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Abstract—This paper introduces a novel team-triggered algo- doing this continuously. These ideas have been applied to
rithmic solution for a distributed optimal deployment problem  various tasks including consensus via event-triggered$i]
involving a group of mobile sensors. Distributed self-triggered [6] or self-triggered control [4], [7], rendezvous [8], neld

algorithms relieve the requirement of synchronous periodic I .
communication among agents by providing opportunistic cri- predictive control [9], and model-based event-triggered-c

teria for when communication should occur. However, these trol [10], [11]. We are particularly interested in works
criteria are often conservative since worst-case scenarios mus that design distributed triggering strategies not only tfee
always be considered to ensure the monotonic evolution of controller, but for when communication is required, e.@][1
a relevant objective function. Here we infroduce a team- 121 113] |n [10], agents are responsible for monitoring
triggered algorithm that builds on the idea of ‘promises’ among not only their own estimates, but estimates that other agent
agents, allowing them to operate with better information about y s &g
their neighbors when they are not communicating, over a have to ensure they stay within some performance bounds.
dynamically changing graph. We analyze the correctness of In [12], [13], agents autonomously decide when it is neces-
the proposed strategy and establish the same convergencesary to broadcast new information to their neighbors. 1,[14
guarantees as a coordination algorithm that assumes perfect the authors propose a self-triggered strategy to relax the

information at all times. The technical approach relies on tools tant icati . tin M1 This is d
from set-valued stability analysis, computational geometry, and CONStant communication requirement in [1]. This is done

event-based systems. Simulations illustrate our results. by bounding the distance agents can move in a given time
frame and utilizing outdated information to determine when
[. INTRODUCTION fresh information is required. The drawback of this strateg

that, in order to ensure the monotonic evolution of a
levant objective function, agents must consider woasec

nditions at all times to ensure they are receiving updates
requently enough to complete the given task. In this work

their desired task. This can often be undesirable, esﬂ)pciawe am fpr similar goa_ls by emplqylng the team-triggered
as the size of the network grows large, since it is a wasfPordination approa.ch |.ntroduged in [15]. i

of communication bandwidth that might be shared acrosa{atement of contributionsThis paper builds on a de-
other systems or networks. More recently, event- and sefloyment algorithm where agents utilize a self-triggered
triggered coordination strategies have been studied fx relcoordination strategy to decide when updated information
this requirement by giving agents more autonomy, allowingg’m their neighbors is reqwred. Ogr main contr|bu_t|on is
them to decide among themselves when communicatidie development of a modified version of a team-triggered
should occur. Our objective is to design a team-triggere@lg0rithm for the deployment problem. Unlike prior work
coordination strategy for the deployment problem that condd t€am-triggering that has only considered static com-
bines ideas from both event- and self-triggered into a whifigMunication topologies, we consider here a dynamic graph
approach that enjoys benefits from both strategies. that depends on agent positions and when communication

Literature review: This work builds on coverage control IS reqqlred. A dyngmlc communication g.raph_requwes a
problems for sensor networks developed in [1], where diglontnwal treatment in the context of team-triggering &ese
tributed algorithms based on centroidal Voronoi partiiane aﬁents ;ret gener_ally ?nawi\r/e of wr;)elzthter tne to?ol_ogy has
presented. Other works on deployment problems include [ anged at any given time. Ve are able to characterize com-
[3]. A common assumption in the above works is that agen umca_tlon requwemen;s using the geomg_trlc properual_s.th
have access to constant communication with their neighbo gtermlne the communication graph. Add|t_|onally, we Bl

at all times. Our main goal is to relax this assumption b)? contrpller that operates on set-valugd mformauon @the
providing agents with sufficient levels of autonomy. A retat han points to make the most out of the information available
line of work that addresses this issue is the study of eventf2 th_e agents. We a_nalyze the correciness of the proposed
and self-triggered controllers, particularly in distried se- algorlthm af_‘d estabh_sh the same convergence g_uarante(_es as
tups. In these works, agents are given criteria to determir?ecoord'nat'on algorithm that assumes perfect information

when their control signals should be updated rather th available at all times. The technical approach combines
elements from set-valued stability analysis, computation
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This paper considers a robotic sensor network performirf
a distributed deployment task over a region of interest.
Similar works often assume agents have continuous or peri
communication with one another at all times to perfor



We denote by[p,q] C R? the closed line segment with of points p; € D;, the guaranteed Voronoi diagram is
extreme pointsp and ¢ € R Let ¢ : R? — R be
a bounded measurable function that we tedamsity For

S c R4, the massand center of mas®f S with respect to of S generated byDy, ..

