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Abstract— This paper considers a network of agents de-
scribed by an undirected graph that seek to solve a convex
optimization problem with separable objective function and
coupling equality and inequality constraints. Both the objective
function and the inequality constraints are Lipschitz continu-
ous. We assume that the constraints are compatible with the
network topology in the sense that, if the state of an agent is
involved in the evaluation of any given local constraint, this
agent is able to fully evaluate it with the information provided
by its neighbors. Building on the saddle-point dynamics of an
augmented Lagrangian function, we develop provably correct
distributed continuous-time coordination algorithms that allow
each agent to find their component of the optimal solution
vector along with the optimal Lagrange multipliers for the
equality constraints in which the agent is involved. Our tech-
nical approach combines notions and tools from nonsmooth
analysis, set-valued and projected dynamical systems, viability
theory and convex programming.

I. INTRODUCTION

Distributed convex optimization problems appear in a
wide range of disciplines, including network control sys-
tems, traffic flow optimization, sensor fusion, and power
grid control. Recently, numerous algorithms that efficiently
solve convex programs in a parallel or distributed fashion
have been proposed. Decentralized optimization approaches
often yield advantages over centralized solvers when the
problem at hand requires inexpensive and low-performance
computations, robustness against malfunctions, or ability to
quickly react to changes. Motivated by network objectives
and constraints that give rise to general nonsmooth convex
programs with an inherent distributed structure, our objective
in this paper is to synthesize continuous-time coordination
algorithms that allow each agent to find their component
of the optimal solution vector. In particular, we consider
convex programs composed of an additively separable ob-
jective function and local coupling equality and inequality
constraints with no differentiability assumptions imposed
on their initial data. This setup substantially differs from
consensus-based distributed optimization where agents agree
on the entire optimal solution vector.

Literature Review. Our work is in context with the body
of literature on convex optimization (as a general reference,
see [1]). Motivated by large scale problems and systems with
data naturally partitioned over a network [2], there has been
vast interest on distributed convex optimization, including
the works [3], [4], [5], [6], [7] and references therein. These
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works particularly build on consensus-based dynamics [8],
[9], [10]. However, a direct transcription of those methods to
the present setup would result in cooperative strategies where
agents interact with their neighbors but operate over a vector
that represents the entire network state, and are therefore
not scalable. Considering convex optimization scenarios over
networks that involve a separable objective function and
local coupling constraints, various distributed methods based
on saddle-point or primal-dual dynamics [11] have been
recently proposed [12], [13], [14]. The work [12] studies
partial primal-dual gradient algorithms for convex programs
with equality constraints in the context of power networks.
In contrast, the work [13] introduces primal-dual dynamics
for convex programs that only possess inequality constraints.
Although convergence in the primal variables is established,
the dual variables converge to some unknown point which
might not correspond to a dual optimal solution. More-
over, the inequality constraints are, in general, only feasible
asymptotically. Our algorithm design builds on [14], which
develops set-valued and discontinuous saddle-point(-like)
dynamics specifically tailored for linear programs.

Statement of Contributions. We consider general non-
smooth convex optimization scenarios defined by separable
convex objective functions with coupling equality (affine)
and inequality (convex) constraints. Both the objective func-
tion and the inequality constraints are Lipschitz continuous.
As a result of this generality in the problem statement, we
face various technical challenges in both the design and con-
vergence analysis of our distributed algorithms, particularly
in what concerns the lack of differentiability of the problem
data and the handling of the inequality constraints. Our
technical approach relies on results from nonsmooth analysis
as well as viability theory, and involves set-valued projection
operations on dynamical systems. In contrast to existing
works, we establish asymptotic stability of the set of primal-
dual solutions of the convex program and, moreover, achieve
point-wise convergence of solutions of the continuous-time
algorithms developed. In addition, our proposed set-valued
and discontinuous saddle-point-like dynamics guarantee fea-
sibility with respect to the inequality constraints at any time.
Simulations in a linear model predictive control example
illustrate our results. The proofs are omitted for reasons of
space and will appear elsewhere.

