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Abstract— This paper introduces a novel team-triggered algo-
rithmic solution for a distributed optimal deployment problem
involving a group of mobile sensors. Distributed self-triggered
algorithms relieve the requirement of synchronous periodic
communication among agents by providing opportunistic cri-
teria for when communication should occur. However, these
criteria are often conservative since worst-case scenarios must
always be considered to ensure the monotonic evolution of
a relevant objective function. Here we introduce a team-
triggered algorithm that builds on the idea of ‘promises’ among
agents, allowing them to operate with better information about
their neighbors when they are not communicating, over a
dynamically changing graph. We analyze the correctness of
the proposed strategy and establish the same convergence
guarantees as a coordination algorithm that assumes perfect
information at all times. The technical approach relies on tools
from set-valued stability analysis, computational geometry, and
event-based systems. Simulations illustrate our results.

I. I NTRODUCTION

This paper considers a robotic sensor network performing
a distributed deployment task over a region of interest.
Similar works often assume agents have continuous or period
communication with one another at all times to perform
their desired task. This can often be undesirable, especially
as the size of the network grows large, since it is a waste
of communication bandwidth that might be shared across
other systems or networks. More recently, event- and self-
triggered coordination strategies have been studied to relax
this requirement by giving agents more autonomy, allowing
them to decide among themselves when communication
should occur. Our objective is to design a team-triggered
coordination strategy for the deployment problem that com-
bines ideas from both event- and self-triggered into a unified
approach that enjoys benefits from both strategies.
Literature review: This work builds on coverage control
problems for sensor networks developed in [1], where dis-
tributed algorithms based on centroidal Voronoi partitions are
presented. Other works on deployment problems include [2],
[3]. A common assumption in the above works is that agents
have access to constant communication with their neighbors
at all times. Our main goal is to relax this assumption by
providing agents with sufficient levels of autonomy. A related
line of work that addresses this issue is the study of event-
and self-triggered controllers, particularly in distributed se-
tups. In these works, agents are given criteria to determine
when their control signals should be updated rather than
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doing this continuously. These ideas have been applied to
various tasks including consensus via event-triggered [4], [5],
[6] or self-triggered control [4], [7], rendezvous [8], model
predictive control [9], and model-based event-triggered con-
trol [10], [11]. We are particularly interested in works
that design distributed triggering strategies not only forthe
controller, but for when communication is required, e.g. [10],
[12], [13]. In [10], agents are responsible for monitoring
not only their own estimates, but estimates that other agents
have to ensure they stay within some performance bounds.
In [12], [13], agents autonomously decide when it is neces-
sary to broadcast new information to their neighbors. In [14],
the authors propose a self-triggered strategy to relax the
constant communication requirement in [1]. This is done
by bounding the distance agents can move in a given time
frame and utilizing outdated information to determine when
fresh information is required. The drawback of this strategy
is that, in order to ensure the monotonic evolution of a
relevant objective function, agents must consider worst-case
conditions at all times to ensure they are receiving updates
frequently enough to complete the given task. In this work
we aim for similar goals by employing the team-triggered
coordination approach introduced in [15].
Statement of contributions:This paper builds on a de-
ployment algorithm where agents utilize a self-triggered
coordination strategy to decide when updated information
from their neighbors is required. Our main contribution is
the development of a modified version of a team-triggered
algorithm for the deployment problem. Unlike prior work
in team-triggering that has only considered static com-
munication topologies, we consider here a dynamic graph
that depends on agent positions and when communication
is required. A dynamic communication graph requires a
nontrivial treatment in the context of team-triggering because
agents are generally unaware of whether the topology has
changed at any given time. We are able to characterize com-
munication requirements using the geometric properties that
determine the communication graph. Additionally, we utilize
a controller that operates on set-valued information rather
than points to make the most out of the information available
to the agents. We analyze the correctness of the proposed
algorithm and establish the same convergence guarantees as
a coordination algorithm that assumes perfect information
is available at all times. The technical approach combines
elements from set-valued stability analysis, computational
geometry, and event-based systems.

II. PRELIMINARIES

We let R≥0 and Z≥0 be the sets of nonnegative real and
integer numbers, respectively, and‖·‖ the Euclidean distance.



We denote by[p, q] ⊂ R
d the closed line segment with

extreme pointsp and q ∈ R
d. Let φ : R

d → R≥0 be
a bounded measurable function that we termdensity. For
S ⊂ R

d, the massand center of massof S with respect to
φ are

MS =

∫

S

φ(q)dq, CS =
1

MS

∫

S

qφ(q)dq.

The circumcenterof S ⊂ R
d is the center of the closed ball

of minimum radius that containsS. Thecircumradiuscr(S)
is the radius of this ball. We denote byB(p, r) the closed
ball centered atp ∈ S with radiusr. Given v ∈ R

d \ {0},
let unit(v) be the unit vector in the direction ofv.