¢ are

Myzé¢@@,

1
Cs = M—S/chb(q)dq-

contained in the Voronoi partition, i.e,Vg C V;, i €
{1,..., N}. Similarly, thedual guaranteed Voronoi diagram
., Dy is the collection of sets
dgV(Dy,...,Dy) = {dgVi,...,dgVy} defined by

- o -
dgV:={q € 5| min Jlg — o[ < max|lq —y|| for all j # 4}

For any collection of pointp; € D;, the dual guaranteed

The circumcenterof S C R? is the center of the closed ball voronoi diagram is guaranteed to contain the Voronoi parti-
of minimum radius that containS. The circumradiuscr(S)  tjon, i.e.,V; C dgV;, i € {1,...,N}.

is the radius of this ball. We denote ¥(p,r) the closed
ball centered ap € S with radiusr. Givenv € R¢\ {0}, 1.

let unit(v) be the unit vector in the direction of Consider a group of agents moving in a convex poly§on
R? with positions P = (pi,...,pn). We consider single
integrator dynamics
We refer to [16] for a comprehensive treatment on Voronoi R )
partitions and briefly present some relevant concepts here. ! !
Let S be a convex polygon iR?> and P = (py,...,p,) be where[ju;|| < vmaxforalli € {1,..., N} for somevmax > 0,
the location ofn sensors. Apartition of S is a collection ofr,  i.€., u; € B(0,vmax). For simplicity, we assume all agents
polygonsW = {W,..., W, } with disjoint interiors whose are able to take actions such as computing control signals
union is.S. The Voronoi partiton V(P) = {V4,...,V,,} of synchronously at a fixed periafiz > 0. All results provided
S generated by the point8 = (py,...,p,) is in the paper still hold without this assumption.
. Following [1], the objective is to achieve optimal deploymhe

Vi={ge Sllla—pill <llg—psll, V5 #i}. with respect to the aggregate distortish The performance

When the Voronoi region¥; andV; are adjacent (i.e., they

at ¢ of agentp; degrades with|q — p;|>. Assume a density
share an edge); is called a(Voronoi) neighborof p; (and ¢ : S — R is available, with¢(q) reflecting the likelihood
vice versa). We denote the neighbors of agerty A;.

PROBLEM STATEMENT

A. Voronoi partitions

of an event happening at Letting P € S™V denote the set

P = (p1,...,pn) is a centroidal Voronoi configuratiorif ~ Of agent positions, consider the minimization of
it satisfies thap; = Cy,, for alli € {1,...,N}. )
WP =B [ i la-pl?]. @

B. Space partitions with uncertain information

Following [17], [18], [14], consider region®, ..., Dy C

S, each containing a site; € D;. The guaranteed Voronoi
diagram of S generated byD = (D,...,Dy) is the
collection @’(Dy,...,Dy) ={gV4,...,aVn},

0V = {0 5| max g — o] < min flg—y| forall j # i}

This function is useful when an agent closest to an event
is responsible for addressing it. Examples include sewgici
tasks, spatial sampling of random fields, resource allogati
and event detection, see [19], [20] and references therein.
Note that if we define, with a slight abuse of notation,

N

Hew) =Y [ lo-plPo@dn @)
We define theéth component of §(Dy, ..., Dy) as ¢4 (D). i=1 /Wi
Note that §/; contains the points of that are guaranteed to WhereWV is a partition ofS, and theith agent is responsible
be closer top; than to any other of the nodegs, j # i. for the regionW;, then?(P,V(P)) corresponds to the ag-
The guaranteed Voronoi diagram is not a partition $f gregate distortion function defined in (2). Hence, the fiamct
see Figure 1(a). If every regioP; is a point,D; = {p;}, H is then to be minimized with respect to the locatiais
and the region®V. Interestingly, one can show [19], [1] that,
given P € SV and a partition/V of S,

H(P,V(P)) < H(P,W), (4)

i.e., the optimal partition is the Voronoi partition. More,
for P’ € SN with ||p,—Cw, || < |pi—Cw,|,i € {1,...,N},

H(P', W) < H(P,W), (5)

i.e., the optimal sensor positions are the centroids. The
algorithmic solutions to optimize in a distributed way the
objective functionX rely strongly on this observation. Our
objective here is to synthesize an efficient coordination
strategy to optimize this function that employs opporttiais
state-triggered communication to minimize energy expendi
ture and yet enjoys good performance guarantees.