II. PRELIMINARIES

Let 〈·, ·〉 denote the Euclidean inner product and let ‖·‖2
and ‖·‖∞ denote the `2- and `∞-norms in Rn, respectively.
Let 1n = (1, . . . , 1) ∈ Rn. Given x ∈ Rn, let [x]+ =
(max{0, x1}, . . . ,max{0, xn}) ∈ Rn≥0. Given a set X ⊂
Rn, we denote its convex hull by co(X), its interior by



int(X), and its boundary by bd(X). The closure of X is
denoted by cl(X) = int(X) ∪ bd(X). Let B(x, δ) = {y ∈
Rn | ‖y − x‖2 < δ} denote the open ball.

A point (x∗, µ∗) ∈ X ×M is a saddle point of L : Rn ×
Rp ⊃ X ×M → R if L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗)
holds for all (x, µ) ∈ X ×M . A set-valued map F : Rn ⊃
X ⇒ Rn maps elements of X to subsets of Rn. Let Ln :
Rn ⇒ Rn be a set-valued map that associates to each subset
F of Rn the set of least-norm elements of its closure cl(F ).

A. Nonsmooth Analysis
We review here relevant basic notions from nonsmooth

analysis following [15]. A function f : Rn → R is Lipschitz
continuous at x ∈ Rn if there exist δx ∈ R>0 and Lx ∈
R≥0 such that |f(y) − f(z)| ≤ Lx‖y − z‖2 for all y, z ∈
B(x, δx). If f is Lipschitz continuous on Rn, then it is said
to be Lipschitz continuous. Note that a convex function is
Lipschitz continuous (cf. Theorem 3.1.1, p. 16 in [16]).

Let Ωf ⊂ Rn be the set of points at which f fails to
be differentiable, and let S ⊂ Rn denote any other set of
measure zero. The generalized gradient ∂f : Rn ⇒ Rn of
f at x ∈ Rn is defined by

∂f(x) = co
{

lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf

}
.

A set-valued map F : Rn ⊃ X ⇒ Rn is upper semi-
continuous if for every x ∈ X and ε ∈ R>0 there exists δx ∈
R>0 such that F (y) ⊂ F (x)+B(0, ε) for all y ∈ B(x, δx). F
is locally bounded if for every x ∈ X there exist δ, ε ∈ R>0

such that ‖z‖2 ≤ ε for all z ∈ F (y) and all y ∈ B(x, δ). Note
that the set-valued map ∂f : Rn ⇒ Rn is locally bounded,
upper semi-continuous, and takes nonempty, convex, and
compact values (cf. Proposition 2.1.2 in [15]).

B. Set-Valued and Projected Dynamical Systems
We present here basic notions on set-valued and projected

dynamical systems as well as viability theory following [17],
[18], [19]. Let F : Rn ⊃ X ⇒ Rn be a set-valued map.
Consider the differential inclusion

ẋ(t) ∈ F (x(t)), x(t0) = x0 ∈ X. (1)

A solution of (1) on an interval [t0, t1] ⊂ R is an absolutely
continuous mapping x : [t0, t1]→ X such that ẋ ∈ F (x(t))
for almost all (a.a.) t ∈ [t0, t1]. If the set-valued map
F is locally bounded, upper semi-continuous, and takes
nonempty, convex, and compact values, then the existence
of solutions of (1) starting from x0 ∈ X is guaranteed (cf.
Theorem 3, p. 98 in [18]).

Given a Lipschitz continuous function f : Rn ⊃ X → R,
the set-valued Lie derivative LF f : Rn ⊃ X ⇒ R of f at
x ∈ X with respect to (1) is defined by

(LF f)(x) =
{
ψ ∈ R | ∃ξ ∈ F (x) : 〈ξ, π〉 = ψ,∀π ∈ ∂f(x)

}
.

Let X ⊂ Rn be a nonempty, closed, and convex set; called
the viability set. Let the distance function dX : Rn → R be
defined by dX(x) = infy∈X‖x− y‖2. The tangent cone and
the normal cone of X at x ∈ X are, respectively,

TX(x) = cl
⋃
δ>0

1

δ
(X − x), NX(x) = cl

⋃
λ≥0

λ∂dX(x).

Note that if x ∈ int(X), then TX(x) = Rn and NX(x) =
{0}. A solution x : [t0, t1]→ X of (1) starting from x0 ∈ X
is viable in X under F if x(t) ∈ X for all t ∈ [t0, t1].
Let projX(v) = argminy∈X‖v − y‖2. The orthogonal (set)
projection ΠTX

: Rn ⇒ TX of F onto TX at x ∈ X is

ΠTX
(x, F (x)) =

⋃
ξ∈F (x)

lim
δ↘0

projX(x+ δξ)− x
δ

.

