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Abstract: We exploit a variational characterization of the nuclear norm to extend the
framework of distributed convex optimization to machine learning problems that focus on the
sparsity of the aggregate solution. We propose two distributed dynamics that can be used for
multi-task feature learning and recommender systems in scenarios with more tasks or users than
features. Our first dynamics tackles a convex minimization on local decision variables subject
to agreement on a set of local auxiliary matrices. Our second dynamics employs a saddle-point
reformulation through Fenchel conjugation of quadratic forms, avoiding the computation of
the inverse of the local matrices. We show the correctness of both coordination algorithms
using a general analytical framework developed in our previous work that combines distributed
optimization and subgradient methods for saddle-point problems.
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1. INTRODUCTION

Motivated by applications in machine learning, this paper
considers the design of distributed algorithmic solutions
to problems that involve the joint minimization over a set
of local variables of a sum of convex functions together
with a regularizing term that favors sparsity patterns in
the resulting aggregate solution. Our framework can be
seen as a generalization of distributed convex optimization
problems that employ the nuclear norm as a regularization
technique to capture sparsity patterns in the data.

Literature review: The increasing body of literature on
cooperative strategies for distributed convex optimization,
see (Nedic and Ozdaglar, 2009; Boyd et al., 2011; Zhu
and Mart́ınez, 2012; Gharesifard and Cortés, 2014) and
references therein, renders itself naturally to large-scale
problems like distributed estimation in sensor networks
or distributed label feedback in machine learning. Data is
usually geographically distributed and often private, all of
which favor cooperative fusion of local models to exploit
the network decentralized resources such as automatic
data collection, computation capabilities, and limited com-
munication bandwidth. These problems consider a sum of
convex functions subject to an agreement constraint in
their arguments. The key observation here is that often-
times a global decision vector, or global parameter, needs
to be replaced by local parameter vectors that are coupled
in a more flexible way than agreement to capture patterns
in the decentralized data. In particular, the nuclear norm
of the matrix composed of the local parameter vector
across the network promotes low-rank solutions and as
such is less rigid than the agreement constraint.

Mathematical models that use a low-rank matrix estimate
are key in applications such as recommender systems
through matrix completion (Candès and Recht, 2009),
dimension reduction in multivariate regression (Yuan and
Lin, 2007), and multi-task feature learning (Ando and
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Zhang, 2005; Argyriou et al., 2006, 2008). The basic un-
derlying structure is the same: an estimate of a matrix
that is assumed or postulated to be low rank. While the
rank function is nonconvex, it turns out that the nuclear
norm, defined as the one norm of the vector of singular
values, is the convex surrogate of the rank function (Fazel,
2002). When used as a regularization in optimization prob-
lems, the nuclear norm promotes a low-rank solution and
in some cases it even allows to recover the exact low-
rank solution (Candès and Tao, 2010; Recht et al., 2010).
The applications of nuclear norm regularization described
above have inspired research in parallel computation fol-
lowing the model of stochastic gradient descent (Recht
and Ré, 2013), but these developments emphasize the
parallel aspect alone, rather than other aspects such as ge-
ographically distributed data, communication bandwidth,
and privacy. Other strategies to address the problem that
focus neither on the parallel aspect, nor in the distributed
aspect, but instead try to overcome the nonsmooth nature
of the nuclear norm, use techniques such as approximate
singular value decompositions (Woolfe et al., 2008; Wit-
ten and Candès, 2015); coordinate descent and subspace
selection (Dud́ık et al., 2012; Hsieh and Olsen, 2014);
and successive over-relaxation (Wen et al., 2012), which is
again related to coordinate descent. Finally, the technical
analysis here builds on our recent work (Mateos-Núñez and
Cortés, 2015) which develops a general analytical frame-
work combining distributed optimization and subgradient
methods for saddle-point problems.