(@) (b)

Fig. 1. Guaranteed (a) and dual guaranteed (b) Voronoi amagr

then ¢/(Dy,...,Dn) = V(p1,...,pn). For any collection



IV. PERIODIC AND SELFTRIGGERED ALGORITHMS If for p’ € (ps, Cgv; ],

This section briefly reviews the algorithmic solutions te th
problem stated in Section Ill based on periodic and self-
triggered communication, respectively. then|jp’ — Cy,

Ip" — Cgv;|| > bnd;, ©)]

<|lpi = Cv; |-

A. Periodic algorithmic solution Exploiting Proposition V.1, we are able to come up with a

The periodic-communication distributed coordinationastr motion control law given uncertain information. Intuitlye

egy proposed in [1] is based on the properties of thagenti uses its currently stored information about other
Voronoi partition, and more specifically, on the optimalityagents’ locations to calculate its own guaranteed and dual
characterizations provided by (4) and (5). Basically, eachuaranteed Voronoi cells. It then moves towards the cehtroi
agent periodically and synchronously communicates with itof its guaranteed Voronoi cell until it is within distanbad;
neighbors its state information, computes the centroidsf iof it. Note that this law assumes that each agent has access
own Voronoi cell, and moves towards it. The executions ofo the value of the density over its guaranteed Voronoi cell.
the resulting algorithm are asymptotically guaranteedt¢l] This yields the motion control law computed at tire
converge to the set of centroidal Voronoi configurations.

u; (tg) = v; unit(Cgy, — ps), (10)

B. Self-triggered algorithmic solution
where
Here we review important elements of the self-triggered
deployment algorithm proposed in [14]. We begin by in- Vmaxs if |[pi — Cqv,|| > bnd; +vmaxAt,
troducing the data structure agents maintain about one othg. _ ) if ||p; — Cqv. || < bnd;,
given updated position information. | Cqv. —pi||—bnd; .
—i———, otherwise

1) Agent data structureiLet ¢, be a time at which agent
i has just received position informatigry = p;(t;) fom  the Motion Control Law is formalized in Algorithm 1.
another ageny. Then, at timet > ¢; agent: knows that
agentj has not moved farther thazrj. = vmax(t — t}) from
p}. This information that agent maintains about agentis

Algorithm 1 : Motion Control Law
Agenti € {1,..., N} performs:

P — (i i 1: setD = D!
Xj(t) o B(pj,r]) nés. ®) 2: computeL = gV;(D) andU = dgV;(D)
3: computeg = Cr, andr = bnd(L,U)
4: computeu? as defined in (10)

We refer to this as gguaranteed sebecause, given the
dynamics (1), this set has the property thatt) € X’(t)
for all t > ti. The data is stored in

; ; ; N Given the result of Proposition V.1, agentan simply move
D'(t) = (Xi(t), .., XN () C S™. (") towards its computablé€yy, and guarantee to be decreasing
Note that agent may not necessarily have information about!€ value of the optimization functio as long as (9) is
all agentsj € {1,..., N}. In the case that agentdoes not satisfied. As time elapses without new information, the looun
have any information about some aggntet X (¢) = (. We bnd; begins to grow until (9) is no longer satisfied. This gives
refer toD — (D PVY c SV as the enti]re memory of a natural triggering condition for when ageémeeds updated
the neton(( DT C Y O information from its neighbors. We discuss this next.

Given the above data structure, we are now able to prese3 t Self-triggered update policyTo specify this component,

the two components of the self-triggered algorithm: a motio Ve build on the discussion of the previous section, specifi-

control part that determines the best way to move givelrjwaIIy on making sure that condition (9) is feasible.

the available information and an update decision part that'® update policy is described informally as follows. Each
determines when new information is needed. agent uses its stored information about other agents’ lo-

cations to calculate its own guaranteed Voronoi and dual
guaranteed Voronoi cells, and the bound (8). Then, it de-
. : i . ; cides that up-to-date location information is requiredtsf i
its own Voronoi cell and move towards its centroid, as in [1]. . . .
computed bound is larger than the distance to the centroid

Since this is not the case we are considering, we instead use, : .
; . : . of its guaranteed Voronoi cell and wheree > 0 is an a
an alternative motion control. The following result gives a

condition under which an agent can get closer to the centroPcirlorl chosen design parameter to limit updates when agents

. . . 2 : are near convergence.
of its own Voronoi cell with uncertain information. . ) _

Formally, the self-triggered updating mechanism follovegd
Proposition IV.1 (Motion control [14]) Given the position each agent is described in Algorithm 2.

informationp; of agenti and the dateD available to it, let The self-triggered deployment algorithm is then the corabin
M tion of Algorithms 1 and 2 above. The synthesized algorithm
gvi

_ ) (8) has been shown to asymptotically converge to the set of
Magy; centroidal Voronoi configurations [14].

