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Abstract— This paper considers the task of deploying mobile
wireless repeaters on aerial vehicles in the upper air of Earth
to increase the Internet connectivity of users with little to
no network infrastructure. By routing data between a user
and a strong connection to the Internet through the vehicle
network, this ad hoc infrastructure can provide Internet access
to those currently without it. We consider two different types of
vehicles, altitude-actuating balloons and fixed-altitude gliders,
and examine the task of finding optimal vehicle trajectories
under lateral wind dynamics employing a throughput-based
performance function. Given the complexity of computing the
optimal trajectories of all vehicles simultaneously, we introduce
an approximation that allows us to determine the optimal
trajectory of a single vehicle. We use this optimal trajectory as a
reference for the network and develop a coordination algorithm
that makes all vehicles follow it while being spaced out equally
in time, providing good overall coverage to users. For gliders,
we show that, if cost of control is small enough, these vehicles
converge to a stationary formation rather than flow with the
wind. Simulations validate the throughput performance of the
proposed periodic trajectories.

I. INTRODUCTION

As of December 31, 2013 only 40% of the world’s popu-
lation has access to the Internet. Many others are connected
but with very slow speeds. To combat this, Google unveiled
its Loon project in 2013, which aims to bring the Internet
to areas of the world currently without it through an ad hoc
network of high altitude balloons equipped with wireless an-
tennae and receivers. The basic idea is for a user in a remote
location to wirelessly send/receive data to/from a balloon
above them using a specialized antenna. Then, the network
of balloons route the information between themselves until
the data can be sent to/received from a fast connection to the
Internet; Figure 1 depicts this scenario. High-altitude weather
balloons are being proposed for this project because they are
cheap and reliable. However, their simplicity brings about
interesting control challenges: the balloons can change their
altitude by controlling their internal pressure using a pump,
but their latitudinal and longitudinal velocity is governed by
the airspeed at their current altitude. Since these balloons are
underactuated, one cannot just determine the set of optimal
static locations that provide the best service to the users.
Instead one must consider the performance of trajectories.

In April 2014, Google further acquired Titan Aerospace, a
company that produces high-altitude, solar-powered drones,
to aid the balloons in providing Internet coverage. In contrast
to the balloons, these drones are capable of counteracting the
latitudinal and longitudinal winds at the cost of actuation.
Motivated by this, we also consider finding the trajectories
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that optimize the average coordinated performance of bal-
loons and drones over one revolution around the Earth to
provide better network services to users.

Fig. 1. Central dark circle represents a latitude of Earth, looking down
the axis of rotation. There are users and infrastructure with large distances
in between. The balloons/gliders, depicted as gray circles, act as wireless
repeaters to bring the signal between users and infrastructure. The balloons
are able to change their altitude within an upper and lower limit. The
wind’s direction changes with altitude and location, so balloons actively
control their altitude to move in good directions. Similarly, the drones may
counteract the winds at the expense of actuation. In both cases, vehicles
seek to move in the direction which provides the best user service.

Literature review: Current work is being devoted to un-
derstanding how a repeater’s motion can enhance a wireless
network’s performance. In [1], the authors consider the task
of mobile robots moving through an area to complete a
generic task while respecting each agent’s desire to have a
minimum communication rate out of their network to fixed
access points. Recent experiments have quantified the effect
of actively moving wireless infrastructure (WiFi routers)
to increase the network throughput for home and office
environments. [2]. Furthermore, the idea of high-altitude
platforms (HAPs) to improve wireless communications has
been explored for at least 20 years, see e.g., [3], [4], [5],
[6], as their use has the benefit of less lag and more
bandwidth over satellites, and a larger range of coverage
over a terrestrial antenna. These works use the Shannon-
Hartley equation [7] to model the wireless capacity of a
link where each type of connection (HAP-to-HAP, HAP-
to-user, and HAP-to-ground station) operates at different
bandwidths. In contrast with balloons, a HAP is typically
an aircraft such as a blimp or plane that controls itself to
remain in an approximately fixed position. This allows for
simpler guarantees on network performance than when using
balloons. While balloons share the benefits of traditional
HAPs, their cost is much lower. The work [8] solves the
problem of trajectory planning for a single hot-air balloon in
a linear wind field using optimal control-based techniques.



Finally, for balloons [9] and UAVs [10], work has been
done finding feasible trajectories for motion planning in the
presence of uncertain wind fields. The control techniques
employed in this paper for the coordination of vehicles
employ Laplacian agreement [11] and backstepping [12] to
make the vehicles follow the desired optimal trajectories.
Our coordinated trajectories are related to cyclic pursuit and
present an alternative to [13], which result into appropri-
ate vehicle spacing for sampling spatial phenomena. The
latter work consider planar vehicles with steering control
and fixed velocity and proposes a solution to reducing the
high-dimensional functional space based on considering the
optimization over a family of parameterized trajectories.

