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Self-triggered and team-triggered control of

networked cyber-physical systems

Cameron Nowzari Jorge Cortés

I. INTRODUCTION

This chapter describes triggered control approaches for the coordination of networked cyber-

physical systems. Given the coverage of the other chapters of this book, our focus is on self-

triggered control and a novel approach we term team-triggered control.

The basic idea behind triggered approaches for controlled dynamical systems is to oppor-

tunistically select when to execute certain actions (e.g., update the actuation signal, sense some

data, communicate some information) in order to efficiently perform various control tasks. Such

approaches trade computation for sensing, actuation, or communication effort and give rise to

real-time controllers that do not need to perform these actions continuously, or even periodically,

in order for the system to function according to a desired level of performance. Triggered

approaches for control become even more relevant in the context of networked cyber-physical

systems, where computation, actuation, sensing and communication capabilities might not be

collocated. The successful operation of networked systems critically relies on the acquisition

and transmission of information across different subsystems, which adds an additional layer

of complexity for controller design and analysis. In fact, a given triggered controller might be

implementable over some networks and not over others, depending on the requirements imposed

by the triggers on the information flow across the individual subsystems.

In event-triggered control, the focus is on detecting events during the system execution that

are relevant from the point of view of task completion in order to trigger appropriate actions.
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Event-triggered strategies result in good performance but require continuous access to some state

or output to be able to monitor the possibility of an event being triggered at any time. This can

be especially costly to implement when executed over networked systems (for instance, if the

availability of information relies on continuous agent-to-agent communication). Other chapters

in this book alleviate this issue by considering periodic or data-sampled event-triggered control,

where the triggers are only checked when information is available, but this may still be inefficient

if the events are not triggered often.

In self-triggered control, the emphasis is instead on developing tests that rely only on current

information available to the decision maker to schedule future actions (e.g., when to measure

the state again, when to recompute the control input and update the actuator signals, or when

to communicate information). To do so, this approach relies critically on abstractions about

how the system might behave in the future given the information available now. Self-triggered

strategies can be made robust to uncertainties (since they can naturally be accounted for in

the abstractions) and more easily amenable to distributed implementation. However, they often

result in conservative executions because of the inherent over-approximation about the state of

the system associated to the given abstractions. Intuitively, it makes sense to believe that the more

accurate a given abstraction describes the system behavior, the less conservative the resulting self-

triggered controller implementation. This is especially so in the context of networked systems,

where individual agents need to maintain various abstractions about the state of their neighbors,

the environment, or even the network.

The team-triggered approach builds on the strengths of event- and self-triggered control to

synthesize a unified approach for controlling networked systems in real time that combines the

best of both worlds. The approach is based on agents making promises to one another about their

future states and being responsible for warning each other if they later decide to break them.

This is reminiscent of event-triggered implementations. Promises can be broad, from tight state

trajectories to loose descriptions of reachability sets. With the information provided by promises,

individual agents can autonomously determine what time in the future fresh information is needed

to maintain a desired level of performance. This is reminiscent of self-triggered implementations.

A benefit of the strategy is that because of the availability of the promises, agents do not

require continuous state information about their neighbors. Also, because of the extra information

provided by promises about what other agents plan to do, agents can operate more efficiently
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and less conservatively compared to self-triggered strategies where worst-case conditions must

always be considered.

A. Related work

The other chapters of this book provide a broad panoramic view of the relevant literature

on general event- and self-triggered control of dynamical systems [1], [2], [3], so we focus

here on networked systems understood in a broad sense. The predominant paradigm is that of a

single plant that is stabilized through a decentralized triggered controller over a sensor-actuator

network, see e.g. [4], [5], [6]. Fewer works have considered scenarios where multiple plants or

agents together are the subject of the overall control design, where the synthesis of appropriate

triggers raises novel challenges due to the lack of centralized decision making and the local

agent-to-agent interactions. Exceptions include consensus via event-triggered [7], [8], [9] or

self-triggered control [7], rendezvous [10], collision avoidance while performing point-to-point

reconfiguration [11], distributed optimization [12], [13], [14], model predictive control [15],

and model-based event-triggered control [16], [17]. The works in [7], [18] implement self-

triggered communication schemes to perform distributed control where agents assume worst-

case conditions for other agents when deciding when new information should be obtained.

Distributed strategies based on event-triggered communication and control are explored in [19],

where each agent has an a priori determined local error tolerance, and once it violates it the agent

broadcasts its updated state to its neighbors. The same event-triggered approach is taken in [20]

to implement gradient control laws that achieve distributed optimization. In the interconnected

system considered in [16], each subsystem helps neighboring subsystems by monitoring their

estimates and ensuring that they stay within some performance bounds. The approach requires

different subsystems to have synchronized estimates of one another even though they do not

communicate at all times. In [21], [22], agents do not have continuous availability of information

from neighbors and instead decide when to broadcast new information to them, which is more

in line with the work we present here.

B. Notation

Here we collect some basic notation used throughout the paper. We let R, R≥0, and Z≥0 be

the sets of real, nonnegative real, and nonnegative integer numbers, respectively. We use ‖ · ‖ to
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denote the Euclidean distance. Given p and q ∈ Rd, [p, q] ⊂ Rd is the closed line segment with

extreme points p and q, and B(p, r) = {q ∈ Rd | ‖q − p‖ ≤ r} is the closed ball centered at

p with radius r ∈ R≥0. Given v ∈ Rd \ {0}, unit(v) is the unit vector in the direction of v. A

function α : R≥0 → R≥0 belongs to class K if it is continuous, strictly increasing, and α(0) = 0.

A function β : R≥0×R≥0 → R≥0 belongs to class KL if for each fixed r, β(r, s) is nonincreasing

with respect to s and lims→∞ β(r, s) = 0, and for each fixed s, β(·, s) ∈ K. For a set S, we

let ∂S denote its boundary and Pcc(S) denote the collection of compact and connected subsets

of S.

II. SELF-TRIGGERED CONTROL OF A SINGLE PLANT

In this section, we review the main ideas behind the self-triggered approach for the control

of a single plant. Our starting point is the availability of a controller that, when implemented in

continuous time, asymptotically stabilizes the system and is certified by a Lyapunov function.

For a constant input, the decision maker can compute the future evolution of the system given the

current state (using abstractions of the system behavior), and determine what time in the future

the controller should be updated. For simplicity, we present the discussion for a linear control

system, although the results are valid for more general scenarios, such as nonlinear systems

for which a controller is available that makes the closed-loop system input-to-state stable. The

exposition closely follows [23].