2) Motion control: If an agent had perfect knowledge of
other agents’ positions, then to optimizg it could compute

bnd; = bnd(gV;, dgV;) = 2 cr(dgV;) (1



Algorithm 2 : Self-Triggered Update Policy

3

Agenti € {1,..., N} performs: )_(ji .

1: setD = D! p; Q f

2: computeL = gV;(D) andU = dgV;(D) \_y N 2 \’
3: computeq = Cr, andr = bnd(L,U) pi P
(Requesting new information) . ®

1:if r > max {|l¢ — pi||,e} then o/ ./

2:  request updated information

3: end if

(@) (b)

Fig. 2. Graphical representation of the information avédab an ageni
with (a) no promises and (b) varying promises from differergrag. The
dark regions correspond to the promise slégsgiven the promises and the

A drawback of the distributed self-triggered communicatio '9ht regions correspond to the guaranteed $éfs

protocol presented in Section IV is that in general it is very

conservative. More specifically, an agent requests infermd; does not need to be a constant as discussed in [15], but
tion when it can no longeguaranteethat the value of the we consider constart; = § > 0 for all agents here. °
objective function will decrease. The problem with this is

that worst-case considerations about neighbors actioss m&. Agent data structure

be considered at all times, even though neighbors may nghyinped with the promise information exchanged among
be acting in this way in general. agents, we are able to provide agents with better informatio
In this section we apply a modification of the team-triggere@bout one another. Given the promisgthat agentj send to
idea from [15] to address this issue. The backbone efgent; as defined in Definition V.1 (provided b;g = u(t})

the team-triggered strategy is the use of ‘promises’ amonghd ), agenti can now construct the promise set
agents that provide a better quality of information than

strictly position information as is used in the self-trigee Xj(t) = B(p; + (t — to)uj, (t = t)0) N X5(t).  (13)
algorithm. We discuss this first. This promise set has the property that(t) c Xi(t)
providing a higher quality of information to agent

With a slight abuse of notation, we redefine the data that

A promisethat an agenj makes to agentat a given timet;  agents maintain using information from promises,
is a subset of the allowable control spaege C B(0, vmax)-

This set conveys the promise that agehtvill only use Di(t) = (X}(t),..., Xy (1) € SV, (14)
controlsu;(t) € U; for ¢t > t;. From this promise, agertis
able to generate a promise S€f(t) such thap;(t) € X;(t) '
is guaranteed for afl > t; provided that the promise is kept. Given the new data structure, we are able to reuse the
Promises provide agents with a higher quality of informatio Metion control law and self-triggered update policy présen
than simply position information. Given position inforrat

in Section IV. The only difference now is that agents use
p;(t}) and a promisél;f that agenj makes to agentat time promises (13) rather than guaranteed sets (6) which allows
t, agenti can compute @romise set

V. TEAM-TRIGGERED ALGORITHMIC SOLUTION

A. Promises

C. Team-triggered algorithm design

agents to operate with better information resulting in drett
control decisions and less conservative conditions on when

Xi(t) ={z;(t) €S | Juy : [t 1] = U] (11) new information is required.
; t The only issue left to resolve is to ensure that agents are
such thatz; (t) :pj(ttz)+/ti u;(T)dr}. operating with correct information at all times. In other
¢ words, we need a mechanism such that if an agent breaks a

This conveys to agentthatp;(t) € X;?(t) for t > ¢;. The promise to another agent at any time, it must immediately

shape of these sets vary depending on how promises a@nd updated information to that agent.

made among the agents. Figure 2 shows an example of wixcording to Algorithm 2, agent checks if condition (9)

these promise sets might look like for a given agent is feasible orbnd; < ¢, and therefore it is advantageous to

For the remainder of the paper, we only considell-radius  execute the Motion Control Law. However, this decision only

promisesas defined below for simplicity. However, we notemakes sense assuming that agents keep their promises at all

that all subsequent results hold for any prom'isi?’s times. If a promise to agentis not kept, Proposition V.1

does not hold because it is not guaranteed thatgV; C

Definition V.1 (Ball-radius promises) The ball-radius dgV;.

promise that agent makes to agent at timet; is a ball ~ We address this by supplementing the self-triggered de-
i = — ployment algorithm with the Event-Triggered Update Policy

Uy = B(uj, 67) N B(O, vmax), (12) presented in Algorithm 3.