A. Voronoi partitions

We refer to [16] for a comprehensive treatment on Voronoi
partitions and briefly present some relevant concepts here.
Let S be a convex polygon inR2 andP = (p1, . . . , pn) be
the location ofn sensors. Apartition of S is a collection ofn
polygonsW = {W1, . . . ,Wn} with disjoint interiors whose
union isS. The Voronoi partitionV(P ) = {V1, . . . , Vn} of
S generated by the pointsP = (p1, . . . , pn) is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regionsVi andVj are adjacent (i.e., they
share an edge),pi is called a(Voronoi) neighborof pj (and
vice versa). We denote the neighbors of agenti by Ni.
P = (p1, . . . , pn) is a centroidal Voronoi configurationif
it satisfies thatpi = CVi

, for all i ∈ {1, . . . , N}.

B. Space partitions with uncertain information

Following [17], [18], [14], consider regionsD1, . . . , DN ⊂
S, each containing a sitepi ∈ Di. The guaranteed Voronoi
diagram of S generated byD = (D1, . . . , DN ) is the
collection gV(D1, . . . , DN ) = {gV1, . . . ,gVN},

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

We define theith component of gV(D1, . . . , DN ) as gVi(D).
Note that gVi contains the points ofS that are guaranteed to
be closer topi than to any other of the nodespj , j 6= i.
The guaranteed Voronoi diagram is not a partition ofS,
see Figure 1(a). If every regionDi is a point,Di = {pi},

(a) (b)

Fig. 1. Guaranteed (a) and dual guaranteed (b) Voronoi diagrams.

then gV(D1, . . . , DN ) = V(p1, . . . , pN ). For any collection

of points pi ∈ Di, the guaranteed Voronoi diagram is
contained in the Voronoi partition, i.e., gVi ⊂ Vi, i ∈
{1, . . . , N}. Similarly, thedual guaranteed Voronoi diagram
of S generated byD1, . . . , DN is the collection of sets
dgV(D1, . . . , DN ) = {dgV1, . . . ,dgVN} defined by

dgVi={q ∈ S | min
x∈Di

‖q − x‖≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

For any collection of pointspi ∈ Di, the dual guaranteed
Voronoi diagram is guaranteed to contain the Voronoi parti-
tion, i.e.,Vi ⊂ dgVi, i ∈ {1, . . . , N}.

III. PROBLEM STATEMENT

Consider a group of agents moving in a convex polygonS ⊂
R

2 with positionsP = (p1, . . . , pN ). We consider single
integrator dynamics

ṗi = ui (1)

where‖ui‖ ≤ vmax for all i ∈ {1, . . . , N} for somevmax > 0,
i.e., ui ∈ B(0, vmax). For simplicity, we assume all agents
are able to take actions such as computing control signals
synchronously at a fixed period∆t > 0. All results provided
in the paper still hold without this assumption.
Following [1], the objective is to achieve optimal deployment
with respect to the aggregate distortionH. The performance
at q of agentpi degrades with‖q − pi‖

2. Assume a density
φ : S → R is available, withφ(q) reflecting the likelihood
of an event happening atq. Letting P ∈ SN denote the set
of agent positions, consider the minimization of

H(P ) = Eφ

[
min

i∈{1,...,N}
‖q − pi‖

2

]
. (2)

This function is useful when an agent closest to an event
is responsible for addressing it. Examples include servicing
tasks, spatial sampling of random fields, resource allocation,
and event detection, see [19], [20] and references therein.
Note that if we define, with a slight abuse of notation,

H(P,W) =

N∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (3)

whereW is a partition ofS, and theith agent is responsible
for the regionWi, thenH(P,V(P )) corresponds to the ag-
gregate distortion function defined in (2). Hence, the function
H is then to be minimized with respect to the locationsP
and the regionsW. Interestingly, one can show [19], [1] that,
givenP ∈ SN and a partitionW of S,

H(P,V(P )) ≤ H(P,W), (4)

i.e., the optimal partition is the Voronoi partition. Moreover,
for P ′ ∈ SN with ‖p′i−CWi

‖ ≤ ‖pi−CWi
‖, i ∈ {1, . . . , N},

H(P ′,W) ≤ H(P,W), (5)

i.e., the optimal sensor positions are the centroids. The
algorithmic solutions to optimize in a distributed way the
objective functionH rely strongly on this observation. Our
objective here is to synthesize an efficient coordination
strategy to optimize this function that employs opportunistic
state-triggered communication to minimize energy expendi-
ture and yet enjoys good performance guarantees.



IV. PERIODIC AND SELF-TRIGGERED ALGORITHMS

This section briefly reviews the algorithmic solutions to the
problem stated in Section III based on periodic and self-
triggered communication, respectively.