A. Problem statement

Consider a linear control system

ẋ = Ax+Bu, (1)

with x ∈ Rn and u ∈ Rm, for which there exists a linear feedback controller u = Kx such that

the closed-loop system

ẋ = (A+BK)x,

is asymptotically stable. Given a positive definite matrix Q ∈ Rn×n, let P ∈ Rn×n be the unique

solution to the Lyapunov equation (A+ BK)TP + P (A+ BK) = −Q. Then, the evolution of

the Lyapunov function Vc(x) = xTPx along the trajectories of the closed-loop system is

V̇c = xT ((A+BK)TP + P (A+BK))x = −xTQx.
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Consider now a sample-and-hold implementation of the controller, where the input is not

updated continuously, but instead at a sequence of to-be-determined times {t`}`∈Z≥0
⊂ R≥0,

u(t) = Kx(t`), t ∈ [t`, t`+1). (2)

Such an implementation makes sense in practical scenarios given the inherent nature of digital

systems. Under this controller implementation, the closed-loop system can be written as

ẋ = (A+BK)x+BKe,

where e(t) = x(t`) − x(t), t ∈ [t`, t`+1), is the state error. Then, the objective is to determine

the sequence of times {t`}`∈Z≥0
to guarantee some desired level of performance for the resulting

system. To make this concrete, define the function

V (t, x0) = x(t)TPx(t),

for a given initial condition x(0) = x0 (here, t 7→ x(t) denotes the evolution of the closed-

loop system using (2)). We define the performance of the system by means of a function S :

R≥0 × Rn → R≥0 that upper bounds the evolution of V . Then, the sequence of times {t`} can

be implicitly defined as the times at which

V (t, x0) ≤ S(t, x0) (3)

is not satisfied. As stated, this is an event-triggered condition, that updates the actuator signal

whenever V (t`, x0) = S(t`, x0). Assuming solutions are well defined, it is not difficult to see that

if the performance function satisfies S(t, x0) ≤ β(t, |x0|), for some β ∈ KL, then the closed-loop

system is globally uniformly asymptotically stable. Moreover, if β is an exponential function,

the system is globally uniformly exponentially stable.

Therefore, one only needs to guarantee the lack of Zeno behavior. We do this by choosing

the performance function S so that the inter-event times t`+1 − t` are lower bounded by some

constant positive quantity. This can be done in a number of ways. For the linear system (1), it

turns out that it is sufficient to select S satisfying V̇ (t`) < Ṡ(t`) at the event times t` (this fact

is formally stated below in Theorem II.1). To do so, choose R ∈ Rn×n positive definite such

that Q − R is also positive definite. Then, there exists a Hurwitz matrix As ∈ Rn×n such that

the Lyapunov equation

ATs P + PAs = −R
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holds. Consider the hybrid system,

ẋs = Asxs, t ∈ [t`, t`+1),

xs(t`) = x(t`),

whose trajectories we denote by t 7→ xs(t), and define the performance function S by

S(t) = xTs (t)Pxs(t).

B. Self-triggered control policy

Under the event-triggered controller implementation described above, the decision maker needs

access to the exact state at all times in order to monitor the condition (3). Here we illustrate

how the self-triggered approach, instead, proceeds to construct an abstraction that captures the

system behavior given the available information and uses it to determine what time in the future

the condition might be violated (eliminating the need to continuously monitor the state).

For the particular case considered here, where the dynamics (1) are linear and deterministic,

and no disturbances are present, it is a possible to exactly compute, at any given time t`, the

future evolution of the state, and hence how long t`+1 − t` will elapse until the condition (3) is

enabled again. In general this is not possible, and one instead builds an abstraction that over-

approximates this evolution, resulting in a trigger that generates inter-event times which lower

bound the inter-event times generated by (3). This explains why the self-triggered approach

generally results in more conservative implementations than the event-triggered approach, but

comes with the benefit of not requiring continuous state information.

Letting y = [xT , eT ]T ∈ Rn × Rn, we write the continuous-time dynamics as

ẏ = Fy, t ∈ [t`, t`+1),

where

F =

 A+BK BK

−A−BK −BK

 .
With a slight abuse of notation, we let y` = [xT (t`), 0

T ]T be the state y at time t`. Note that

e(t`) = 0, for all ` ∈ Z≥0, by definition of the update times. With this notation, we can rewrite

S(t) = (CeFs(t−t`)y`)
TP (CeFs(t−t`)y`),

V (t) = (CeF (t−t`)y`)
TP (CeF (t−t`)y`),
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where

Fs =

As 0

0 0

 , C =
[
I 0

]
.

The condition (3) can then be rewritten as

f(t, y`) = yT` (eF
T (t−t`)CTPCeF (t−t`) − eFT

s (t−t`)CTPCeFs(t−t`))y` ≤ 0.

What is interesting about this expression is that it clearly reveals the important fact that, with

the information available at time t`, the decision maker can determine the next time t`+1 at

which (3) is violated by computing t`+1 = h(x(t`)) as the time for which

f(h(x(t`)), y`) = 0. (4)

The following result from [23] provides a uniform lower bound tmin on the inter-event times

{t`+1 − t`}`∈Z≥0
.

Theorem II.1 (Lower bound on inter-event times for self-triggered approach) Given the sys-

tem (1) with controller (2) and controller updates given by the self-triggered policy (4), the

inter-event times are lower bounded by

tmin = min{t ∈ R>0 | det(M(t)) = 0} > 0,

where

M(t) =
[
I 0

] (
eFtCTPCeFt − eFstCTPCeFst

)I
0

 .
Note that the above result can also be interpreted in the context of a periodic controller

implementation: any period less than or equal to tmin results in a closed-loop system with

asymptotic stability guarantees.

Remark II.2 (Triggered sampling vs triggered control) We must make an important distinc-

tion here between triggered control and triggered sampling (or more generally, any type of data

acquisition). Due to the deterministic nature of the general linear system discussed in this section,

the answers to the questions

• when should a sample of the state be taken?

• when should the control signal to the system be updated?
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are identical. In general, if there are disturbances in the system dynamics, the answers to

these questions will not coincide. This might be further complicated in cases when the sensor

and the actuator are not collocated, and the sharing of information between them is done via

communication. The simplest implementation in this case would be to update the control signal

each time a sample is taken; however, in cases where computing or applying a control signal is

expensive, it may be more beneficial to use a hybrid strategy combining self-triggered sampling

with event-triggered control, as in [24]. •

III. DISTRIBUTED SELF-TRIGGERED CONTROL

In this section, we expand our previous discussion with a focus on networked cyber-physical

systems. Our main objective is to explain and deal with the issues that come forward when

pushing the triggered approach from controlling a single plant, as considered in Section II,

to coordinating multiple cooperating agents. We consider networked systems whose interaction

topology is modeled by a graph that captures how information is transmitted (via, for instance,

sensing or communication). In such scenarios, each individual agent does not have access to

all the network information at any given time, but instead interacts with a set of neighboring

agents. In our forthcoming discussion, we pay attention to the following challenges specific to

these networked problems. Firstly, the trigger designs now need to be made for individuals,

as opposed to a single centralized decision maker. Triggers such as (3) or (4) rely on global

information about the network state, which the agents do not possess in general. Therefore, the

challenge is finding ways in which such conditions can be allocated among the individuals. This

brings to the forefront the issue of access to information and the need for useful abstractions

about the behavior of other agents. Secondly, the design of independent triggers that each agent

can evaluate with the information available to it naturally gives rise to asynchronous network

executions, in which events are triggered by different agents at different times. This ‘active’

form of asynchronism poses challenges for the correctness and convergence analysis of the

coordination algorithms, and further complicates ruling out the presence of Zeno behavior. Before

getting into the description of triggered control approaches, we provide a formal description of

the model for networked cyber-physical systems and the overall team objective.
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A. Network model and problem statement

We begin by describing the model for the network of agents. In order to simplify the general

discussion, we make a number of simplifying assumptions, such as linear agent dynamics or time-

invariant interaction topology. However, when considering more specific classes of problems, it

is often possible to drop some of these assumptions.