whereu§ = u,(t}) is the control signal used by agentat  Algorithm 3 is responsible for ensuring that agents are-oper

time ¢; andd; > 0. This promise is a ball of radiug; in the  ate with accurate information at all times. If at any time an

control space centered at the control sign?l In general, agent breaks a promise to a neighbor it must correct this by



Algorithm 3 : Event-Triggered Update Policy
Agenti € {1,..., N} performs:

Now, considerk ¢ A’ we know |p;(to) — pr(to)]| >
Re*f(ty) + 8, and thus

1: if there existg/ such thatp; ¢ Xf then

2:  send current position informatign; to agent;
3:  send current control signal; to agentj

4: end if

lpi(t) = pr(®)]l > B3 (to) + B — 2umax(t — to)

2
> R(to) — 55
for t € [to, to + 6fmax]. Combining these we have

immediately sending new position information and control
signal. Lastly, if an agent receives unsolicited information,
meaning a neighboring agent has broken a promise and sent
it a new one, it must also request updated information frorg
all its neighbors. This is important due to the dynamic ratur
of the communication topology as we discuss next.

1) The synthesized algorithntlere, we present the team-
triggered algorithm to achieve optimal deployment with-out
dated information. The algorithm is the result of combinin

Ipi(t) — pr(t)]| > RSM(t), Vk ¢ A%

y ensuring the condition of Lemma V.2, we are able to
leverage the resultin [14, Lemma 5.3] and ensure all reduire
agents are accounted for.

The fully synthesized Team-Triggered Centroid Algoritten i
Jormally presented in Algorithm 4.

the Motion Control Law, the Self-Triggered Update Policy Ajgorithm 4 : Team-Triggered Centroid Algorithm

and the Event-Triggered Update Policy with a |orocedur§55gen“.E .

., N} performs:

to acquire updated information about other agents WheR: setp = r ,; (D7)
this requirement is triggered by Algorithm 2 (Requesting2: computeL = gV;(D) andU = dgV; (D)
new information). In the self-triggered algorithm propdse 3: computeg = Cy, andr = bnd(L,U)

in [14], it is sufficient to only receive information from *
an agent’s Voronoi neighbors when an updated is requiredl.'
However, due to the new information structure provided byso:
the promises, we need a modification to ensure thatgV; 3:
for all agents at all times. Let the communication radius?:
R = 2max;cn, [[pi — pjll. When agenti decides new g

if

al

(Requesting new information)

r > max {||¢ — p;||,e} OR unsolicited information is received OR

% seconds have elapsed since last update

mraexqut-:‘_st updated information
setA = {j | p; € B(pi, Ri)}
setD = 7 4 (D")

setL = gV(D) andU = dgV (D)
setq = Cr, andr = bnd(L,U)

information is needed for the self-triggered algorithm, it7: end if

requests information from all agents withiR$e" of it. A '
method for computing?$® is provided in [14]. Instead, we 1: if
utilize the communication radiug; = R$*"+3 whereg >0 3.

is an a priori chosen design parameter. To capture the faat en

that the topology is changing, we define for each ageat
subset of agentst’ C {1,..., N} whose information will

(Sending new information)

there existsj such thatp; ¢ Xl.j then

send current position informatigs; to agent;
send current control signal; to agent;

d if

(Motion control)
1. computeu; as defined in (10)

be used rather than all the agents of the network. Each time
an agenti requests updated information’ is set to to the

list of all agents withinR; of p;. We definer 4 as the map Remark V.3 (Dynamic ball-radius promises) In order to

that extracts the information about the agents contained fMinimize communication, it may be more favorable to con-
A* from D. The following result then specifies a minimumsider ball-radius promises in Definition V.1 where the radiu
required communication rate to ensure information is sharexf the balls evolve alongside the network execution. For
often enough. Its proof is omitted due to space constraintsnstance, an ageritmay increase its promise radidseach

Lemma V.2 (Minimum required communication) If
agents request updated information at least eve; /- sec,
then g/;(m4:) C V; holds for alli € {1, ..., N} at all times.