Note that if x ∈ int(X), then ΠTX
(x, F (x)) reduces to the

set F (x). Consider the differential inclusion

ẋ(t) ∈ ΠTX
(x, F (x))(t), x(t0) = x0 ∈ X. (2)

In general, the projection operator ΠTX
possesses no con-

tinuity properties and the values of ΠTX
(x, F (x)) are not

necessarily convex [18]. Yet, the following theorem states
conditions under which viable solutions of (2) exist [18].

Theorem 2.1 (Existence of viable solutions). Let X ⊂ Rn be
nonempty, closed and convex, and let the set-valued map F :
Rn ⊃ X ⇒ Rn be locally bounded, upper semi-continuous
with nonempty, convex and compact values. Then, for any
x0 ∈ X , there exists a viable solution x : [t0, t1]→ X of

ẋ ∈ F (x(t))−NX(x(t)), x(t0) = x0 ∈ X. (3)

Moreover, the set of viable solutions of (2) and (3) coincide.

III. PROBLEM STATEMENT

Consider a network of n ∈ Z>0 agents whose communica-
tion topology is represented by an undirected and connected
graph G = (V, E), where V = {1, . . . , n} is the set of
vertices and E ⊂ V × V is the set of edges. The state of
agent i ∈ {1, . . . , n} is xi ∈ R and its set of neighbors is
N (i) = {j ∈ V | (i, j) ∈ E}. The objective of the agents is
to cooperatively solve the optimization problem

inf
x∈Rn

{ n∑
i=1

fi(xi)
∣∣∣ h(x) = 0, g(x) � 0

}
, (4)

where fi : R→ R is a convex and Lipschitz continuous cost
function associated with agent i ∈ {1, . . . , n}, g : Rn → Rm
is convex and Lipschitz continuous, and h : Rn → Rp is
affine, i.e., h(x) = Ax − b, with A ∈ Rp×n and b ∈ Rp,
where p ≤ n. The equality and inequality functions h, g
are understood component-wise, i.e., h`(x) = 0 for all
` ∈ {1, . . . , p}, and gk(x) ≤ 0 for all k ∈ {1, . . . ,m}.
The network state is denoted by x = (x1, . . . , xn) ∈ Rn and
the aggregate objective function is f(x) =

∑n
i=1 fi(xi). Let

the feasibility set and the solution set of (4) be denoted by
C = {x ∈ Rn | h(x) = 0, g(x) � 0} and X = {x∗ ∈
C | f(x∗) ≤ f(x), ∀x ∈ C}. Let the viability set associated
with (4) be defined by G = {x ∈ Rn | g(x) � 0}.

Throughout the paper, we assume that the convex opti-
mization problem (4) is feasible, possesses finite primal-dual
optimal values, and satisfies the Slater constraint qualification
certificate [1]. Additionally, we assume that the constraints
of (4) are compatible with the network topology described
by G. Formally, the constraint gk(x) ≤ 0 is compatible with
G if gk can be expressed as a function of some components
of the network state x ∈ R|V|, say x̃ ∈ R|Uk|, where Uk ⊂ V
induces a complete undirected subgraph of G. A similar
definition can be stated for h`.



IV. LAGRANGIAN SADDLE-POINT CHARACTERIZATION

In this section, we characterize primal-dual solutions of
(4) in terms of saddle points of an augmented Lagrangian
function. The standard Lagrangian function L : Rn × Rp ×
Rm → R associated with (4) is L(x, µ, ν) = f(x) +
〈µ,Ax − b〉 + 〈ν, g(x)〉, where µ = (µ1, . . . , µp) ∈ Rp
and ν = (ν1, . . . , νm) ∈ Rm≥0 are Lagrange multiplier. The
Lagrangian dual problem of (4) takes the form

sup
(µ,ν)∈Rp×Rm

≥0

{
φ(µ, ν)

∣∣∣−A>µ ∈ ∂f(x)+
∑

k∈K(x)

νk∂gk(x)

}
(5)

where the Lagrangian dual function φ : Rp × Rm →
R∪{−∞,+∞} is defined by φ(µ, ν) = infx∈Rn L(x, µ, ν),
with K(x) = {k ∈ {1, . . . ,m} | gk(x) = 0}. Let the set of
solutions of (5) be denoted by M × N ⊂ Rp × Rm≥0. The
following proposition establishes a relationship between the
primal-dual solutions of (4), respectively (5), and the saddle
points of an augmented Lagrangian function.