Statement of contributions: We motivate the nuclear norm
regularization in two problems that can benefit from dis-
tributed strategies: multi-task feature learning and matrix
completion. Then we introduce two distributed formu-
lations of the resulting optimization problems: a sepa-
rable convex minimization, and a separable saddle-point
problem, and we make the presentation systematic as to
the automatic derivation of distributed coordination algo-
rithms. After introducing each formulation, we show the
existence of critical points that solve the original problem
and also present the corresponding distributed subgradient
dynamics. To the best of our knowledge, the subgradient



saddle-point method proposed in the second case is a novel
coordination algorithm even in its centralized version and
we argue its advantages and general application to each of
the motivational problems. For both families of distributed
strategies, we show the convergence guarantees using the
results in (Mateos-Núñez and Cortés, 2015). In our con-
clusions, we describe how our systematic treatment of the
nuclear norm in distributed optimization opens the way to
the design of additional novel strategies. The convergence
results are illustrated in a simulation example of low-rank
matrix completion. All the proofs are omitted for reasons
of space and will be presented elsewhere.

2. PRELIMINARIES

We present some preliminaries on matrix norms, graph
theory, and variational characterizations of the nuclear
norm.

Notational conventions. We let Rn be the n-dimensional
Euclidean space, In ∈ Rn×n the identity matrix in Rn,
and ei the ith column of In. Given a vector v ∈ Rn, we
denote its one-norm by ‖v‖1 =

∑n
i=1 |vi| and its Euclidean

norm (or two-norm) by ‖v‖2 =
√∑n

i=1 v
2
i . Given a

matrix A ∈ Rn×m, we denote its L2,1-norm by ‖A‖2, 1 :=
‖(‖a1‖2, . . . , ‖am‖2)‖1, which is the one-norm of the vector
of two-norms of the columns of A. We denote the nuclear
norm (or trace norm) by ‖A‖∗ = trace(

√
A>A). This

coincides with the sum of the singular values of A, ‖A‖∗ =∑min{n,m}
i=1 σi. We denote the Frobenius norm by ‖A‖F =√
trace(A>A) =

√
trace(AA>) =

√∑min{n,m}
i=1 σ2

i . Note

that for any A ∈ Rm×n with rank r, the nuclear norm and
the Frobenius norm are related by

‖A‖∗ ≤
√
r‖A‖F ≤

√
min{n,m}‖A‖F . (1)

We denote by A† the Moore-Penrose pseudoinverse of A
and by C(A) its column space, i.e., the vector space gener-
ated by the columns of A. The sets Sd, Sd�0, Od ⊆ Rd×d rep-
resent, respectively the symmetric, positive semidefinite,
and orthogonal matrices. The following sets play a central
role in our optimization problems. For any c, r ∈ R>0, let

D(c, r) := {D ∈ Sd�0 : D � cI, ‖D‖F ≤ r} , (2a)

∆(c) := {D ∈ Sd�0 : D � cI, trace(D) ≤ 1} . (2b)

We refer to these sets as reduced ice-cream and reduced
spectraplex, resp., based on the fact that they correspond
to the intersection of the reduced cone {D ∈ Sd : D �
cId} ⊆ Sd�0 with the ball given by the Frobenius norm and
with the trace constraint, resp. Given a closed convex set
C, we define the orthogonal projection onto C by

PC
(
x
)
∈ arg min

x′∈S
‖x− x′‖2.

A vector ξx ∈ Rn is a subgradient of a convex function
f : C → R at x ∈ C if f(y)−f(x) ≥ ξ>x (y−x), for all y ∈ C.
We denote by ∂f(x) the set of all such subgradients.