A. Periodic algorithmic solution

The periodic-communication distributed coordination strat-
egy proposed in [1] is based on the properties of the
Voronoi partition, and more specifically, on the optimality
characterizations provided by (4) and (5). Basically, each
agent periodically and synchronously communicates with its
neighbors its state information, computes the centroid of its
own Voronoi cell, and moves towards it. The executions of
the resulting algorithm are asymptotically guaranteed [1]to
converge to the set of centroidal Voronoi configurations.

B. Self-triggered algorithmic solution

Here we review important elements of the self-triggered
deployment algorithm proposed in [14]. We begin by in-
troducing the data structure agents maintain about one other
given updated position information.
1) Agent data structure:Let tiℓ be a time at which agent
i has just received position informationpij = pj(t

i
ℓ) from

another agentj. Then, at timet ≥ tiℓ agent i knows that
agentj has not moved farther thanrij = vmax(t − tiℓ) from
pij . This information that agenti maintains about agentj is

X
i
j(t) = B(pij , r

i
j) ∩ S. (6)

We refer to this as aguaranteed setbecause, given the
dynamics (1), this set has the property thatpj(t) ∈ X

i
j(t)

for all t ≥ tiℓ. The data is stored in

Di(t) = (Xi
1(t), . . . ,X

i
N (t)) ⊂ SN . (7)

Note that agenti may not necessarily have information about
all agentsj ∈ {1, . . . , N}. In the case that agenti does not
have any information about some agentj, let Xi

j(t) = ∅. We
refer toD = (D1, . . . ,DN ) ⊂ SN2

as the entire memory of
the network.
Given the above data structure, we are now able to present
the two components of the self-triggered algorithm: a motion
control part that determines the best way to move given
the available information and an update decision part that
determines when new information is needed.
2) Motion control: If an agent had perfect knowledge of
other agents’ positions, then to optimizeH, it could compute
its own Voronoi cell and move towards its centroid, as in [1].
Since this is not the case we are considering, we instead use
an alternative motion control. The following result gives a
condition under which an agent can get closer to the centroid
of its own Voronoi cell with uncertain information.

Proposition IV.1 (Motion control [14]) Given the position
informationpi of agenti and the dataDi available to it, let

bndi ≡ bnd(gVi,dgVi) = 2 cr(dgVi)
(
1−

MgVi

MdgVi

)
. (8)

If for p′ ∈ (pi, CgVi
],

‖p′ − CgVi
‖ ≥ bndi, (9)

then‖p′ − CVi
‖ < ‖pi − CVi

‖.

Exploiting Proposition IV.1, we are able to come up with a
motion control law given uncertain information. Intuitively,
agent i uses its currently stored information about other
agents’ locations to calculate its own guaranteed and dual
guaranteed Voronoi cells. It then moves towards the centroid
of its guaranteed Voronoi cell until it is within distancebndi
of it. Note that this law assumes that each agent has access
to the value of the densityφ over its guaranteed Voronoi cell.
This yields the motion control law computed at timetℓ

u∗
i (tℓ) = vi unit(CgVi

− pi), (10)

where

vi =





vmax, if ‖pi − CgVi
‖ ≥ bndi +vmax∆t,

0, if ‖pi − CgVi
‖ ≤ bndi,

‖CgVi
−pi‖−bndi

∆t
, otherwise.

The Motion Control Law is formalized in Algorithm 1.

Algorithm 1 : Motion Control Law
Agent i ∈ {1, . . . , N} performs:
1: setD = Di

2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L,U)
4: computeu∗

i as defined in (10)

Given the result of Proposition IV.1, agenti can simply move
towards its computableCgVi

and guarantee to be decreasing
the value of the optimization functionH as long as (9) is
satisfied. As time elapses without new information, the bound
bndi begins to grow until (9) is no longer satisfied. This gives
a natural triggering condition for when agenti needs updated
information from its neighbors. We discuss this next.

3) Self-triggered update policy:To specify this component,
we build on the discussion of the previous section, specifi-
cally on making sure that condition (9) is feasible.
The update policy is described informally as follows. Each
agent uses its stored information about other agents’ lo-
cations to calculate its own guaranteed Voronoi and dual
guaranteed Voronoi cells, and the bound (8). Then, it de-
cides that up-to-date location information is required if its
computed bound is larger than the distance to the centroid
of its guaranteed Voronoi cell andε, whereε > 0 is an a
priori chosen design parameter to limit updates when agents
are near convergence.
Formally, the self-triggered updating mechanism followedby
each agent is described in Algorithm 2.
The self-triggered deployment algorithm is then the combina-
tion of Algorithms 1 and 2 above. The synthesized algorithm
has been shown to asymptotically converge to the set of
centroidal Voronoi configurations [14].