Consider N agents whose interaction topology is described by an undirected graph G. The fact

that (i, j) belongs to the edge set E models the ability of agents i and j to communicate with

one another. The set of all agents that i can communicate with is given by its set of neighbors

N (i) in the graph G. The state of agent i ∈ {1, . . . , N}, denoted xi, belongs to a closed set

Xi ⊂ Rni . We assume that each agent has access to its own state at all times. According to our

model, agent i can access xiN =
(
xi, {xj}j∈N (i)

)
when it communicates with its neighbors. The

network state x = (x1, . . . , xN) belongs to X =
∏N

i=1Xi. We consider linear dynamics for each

i ∈ {1, . . . , N},

ẋi = Aixi +Biui, (5)

with block diagonal Ai ∈ Rni×ni , Bi ∈ Rni×mi , and ui ∈ Ui. Here, Ui ⊂ Rmi is a closed set

of allowable controls for agent i. We assume that the pair (Ai, Bi) is controllable with controls

taking values in Ui. Letting u = (u1, . . . , uN) ∈
∏N

i=1 Ui, the dynamics of the entire network is

described by

ẋ = Ax+Bu, (6)

with A = diag (A1, . . . , AN) ∈ Rn×n and B = diag (B1, . . . , BN) ∈ Rn×m, where n =
∑N

i=1 ni,

and m =
∑N

i=1mi.

The goal of the network is to drive the agents’ states to some desired closed set of configura-

tions D ⊂ X and ensure that it stays there. Depending on how the set D is defined, this goal can

capture different coordination tasks, including deployment, rendezvous, and formation control,

see e.g. [25]. Our objective here is to design provably correct triggered coordination strategies

that agents can implement to achieve this goal. With this in mind, given the agent dynamics,

the communication graph G, and the set D, our starting point is the availability of a distributed,

continuous control law that drives the system asymptotically to D. Formally, we assume that a

continuous map u∗ : X → Rm and a continuously differentiable function V : X → R, bounded
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from below exist such that D is the set of minimizers of V and, for all x /∈ D,

∇iV (x) (Aixi +Biu
∗
i (x)) ≤ 0, i ∈ {1, . . . , N}, (7a)

N∑
i=1

∇iV (x) (Aixi +Biu
∗
i (x)) < 0. (7b)

We assume that both the control law u∗ and the gradient ∇V are distributed over G. By this we

mean that, for each i ∈ {1, . . . , N}, the ith component of each of these objects only depends on

xiN , rather than on the full network state x. For simplicity, and with a slight abuse of notation,

we write u∗i (x
i
N ) and ∇iV (xiN ) to emphasize this fact when convenient. This property has

the important consequence that agent i can compute u∗i and ∇iV with the exact information

it can obtain through communication on G. We note that here we only consider the goal of

achieving asymptotic stability of the system, with no specification on the performance S as we

did in Section II. For specific problems, one could reason with similar performance function

requirements.

From an implementation viewpoint, the controller u∗ requires continuous agent-to-agent com-

munication and continuous updates of the actuator signals. The triggered coordination strategies

that we review next seek to select the time instants at which information should be acquired in an

opportunistic way, such that the resulting implementation still enjoys certificates on correctness

and performance similar to that of the original controller. The basic general idea is to design

implementations that guarantee that the time derivative of the Lyapunov function V introduced

in Section III-A along the solutions of the network dynamics (6) is less than or equal to 0 at all

times, even though the information available to the agents is partial and possibly inexact.

Remark III.1 (Triggered sampling, communication, and control) In light of Remark II.2,

the consideration of a networked cyber-physical system adds a third independent question that

each agent of the network must answer:

• when should I sample the (local) state of the system?

• when should I update the (local) control input to the system?

• when should I communicate with my neighbors?

Even more, to answer these questions, the decision maker has now changed from a single one

with complete information on a single plant to multiple agents with partial information about

the network. For simplicity, and to emphasize the network aspect, we assume that agents have
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continuous access to their own state and that control signals are updated each time communication

with neighbors occur. We refer the interested reader to [16], [20] where these questions are

considered independently in specific classes of systems. •

B. Event-triggered communication and control

In this section we see how an event-triggered implementation of the continuous control law u∗

might be realized using (7).

Let t` for some ` ∈ Z≥0 be the last time at which all agents have received information from

their neighbors. We are then interested at what time t`+1 the agents should communicate again.

In-between updates, the simplest estimate that an agent i maintains about a neighbor j ∈ N (i)

is the zero-order hold given by

x̂ij(t) = xj(t`), t ∈ [t`, t`+1). (8)

Recall that agent i always has access to its own state. Therefore, x̂iN (t) = (xi(t), {x̂ij(t)}j∈N (i))

is the information available to agent i at time t. The implemented controller is then given by

x̂ij(t) = xj(t`), uevent
i (t) = u∗i (x̂

i
N (t`)),

for t ∈ [t`, t`+1). We only consider the zero-order hold here for simplicity, although one could

also implement more elaborate schemes for estimating the state of neighboring agents given the

sampled information available, and use this for the controller implementation.

The time t`+1 at which an update becomes necessary is determined by the first time after t`

that the time derivative of V along the trajectory of (6) with u = uevent is no longer negative.

Formally, the event for when agents should request updated information is

d

dt
V (x(t`+1)) =

N∑
i=1

∇iV (x(t`+1)) (Aixi(t`+1) +Biu
event
i (t`)) = 0. (9)

Two reasons may cause (9) to be satisfied. One reason is that the zero-order hold control uevent(t)

for t ∈ [t`, t`+1) has become too outdated, causing an update at time t`+1. Until (9) is satisfied, it

is not necessary to update state information because inequality (7b) implies that d
dt
V (x(t)) < 0

for t ∈ [t`, t`+1) if x(t`) /∈ D given that all agents have exact information at t` and d
dt
V (x(t`)) < 0

by continuity of d
dt
V (x). The other reason is simply that x(t`+1) ∈ D and thus the system has

reached its desired configuration.
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Unfortunately, (9) cannot be checked in a distributed way because it requires global in-

formation. Instead, one can define a local event that implicitly defines when a single agent

i ∈ {1, . . . , N} should update its information. Letting ti` be some time at which agent i receives

updated information, ti`+1 ≥ ti` is the first time such that

∇iV (x(ti`+1))
(
Aixi(t

i
`+1) +Biu

event
i (ti`)

)
= 0. (10)

This means that as long as each agent i can ensure the local event (10) has not yet occurred, it is

guaranteed that (9) has not yet occurred either. Note that this is a sufficient condition for (9) not

being satisfied, but not necessary. There may be other ways of distributing the global trigger (9)

for more specific classes of problems. Although this can now be monitored in a distributed way,

the problem with this approach is that each agent i ∈ {1, . . . , N} needs to have continuous access

to information about the state of its neighbors N (i) in order to evaluate ∇iV (x) = ∇iV (xiN )

and check condition (10). This requirement may make the event-triggered approach impractical

when this information is only available through communication. Note that this does not mean

it is impossible to perform event-triggered communication strategies in a distributed way, but

it requires a way for agents to use only their own information to monitor some meaningful

event. An example problem where this can be done is provided in [26], [27], where agents use

event-triggered broadcasting to solve the consensus problem.