Graph theory. We review basic notions from graph the-
ory following the exposition in (Bullo et al., 2009). A
(weighted) digraph G := (I, E ,A) is a triplet where I :=
{1, . . . , N} is the vertex set, E ⊆ I × I is the edge set,
and A ∈ RN×N≥ 0

is the weighted adjacency matrix with the
property that aij := Aij > 0 if and only if (i, j) ∈ E .
Given G1 = (I, E1,A1) and G2 = (I, E2,A2), their union is
the digraph G1 ∪ G2 = (I, E1 ∪ E2,A1 + A2). A path is an
ordered sequence of vertices such that any pair of vertices

appearing consecutively is an edge. A digraph is strongly
connected if there is a path between any pair of distinct
vertices. A sequence of digraphs

{
Gt := (I, Et,At)

}
t≥1

is

δ-nondegenerate, for δ ∈ R>0, if the weights are uniformly
bounded away from zero by δ whenever positive, i.e., for
each t ∈ Z≥1, aij,t := (At)ij > δ whenever aij,t > 0.
A sequence {Gt}t≥1 is B-jointly connected, for B ∈ Z≥1,
if for each k ∈ Z≥1, the digraph GkB ∪ · · · ∪ G(k+1)B−1

is strongly connected. The weighted out-degree and in-

degree of i ∈ I are, respectively, dout(i) :=
∑N
j=1 aij

and din(i) :=
∑N
j=1 aji. A digraph is weight-balanced if

dout(i) = din(i) for all i ∈ I.

Variational characterizations of the nuclear norm. The
following characterizations of the nuclear norm play a key
role in our forthcoming distributed formulations,

2‖W‖∗ = min
D∈Sd�0

C(W )⊆C(D)

trace
(
D†WW>

)
+ trace(D), (3a)

‖W‖2∗ = min
D∈Sd�0

, trace(D)≤1

C(W )⊆C(D)

trace
(
D†WW>

)
. (3b)

Defining C := WW>, the minimizers are, respectively,

D∗1 :=
√
C and D∗2 :=

√
C

trace(
√
C)
. (4)

A proof sketch of the latter can be found in (Argyriou
et al., 2006, Thm 4.1). A different proof, valid when C is
positive definite, can also be found in (Argyriou et al.,
2008, Appendix A). Adding the penalty ε trace(D†) in
either minimization, and factoring out D†, gives Cε =
WW> + εId in the formula for the optimizers (4). The
optimal values then change according to

trace
(√

WW> + εId
)

= trace
(√

[W |
√
εId][W |

√
εId]>

)
= ‖[W |

√
εId]‖∗,

which is the nuclear norm of the block matrix comprised
of W and

√
εId. Also, for any W ∈ Rd×N , one has

‖W‖∗ = min
U∈Od

‖W>U‖2, 1 . (5)

This result can be found in the proof of (Argyriou et al.,
2006, Thm 4.1). (This reference uses the notation ‖ · ‖2, 1
interchanging columns and rows.)

3. OPTIMIZATION WITH NUCLEAR NORM
REGULARIZATION

We are interested in developing distributed coordination
algorithms to solve the optimization problem

min
wi∈W,

i∈{1,...,N}

N∑
i=1

fi(wi) + γΩ(W ), (6)

where W ⊆ Rd is a closed convex set; the matrix W ∈
Rd×N aggregates the vectors {wi}Ni=1 as columns, i.e.,
W := [w1| . . . |wN ]; each function fi : Rd → R is convex;
γ ∈ R>0 is a design parameter; and Ω : Rd×N → is a
joint regularizer to promote solutions with low rank or
other sparsity patterns. We next motivate the distributed
optimization problem with nuclear-norm regularization.

3.1 Multi-task feature learning

In data-driven optimization problems each function fi
often codifies the loss incurred by the vector of weighting



parameters wi with respect to a set of ni data points
{pj , yj}nij=1. As such, this loss can be called residual or
margin, depending on whether we are considering regres-
sion or classification problems. The work (Argyriou et al.,
2008) exploits the relation (5) as follows. For a given
W ∈ Rd×N , the following regularizer is used,

Ω(W ) = min
U∈Od, A∈Rd×N

W=UA

‖A>‖2, 1

= min
U∈Od

‖W>U‖2, 1 = ‖W‖∗.