Proposition 4.1 (Saddle-point characterization). Given κ ∈
R≥0. Let Lκ : Rn × Rp → R be defined by

Lκ(x, µ) = f(x) +
1

2
‖Ax− b‖22 + 〈µ,Ax− b〉

+ κ〈1m, [g(x)]+〉.
(6)

Then, the function Lκ is convex-concave, and

(i) if x∗ ∈ X and (µ∗, ν∗) ∈ M × N are primal-dual
solutions of (4), respectively (5), then (x∗, µ∗) ∈ X ×
M is a saddle point of Lκ for any κ ≥ ‖ν∗‖∞,

(ii) if (x̃, µ̃) ∈ Rn × Rp is a saddle point of Lκ with κ >
‖ν∗‖∞ for some ν∗ ∈ N , then x̃ ∈ Rn is a primal
solution of (4).

Proposition 4.1 motivates the search for saddle points
of Lκ rather than directly solving the convex optimization
problem (4). Since the augmented Lagrangian function Lκ is
convex-concave, a natural approach to find the saddle points
is via its associated saddle-point dynamics.
Remark 4.2 (Bound on κ). Note that the lower bound on κ in
Proposition 4.1 is characterized by the dual solution ν∗ ∈ N
of (4) which is unknown a priori. However, our forthcoming
discussion proposes fully distributed dynamics that do not
incorporate any knowledge on κ. •

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION

This section presents a saddle-point algorithm that asymp-
totically converges to the set of primal-dual solutions of (4),
respectively (5), given knowledge of a suitable lower bound
on κ (cf. Remark 4.2). Moreover, we propose a discontinuous
saddle-point-like algorithm that enjoys the same convergence
properties but does not rely on the global parameter κ, and
is therefore amenable for distributed implementation.

A. Saddle-Point Dynamics

Since the augmented Lagrangian function Lκ : Rn×Rp →
R defined in (6) is Lipschitz continuous, the saddle-point
dynamics (ẋ, µ̇) ∈ (−∂xLκ(x, µ),+∂µLκ(x, µ)) (gradient

descent in the primal variable x and gradient ascent in the
dual variable µ) defined over Rn × Rp take the form

ẋ(t) +A>(Ax(t)− b+ µ(t)) ∈ −∂f(x(t)) (7a)

− κ
∑

k∈K(x)

∂[gk(x(t))]+,

µ̇(t) = Ax(t)− b, (7b)

for a.a. t ∈ [t0,+∞) with initial condition (x0, µ0) ∈
Rn × Rp. Note that the existence of solutions (x, µ) :
[t0,+∞)→ Rn ×Rp of (7) is guaranteed by the properties
of the generalized gradients ∂xLκ and ∂µLκ. We understand
the solutions of (7) in the sense of Krasovskii (see [20] for a
definition). For notational convenience, we use the set-valued
map F [ : Rn×Rp ⇒ Rn×Rp to refer to (7). The following
theorem characterizes asymptotic convergence of the saddle-
point dynamics (7) to a point in X ×M .

Theorem 5.1 (Point-wise convergence). Let κ ∈ R≥0, x∗ ∈
X , and (µ∗, ν∗) ∈M ×N . Define V : Rn × Rp → R≥0 by

V(x, µ) =
1

2
‖x− x∗‖22 +

1

2
‖µ− µ∗‖22. (8)

If κ > ‖ν∗‖∞, then (LF [V)(x, µ) ⊂ (−∞, 0] for all
(x, µ) ∈ Rn × Rp and any solution (x, µ) : [t0,+∞) →
Rn × Rp of (7) converges asymptotically to a point in the
set of primal-dual solutions X ×M .