Proof: Let ¢, be the time at which agent re-
ceives updated information and thug® {j €
{1, N} | lpi(to) — pi(to)ll < R$*(to) + B}. We
now need to show that1§(m4:(D'(t)) C V;(D(t)) for
t € [to,to + Gfmax]. It was shown in [14] that if for all
lpi —p;ll < R We havej € A', then ¢/i(m 4: (D")) C Vi.
Fort € [to, to + ~~—], we are able to bound

6Umax

R?e”(t) =2 116127,\}( lpi(t) — Dy | < stelf(to) + 4vmax(t — to)
J i

2
< R¥(to) + 55.

time it breaks a promise to a neighbor in hopes of breaking
them less. Similarly, it may decrease its promise radius if a
neighboring agent requests new information before the prio
promise is broken. Another possibility is for agents to keep
track of how often promises are broken over time and adjust
their promise radii based on this information. °

VI. ANALYSIS OF TEAM-TRIGGERED LAW

In this section we analyze the asymptotic convergence
properties of the Team-Triggered Centroid Algorithm. To
properly analyze the trajectories of this system, we must
consider the evolution of the entire network’s mema@ry=
(DY,...,DN) c SN,

We begin by noticing that the promise informatidﬁ;i(t)

that an agent has about an agerjtat any given time can be
described by 3 parameters (since we assume the ball-radius



0 is fixed by all agents): the position informatiquj € S where u; is computed by (10) withA® = {i} U
that was last communicated to agentthe control signal argmin;cg .y fi) ri and

uj; = u; € U used at that time, and the uncertainty radius o , P
ri € Rxo. With a slight abuse of notation, we say that i~ ) {2vmaxt if 3j € A" s.t.p; ¢ B(pj,rj + A,
{2Umax, 0}  otherwise

=
De SN = (S xUxRso)™ . (15)

The definition ofu’ ensures that even if promises might have

For convenience, we define the map(D) = (p1,...,pN) X X
that extracts the position information of the agents from P€€n broken, the uncertainty sets are being properly grown
so that the information contained is still accurate. This is

The Team-Triggered Centroid Algorlmm can E\t]Zen be ert'important in the result of Lemma V1.3 below. It is easy to
ten as a discrete-time mafiic.. : Sp — Sr which

i . see that the m is closed (a set-valued m@p: X =Y
corresponds to one timestept of the composition of a1 ( ap =

e ) X is closed ifz;, — =, — y and T imply that
a “decision/update-information” magi.;, and a “move- y € T(x)) Tk Tr Yk Y yi € T(wy) imply

and-update-uncertainty” magmotion, 1-€., fitca(D) =
Smotion(finto (D)) for D € S}EVQ. Unfortunately, it is difficult
to analyze these trajectories directly because the fijap
is discontinuous.

Our objective is to prove the following result characterii
the asymptotic convergence properties of the trajectares
the Team-Triggered Centroid Algorithm.

Acquisition of up-to-date information. In each timestep,
agents have the possibility of communicating and receiving
updated information from their Voronoi neighbors. This is
captured by the set-valued map: SY° = S¥° that, to

D € SY*, associates the Cartesian prod@i¢D) whoseith
component is eitheD? (agenti does not get any updated
information) or the vector

/ I / / ! !/
Proposition VI.1 For ¢ € [0,diam(S)), the agents’ posi- (P w1, 1), -, (s ulvs 7))
tions evolyir_lg under the Teanj—Triggeer %entroid Algonth \where ) ufrly) = (pgj’u;f,o) for j € {i} UN; and
from any initial network coryﬂgura_tﬂon |.|$ converges to () ) = (p;; 7u3; 77,;1) otherwise (ageni gets updated
the set of centroidal Voronoi configurations. information). Recall thatV; is the set of neighbors of agent

) o ] ) i given the partitionV(loc(D)). It is not difficult to show
Since the mapfii., is discontinuous, we cannot directly that 7 is also closed.

apply the discrete-time LaSalle Invariance Principle. ideo We define the set-valued maf. SN 5 GN? py
to prove Proposition V1.1, we construct a closed, discretey, ~ ~ 7 0 "m0 o boijfr{j\/l an%l T are %Iosed
time set-valued mafyy.. whose trajectories include the thszzncmastync is closed. Moreover, ify = {D(t)}res. '
ones of the d?term'n's.‘t'ﬁt.“a' We are then able to apply the is an evolution of the Team-Triggered Centroid AIgoFi?chm,
LaSalle Invariance Principle for set-valued maps, e.d)].[2 then~’ = {D'(ts) ez, With D'(tr) = finto(D(t)), is @
Next, we define the two components @fy.. formally. {rgjectory of = e '

The first component captures the motion of the agents and . .