C. Self-triggered communication and control

In this section we design a self-triggered communication and control strategy of the con-

troller u∗ by building on the discussion in Section III-B. To achieve this, the basic idea is

to remove the requirement on continuous availability of information to check the test (10) by

providing agents with possibly inexact information about the state of their neighbors.

To do so, we begin by introducing the notion of reachability sets. Given y ∈ Xi, let Ri(s, y)

be the set of reachable points under (5) starting from y in s seconds,

Ri(s, y) = {z ∈ Xi | ∃ui : [0, s]→ Ui such that z = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Assuming here that agents have exact knowledge about the dynamics and control sets of their

neighboring agents, each time an agent receives state information, it can construct sets that are
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guaranteed to contain their neighbors’ states in the future. Formally, if t` is the time at which

agent i receives state information xj(t`) from its neighbor j ∈ N (i), then

Xi
j(t, xj(t`)) = Rj(t− t`, xj(t`)) ⊂ Xj (11)

is guaranteed to contain xj(t) for all t ≥ t`. We refer to these sets as guaranteed sets. These

capture notion of abstractions of the system behavior that we discussed in Section II when

synthesizing a self-triggered control policy for a single plant. For simplicity, we let Xi
j(t) =

Xi
j(t, xj(t`)) when the starting state xj(t`) and time t` do not need to be emphasized. We denote

by Xi
N (t) = (xi(t), {Xi

j(t)}j∈N (i)) the information available to an agent i at time t.

With the guaranteed sets in place, we can now provide a test using inexact information to

determine when new, up-to-date information is required. Let ti` be the last time at which agent i

received updated information from its neighbors. Until the next time ti`+1 information is obtained,

agent i uses the zero-order hold estimate and control

x̂ij(t) = xj(t
i
`), uself

i (t) = u∗i (x̂
i
N (ti`)),

for t ∈ [ti`, t
i
`+1) and j ∈ N (i). As noted before, the consideration of zero-order hold is only

made to simplify the exposition. At time ti`, agent i computes the next time ti`+1 ≥ ti` at which

information should be acquired via

sup
yN∈Xi

N (ti`+1)

∇iV (yN )
(
Aixi(t

i
`+1) +Biu

self
i (ti`)

)
= 0. (12)

By (7a) and the fact that Xi
j(t

i
`) = {xj(ti`)}, at time ti` we have

sup
yN∈Xi

N (ti`)

∇iV (yN )
(
Aixi(t

i
`) +Biu

self
i (ti`)

)
= ∇iV (xiN (ti`))

(
Aixi(t

i
`) +Biu

self
i (ti`)

)
≤ 0.

If all agents use this triggering criterium for updating information, it is guaranteed that d
dt
V (x(t)) ≤

0 at all times because, for each i ∈ {1, . . . , N}, the true state xj(t) is guaranteed to be in Xi
j(t)

for all j ∈ N (i) and t ≥ ti`.

The condition (12) is appealing because it can be solved by agent i with the information

it possesses at time ti`. Once determined, agent i schedules that, at time ti`+1, it will request

updated information from its neighbors. The term self-triggered captures the fact that each agent

is now responsible for deciding when it requires new information. We refer to ti`+1 − ti` as the

self-triggered request time of agent i ∈ {1, . . . , N}. Due to the conservative way in which ti`+1 is
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determined, it is possible that ti`+1 = ti` for some i, which would mean that continuous information

updates are necessary (it should be noted that this cannot happen for all i ∈ {1, . . . , N} unless

the network state is already in D). For a given specific task (target set D, Lyapunov function V ,

and controller u∗), one might be able to discard this issue. In other cases, this can be dealt with

by introducing a dwell time such that a minimum amount of time must pass before an agent can

request new information. We do not enter into the details of this here, but instead show how it

can be done for a specific example in Section V.

The main convergence result for the distributed self-triggered approach is provided below. We

defer the sketch of the proof to Section IV as it becomes a direct consequence of Proposition IV.2.

Proposition III.2 For the network model and problem setup described in Section III-A, if each

agent executes the self-triggered algorithm presented above, the state of the entire network

asymptotically converges to the desired set D for all Zeno-free executions.

Note that the result is formulated for non-Zeno executions. As discussed above, dwell times

can be used to rule out Zeno behavior although we do not go into details here. The problem with

the distributed self-triggered approach is that the resulting times are often conservative because

the guaranteed sets can grow large quickly as they capture all possible trajectories of neighboring

agents. It is conceivable that improvements can be made from tuning the guaranteed sets based

on what neighboring agents plan to do rather than what they can do. This observation is at the

core of the team-triggered approach proposed next.

IV. TEAM-TRIGGERED CONTROL

Here we describe an approach that combines ideas from both event- and self-triggered control

for the coordination of networked cyber-physical systems. The team-triggered strategy incorpo-

rates the reactive nature of event-triggered approaches and, at the same time, endows individual

agents with the autonomy characteristics of self-triggered approaches to determine when and

what information is needed. Agents make promises to their neighbors about their future states

and inform them if these promises are violated later (hence the connection with event-triggered

control). These promises function as more accurate abstractions of the behavior of the other

entities than guaranteed sets introduced in Section III-C. This extra information allows each

agent to compute the next time that an update is required (which in general is longer than in
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the purely self-triggered implementation described in Section III) and request information from

their neighbors to guarantee the monotonicity of the Lyapunov function (hence the connection

with self-triggered control). Our exposition here follows [28].

A. Promise sets

Promises allow agents to predict the evolution of their neighbors more accurately than guaran-

teed sets, which in turn affects the overall network behavior. For our purposes here, a (control)

promise that agent j makes to agent i at some time t′ is a subset U ij ⊂ Uj of its allowable

control set. This promise conveys the meaning that agent j will only use controls u(t) ∈ U ij for

all t ≥ t′. Given the dynamics (5) of agent j and state xj(t′) at time t′, agent i can compute the

state promise set,

X i
j(t) = {z ∈ Xj | ∃uj : [t′, t] → U ij s.t. z = eAj(t−t′)xj(t) +

∫ t

t′
eAj(t−τ)Bjuj(τ)dτ}, (13)

for t ≥ t′. This means that as long as agent j keeps its promise at all times (i.e., uj(t) ∈ U ij
for all t ≥ t′), then xj(t) ∈ X i

j(t) for all t ≥ t′. We denote by X i
N (t) = (xi(t), {X i

j(t)}j∈N (i))

the information available to an agent i at time t. Since the promise U ij is a subset of agent j’s

allowable control set Uj , it follows that X i
j(t) ⊂ Xi

j(t) for all t ≥ t′ as well. This allows agent

i to operate with better information about agent j than it would by computing the guaranteed

sets (11) defined in Section III-C. Promises can be generated in different ways depending on

the desired task. For simplicity, we only consider static promises U ij here, although one could

also consider more complex time-varying promises [28].