B. Projected Saddle-Point-Like Dynamics
Here, we propose discontinuous saddle-point-like dynam-

ics that do not rely on a priori knowledge of the dual solution
ν∗ ∈ N , as in Theorem 5.1, but also converge asymptotically
to a point in the set of primal-dual solutions X ×M . Recall
that G ⊂ Rn denotes the viability set associated with (4).
Let the set-valued flow F : G× Rp ⇒ Rn be defined by

F (x, µ) = −A>(Ax− b+ µ)− ∂f(x). (9)

The definition is motivated by the fact that, for (x, µ) ∈
int(G) × Rp, we have ∂xLκ = −F (x, µ). Consider the
saddle-point-like dynamics defined over G× Rp,

ẋ(t) ∈

{
F (x(t), µ(t)), if x ∈ int(G),

ΠTG
(x, F (x, µ))(t), if x ∈ bd(G),

(10a)

µ̇(t) = Ax(t)− b, (10b)

for a.a. t ∈ [t0,+∞) with initial condition (x0, µ0) ∈
G × Rp. Note that the set-valued map ΠTG

possesses no
continuity properties and the values of ΠTG

(x, F (x, µ)) are
not necessarily convex. However, the existence of viable
solutions (x, µ) : [t0,+∞)→ G× Rp of (10) is guaranteed
by Theorem 2.1. For notational convenience, we use the
set-valued map F ] : G × Rp ⇒ G × Rp to refer to the
discontinuous saddle-point-like dynamics (10).

Our objective here is to provide an alternative expression
of the projection operator ΠTG

that more clearly displays
its amenability to distributed implementation. Let the set of
outward normals to G at x ∈ bd(G) be defined by

N ]
G(x) =

{
πg ∈

∑
k∈K(x)

∂gk(x)
∣∣∣ ‖πg‖2 = 1

}
⊂ NG(x).



Following the idea of singleton-valued projected dynam-
ics [19], the set-valued projection ΠTG

: Rn ⇒ TG of F
onto TG at (x, µ) ∈ G× Rp in (10a) can be expressed as

ΠTG
(x, F (x, µ)) =

⋃
ξ∈F (x,µ)

ξ −max
{

0, 〈ξ, π∗g(ξ)〉
}
π∗g(ξ),

with π∗g(ξ) as the unique maximizer determined by the (sub-)
optimization problem

sup
πg∈Rn

{
〈ξ, πg〉 | πg ∈ N ]

G(x)
}
. (11)

Note that if (x, µ) ∈ int(G) × Rp, then 〈ξ, π∗g(ξ)〉 ≤ 0
and thus, ΠTG

(x, F (x, µ)) = F (x, µ). The following lemma
states existence and uniqueness of π∗g .

Lemma 5.2 (Existence and uniqueness). Given a point
(x, µ) ∈ bd(G)× Rp. If there exists ξ ∈ F (x, µ) such that

sup
πg∈Rn

{
〈ξ, πg〉 | πg ∈ N ]

G(x)
}
> 0,

then the maximizer π∗g(ξ) of (11) exists and is unique.

Remark 5.3 (Relationship to slow solutions). A slow solu-
tion x : [t0,+∞)→ G of (7a) is a solution satisfying

ẋ(t) ∈ Ln
(
ΠTG

(x, F (x, µ))
)
(t), x(t0) = x0 ∈ G,

for a.a. t ∈ [t0,+∞). If the projection operator ΠTG
satisfies

the conditions in Theorem 2.1, and if, in addition, ΠTG

is continuous (i.e., upper and lower semi-continuous), then
the existence of slow solutions of (10) is guaranteed [18].
Therefore, given (x, µ) ∈ bd(G) × Rp, it suffices to study
the singleton-valued map Ln

(
ΠTG

(x, F (x, µ))
)
. •

Remark 5.4 (Projection operator for continuously differ-
entiable optimization). If f, g ∈ C1, then the projection
operator in (10a) reduces to the singleton-valued map

ΠTG
(x, F (x, µ)) = F (x, µ)−max

{
0, 〈F (x, µ), π∗g(x)〉

}
π∗g(x),

since F (x, µ) = −A>(Ax− b+ µ)−∇f(x), and π∗g(x) =∑
k∈K(x) ν

∗
k∇gk(x) ∈ N ]

G(x), with ν∗ as the unique maxi-
mizer determined by the (sub-)optimization problem

sup
ν∈Rm

{〈
F (x, µ),

∑
k∈K(x)

νk∇gk(x)
〉 ∣∣∣ ν � 0,∥∥∥ ∑

k∈K(x)

νk∇gk(x)
∥∥∥
2

= 1

}
.

(12)

Since F is singleton-valued, it follows ΠTG
(x, F (x, µ)) =

Ln
(
ΠTG

(x, F (x, µ))
)
, and therefore, any solution (x, µ) :

[t0,+∞)→ G× Rp of (10) is also a slow solution. •
We now establish convergence properties of (10) by means

of a relationship between solutions of the saddle-point dy-
namics F [ and the saddle-point-like dynamics F ].