Algorithm 2 : Self-Triggered Update Policy
Agent i ∈ {1, . . . , N} performs:
1: setD = Di

2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L,U)

(Requesting new information)
1: if r ≥ max {‖q − pi‖, ε} then
2: request updated information
3: end if

V. TEAM-TRIGGERED ALGORITHMIC SOLUTION

A drawback of the distributed self-triggered communication
protocol presented in Section IV is that in general it is very
conservative. More specifically, an agent requests informa-
tion when it can no longerguaranteethat the value of the
objective function will decrease. The problem with this is
that worst-case considerations about neighbors actions must
be considered at all times, even though neighbors may not
be acting in this way in general.
In this section we apply a modification of the team-triggered
idea from [15] to address this issue. The backbone of
the team-triggered strategy is the use of ‘promises’ among
agents that provide a better quality of information than
strictly position information as is used in the self-triggered
algorithm. We discuss this first.

A. Promises

A promisethat an agentj makes to agenti at a given timetiℓ
is a subset of the allowable control spaceU i

j ⊂ B(0, vmax).
This set conveys the promise that agentj will only use
controlsuj(t) ∈ U i

j for t ≥ tiℓ. From this promise, agenti is
able to generate a promise setXi

j(t) such thatpj(t) ∈ Xi
j(t)

is guaranteed for allt ≥ tiℓ provided that the promise is kept.
Promises provide agents with a higher quality of information
than simply position information. Given position information
pj(t

i
ℓ) and a promiseU i

j that agentj makes to agenti at time
tiℓ, agenti can compute apromise set

Xi
j(t) = {xj(t) ∈ S | ∃uj : [t

i
ℓ, t] → U i

j (11)

such thatxj(t) = pj(t
i
ℓ) +

∫ t

ti
ℓ

uj(τ)dτ}.

This conveys to agenti that pj(t) ∈ Xi
j(t) for t ≥ tiℓ. The

shape of these sets vary depending on how promises are
made among the agents. Figure 2 shows an example of what
these promise sets might look like for a given agenti.
For the remainder of the paper, we only considerball-radius
promisesas defined below for simplicity. However, we note
that all subsequent results hold for any promisesU i

j .

Definition V.1 (Ball-radius promises) The ball-radius
promise that agentj makes to agenti at time tiℓ is a ball

U i
j = B(ui

j , δj) ∩B(0, vmax), (12)

whereui
j = uj(t

i
ℓ) is the control signal used by agentj at

time tiℓ andδj > 0. This promise is a ball of radiusδj in the
control space centered at the control signalui

j . In general,

(a)

pi

pij

X
i
j

(b)

pi

pij
Xi

j

Fig. 2. Graphical representation of the information available to an agenti
with (a) no promises and (b) varying promises from different agents. The
dark regions correspond to the promise setsXi

j given the promises and the
light regions correspond to the guaranteed setsX

i
j .

δj does not need to be a constant as discussed in [15], but
we consider constantδj = δ > 0 for all agents here. •

B. Agent data structure

Equipped with the promise information exchanged among
agents, we are able to provide agents with better information
about one another. Given the promiseU i

j that agentj send to
agenti as defined in Definition V.1 (provided byui

j = uj(t
i
ℓ)

andδ), agenti can now construct the promise set

Xi
j(t) = B(pij + (t− tiℓ)u

i
j , (t− tiℓ)δ) ∩X

i
j(t). (13)

This promise set has the property thatXi
j(t) ⊂ X

i
j(t)

providing a higher quality of information to agenti.
With a slight abuse of notation, we redefine the data that
agents maintain using information from promises,

Di(t) = (Xi
1(t), . . . , X

i
N (t)) ⊂ SN . (14)

C. Team-triggered algorithm design

Given the new data structure, we are able to reuse the
motion control law and self-triggered update policy presented
in Section IV. The only difference now is that agents use
promises (13) rather than guaranteed sets (6) which allows
agents to operate with better information resulting in better
control decisions and less conservative conditions on when
new information is required.
The only issue left to resolve is to ensure that agents are
operating with correct information at all times. In other
words, we need a mechanism such that if an agent breaks a
promise to another agent at any time, it must immediately
send updated information to that agent.
According to Algorithm 2, agenti checks if condition (9)
is feasible orbndi ≤ ε, and therefore it is advantageous to
execute the Motion Control Law. However, this decision only
makes sense assuming that agents keep their promises at all
times. If a promise to agenti is not kept, Proposition IV.1
does not hold because it is not guaranteed that gVi ⊂ Vi ⊂
dgVi.
We address this by supplementing the self-triggered de-
ployment algorithm with the Event-Triggered Update Policy
presented in Algorithm 3.
Algorithm 3 is responsible for ensuring that agents are oper-
ate with accurate information at all times. If at any time an
agent breaks a promise to a neighbor it must correct this by