This minimization promotes a dictionary matrix U of
orthonormal columns such that the columns of W are
sparse linear combinations of them. The latter is achieved
through ‖A>‖2, 1, which ‘favors’ rows of small size because
the one-norm is the convex surrogate of the zero-norm,
or number of nonzero elements. This offers an interesting
perspective on minimization problems that are convex
on the product UA, with U ∈ Od, and have a penalty
term ‖A>‖2, 1. As pointed by Argyriou et al. (2008), the
above characterization enables a convex reformulation on
the matrix variable W = UA.

3.2 Matrix completion for recommender systems

The estimation of a low-rank matrix from a set of entries,
or matrix completion, see, e.g., (Mazumder et al., 2010),
also fits naturally in the framework of (6) with nuclear-
norm regularization. This is because the nuclear norm is
the convex surrogate of the rank function (Fazel, 2002).
Let Z ∈ Rd×N be a low-rank matrix of unknown rank
for which only a few entries per column are known. The
goal is then to determine a matrix W that minimizes the
Frobenius norm across the revealed entries while keeping
small the nuclear norm,

min
wi∈W,

i∈{1,...,N}

N∑
i=1

∑
j∈Υi

(Wji − Zji)2 + γ‖W‖∗ (7)

where, for each i ∈ {1, . . . , N},
Υi := {j ∈ {1, . . . , d} : Zji is a revealed entry of Z}.

3.3 A case for distributed optimization

The optimization problem (6) can be formulated as a con-
vex and separable minimization when the joint regularizer
is ‖ · ‖∗ or ‖ · ‖2∗ using the characterizations (3a) or (3b).
Assuming that a minimum exists, we can write

min
W∈Rd×N

N∑
i=1

fi(wi) + γ‖W‖2∗

= min
W∈Rd×N

D∈Sd�0
, trace(D)≤1

wi∈C(D),∀i

N∑
i=1

fi(wi) + γ

N∑
i=1

w>i D
†wi .

= min
wi∈W,∀i

Di∈Sd�0, trace(Di)≤1, ∀i
wi∈C(Di), ∀i
Di=Dj , ∀i,j

N∑
i=1

fi(wi) + γ

N∑
i=1

w>i D
†
iwi , (8)

and similarly for Ω(W ) = 2‖W‖∗ replacing the constraint

trace(D) ≤ 1 by the penalty functions γ
∑N
i=1

1
N trace(Di).

When d� N , it is reasonable to design distributed strate-
gies that use local gradient descent and consensus to solve
this problem because the objective can be split across a

network of agents, and the only coupling constraint is the
agreement on the matrix arguments, Di = Dj for each i, j,
whose dimensions do not grow with the network size. The
condition d � N in multi-task feature learning implies
that there are far less features than tasks or users (for
instance, there are less diseases or symptoms than people).
The same observation applies to matrix completion in
collaborative filtering where the rows represent features
and the columns represent users.

However, the design of distributed strategies to solve (8)
raises the following challenges,

(i) The constraint set {w ∈ Rd, D ∈ Sd�0 : w ∈ C(D)}
is convex but not closed, which is a difficulty when
designing a projection among the local variables. Note
that for any fixed matrix Di, one could project wi
onto C(Di) by computing DiD

†
iw, but this projection

is state-dependent.

(ii) The computation of D†i is a concern because Di might
be rank deficient and the pseudoinverse might be
discontinuous when the rank of Di changes.

We avoid these difficulties by enforcing the solution to be
within a margin of the boundary of the positive semidefi-
nite cone. This is achieved by considering an approximate
regularization that we introduce in Section 4.1. Our first
dynamics solves the nuclear-norm regularization as a sep-
arable minimization with agreement constraint. Even with
(ii) addressed, an additional challenge involves the efficient
computation of the inverse:

• Iterative algorithms involving the computation of
D−1 are computationally expensive and potentially
lead to numerical instabilities.