Lemma 5.5 (Relationship of solutions). For any (x, µ) ∈
G× Rp, let κ ∈ R≥0 satisfy the inequality

κ ≥ sup
ξ∈F (x,µ)

max
{

0, 〈ξ, π∗g(ξ)〉
}
, (13)

where π∗g(ξ) = argmaxπg∈N]
G(x)〈ξ, πg〉. Then, the inclusion

F ](x, µ) ⊂ F [(x, µ) holds for all (x, µ) ∈ G× Rp.

Note that the inclusion in Lemma 5.5 may be strict and,
in general, the set of solutions of (7) is richer than the set
of solutions of (10). Building on the previous lemma, our
next contribution characterizes point-wise convergence of
solutions of (10) to the set of primal-dual solutions X ×M .

Theorem 5.6 (Point-wise convergence). Any viable solution
(x, µ) : [t0,+∞)→ G×Rp of (10) starting from (x0, µ0) ∈
G× Rp converges asymptotically to a point in X ×M .

C. Distributed Implementation
In what follows, we show that the proposed saddle-point-

like algorithm (10) is well-suited for distributed implementa-
tion. Consider the network model introduced in Section III.
If (x, µ) ∈ int(G) × Rp, then each agent i ∈ {1, . . . , n}
implements its dynamics defined by the flow (9), i.e.,

ẋi +
∑

{`:a`i 6=0}

a`i

( ∑
{j:a`j 6=0}

a`jxj − b` + µ`

)
∈ −∂fi(xi),

and some dual dynamics defined by (10b), i.e.,

µ̇` =
∑

{i:a`i 6=0}

a`ixi − b`,

where ` ∈ {1, . . . ,m}. Hence, in order for agent i to be
able to implement its corresponding dynamics (10a), it also
needs access to certain dual components µ` for which a`i 6=
0. However, if (x, µ) ∈ bd(G) × Rp, then each agent i ∈
{1, . . . , n} implements its dynamics defined by (10a), i.e.,

ẋi ∈
⋃

ξi∈Fi(x,µ)

ξi −max

{
0,

∑
{j:π∗

gj
6=0}

ξjπ
∗
gj

}
π∗gi ,

where Fi(x, µ) denotes the set of ith components of F , and
π∗gi is the ith component of the maximizer of (11). Hence,
if the state of an agent is involved in the active inequality
constraints, it needs to solve (11) and communicate the
solution π∗g to its neighbors. Note that (11) requires only
local information. We say the dynamics (10) are distributed
over G when the following conditions are satisfied:
(C1) for each i ∈ {1, . . . , n}, agent i knows its own state

xi ∈ R and its local cost function fi,
(C2) agent i has access to its neighbors decision variables

xj ∈ R, their local cost functions fj , and
(i) the non-zero elements of every row of A ∈ Rp×n

for which a`i 6= 0, and
(ii) every b` ∈ R for which a`i 6= 0, and

(iii) has knowledge of the active inequality functions
gk in which it is involved.

VI. SIMULATIONS

Consider a linear model predictive control setup for a
network of agents with coupling constraints, whose aim is to
compute a control input sequence that simultaneously mini-
mizes the actuation effort and the network state. Formally,

minimize
{u(k|t)}k

1

2

t+N−1∑
k=t

‖x(k + 1|t)‖2Q + ‖u(k|t)‖2R

subject to x(k + 1|t) = Sx(k|t) + Pu(k|t), x(t|t) = x(t),

Cx(k|t) +Du(k|t) ≤ 1m,∀k ∈ [t, t+N − 1],



where x(k|t) ∈ Rn and u(k|t) ∈ Rn are the network state
and control input, predicted at time t ∈ R over the horizon
N . Let ‖x‖2Q = 〈x,Qx〉, and let Q,R ∈ Rn×n be such that
Q = Q> � 0 and R = R> � 0. The initial condition xi(t|t)
is known to agent i ∈ {1, . . . , n} and its neighbors. Note that
the network topology is encoded in the sparsity structure of
the matrices S, P ∈ Rn×n and C,D ∈ Rm×n.

