cumulative disagreement of the estimates.
To study the disagreement over time on the estimates Dt

and zt, we treat the subgradient terms as perturbations in the
dynamics (9) and study its input-to-state stability properties.
This approach is well suited for scenarios where the size
of the subgradients can be uniformly bounded. Since the
coupling in (9) with wt and among the estimates Dt and zt
themselves takes place only through the subgradients, we
focus on the following pair of decoupled dynamics,

D̂t+1 =Dt − σLtDt + u1
t (17a)

ẑt+1 = zt − σLtzt + u2
t (17b)

(Dt+1, zt+1) =PDN×ZN

(
D̂t+1, ẑt+1

)
,

where {u1
t}t≥1 ⊂ (RdD)N , {u2

t}t≥1 ⊂ (Rdz )N are arbitrary
sequences of disturbances, and PDN×ZN is the orthogonal
projection onto DN ×ZN .
The next result characterizes the input-to-state stability prop-
erties of (17) with respect to the agreement space.

Proposition IV.4. (Cumulative disagreement on (17) over
jointly-connected weight-balanced digraphs): Let {Gs}s≥1
be a sequence of B-jointly connected, δ-nondegenerate,
weight-balanced digraphs. For δ̃′ ∈ (0, 1), let

δ̃ := min
{
δ̃′, (1− δ̃′) δ

dmax

}
, (18)

where

dmax := max
{
dout,t(k) : k ∈ I, t ∈ Z≥1

}
.

Then, for any choice

σ ∈
[ δ̃
δ
,

1− δ̃
dmax

]
, (19)

the dynamics (17a) over {Gt}t≥1 is input-to-state stable with
respect to the nullspace of the matrix L̂K. Specifically, for
any t ∈ Z≥1 and any {u1

s}t−1s=1 ⊂ (RdD)N ,

‖LKDt‖2 ≤ 24‖D1‖2
32

(
1− δ̃

4N2

)d t−1B e
+ Cu max

1≤s≤t−1
‖u1

s‖2 ,

(20)

where

Cu :=
25/32

1−
(
1− δ̃

4N2

)1/B (21)

and the cumulative disagreement satisfies
t′∑
t=1

‖LKDt‖2 ≤ Cu
(
‖D1‖2

2 +

t′−1∑
t=1

‖u1
t‖2
)
. (22)

Analogous bounds hold interchanging Dt by zt.

C. Convergence of the saddle-point dynamics with Laplacian
averaging
We now state the saddle-point evaluation convergence of the
dynamics (9). In words, under a mild connectivity assump-
tion on the communication digraphs, a suitable choice of
decreasing stepsizes, and assuming that the agents’ estimates
and the subgradient sets are uniformly bounded, then the
saddle-point evaluation error decreases proportionally to 1√

t
.

Theorem IV.5. (Convergence of the saddle-point dy-
namics with Laplacian averaging): Let the sequence
{(wt,Dt,µt, zt)}t≥1 be generated by the coordination al-
gorithm (9) over a sequence {Gt}t≥1 of B-jointly con-
nected, δ-nondegenerate, weight-balanced digraphs satisfy-
ing supt≥1 λmax(Lt) ≤ Λ with σ selected as in (19). Assume
that the estimates are bounded as

‖wt‖2 ≤ Bw, ‖Dt‖2 ≤ BD, ‖µt‖2 ≤ Bµ, ‖zt‖2 ≤ Bz,

for all t ∈ Z≥1 whenever the sequence of learning rates
{ηt}t≥1 ⊂ R>0 is uniformly bounded. Assume also that the
subgradients are bounded as

‖gwt‖2 ≤ Hw, ‖gDt‖2 ≤ HD, ‖gµt‖2 ≤ Hµ, ‖gzt‖2 ≤ Hz
for all t ∈ Z≥1. Consider the following choice of learn-
ing rates called the Doubling Trick scheme: for m =
0, 1, 2, . . . , dlog2 te, we take ηs = 1√

2m
in each period of

2m rounds s = 2m, . . . , 2m+1 − 1. Then, for any saddle
point (w∗,D∗,µ∗, z∗) of φ on W ×DN ×M ×ZN with
D∗ = D∗⊗1N and z∗ = z∗⊗1N for some (D∗, z∗) ∈ D×Z ,
which is assumed to exist, the following holds:

−αµ,z + αw,D

2
√
t− 1

≤φ(wav
t ,D

av
t , z

av
t ,µ

av
t )− φ(w∗,D∗, z∗,µ∗)

≤ αw,D + αµ,z

2
√
t− 1

, (23)



where αw,D :=
√
2√

2−1 α̂w,D with

α̂w,D := 4(B2
w +B2

D) + 6(H2
w +H2

D)

+HD(3 + σΛ)Cu
(
BD + 2HD

)
,

and αz,µ is analogously defined. The constant Cu given
by (21) codifies the dependence on the network properties.

We close this section commenting on the assumption in our
main result about the boundedness of our dynamics’ states,
particularly in the application to constrained optimization.

Remark IV.6. (Saddle points of Lagrangians): Our general
dynamics (9) can be particularized to a distributed strategy
for constrained optimization problems of the form (4) via the
saddle-point formulation with explicit agreement on the mul-
tipliers in (5c). The resulting algorithm consists of primal-
dual subgradient updates followed by a projection step. The
key is then the design of projections preserving the saddle
points. While the Lagrange multipliers are naturally con-
strained to the positive orthant, under suitable conditions one
can establish the boundedness of the optimal dual set [14],
[13, Lemma 1]. One can then use these facts as in [13], [6],
[18] to define a projection of the algorithms’ estimates of the
multipliers onto the intersection of the positive orthant and a
sufficiently large ball, thereby preserving the set of Lagrange
multipliers while at the same time ensuring the boundedness
of the states of the dynamics. •

V. CONCLUSIONS AND IDEAS FOR FUTURE WORK

We have proposed provably correct projected subgradient
methods for saddle-point problems under explicit agreement
constraints. We have shown that separable constrained opti-
mization problems can be written in this form, where agree-
ment plays a role in distributing the objectives (via agreement
on a subset of the primal variables) as well as the constraints
(via agreement on the dual variables). This approach enables
the use of existing consensus-based ideas to tackle the algo-
rithmic solution to these problems in a distributed fashion.
Future extensions will include, first, a refined analysis for
constrained optimization in terms of the cost error (instead of
the saddle-point evaluation error). Second, the development
of distributed strategies for bounding the optimal dual set
necessary for the design of projections onto compact sets.
Third, we envision applications to semidefinite programming,
where chordal sparsity allows to tackle problems where the
dimension of the matrices grows with the size of the network.
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imization Algorithms I. Grundlehren Text Editions, New York:
Springer, 1993.

[15] D. Yuan, S. Xu, and H. Zhao, “Distributed primal-dual subgradi-
ent method for multiagent optimization via consensus algorithms,”
IEEE Trans. Systems, Man, and Cybernetics- Part B, vol. 41, no. 6,
pp. 1715–1724, 2011.

[16] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[17] I. Necoara, I. Dumitrache, and J. A. K. Suykens, “Fast primal-dual pro-
jected linear iterations for distributed consensus in constrained convex
optimization,” in IEEE Conf. on Decision and Control, (Atlanta, GA),
pp. 1366–1371, Dec. 2010.
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