We eliminate the necessity of computing D−1 altogether in
Section 4.2 by transforming the convex minimization into
a saddle-point problem. This transformation is general and
does not require the approximate treatment of the nuclear
norm regularization in Section 4.1. Our second dynamics
solves the nuclear-norm regularization as a separable min-
max problem with agreement constraint.

4. DISTRIBUTED COORDINATION ALGORITHMS

Here we address the three challenges outlined in Section 3
to solve the optimization problem (8). In the forthcoming
discussion, we present two reformulations of this problem
and two distributed coordination algorithms to solve them.

4.1 Nuclear norm approximate regularization

In relation to the first two challenges outlined above,
note that the optimal values D∗1 and D∗2 in (4) for the
variational characterizations of ‖ · ‖∗ and ‖ · ‖2∗ are in
general positive semidefinite. To enforce these optimal
values to be in the interior of the positive semidefinite cone,
following the technique in (Argyriou et al., 2008, Sec. 4),
we consider an approximate problem by introducing in (8)
the barrier function ε trace(D†) for some ε ∈ R>0. We next
justify how the optimizer of the approximate problem,
which depends on ε, is farther than some margin from
the boundary of Sd�0 (in turn, this fact allows to insert
in our optimization problem a dummy constraint of the
form D � cI, where c is what we refer to as the margin).
For Ωε(W ) = 2‖[W |

√
εId]‖∗, this is easy to see because, in

view of (4),

D∗1,ε :=
√
WW> + εId �

√
εId.



For Ωε(W ) = ‖[W |
√
εId]‖2∗, we need more care and we offer

next a result using the notation for the reduced spectraplex
defined in Section 2.

Lemma 4.1. (Dummy constraint for ε-approximate
regularization under Ω(W ) = ‖W‖2∗): Let W ∈ Rd×N
be any matrix whose columns have two-norm bounded
by rw. Then

D∗2,ε :=

√
WW> + εId

trace(
√
WW> + εId)

(9)

is the optimizer of both

min
D∈Sd�0

, trace(D)≤1,

C(W )⊆C(D)

trace
(
D†(WW> + ε I)

)
(10)

and

min
D∈∆(cε)

trace
(
D†(WW> + ε I)

)
(attaining the optimal value ‖[W |

√
ε Id ]‖2∗), where the

margin cε of the reduced spectraplex ∆(cε) is

cε :=

√
ε√

d
√
Nr2

w + ε d
. (11)

Furthermore, cε in (11) satisfies cε ≤ 1/d for any ε, rw ∈
R>0. Hence, ∆(cε) is nonempty for any ε, rw ∈ R>0.

As a result, when we add the barrier terms
∑N
i=1

ε
N trace(D†i )

to the optimization in (8), the constraints Di ∈ Sd�0 and
wi ∈ C(Di) can be replaced by Di � cεId. Hence, the
variational characterization of ‖[W |

√
ε Id ]‖2∗ can be writ-

ten over the compact domain ∆(cε). Alternatively, in the
case of 2‖[W |

√
ε Id ]‖∗, we saw above that we can use the

constraint Di �
√
εId to achieve the same effect. However,

because the trace constraint is now absent, we construct
a compact domain containing the optimal value D∗1,ε by
introducing one more dummy constraint ‖Di‖F ≤ rε, with

rε :=
√
Nrw +

√
εd. (12)

This, together with the constraint Di �
√
εId, yields the

compact domain given by the reduced ice-cream D(
√
ε, rε).

The derivation is similar to the proof of Lemma 4.1; here
we compute an upper bound as opposed to a lower bound.
In both cases, we use the fact that the columns of W are
contained in the ball B̄(0, rw) ⊆ Rd.
The following results summarizes our discussion above.

Corollary 4.2. (Separable minimization with agree-
ment constraint): Let W ⊆ B̄(0, rw) and define cε as
in (11). Then

min
W∈Rd×N

N∑
i=1

fi(wi) + γΩε(W ), (13)

with Ωε(W ) = ‖[W |
√
ε Id ]‖2∗ is equal to

min
wi∈W,∀i,

Di∈∆(cε), ∀i,
Di=Dj , ∀i,j

N∑
i=1

fi(wi) + γ

N∑
i=1

(
w>i D

−1
i wi + ε

N trace(D−1
i )
)
.