Algorithm 3 : Event-Triggered Update Policy
Agent i ∈ {1, . . . , N} performs:

1: if there existsj such thatpi /∈ Xj
i then

2: send current position informationpi to agentj
3: send current control signalui to agentj
4: end if

immediately sending new position information and control
signal. Lastly, if an agenti receives unsolicited information,
meaning a neighboring agent has broken a promise and sent
it a new one, it must also request updated information from
all its neighbors. This is important due to the dynamic nature
of the communication topology as we discuss next.
1) The synthesized algorithm:Here, we present the team-
triggered algorithm to achieve optimal deployment with out-
dated information. The algorithm is the result of combining
the Motion Control Law, the Self-Triggered Update Policy,
and the Event-Triggered Update Policy with a procedure
to acquire updated information about other agents when
this requirement is triggered by Algorithm 2 (Requesting
new information). In the self-triggered algorithm proposed
in [14], it is sufficient to only receive information from
an agent’s Voronoi neighbors when an updated is required.
However, due to the new information structure provided by
the promises, we need a modification to ensure that gVi ⊂ Vi

for all agents at all times. Let the communication radius
Rself

i = 2maxj∈Ni
‖pi − pj‖. When agenti decides new

information is needed for the self-triggered algorithm, it
requests information from all agents withinRself

i of it. A
method for computingRself

i is provided in [14]. Instead, we
utilize the communication radiusRi = Rself

i +β whereβ > 0
is an a priori chosen design parameter. To capture the fact
that the topology is changing, we define for each agenti, a
subset of agentsAi ⊂ {1, . . . , N} whose information will
be used rather than all the agents of the network. Each time
an agenti requests updated information,Ai is set to to the
list of all agents withinRi of pi. We defineπAi as the map
that extracts the information about the agents contained in
Ai from Di. The following result then specifies a minimum
required communication rate to ensure information is shared
often enough. Its proof is omitted due to space constraints.

Lemma V.2 (Minimum required communication) If
agents request updated information at least everyβ

6vmax
sec,

then gVi(πAi) ⊂ Vi holds for alli ∈ {1, . . . , N} at all times.

Proof: Let t0 be the time at which agenti re-
ceives updated information and thusAi = {j ∈
{1, . . . , N} | ‖pi(t0) − pj(t0)‖ ≤ Rself

i (t0) + β}. We
now need to show that gVi(πAi(Di(t)) ⊂ Vi(D(t)) for
t ∈ [t0, t0 + β

6vmax
]. It was shown in [14] that if for all

‖pi−pj‖ ≤ Rself
i , we havej ∈ Ai, then gVi(πAi(Di)) ⊂ Vi.

For t ∈ [t0, t0 +
β

6vmax
], we are able to bound

Rself
i (t) = 2max

j∈Ni

‖pi(t)− pj(t)‖ ≤ Rself
i (t0) + 4vmax(t− t0)

≤ Rself
i (t0) +

2

3
β.

Now, considerk /∈ Ai, we know ‖pi(t0) − pk(t0)‖ >
Rself

i (t0) + β, and thus

‖pi(t)− pk(t)‖ > Rself
i (t0) + β − 2vmax(t− t0)

≥ Rself
i (t0)−

2

3
β

for t ∈ [t0, t0 +
β

6vmax
]. Combining these we have

‖pi(t)− pk(t)‖ > Rself
i (t), ∀k /∈ Ai.

By ensuring the condition of Lemma V.2, we are able to
leverage the result in [14, Lemma 5.3] and ensure all required
agents are accounted for.
The fully synthesized Team-Triggered Centroid Algorithm is
formally presented in Algorithm 4.

Algorithm 4 : Team-Triggered Centroid Algorithm
Agent i ∈ {1, . . . , N} performs:
1: setD = πAi (Di)
2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L,U)

(Requesting new information)
1: if r ≥ max {‖q − pi‖, ε} OR unsolicited information is received OR

β

2vmax
seconds have elapsed since last updatethen

2: request updated information
3: setAi = {j | pj ∈ B(pi, Ri)}
4: setD = πAi (Di)
5: setL = gV (D) andU = dgV (D)
6: setq = CL andr = bnd(L,U)
7: end if

(Sending new information)

1: if there existsj such thatpi /∈ Xj
i then

2: send current position informationpi to agentj
3: send current control signalui to agentj
4: end if

(Motion control)
1: computeu∗

i as defined in (10)

Remark V.3 (Dynamic ball-radius promises) In order to
minimize communication, it may be more favorable to con-
sider ball-radius promises in Definition V.1 where the radius
of the balls evolve alongside the network execution. For
instance, an agenti may increase its promise radiusδi each
time it breaks a promise to a neighbor in hopes of breaking
them less. Similarly, it may decrease its promise radius if a
neighboring agent requests new information before the prior
promise is broken. Another possibility is for agents to keep
track of how often promises are broken over time and adjust
their promise radii based on this information. •