In general, tight promises correspond to agents having good information about their neighbors,

which at the same time may result in an increased communication effort (since the promises

cannot be kept for long periods of time). Loose promises correspond to agents having to use more

conservative controls due to the lack of information, while at the same time potentially being

able to operate for longer periods of time without communicating (because promises are not

violated). These advantages rely on the assumption that promises hold throughout the evolution.

As the state of the network changes and the level of task completion evolves, agents might

decide to break former promises and make new ones. We discuss this process in Section IV-C.

Remark IV.1 (Controllers that operate on set-valued information) With the extra informa-

tion provided by promise sets, it is conceivable to design controllers that operate on set-valued
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information rather than point-valued information and go beyond zero-order state holds. For

simplicity, we only consider controllers that operate on points in our general exposition, but

illustrate how set-valued controllers can be defined in Section V. We refer the interested reader

to [28] for further details. •

B. Self-triggered communication and control

With the promise sets in place, we can now provide a test using the available information to

determine when new, up-to-date information is required.

Let ti` be the last time at which agent i received updated information from its neighbors. Until

the next time ti`+1 information is obtained, agent i uses the zero-order hold estimate and control

x̂ij(t) = xj(t
i
`), uteam

i (t) = u∗i (x̂
i
N (ti`)),

for t ∈ [ti`, t
i
`+1) and j ∈ N (i). At time ti`, agent i computes the next time ti`+1 ≥ ti` at which

information should be acquired via

sup
yN∈Xi

N (ti`+1)

∇iV (yN )
(
Aixi(t

i
`+1) +Biu

team
i (ti`)

)
= 0. (14)

By (7a) and the fact that X i
j(t

i
`) = {xj(ti`)}, at time ti` we have

sup
yN∈Xi

N (ti`)

∇iV (yN )
(
Aixi(t

i
`) +Biu

team
i (ti`)

)
= ∇iV (xiN (ti`))

(
Aixi(t

i
`) +Biu

team
i (ti`)

)
≤ 0.

If all agents use this triggering criterium for updating information, and all promises among

agents are kept at all times, it is guaranteed that d
dt
V (x(t)) ≤ 0 at all times because, for each

i ∈ {1, . . . , N}, the true state xj(t) is guaranteed to be in X i
j(t) for all j ∈ N (i) and t ≥ ti`.

As long as (14) has not yet occurred for all agents i ∈ {1, . . . , N} for some time t and the

promises have not been broken, assumptions (7) and the continuity of the LHS of (14) in time

guarantee

d

dt
V (x(t)) ≤

N∑
i=1

LiV sup(X i
N (t)) < 0. (15)

The condition (14) is again appealing because it can be solved by agent i with the information it

possesses at time ti`. In general, it gives rise to a longer inter-event time than the condition (12),

because the agents employ more accurate information about the future behavior of their neighbors

provided by the promises. However, as in the self-triggered method described in Section III-C
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and depending on the specific task, it is possible that ti`+1 = t` for some agent i, which means

this agent would need continuous information from its neighbors. If this is the case, the issue

can be dealt with by introducing a dwell time such that a minimum amount of time must pass

before an agent can request new information. We do not enter into the details of this here, but

instead refer to [28] for a detailed discussion. Finally, we note that the conclusions laid out

above only hold if promises among agents are kept at all times, which we address next.

C. Event-triggered information updates

Agent promises may need to be broken for a variety of reasons. For instance, an agent might

receive new information from its neighbors, causing it to change its former plans. Another

example is given by an agent that made a promise that is not able to keep for as long as it

anticipated. Consider an agent i ∈ {1, . . . , N} that has sent a promise U ji to a neighboring agent

j at some time tlast, resulting in the state promise set xi(t) ∈ Xj
i (t). If agent i ends up breaking

its promise at time t∗ > tlast, then it is responsible for sending a new promise U ji to agent j at

time tnext = t∗. This implies that agent i must keep track of promises made to its neighbors and

monitor them in case they are broken. This mechanism is implementable because each agent only

needs information about its own state and the promises it has made to determine whether the

trigger is satisfied. We also note that different notions of ‘broken promise’ are acceptable: this

might mean that ui(t∗) 6∈ U ji or the more flexible xi(t∗) /∈ Xj
i (t
∗). The latter has an advantage

in that it is not absolutely required that agent i use controls only in U ji , as long as the promise

set that agent j is operating with is still valid.

Reminiscent of the discussion on dwell times in Section IV-B, it may be possible for promises

to broken arbitrarily fast, resulting in Zeno executions. As before, it is possible to implement

a dwell time such that a minimum amount of time must pass before an agent can generate a

new promise. However, in this case, some additional consideration must be given to the fact that

agents might not always be operating with correct information in this case. For instance, if an

agent j has broken a promise to agent i but is not allowed to send a new one yet due to the dwell

time, agent i might be operating with false information. Such a problem can be addressed using

small warning messages that alert agents of this situation. Another issue that is important when

considering the transmission of messages is that communication might be unreliable, with delays,

packet drops, or noise. We refer to [28] for details on how these dwell times can be implemented
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while ensuring stability of the entire system in the presence of unreliable communication.

D. Convergence analysis of the team-triggered coordination policy

The combination of the self-triggered communication and control policy with the event-

triggered information updates gives rise to the team-triggered coordination policy, which is

formally presented in Algorithm 1. The self-triggered information request in this strategy is

executed by an agent anytime new information is received, whether it was actively requested by

the agent, or was received from some neighbor due to the breaking of a promise.

Algorithm 1 : Team-triggered coordination policy
(Self-triggered communication and control)
At any time t agent i ∈ {1, . . . , N} receives new promise(s) U i

j and position information xj(t) from neighbor(s) j ∈ N (i),

agent i performs:

1: update x̂ij(t
′) = xj(t) for t′ ≥ t

2: compute and maintain promise set Xi
j(t
′) for t′ ≥ t

3: compute own control uteam
i (t′) = u∗i (x̂

i
N (t)) for t′ ≥ t

4: compute first time t∗ ≥ t such that (14) is satisfied

5: schedule information request to neighbors in t∗ − t seconds

(Respond to information request)

At any time t a neighbor j ∈ N (i) requests information, agent i performs:

1: send current state information xi(t) to agent j

2: send new promise Uj
i to agent j

(Event-triggered information update)

At all times t, agent i performs:

1: if there exists j ∈ N (i) such that xi(t) /∈ Xj
i (t) then

2: send current state information xi(t) to agent j

3: send new promise Uj
i to agent j

4: end if

It is worth mentioning that the self-triggered approach described in Section III-C is a particular

case of the team-triggered approach, where the promises are simply the guaranteed (or reachable)

sets described in (11). In this scenario promises can never be broken so the event-triggered

information updates never occur. Therefore, the class of team-triggered strategies contains the

class of self-triggered strategies.