(14)

The analogous result is valid for Ωε(W ) = 2‖[W |
√
ε Id ]‖∗

replacing ∆(cε) by D(
√
ε, rε) and including the penalty

functions γ
∑N
i=1

1
N trace(Di).

In both cases of Corollary 4.2, Weierstrass’ Theorem
guarantees that the minimum is reached since we are

minimizing a continuous function over a compact set. This
leads to our first candidate dynamics.

Distributed subgradient dynamics for nuclear op-
timization. Our first coordination algorithm for the
distributed optimization with nuclear norm (13) is a sub-
gradient algorithm with proportional feedback on the dis-
agreement on the matrix variables:

ŵi(k + 1) = wi(k)− ηk
(
gi(k) + 2γDi(k)−1wi(k)

)
,

D̂i(k + 1) = Di(k)− ηkγ
(
−D−1

i (k)wi(k)wi(k)>D−1
i (k)

+ α
N Id − ε

ND
−2
i (k)

)
+ σ

N∑
j=1

aij,t(Dj(k)−Di(k)),

wi(k + 1) = PW(ŵi(k + 1)),

Di(k + 1) = PD(D̂i(k + 1)), (15)

where gi(k) ∈ ∂fi(wi(k)), for each i ∈ {1, . . . , N}, and
PW(·) and PD(·) denote the projections onto the com-
pact convex sets W and D. This notation allows us
to consider both approximate regularizers: for the case
2‖[W |

√
ε Id ]‖∗, the trace acts as a penalty, i.e., α = 1, and

the domain is D = D(
√
ε, rε); for the case ‖[W |

√
ε Id ]‖2∗,

the trace acts as a constraint, i.e., α = 0, and D = ∆(cε).

4.2 Separable saddle-point formulation

In the previous section we have written the optimiza-
tion (13) with approximate nuclear norm regularization
as a separable convex optimization with an agreement
constraint on auxiliary local matrices. Here we derive an
equivalent min-max problem that is also separable and has
the advantage of enabling iterative distributed strategies
that avoid the computation of the inverse of the local
matrices. To achieve this aim, the next result expresses the

quadratic forms w>D†w and trace(D†) =
∑d
j=1 e

>
jD
†ej as

the maximum of concave functions in additional auxiliary
variables. We write these expressions using Fenchel conju-
gacy of quadratic forms, and in doing this, we avoid the
need to compute the pseudoinverse of D.

Proposition 4.3. (Min-max formulation via Fenchel
conjugacy): For i ∈ {1, . . . , N} and α ∈ R≥0, let Fi :W×
Rd×d × Rd × Rd×d → R be defined by

Fi (w,D, x, Y ) := fi(w) + γ trace
(
D(−xx> − ε

N Y Y
>)
)

− 2γw>x− 2γ
ε

N
trace(Y ) +

α

N
trace(D). (16)

Then, the following two optimizations are equivalent

min
D∈Sd�0,

w∈W∩C(D)

fi(w) + γ
(
w>D†w + ε

N trace(D†) + α
N trace(D)

)
= min
w∈W, D∈Rd×d

sup
x∈Rd,Y ∈Rd×d

Fi(w,D, x, Y ). (17)

Moreover, the minimization on the right does not change
with the addition of the constraints D ∈ Sd�0 and w ∈ C(D)
(which allows to replace the operator sup by max).

The function w>D†w is jointly convex in the convex
domain {w ∈ W, D ∈ Sd�0 : w ∈ C(D)} because it is a
point-wise maximum of linear functions indexed by x. (The
function is also proper but not closed because the domain
is not closed). The same considerations apply adding the
constraint trace(D) ≤ 1. We are now ready to show the
main equivalence between optimization problems.