VI. A NALYSIS OF TEAM-TRIGGERED LAW

In this section we analyze the asymptotic convergence
properties of the Team-Triggered Centroid Algorithm. To
properly analyze the trajectories of this system, we must
consider the evolution of the entire network’s memoryD =
(D1, . . . ,DN ) ⊂ SN2

.
We begin by noticing that the promise informationXi

j(t)
that an agenti has about an agentj at any given time can be
described by 3 parameters (since we assume the ball-radius



δ is fixed by all agents): the position informationpij ∈ S
that was last communicated to agenti, the control signal
ui
j = uj ∈ U used at that time, and the uncertainty radius

rij ∈ R≥0. With a slight abuse of notation, we say that

D ∈ SN2

E = (S × U × R≥0)
N2

.

For convenience, we define the maploc(D) = (p1, . . . , pN )
that extracts the position information of the agents fromD.
The Team-Triggered Centroid Algorithm can then be writ-
ten as a discrete-time mapfttca : SN2

E → SN2

E which
corresponds to one timestep∆t of the composition of
a “decision/update-information” mapfinfo and a “move-
and-update-uncertainty” mapfmotion, i.e., fttca(D) =
fmotion(finfo(D)) for D ∈ SN2

E . Unfortunately, it is difficult
to analyze these trajectories directly because the mapfttca
is discontinuous.
Our objective is to prove the following result characterizing
the asymptotic convergence properties of the trajectoriesof
the Team-Triggered Centroid Algorithm.

Proposition VI.1 For ε ∈ [0, diam(S)), the agents’ posi-
tions evolving under the Team-Triggered Centroid Algorithm
from any initial network configuration inSN converges to
the set of centroidal Voronoi configurations.

Since the mapfttca is discontinuous, we cannot directly
apply the discrete-time LaSalle Invariance Principle. In order
to prove Proposition VI.1, we construct a closed, discrete-
time set-valued mapTsync whose trajectories include the
ones of the deterministicfttca. We are then able to apply the
LaSalle Invariance Principle for set-valued maps, e.g., [20].
Next, we define the two components ofTsync formally.
The first component captures the motion of the agents and
propagation of the promise sets, and the second component
captures the possibility of communication among agents.
For simplicity, we defineTsync and provide analysis of
Proposition VI.1 for agents using the ball-radius promises
with fixed δ > 0 from Definition V.1.

Remark VI.2 (Convergence with arbitrary promises) We
note here that the convergence result of Proposition VI.1
holds for any promisesU i

j of non-zero measure among
agents, not just the ball-radius promise. In order for our
analysis to hold for different promises, we just require a care-
ful redefining of the set-valued mapTsync. However, various
definitions of promises does affect the rate of convergence
and amount of communication induced among the agents.•

Motion and uncertainty update. We define the set-valued
motion and uncertainty update map asM : SN2

E ⇒ SN2

E

whoseith component is

Mi(D, ℓ) =
(
(pi1, u

i
1,max{ri1 + µi∆t, diam(S)}), . . . ,

(pii + u∗
i∆t, u∗

i , 0), . . . ,

(piN , ui
N ,max{riN + µi∆t, diam(S)})

)
,

where u∗
i is computed by (10) withAi = {i} ∪

argminj∈{1,...,N}\{i} r
i
j and

µi ∈

{
{2vmax} if ∃j ∈ Ai s.t. pjj /∈ B(pij , r

i
j + δ∆t),

{2vmax, δ} otherwise.
(15)

The definition ofµi ensures that even if promises might have
been broken, the uncertainty sets are being properly grown
so that the information contained is still accurate. This is
important in the result of Lemma VI.3 below. It is easy to
see that the mapM is closed (a set-valued mapT : X ⇒ Y
is closed ifxk → x, yk → y and yk ∈ T (xk) imply that
y ∈ T (x)).
Acquisition of up-to-date information. In each timestep,
agents have the possibility of communicating and receiving
updated information from their Voronoi neighbors. This is
captured by the set-valued mapI : SN2

E ⇒ SN2

E that, to
D ∈ SN2

E , associates the Cartesian productI(D) whoseith
component is eitherDi (agenti does not get any updated
information) or the vector

((p′1, u
′
1, r

′
1), . . . , (p

′
N , u′

N , r′N ))

where (p′j , u
′
j , r

′
N ) = (pjj , u

∗
j , 0) for j ∈ {i} ∪ Ni and

(p′j , u
′
j , r

′
j) = (pij , u

i
j , r

i
j) otherwise (agenti gets updated

information). Recall thatNi is the set of neighbors of agent
i given the partitionV(loc(D)). It is not difficult to show
that I is also closed.
We define the set-valued mapTsync : SN2

E ⇒ SN2

E by
Tsync = I ◦ M. Given that bothM and I are closed,
the mapTsync is closed. Moreover, ifγ = {D(tℓ)}ℓ∈Z≥0

is an evolution of the Team-Triggered Centroid Algorithm,
then γ′ = {D′(tℓ)}ℓ∈Z≥0

, with D′(tℓ) = finfo(D(tℓ)), is a
trajectory of

D′(tℓ+1) ∈ Tsync(D
′(tℓ)). (16)

The following result establishes the monotonic evolution of
the objective functionH along the trajectories ofTsync.