Each agent can be interpreted as a subsystem whose dy-
namics are influenced by the predicted states of neighboring
agents. Here, every agent knows the dynamics of its own
subsystem and those of its neighbors, but not the entire
network dynamics. We consider only discrete-time systems
(S, P ) that are controllable. The prediction horizon N is
chosen such that stability of the overall model predictive
control setup is guaranteed. At every iteration step, a solution
to the problem is a sequence of predicted open-loop optimal
controls u∗(·|t) = {u∗(k|t), . . . , u∗(t + N − 1|t)}, where
only u∗(t) = u∗(t|t) is implemented to the network system.

To express the model predictive control problem as a
convex optimization problem of the form (4), we introduce
the vector of variables x(·|t) = (x(k + 1|t), . . . , x(t +
N |t), u(k|t), . . . , u(t+N−1|t)) ∈ R2Nn. The equality con-
straints of (4) are determined by the matrix A ∈ RNn×2Nn,

A =


In 0n · · · 0n −P 0n · · · 0n
−S In · · · 0n 0n −P · · · 0n

...
. . . . . .

...
...

. . . . . .
...

0n 0n · · · In 0n 0n · · · −P

 ,

and the vector b = (Sx(t|t), 0, . . . , 0) ∈ RNn, where
In, 0n ∈ Rn×n denote the identity and zero matrices,
respectively. Similarly, the inequality constraint function g :
R2Nn → RNm is characterized by

g(x) =


C 0m · · · 0m D 0m · · · 0m
0m C · · · 0m 0m D · · · 0m

...
. . . . . .

...
...

. . . . . .
...

0m 0m · · · C 0m 0m · · · D

x−


1m
1m

...
1m

 ,

where 0m ∈ Rm×n. Note that the objective function in the
model predictive control setup is separable only for diagonal
weighting matrices Q and R. Let Q = R = In. Hence, the
problem can be equivalently stated as

minimize
x∈R2Nn

f(x) =
1

2

t+N−1∑
k=t

n∑
i=1

xi(k + 1|t)2 + ui(k|t)2

subject to Ax = b, g(x) � 0.

Consider the network dynamics and constraints as given
in Figure 1(a) with a prediction horizon N = 4. The
total number of primal-dual variables of algorithm (10) is
2Nn + N = 68. In this setup, each agent i is responsible
for its own 2N = 8 variables in x and µ, and also for
the variables from its neighbors with respect to the network
topology depicted in Figure 1(b). Note that agent 5 and its
neighbors incorporate additional N = 4 variables related to
the control input sequence over the prediction horizon.

When implementing the algorithm (10), we use a first-
order Euler approximation with stepsize 0.008. For every
iteration step, we use ‖Ax − b‖2 ≤ ε with ε = 0.001

as stopping criteria for the dynamics and perform a warm-
start of the algorithm with the steady-state variables obtained
from the previous iteration step. At every iteration step,
the implementation of (10) requires agent 5 to compute
its optimal control sequence over the prediction horizon,
i.e., {u5(k|t), . . . , u5(t + N − 1|t)}. In addition, all agents
i ∈ {1, . . . , 8} compute their predicted open-loop state evo-
lutions over the horizon, i.e., {xi(k+ 1|t), . . . , xi(t+N |t)}.

Figure 2 shows the result of the iterative implementation
of (10). Once the optimal control and network states over
the prediction horizon are computed (corresponding to the
steady-state values in Figures 2(d)-(e) for every iteration),
they are implemented by their respective agents. This results
in the predicted open-loop and closed-loop network evolu-
tion depicted in Figure 2(a) and the associated open-loop
and closed-loop optimal control input as shown in Figure
2(b). Note that the projection operator used prevents the
trajectories of (10) from violating the viability condition
at any time. The equality constraint violation is plotted in
Figure 2(c) and the LaSalle function is illustrated in 2(f).
Clearly, the algorithm (10) converges asymptotically in every
iteration step and thus, agent 5 steers the network state to
zero under minimal actuation effort.

VII. CONCLUSIONS

We have developed continuous-time coordination algo-
rithms for networks of agents that seek to collectively solve
a class of constrained convex optimization problems with
an inherent distributed structure. Based on an augmented
Lagrangian function, we have proposed saddle-point(-like)
dynamics that converge point-wise to the set of solutions
of the convex program. The dynamics are amenable for
distributed implementation in the sense that each individual
agent asymptotically finds its component of the optimal
solution vector by sharing its state with its neighbors. Future
work will seek to characterize the convergence rate of the
proposed dynamics and its robustness properties against
disturbances and noise.
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