Corollary 4.4. (Separable min-max problem with
agreement constraint):. The optimization (13) with
Ωε(W ) = ‖[W |

√
ε Id ]‖2∗ is equivalent to

min
wi∈W, Di∈Rd×d,
trace(Di)≤1, ∀i,
Di=Dj ∀i,j

sup
xi∈Rd, ∀i
Yi∈Rd×d, ∀i

N∑
i=1

Fi(wi, Di, xi, Yi) , (18)

without the penalty on the trace in Fi (i.e., α = 0) for each
i ∈ {1, . . . , N}. As long as cε is given by (11) and W ⊆
B̄(0, rw), the constraints Di ∈ ∆(cε) are not necessary, but
including them allows to replace the operator sup by max.
An analogous result holds for Ωε(W ) = 2‖[W |

√
ε Id ]‖∗

when, instead of the trace constraints, one has the penalty

terms
∑N
i=1

1
N trace(Di) (i.e., α = 1). In this case, as long

as rε is given by (12) and W ⊆ B̄(0, rw), the constraints
Di ∈ D(

√
ε, rε) are not necessary.

Next we state the existence of a saddle-point for the convex
-concave formulation of the ε-approximate minimization.
Define F :WN ×∆(cε)× (Rd)N × (Rd×d)N → R as

F (w, D,x,Y ) :=

N∑
i=1

Fi(wi, D, xi, Yi), (19)

where w := (w1, . . . wN ), x := (x1, . . . xN ), Y :=
(Y1, . . . YN ).

Proposition 4.5. (Existence of saddle points): ForW ⊆
B̄(0, rw) and D equal to either ∆(cε) or D(

√
ε, rε), the set

of saddle points of F on WN × D × (Rd)N × (Rd×d)N is
nonempty and compact, and, as a consequence,

max
xi∈Rd, Yi∈Rd×d, ∀i

min
wi∈W, ∀i,D∈∆(cε)

N∑
i=1

Fi(wi, D, xi, Yi)

= min
wi∈W, ∀i,D∈∆(cε)

max
xi∈Rd, Yi∈Rd×d, ∀i

N∑
i=1

Fi(wi, D, xi, Yi).

(The agreement constraints Di = Dj for all i, j ∈
{1, . . . , N} are implicit because the existence of saddle-
points is established within those agreement constraints.)

The above leads us to our second candidate dynamics.

Distributed saddle-point dynamics for nuclear op-
timization. Our second coordination algorithm for the
distributed optimization with nuclear norm (13) is a
saddle-point subgradient dynamics with proportional feed-
back on the disagreement of a subset of the variables:

wi(k + 1) =PW
(
wi(k)− ηk

(
gi(k)− 2γxi(k)

))
,

Di(k + 1) =PD
(
Di(k)− ηkγ

(
− xix>i − ε

N YiY
>
i + α

N Id
)

+ σ

N∑
j=1

aij,t(Dj(k)−Di(k))
)
,

xi(k + 1) =xi(k) + ηkγ
(
− 2Dixi(k)− 2wi(k)

)
,

Yi(k + 1) =Yi(k) + ηkγ
(
− 2ε

N
Di(k)Yi(k)− 2ε

N
Id
)
, (20)

where gi(k) ∈ ∂fi(wi(k)), for each i ∈ {1, . . . , N}, and
PW(·) and PD(·) denote the projections onto the compact
convex sets W and D. For the case of the regularizer
2‖[W |

√
ε Id ]‖∗ we set α = 1 and D = D(

√
ε, rε), and

for the regularizer ‖[W |
√
ε Id ]‖2∗, we set α = 0 and

D = ∆(cε).

5. CONVERGENCE ANALYSIS

The convergence result of the distributed strategies (15)
and (20) follows from the analysis framework developed
in Mateos-Núñez and Cortés (2015), as we outline next.