propagation of the promise sets, and the second component D'(te41) € Tyne(D'(te))- (16)

captures the possibility of communication among agent§he following result establishes the monotonic evolutién o
For simplicity, we defineT,,. and provide analysis of the objective functiorf along the trajectories of,ne.
Proposition VI.1 for agents using the ball-radius promises '
with fixed J > 0 from Definition V.1. Lemma VI.3 # : SN — R is monotonically nonincreasing
along the trajectories of ..
Remark V1.2 (Convergence with arbitrary promises) We ,
note here that the convergence result of Proposition VI.1 Proof: LetD € SE" andD’ € Tyyuc(D). For conve-
holds for any promises/! of non-zero measure amongnience, et = loc(D) and P’ = loc(D’) = loc(M(D)). To
agents, not just the ball-radius promise. In order for ougstablishH(P') < H(P), we leverage the inequalities (4)
analysis to hold for different promises, we just requireea and (5). First, let the partitio’(P) be fixed. For each
ful redefining of the set-valued maR, ... However, various @ € {1,..., N}, if [[p; — Cyv, (m.4:(D"))|| < bnd(m4:(D")),
definitions of promises does affect the rate of convergendBenp;’ = p; because agentdoes not move according to
and amount of communication induced among the agentsthe control law (10). If, instead||p; — Cgv; (7 4:(D*))[| >
bnd (7 4:(D*)), then, by the control law (10) and Proposi-
Motion and uncertainty update. We define the set-valued tion V.1, we have thaf|p;’ — Cv; || < [|p; — Cv;||. In either
motion and uncertainty update map A : SN° = sN®  case, it follows from (5) that (P, V (P)) < H (P, V (P)).

whoseith component is It is important to note that the above only holds true if
agents are operating with accurate information about one

M;(D,0) = ((p}, v}, max{r} + p'At,diam(S)}),. .., another. This is ensured by the definition of (15) in the
(B + i ALk, 0), .. motion and uncertainty update map. Second, the optimal-

PR ; ; ) ity of the Voronoi partition stated in (4) guarantees that
(P, uiy, max{ry + p' At, diam(S)})) , H(P',V(P") <H(P',V(P)), and the result follows. m



One can establish the next result using Lemma VI.3 and thepdated information. Once agengets updated information,
fact thatTyy.. is closed and its trajectories are bounded anthen bnd(m 4:(D%,)) = 0, and consequently, from (17),
belong to the closed se&tY”. pt = pit = Cyv, (7 4:(D:,) = Cy,, and the result follows.

Lemma VI.4 Let+ be a trajectory of(16). Then, thew- VII. SIMULATIONS

limit set ) # Q(y) C ngf_ belongs toH ' (c), for some | this section we compare the proposed team-triggered
¢ € R, and is weakly positively invariant fdfiy.., i.e., for  strategy with the self-triggered algorithm from [14] ane th
D € Q(y), 3D € Tyync(D) With D" € Q7). periodic communication strategy from [1]. We consider a
network of N = 8 agents moving in a 4nmx 4m square
with vmax = 1 m/s and a timestep oAt = 0.025 s. The
density ¢ is a sum of two Gaussian functions

Proof: Let +/ be a trajectory of (16). It is clear
that (7)) # 0 because’ is bounded. LetD’ &
Q(«'). Then there exists a subsequent®’(t,,,) tmez-,
of 4/ such thatlim,, , . D'(t,,,) = D’. Consider ¢(w):e—\|w—q1|\2+e—|\z—q2\l27
{D'(ts,.,,) }mez-,. Since this sequence is bounded, it must

: N ith = (2,3) and g2 = (3,1). We use the following
have a convergent subsequence, i.e., there efistsuch With g, ’ | 42 ’
that lim,,, ., g/(te ) :qﬁ/ By definition P e Q) model [21] for quantifying the poweP; used by agent €
m oo m+1 . ) .

Since Ty, is closed, we haved’ e Toyne (D), which {1,...,8} to communicate, inlBmWW power units,
implies thatQ(+’) is weakly positively invariant. P; = 10log,, Z g 100-1Pi—s+aallpi=psl |
Now consider the sequencd#(P(t¢))}ecz-,, Where Je{l,... N} itj

P(ty) =loc(v'(te)). Since is nonincreasing and bounded (19)

from below there exists € R such thatim,_, ., H(y(t,)) =
c. Now take anyz € Q(+'), by definition of the limit set
there exists a convergent subsequence’dhat goes toz.
By continuity of # we conclude that{(loc(z)) = c.

wherea;, as > 0 depend on the properties of the wireless
medium andP;_,; is the power received by of the signal
transmitted by in units ofd BmW . In our simulations, these
values are set ta.

he ball-radius promises are generated using Definition V.1

ith 0 = 2\umax, Where € [0, 1] is a design parameter that
captures the ‘tightness’ of promises. Setting= 0 corre-
sponds to promise sets that are exact trajectorieshaadl

orresponds recovers the self-triggered case becausésgrom
sets and guaranteed sets defined in 6 become equivalent.