The following statement provides the main convergence result regarding distributed controller

implementations synthesized via the team-triggered approach.
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Proposition IV.2 For the network model and problem setup described in Section III-A, if each

agent executes the team-triggered coordination policy described in Algorithm 1, the state of the

entire network asymptotically converges to the desired set D for all Zeno-free executions.

Note that the result is only formulated for non-Zeno executions for simplicity of presentation.

As discussed, the absence of Zeno behavior can be guaranteed via dwell times for the self-

and event-triggered updates. In the following, we provide a proof sketch of this result that

highlights its key components. We refer the interested reader to our work [28] that provides a

detailed technical discussion that also accounts for the presence of dwell times in the event- and

self-triggered updates.

Our first observation is that the evolution of the Lyapunov function V along the trajectories

of the team-triggered coordination policy is nonincreasing by design. This is a consequence of

the analysis of Section IV-B, which holds under the assumption that promises are never broken,

together with the event-triggered updates described in Section IV-C, which guarantee that the

assumption holds. Then, the main challenge to establish the asymptotic convergence properties of

the team-triggered coordination policy is in dealing with its discontinuous nature. More precisely,

since the information possessed by any given agent are sets for each of its neighbors, promises

shrink to singletons when updated information is received. To make this point precise, let us

formally denote by

Si = Pcc(X1)× · · · × Pcc(Xi−1)×Xi × Pcc(Xi+1)× · · · × Pcc(XN),

the state space where the variables that agent i ∈ {1, . . . , N} possesses live. Note that this set

allows us to capture the fact that each agent i has perfect information about itself. Although agents

only have information about their neighbors, the above space considers agents having promise

information about all other agents to facilitate the analysis. This is only done to allow for a

simpler technical presentation, and does not impact the validity of the arguments. The space the

space that the state of the entire network lives in is then S =
∏N

i=1 Si. The information possessed

by all agents of the network at some time t is collected in(
X1(t), . . . , XN(t)

)
∈ S,

where X i(t) = (X i
1(t), . . . , X

i
N(t)) ∈ Si.

April 15, 2015 DRAFT



20

The team-triggered coordination policy corresponds to a discontinuous map of the form S ×

Z≥0 → S×Z≥0. The discontinuity makes it difficult to use standard stability methods to analyze

the convergence properties of the network. Our approach to this problem consists of defining a

set-valued map M : S×Z≥0 ⇒ S×Z≥0 with good continuity properties so that the trajectories

of

(Z(t`+1), `+ 1) ∈M(Z(t`), `).

contain the trajectories of the team-triggered coordination policy. Although this ‘over-approximation

procedure’ enlarges the set of trajectories to consider in the analysis, the gained benefit is that

of having a set-valued map with suitable continuity properties that is amenable to set-valued

stability analysis.

We conclude this section by giving an idea of how to define the set-valued map M , which

is essentially guided by the way information updates can happen under the team-triggered

coordination policy. Given (Z, `) ∈ S × Z≥0, we define the (N + 1)th component of all the

elements in M(Z, `) to be ` + 1 (this corresponds to evolution in time). The ith component of

the elements in M(Z, `) is the set given by one of following possibilities: (i) the case when agent

i does not receive any new information in this step, in which case the promise sets available

to agent i are simply propagated forward with respect to the promises made to it; (ii) the case

when agent i has received information from at least one neighbor j, in which case the promise

set X i
j becomes an exact point {xj} and all other promise sets are propagated forward as in

(i). Lumping together in a set the two possibilities for each agent gives rise to a set-valued

map with good continuity properties: formally, M is closed (a set-valued map T : X ⇒ Y

is closed if xk → x, yk → y and yk ∈ T (xk) imply that y ∈ T (x)). The proof then builds

on this construction, combined with the monotonic evolution of the Lyapunov function along

the trajectories of the team-triggered coordination policy, and employs a set-valued version of

LaSalle Invariance Principle, see [25], to establish the asymptotic convergence result stated in

Proposition IV.2.

V. ILLUSTRATIVE SCENARIO: OPTIMAL ROBOT DEPLOYMENT

In this section we illustrate the above discussion on self- and team-triggered design of dis-

tributed coordination algorithms in a scenario involving the optimal deployment of a robotic
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sensor network. We start by presenting the original problem formulation from [29], where the

authors provide continuous-time and periodic distributed algorithms to solve the problem. The

interested reader is referred to [25] for additional references and a general discussion on coverage

problems.

Consider a group of N agents moving in a convex polygon S ⊂ R2 with positions P =

(p1, . . . , pN). For simplicity, consider single-integrator dynamics

ṗi = ui, (16)

where ‖ui‖ ≤ vmax for all i ∈ {1, . . . , N} for some vmax > 0. The network objective is to achieve

optimal deployment as measured by the following locational optimization function H. The agent

performance at a point q of agent i degrades with ‖q − pi‖2. Assume a density φ : S → R is

available, with φ(q) reflecting the likelihood of an event happening at q. Consider then the

minimization of the function

H(P ) = Eφ
[

min
i∈{1,...,N}

‖q − pi‖2
]
. (17)

This formulation is applicable in scenarios where the agent closest to an event of interest is

the one responsible for it. Examples include servicing tasks, spatial sampling of random fields,

resource allocation, and event detection.

With regards to the problem statement in Section III-A, H plays the role of the function V

and the set D corresponds to the set of critical points of H. Let us next describe the distributed

continuous-time controller u∗. In order to do so, we need to recall some notions from compu-

tational geometry. A partition of S is a collection of N polygons W = {W1, . . . ,WN} with

disjoint interiors whose union is S. The Voronoi partition V(P ) = {V1, . . . , VN} of S generated

by the points P is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regions Vi and Vj share an edge, pi and pj are (Voronoi) neighbors. We denote

the neighbors of agent i by N (i). For Q ⊂ S, the mass and center of mass of Q with respect

to φ are

MQ =

∫
S

φ(q)dq, CQ =
1

MQ

∫
Q

qφ(q)dq.
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A tuple P = (p1, . . . , pN) is a centroidal Voronoi configuration if pi = CVi , for all i ∈ {1, . . . , N}.

The controller u∗ then simply corresponds to the gradient descent of the function H, whose ith

component is given by

−∂H
∂pi

= 2MVi(CVi − pi).