Lemma VI.3 H : SN2

E → R is monotonically nonincreasing
along the trajectories ofTsync.

Proof: Let D ∈ SN2

E andD′ ∈ Tsync(D). For conve-
nience, letP = loc(D) andP ′ = loc(D′) = loc(M(D)). To
establishH(P ′) ≤ H(P ), we leverage the inequalities (4)
and (5). First, let the partitionV(P ) be fixed. For each
i ∈ {1, . . . , N}, if ‖pii − CgVi

(πAi(Di))‖ ≤ bnd(πAi(Di)),
then p′ii = pii because agenti does not move according to
the control law (10). If, instead,‖pii − CgVi

(πAi(Di))‖ >
bnd(πAi(Di)), then, by the control law (10) and Proposi-
tion IV.1, we have that‖p′ii − CVi

‖ ≤ ‖pii − CVi
‖. In either

case, it follows from (5) thatH (P ′,V (P )) ≤ H (P,V (P )).
It is important to note that the above only holds true if
agents are operating with accurate information about one
another. This is ensured by the definition of (15) in the
motion and uncertainty update map. Second, the optimal-
ity of the Voronoi partition stated in (4) guarantees that
H (P ′,V (P ′)) ≤ H (P ′,V (P )), and the result follows.



One can establish the next result using Lemma VI.3 and the
fact thatTsync is closed and its trajectories are bounded and
belong to the closed setSN2

E .

Lemma VI.4 Let γ′ be a trajectory of (16). Then, theω-
limit set ∅ 6= Ω(γ′) ⊂ SN2

E belongs toH−1(c), for some
c ∈ R, and is weakly positively invariant forTsync, i.e., for
D ∈ Ω(γ′), ∃ D′ ∈ Tsync(D) with D′ ∈ Ω(γ′).

Proof: Let γ′ be a trajectory of (16). It is clear
that Ω(γ′) 6= ∅ becauseγ′ is bounded. LetD′ ∈
Ω(γ′). Then there exists a subsequence{D′(tℓm)}m∈Z≥0

of γ′ such that limm→+∞ D′(tℓm) = D′. Consider
{D′(tℓm+1

)}m∈Z≥0
. Since this sequence is bounded, it must

have a convergent subsequence, i.e., there existsD̂′ such
that limm→+∞ D′(tℓm+1

) = D̂′. By definition, D̂′ ∈ Ω(γ′).
Since Tsync is closed, we haveD̂′ ∈ Tsync(D

′), which
implies thatΩ(γ′) is weakly positively invariant.
Now consider the sequence{H(P (tℓ))}ℓ∈Z≥0

, where
P (tℓ) = loc(γ′(tℓ)). SinceH is nonincreasing and bounded
from below there existsc ∈ R such thatlimℓ→∞ H(γ(tℓ)) =
c. Now take anyz ∈ Ω(γ′), by definition of the limit set
there exists a convergent subsequence ofγ′ that goes toz.
By continuity ofH we conclude thatH(loc(z)) = c.

We are now ready to establish our main convergence result.

PROOF OF PROPOSITION VI.1. Let γ = {D(tℓ)}ℓ∈Z≥0

be an evolution of the Team-Triggered Centroid Algorithm
andγ′ = {D′(tℓ)}ℓ∈Z≥0

whereD′(tℓ) = finfo(D(tℓ)). Note
that loc(D(tℓ)) = loc(D′(tℓ)). We now use a contradiction
to show that the limit set ofγ′ is given by

Ω(γ′) ⊆ {D ∈ SN2

E | for i ∈ {1, . . . , N}, (17)

‖pii − CgVi
(πAi(Di))‖ ≤ bnd(πAi(Di))}.