We are now ready to establish our main convergence res

PROOF OF PROPOSITION VI.1. Let v = {D(t,)}rez.,
be an evolution of the Team-Triggered Centroid Algorith
andy’ = {D'(t¢) }vez., WhereD'(t;) = finto(D(t,)). Note
thatloc(D(t¢)) = loc(D’(t;)). We now use a contradiction
to show that the limit set of’ is given by

2 . - eriodic
Q(’V’) g {D 6 Sg | for ? 6 {]‘7 cte ’N}’ ) (17) 250 —— Team-tri;ere;jxx=.25) L
Ip; — Cgvi (ma: (D*))[| < bnd(ma:(D"))}- o e
B i
Assume there exist® € Q(y) andi € {1,...,N} such

that ||p! — Cqv; (m.4:(D?))|| > bund(r 4:(D")). Then, Propo-
sition 1V.1 and the control law (10) guarantee tHdtwill

100

strictly decrease undefyy,,., which is a contradiction with 50

the fact that2(+) is weakly positively invariant fofl ..

Note that the inequalityhnd; < max{|[p! — Cqv; |, e} is 0T Mimestep
satisfied atD’(t,), for all £ € Z>, because this prescribes (a) Total energy expenditure

an update by agent By continuity, it also holds of2(v’),
bnd (7 4: (D")) < max{|[p; — Cgv; (ma: (D)), €}, (18)

forall i € {1,....N} and allD € Q(y’).2We are now
interested in showing)(+') € {D e Sp | fori € H
{1,...,N},p; = Cv,}. ConsiderD € Q(y'). SinceQ(y)

Team-triggered X = .25)
Team-triggered X = . 5)

- Periodic
— Self-triggered

is weakly positively invariant, there exis®; € Q(y') N 6

Tsyne(D). Note that (17) implies thatoc(D;) = loc(D), .

i.e., no agents are moving. There are two reasons this 2

might happen depending on whether or not agents have Y m w W ® % w
updated information inD;. If agenti does not receive Timestep

updated information, because of the minimum_required (b) Objective function

communication forced by Lemma V.2, there exi®dg, € Fig. 3. Plots of (a) the total communication enetfyin Joules and (b) the

. D) ; evolution of the objective functio{ of executions of the periodic, the self-,
TS-V“C(D"’*) € € TSY“C(Dl) such that agent receives and team-triggered (for two different tightnesses of pros)istrategies.



Figure 3 compare executions of the periodic, self-trigdere such an algorithm compared to periodic or self-triggered
and team triggered strategies for two different tightnesfe communication strategies. For future work, we plan to rgor
promises & = 0.25 and A = 0.5) starting from the same ously analyze the effects that promises have on the network

initial condition. Figure 3(a) shows the total communioati

executions, and methods for optimally constructing these

energy over time and Figure 3(b) shows the evolution gfromises with respect to different performance metrics. We
the objective function’{. From these figures we can seealso intend to apply similar team-triggered strategiestheio
that the tightness of promises indeed have an effect on thléstributed coordination tasks.

algorithm executions. Fox = 0.25, Figure 3 shows that the
communication energy is cut in half compared to the periodic

strategy without compromising the network performance. [1]
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(b)
Fig. 4. Plots of the average (a) communication power netwonsemption
Pavg and (b) time to convergencg,on for the team-triggered deployment [13]
strategy with varying\. Time to convergence is the time to reach 99% of
the final convergence value of the objective function.

. . [14
Figure 4 demonstrates more clearly the effects of varymb ]
the tightness of promises in the team-triggered strategy.
Figure 4(a) shows the average power consumption in terms [&#]
communication energy by the entire network and Figure 4(b)
shows the time it takes each execution to reach 99% of thss)
final convergence value d#. Interestingly, for small\, we
see substantially less amounts of required communicatigpy,
while the time to convergence only slightly increases.

VIIl. CONCLUSIONS [18]

We have proposed the Team-Triggered Centroid Algorithm to
solve an optimal deployment problem for a group of mobil'®
sensors. The strategy combines ideas from event- and self-
triggered control that provides agents with sufficient auto [20]
omy to decide among themselves when communication is
necessary. We have analyzed the correctness of the algoritpy;
using tools from computational geometry and set-valued
stability analysis. Our result provides the same convergen
properties as an algorithm assuming perfect information at
all times. Simulations demonstrate the potential benefits o
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