Theorem 5.1. (Convergence of the coordination al-
gorithms (15) and (20)): Let the convex compact set
W ⊆ Rd be contained in B̄(0, rw) and let the bounds cε
and rε be defined as in (11) and (12). Assume that each
dynamics evolves over a sequence {Gt}t≥1 of B-jointly con-
nected, δ-nondegenerate, weight-balanced digraphs with
uniformly bounded Laplacian eigenvalues. Let σ be as
follows: for any δ̃′ ∈ (0, 1), let δ̃ := min

{
δ̃′, (1− δ̃′) δ

dmax

}
,

where dmax := max
{
dout,t(j) : j ∈ I, t ∈ Z≥1

}
, and

choose

σ ∈
[ δ̃
δ
,

1− δ̃
dmax

]
.

Assume also that the learning rates are taken according
to the doubling trick: for m = 0, 1, 2, . . . , dlog2 te, fix
ηs = 1√

2m
in each period of 2m rounds s = 2m, . . . , 2m+1−

1. Then both the dynamics (15) and (20) converge to an
optimizer of (13). The evaluation error with respect to any
minimum of (14), or with respect to any saddle point of
the convex-concave function (18), is proportional to 1/

√
t.

6. SIMULATION EXAMPLE

Here we illustrate the performance of the distributed
saddle-point algorithm (20) on a matrix completion prob-
lem, cf. Section 3.2. The matrix Z ∈ R8×20 has rank 2
and each agent is assigned a column. From each column,
only 5 entries have been revealed, and with this partial
information, and without knowledge about the rank of Z,
the agents execute the coordination algorithm (20) to solve
the optimization (7). In this application each local function
fi(wi) =

∑
j∈Υi

(Wji − Zji)2 is not strongly convex, but
just convex, in line with the hypotheses of Theorem 5.1.
Figure 1 illustrates the matrix fitting error, the evolution
of the network cost function, and the disagreement of the
local auxiliary matrices.

7. CONCLUSIONS

We have considered a class of optimization problems
that involve the joint minimization over a set of local
variables of a sum of convex functions together with
a regularizing term that favors sparsity patterns in the
resulting aggregate solution. Particular instances of these
optimization problems include multi-task feature learning
and matrix completion. We have exploited the separability
property of a variational characterization of the nuclear
norm to design two types of provably-correct distributed
coordination algorithms. Our analysis relies on the body of
work on distributed convex optimization and saddle-point
dynamics. To the best of our knowledge, the proposed
coordination algorithms are the first distributed dynamics
for convex optimization with nuclear-norm regularization.
Future work will include the use of Fenchel duality in
place of Fenchel conjugacy, the treatment of other barrier
functions like the logarithm of the determinant, and the
extension to applications with chordal sparsity.
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Fig. 1. Matrix fitting error, evolution of network
cost function, and disagreement of local matri-
ces. Here we represent the evolution of algorithm (20)
(magenta solid line). The comparison is made with
respect to a standard subgradient descent algorithm
(blue dashed line) with constant gradient stepsize
equal to 0.1. (The subgradient of the nuclear norm
employed therein takes the form UrV

>
r ∈ ∂‖W (k)‖∗,

where UrΣrV
>
r is the reduced singular value de-

composition of W (k).) The optimization parameter
weighting the nuclear norm is γ = 2, and the parame-
ter of the approximate regularization is ε = 10−3. We
use as constraint set W = B̄(0, rw) with rw = 800. In
the distributed algorithm, the constraint set for the
auxiliary matrices is D = D(

√
ε, rε), the consensus

stepsize is σ = 0.5, and the communication topology
is a ring connecting the 20 agents. Our algorithm is
slower because it halves the learning rates (subgradi-
ent stepsizes) according to the doubling trick. This is
necessary for asymptotic convergence in Theorem 5.1,
in sharp contrast with standard (centralized) gradi-
ent descent that uses constant subgradient stepsize.
The third plot shows the disagreement among the
auxiliary matrices for our distributed algorithm. For
decreasing learning rates, which is our case, the dis-
agreement is guaranteed to converge to zero.
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