Assume there existsD ∈ Ω(γ) and i ∈ {1, . . . , N} such
that ‖pii − CgVi

(πAi(Di))‖ > bnd(πAi(Di)). Then, Propo-
sition IV.1 and the control law (10) guarantee thatH will
strictly decrease underTsync, which is a contradiction with
the fact thatΩ(γ′) is weakly positively invariant forTsync.
Note that the inequalitybndi < max{‖pii − CgVi

‖, ε} is
satisfied atD′(tℓ), for all ℓ ∈ Z≥0 because this prescribes
an update by agenti. By continuity, it also holds onΩ(γ′),

bnd(πAi(Di)) ≤ max{‖pii − CgVi
(πAi(Di))‖, ε}, (18)

for all i ∈ {1, . . . , N} and all D ∈ Ω(γ′). We are now
interested in showingΩ(γ′) ⊆ {D ∈ SN2

E | for i ∈
{1, . . . , N}, pii = CVi

}. ConsiderD̃ ∈ Ω(γ′). SinceΩ(γ′)
is weakly positively invariant, there exists̃D1 ∈ Ω(γ′) ∩
Tsync(D̃). Note that (17) implies thatloc(D̃1) = loc(D̃),
i.e., no agents are moving. There are two reasons this
might happen depending on whether or not agents have
updated information inD̃1. If agent i does not receive
updated information, because of the minimum required
communication forced by Lemma V.2, there existsD̃m ∈
Tsync(D̃m−1) ∈ · · · ∈ Tsync(D̃1) such that agenti receives

updated information. Once agenti gets updated information,
then bnd(πAi(D̃i

m)) = 0, and consequently, from (17),
pii = p′ii = CgVi

(πAi(D̃i
m) = CVi

, and the result follows.

VII. S IMULATIONS

In this section we compare the proposed team-triggered
strategy with the self-triggered algorithm from [14] and the
periodic communication strategy from [1]. We consider a
network of N = 8 agents moving in a 4m× 4m square
with vmax = 1 m/s and a timestep of∆t = 0.025 s. The
densityφ is a sum of two Gaussian functions

φ(x) = e−‖x−q1‖
2

+ e−‖x−q2‖
2

,

with q1 = (2, 3) and q2 = (3, 1). We use the following
model [21] for quantifying the powerPi used by agenti ∈
{1, . . . , 8} to communicate, indBmW power units,

Pi = 10 log10

[ ∑

j∈{1,...,N},i6=j

α210
0.1Pi→j+α1‖pi−pj‖

]
,

(19)

whereα1, α2 > 0 depend on the properties of the wireless
medium andPi→j is the power received byj of the signal
transmitted byi in units ofdBmW . In our simulations, these
values are set to1.
The ball-radius promises are generated using Definition V.1
with δ = 2λvmax, whereλ ∈ [0, 1] is a design parameter that
captures the ‘tightness’ of promises. Settingλ = 0 corre-
sponds to promise sets that are exact trajectories andλ = 1
corresponds recovers the self-triggered case because promise
sets and guaranteed sets defined in 6 become equivalent.
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Fig. 3. Plots of (a) the total communication energyE in Joules and (b) the
evolution of the objective functionH of executions of the periodic, the self-,
and team-triggered (for two different tightnesses of promises) strategies.



Figure 3 compare executions of the periodic, self-triggered,
and team triggered strategies for two different tightnesses of
promises (λ = 0.25 and λ = 0.5) starting from the same
initial condition. Figure 3(a) shows the total communication
energy over time and Figure 3(b) shows the evolution of
the objective functionH. From these figures we can see
that the tightness of promises indeed have an effect on the
algorithm executions. Forλ = 0.25, Figure 3 shows that the
communication energy is cut in half compared to the periodic
strategy without compromising the network performance.
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Fig. 4. Plots of the average (a) communication power network consumption
Pavg and (b) time to convergenceTcon for the team-triggered deployment
strategy with varyingλ. Time to convergence is the time to reach 99% of
the final convergence value of the objective function.

Figure 4 demonstrates more clearly the effects of varying
the tightness of promisesλ in the team-triggered strategy.
Figure 4(a) shows the average power consumption in terms of
communication energy by the entire network and Figure 4(b)
shows the time it takes each execution to reach 99% of the
final convergence value ofH. Interestingly, for smallλ, we
see substantially less amounts of required communication
while the time to convergence only slightly increases.

VIII. C ONCLUSIONS

We have proposed the Team-Triggered Centroid Algorithm to
solve an optimal deployment problem for a group of mobile
sensors. The strategy combines ideas from event- and self-
triggered control that provides agents with sufficient auton-
omy to decide among themselves when communication is
necessary. We have analyzed the correctness of the algorithm
using tools from computational geometry and set-valued
stability analysis. Our result provides the same convergence
properties as an algorithm assuming perfect information at
all times. Simulations demonstrate the potential benefits of

such an algorithm compared to periodic or self-triggered
communication strategies. For future work, we plan to rigor-
ously analyze the effects that promises have on the network
executions, and methods for optimally constructing these
promises with respect to different performance metrics. We
also intend to apply similar team-triggered strategies to other
distributed coordination tasks.
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