Remarkably, this continuous-time coordination strategy admits a periodic implementation without

the need of determining any stepsize in closed form. This design is based on the observation

that the function H can be rewritten in terms of the Voronoi partition as

H(P ) =
N∑
i=1

∫
Vi

‖q − pi‖2φ(q)dq,

which suggests the generalization of H given by

H(P,W) =
N∑
i=1

∫
Wi

‖q − pi‖2φ(q)dq, (18)

where W is a partition of S, and the ith agent is responsible of the “dominance region” Wi. The

function H in (18) is then to be minimized with respect to the locations P and the dominance

regions W . The key observations now are that: (i) for a fixed network configuration, the optimal

partition is the Voronoi partition, i.e.,

H(P,V(P )) ≤ H(P,W),

for any partition W of S, and (ii) for a fixed partition, the optimal agent positions are the

centroids, in fact,

H(P ′,W) ≤ H(P,W),

for any P ′, P such that ‖p′i − CWi
‖ ≤ ‖pi − CWi

‖, i ∈ {1, . . . , N}. These two facts together

naturally lead to a periodic implementation of the coordination policy u∗ where agents repeatedly

and synchronously acquire position information from their neighbors, update their own Voronoi

cell, and move towards their centroid. Both the continuous-time and periodic implementations

are guaranteed to make the network state asymptotically converge to the set of centroidal Voronoi

configurations.
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A. Self-triggered deployment algorithm

Here we describe a self-triggered implementation of the distributed coordination algorithm

for deployment described above. There are two key elements in our exposition. The first is the

notion of abstraction employed by individual agents about the behavior of their neighbors. In

this particular scenario, this gives rise to agents operating with spatial partitions under uncertain

information, which leads us to the second important element: the design of a controller that

operates on set-valued information rather than point-valued information. Our exposition here

follows [18].

Abstraction via maximum velocity bound: The notion of abstraction employed is based on the

maximum velocity bound for (16). In fact, an agent knows that any other neighbor cannot travel

farther than vmax∆t from its current position in ∆t seconds. Consequently, the reachable set of

an agent i ∈ {1, . . . , N} is

Ri(s, pi) = B(pi, svmax) ∩ S.

If t` denotes the time at which agent i has just received position information pj(t`) from a

neighboring agent j ∈ N (i), then the guaranteed set that agent i maintains about agent j is

Xi
j(t) = B(pj(t`), (t− t`)vmax) ∩ S,

which has the property that pj(t) ∈ Xi
j(t) for t ≥ t`. Figure 1(a) shows an illustration of this

concept. Agent i stores the data in Di(t) = (Xi
1(t), . . . ,X

i
N(t)) ⊂ SN (if agent i does not have

(a)

pi

pij

Xi
j

(b)

pi

pijX i
j

Fig. 1. Graphical representation of (a) guaranteed sets and (b) promise sets kept by agent i. In (b), dark regions correspond

to the promise sets given the promises U i
j .
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information about some agent j, we set Xi
j(t) = ∅) and the entire memory of the network is

D = (D1, . . . ,DN) ⊂ SN
2 .

Design of controller operating on set-valued information: Agents cannot compute the Voronoi

partition exactly with the data structure described above. However, they can still determine

lower and upper bounds on their exact Voronoi cell, as we describe next. Given a set of regions

D1, . . . , DN ⊂ S, each containing a site pi ∈ Di, the guaranteed Voronoi diagram of S generated

by D = (D1, . . . , DN) is the collection gV(D1, . . . , DN) = {gV1, . . . , gVN},

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

The guaranteed Voronoi diagram is not a partition of S, see Figure 2(a). The important fact

(a) (b)

Fig. 2. Guaranteed (a) and dual guaranteed (b) Voronoi diagrams.

for our purposes is that, for any collection of points pi ∈ Di, i ∈ {1, . . . , N}, the guaranteed

Voronoi diagram is contained in the Voronoi partition, i.e., gVi ⊂ Vi, i ∈ {1, . . . , N}. Each point

in the boundary of gVi belongs to the set

∆g
ij = {q ∈ S | max

x∈Di

‖q − x‖ = min
y∈Dj

‖q − y‖}, (19)

for some j 6= i. Note that ∆g
ij 6= ∆g

ji. Agent pj is a guaranteed Voronoi neighbor of pi if

∆g
ij ∩ ∂gVi is not empty nor a singleton. The set of guaranteed Voronoi neighbors of agent i

is gNi(D). In our scenario, the ‘uncertain’ regions for each agent correspond to the guaranteed

sets.
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One can also introduce the concept of dual guaranteed Voronoi diagram of S generated by

D1, . . . , DN , which is the collection of sets dgV(D1, . . . , DN) = {dgV1, . . . , dgVN} defined by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

A similar discussion can be carried out for this notion, cf. [18]. The most relevant fact for our

design is that for any collection of points pi ∈ Di, i ∈ {1, . . . , N}, the dual guaranteed Voronoi

diagram contains the Voronoi partition, i.e., Vi ⊂ dgVi, i ∈ {1, . . . , N}.

The notions of guaranteed and dual guaranteed Voronoi cells allow us to synthesize a controller

building on the observation that, if

‖pi − CgVi‖ > bndi ≡ bnd(gVi, dgVi) = 2 cr(dgVi)
(

1−
MgVi

MdgVi

)
, (20)

then moving towards CgVi from pi strictly decreases the distance ‖pi−CVi‖ (here, cr(Q) denotes

the circumradius of Q). With this in place, an agent can actually move closer to the centroid of

its Voronoi cell (which guarantees the decrease of H), even when it does not know the exact

locations of its neighbors. Informally, each agent moves as follows.

[Informal description]: The agent moves towards the centroid of its guaranteed Voronoi

cell until it is within distance bndi of it.

Note that, as time elapses without new information, the bound bndi grows until it becomes

impossible to satisfy (20). This gives a natural triggering condition for when agent i needs

updated information from its neighbors, which we describe informally as follows.

[Informal description]: The agent decides that up-to-date location information is re-

quired if its computed bound in (20) is larger than a design parameter ε and the distance

to the centroid of its guaranteed cell.

The role of ε is guaranteeing the lack of Zeno behavior: when an agent i gets close to CgVi , this

requires bndi to be small. The introduction of the design parameter is critical to ensure Zeno

behavior does not occur. Note that each agent can compute the future evolution of bndi without

updated information about their neighbors. This means that each agent can schedule exactly

when the condition above will be satisfied, corresponding to a self-triggered implementation.

The overall algorithm is the result of combining the motion control law and the update decision

policy with a procedure to acquire up-to-date information about other agents. We do not enter into
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Algorithm 2 : Self-triggered deployment algorithm
Agent i ∈ {1, . . . , N} performs:
1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

(Update decision)
1: if r ≥ max {‖q − pi‖, ε} then

2: reset Di by acquiring updated location information from Voronoi neighbors

3: set D = Di

4: set L = gV (D) and U = dgV (D)

5: set q = CL and r = bnd(L,U)

6: end if
(Motion control)
1: if ‖pi − q‖ > r then

2: set ui = vmax unit(q − pi)

3: else

4: set ui = 0

5: end if

the details of the latter here and instead refer the reader to [18]. The self-triggered deployment

algorithm is formally presented in Algorithm 2.

One can establish the same convergence guarantees for this algorithm as in the periodic or

continuous case. In fact, for ε ∈ [0, diam(S)), the agents’ positions starting from any initial

network configuration in Sn converges to the set of centroidal Voronoi configurations.

B. Team-triggered deployment algorithm

Here we describe a team-triggered implementation of the distributed coordination algorithm

for optimal deployment. Given our previous discussion, the only new element that we need to

specify with respect to the exposition of the self-triggered implementation in Section V-A is the

notion of promises employed by the agents. For each j ∈ {1, . . . , N}, given the deployment

controller u∗j :
∏

i∈N (j)∪{j} Pcc(Xi) → Uj and δj > 0, the ball-radius control promise generated

by agent j for agent i at time t is

U ji = B(uj(X
j
N (t)), δj) ∩ Uj t′ ≥ t, (21)

for some δj > 0. This promise is a ball of radius δj in the control space Uj centered at the

control signal used at time t. Here we consider constant δj for simplicity, but one can consider
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time-varying functions instead, cf. [28]. Agent i stores the information provided by the promise

sets in Di(t) = (X i
1(t), . . . , X

i
N(t)) ⊂ SN . The event-triggered information updates, by which

agents inform other agents if they decide to break their promises, take care of making sure that

this information is always accurate, i.e., pi(t) ∈ Xj
i (t) for all i ∈ {1, . . . , N} and j ∈ N (i). The

team-triggered deployment algorithm is formally presented in Algorithm 3 and has the same

motion control law, update decision policy, and procedure to acquire up-to-date information

about other agents as the self-triggered coordination one.

Algorithm 3 : Team-triggered deployment algorithm
Agent i ∈ {1, . . . , N} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)

3: compute q = CL and r = bnd(L,U)

(Self-triggered update decision)
1: if r ≥ max {‖q − pi‖, ε} then

2: reset Di by acquiring updated location information from Voronoi neighbors

3: set D = Di

4: set L = gV (D) and U = dgV (D)

5: set q = CL and r = bnd(L,U)

6: end if
(Event-triggered update decision)
1: if pi /∈ Xj

i for any j ∈ N (i) then

2: send updated position information pi to agent j

3: send new promise Uj
i to agent j

4: end if
(Motion control)
1: if ‖pi − q‖ > r then

2: set ui = vmax unit(q − pi)

3: else

4: set ui = 0

5: end if

C. Simulations

Here we provide several simulations to illustrate the performance of the self-triggered and

team-triggered deployment algorithms. We consider a network of N = 8 agents, moving in a

4m × 4m square, with a maximum velocity vmax = 1m/s. The density φ is a sum of two Gaussian
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functions

φ(x) = 1.2e−‖x−q1‖
2

+ e−‖x−q2‖
2

,

with q1 = (1, 1.5) and q2 = (2.5, 3). We evaluate the total power consumed by communication

among the agents during the execution of each algorithm. To do, we adopt the following

model [30] for quantifying the total power Pi used by agent i ∈ {1, . . . , 8} to communicate, in

dBmW power units,

Pi = 10 log10

[ n∑
j∈{1,...,N},i 6=j

β100.1Pi→j+α‖pi−pj‖
]
, (22)

where α > 0 and β > 0 depend on the characteristics of the wireless medium and Pi→j is the

power received by j of the signal transmitted by i in units of dBmW . In our simulations, these

values are set to 1.

For the promises made among agents in the team-triggered strategy, we use δi = 2λvmax

in (21), where λ ∈ [0, 1] is a parameter that captures the ‘tightness’ of promises. Note that

λ = 0 corresponds to exact promises, meaning trajectories can be computed exactly, and λ = 1

corresponds to no promises at all (i.e., recovers the self-triggered algorithm because promises

become the entire allowable control set).

(a) Periodic (b) Self-triggered (c) Team-triggered

Fig. 3. Plot (a) is an execution of the communicate-at-all-times strategy [29], plot (b) is an execution of the self-triggered

strategy and plot (c) is an execution of the team-triggered strategy with λ = 0.5. Black dots correspond to initial positions and

light gray dots correspond to final positions.

Figures 3 and 4 compare the execution of the periodic, self-triggered, and team triggered

deployment strategies (the latter for two different tightnesses of promises, λ = 0.25 and λ = 0.5)
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Fig. 4. Plot (a) shows the total communication energy Ecomm in Joules of executions of the communicate-at-all-times strategy,

the self-triggered strategy, and the team-triggered strategy (for two different tightnesses of promises). Plot (b) shows the evolution

of the objective function H. All simulations have the same initial condition.

starting from the same initial condition. Figure 3 shows the algorithm trajectories while Fig-

ure 4(a) shows the total communication energy over time and Figure 4(b) shows the evolution of

the objective function H. These plots reveal the important role that the tightness of promises has

on the algorithm execution. For instance, in Figure 4, one can see that, for λ = 0.25, the com-

munication energy is reduced by half compared to the periodic strategy without compromising

the network performance.
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(b)
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Fig. 5. Average (a) communication power network consumption Pavg and (b) time to convergence Tcon for the team-triggered

deployment strategy with varying tightness of promise. Time to convergence is the time to reach 99% of the final convergence

value of the objective function. For small λ, the amount of communication energy required is substantially reduced while the

time to convergence only increases slightly.

In Figure 5 we explore what happens for various different tightnesses λ for the team-triggered

strategy and compare them against the periodic and the self-triggered strategies. Figure 5(a)
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shows the average power consumption in terms of communication energy by the entire network

for varying levels of λ. Figure 5(b) shows the time it takes each execution to reach 99% of

the final convergence value of the objective function H. As we can see from these plots, for

small λ > 0, we are able to drastically reduce the amount of required communication while only

slightly increasing the time to convergence.

VI. CONCLUSIONS

This chapter has covered the design and analysis of triggered strategies for networked cyber-

physical systems, with an emphasis on distributed interactions. At a fundamental level, our

exposition aims to trade computation for less sensing, actuation, or communication effort by

answering basic questions such as ‘when to take state samples’, ‘when to update control signals’,

or ‘when to transmit information’. We have focused on self-triggered approaches to controller

design which build on the notion of abstraction of the system behavior to synthesize triggers that

rely only on the current information available to the decision maker in scheduling future actions.

The role of the notion of abstraction acquires special relevance in the context of networked

systems, given the limited access to information about the network state possessed by individual

agents. The often conservative nature of self-triggered implementations has motivated us to

introduce the team-triggered approach, which allows us to combine the best components of

event- and self-triggered control. The basic idea is to have agents cooperate with each other

in providing better, more accurate abstractions to each other via promise sets. Such sets can

then be used by individual agents to improve the overall network performance. The team-

triggered approach opens up numerous venues for future research. Among them, we highlight

the robustness under disturbances in the dynamics and sensor noise, more general models for

individual agents, methods that tailor the generation of agent promises to the specific task at hand,

methods for the systematic design of controllers that operate on set-valued information models,

analytic guarantees on performance improvements with respect to self-triggered strategies (as

observed in Section V-C), the impact of evolving topologies on the generation of agent promises,

and the application to the synthesis of distributed strategies to other coordination problems.
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