Statement of contributions: We propose a solution to a
problem in global network integrity by coordinating the
motions of high-altitude platforms acting as an ad hoc
network of wireless communication repeaters. To measure
the network quality provided by the vehicles, we propose a
simplified throughput-based performance metric that allows
us to find the routing policy that maximizes the flow be-
tween users and infrastructure for any static configuration
of vehicles. Using the assumptions that communication be-
tween the wired infrastructure of the Internet is fast and
less costly and that all bandwidth allocations are constant,
the problem is efficiently routing the information from a
user to any infrastructure node (and back). This allows us
to formulate the capacity of the network as the optimizer
of a linear program. Because the vehicles are constantly
moving, we seek to optimize the average capacity over one
revolution around the Earth. Since the associated optimal
control problem is intractable for large numbers of vehicles,
we derive an approximate performance metric and determine
an optimal periodic trajectory for a single vehicle. Our design
strategy consists of synthesizing a distributed algorithm for
all vehicles to converge to this same optimal trajectory while
being spaced out equally in time. Simulations show that this
periodic formation leads to good network throughput. For the
glider case, we provide a bound on the critical actuation cost
for which optimal trajectories result into static deployments.

II. PRELIMINARIES

This section contains notions on graph theory, a wind
model, and the vehicle dynamic models. R is the set of real
numbers, Z≥1 the positive integers, and S the space of angles
parameterizing a circle. For any d ∈ Z≥1, 1d and 0d are the
d-dimensional vectors of all ones and zeros, respectively.

A. Graph theory
We review basic notions on graph theory following [14].

A weighted digraph of order n is a triplet G = (V,E,A),
where V is a set of n elements called the vertices (or nodes)
and E is a set of ordered pairs of vertices called edges, where
E ⊆ V × V . For u, v ∈ V , the ordered pair (u, v) denotes
an edge from u to v. The nonnegative matrix A ∈ Rn×n>0

has the following property: for i, j ∈ {1, . . . , n}, the entry
aij > 0 if (vi, vj) is an edge of G, and aij = 0 otherwise.
The sources of a weighted digraph G are the nodes with no
incoming edges. Similarly, the sinks of G are the nodes that
contain no outgoing edges. An undirected graph is one where

an edge from node u to v implies an edge from v to u and
an unweighted graph has all positive aij = 1. We refer to
an unweighted, undirected graph as simply a graph. A path
in weighted digraph G is an ordered sequence of vertices
such that any pair of consecutive vertices in the sequence is
an edge of the graph. A graph is connected if there exists a
path between any two vertices. The Laplacian matrix L(G) =
(`i,j)n×n associated with an undirected unweighted graph G
has off-diagonal elements defined by

`i,j =

{
−1, if i 6= j and (i, j) ∈ E,
0, otherwise,

and positive diagonal elements defined so that L(G)1n =
0n. This matrix is symmetric and positive semidefinite,
with the multiplicity of 0 corresponding to the number of
connected components of G when G is undirected. In the ring
graph, each vertex is connected to the vertices immediately
on either side of it. The associated Laplacian matrix is

L =MTM, M =



1 0 0 . . . −1

−1 1 0
. . .

...

0
. . . . . . . . . 0

...
. . . −1 1 0

0 . . . 0 −1 1


.

B. Global wind patterns

The Earth’s winds are a chaotic system that is difficult to
model over long timescales. However, historical and current
weather balloon data [15] allows one to approximate the
state of the wind fields w(t, θ, φ, h) as a function of time,
latitude (θ), longitude (φ), and altitude (h). We denote
the components of the windspeed along the corresponding
directions by wθ, wφ, and wh, respectively, and assume
they are continuously differentiable. At latitudes close to the
equator, winds can be approximated as moving completely
east-to-west or west-to-east depending on the time of year.
Additionally, in general, the airspeed increases with altitude
and is constant over time [16]. Thus, for the rest of the paper,
we model wθ = Kh+ Cθ, with K > 0, and wφ = 0.

C. Balloon dynamics

Consider an altitude-actuating balloon in the stratosphere.
Balloons float at an altitude that they are neutrally buoyant.
In the stratosphere, the air pressure and temperature mono-
tonically decreases with height. Thus, balloons are capable
of changing their altitude by changing their internal pressure
via a pump. Considering this, we assume that each balloon
may directly control its rate of altitude change. However,
having no actuation in the lateral directions, a balloon’s
motion in these directions is governed by the winds in the
stratosphere. Because the balloon’s mass is small, we assume
that it is Lagrangian, i.e., its lateral velocity is equal to the
wind velocity at that location. An accurate modeling of the
dynamics of high-altitude balloons is involved [17], [18]. In
this paper, we abstract away many of the physical details
for the sake of tractability. The position of a balloon i is
xBi = (θBi , hi) ∈ S× R and its dynamics given by

θ̇Bi = wθ(θ
B
i , hi), ḣi = uBi . (1)



We assume that the vertical wind and solar radiation-induced
forcing are already canceled by the control authority and
the remainder is uBi . To ensure the safety of air traffic, the
vehicles have a lower bound on the altitude hmin > 0 that
it can drift at as well as an upper bound hmax > 0 imposed
by physics. We also assume that the balloon’s control uBi is
bounded by a value umax > 0 for all time.

D. Glider dynamics
Here, we consider a simple model for a fixed-wing aircraft

i with limited propulsion control:
θ̇Gi = wθ(θ

G
i , hi) + uGi , ḣi = 0. (2)

The glider maintains a fixed altitude and is able to change
its speed relative to the wind by exerting control effort. We
also assume that the magnitude of the glider’s control ui is
uniformly bounded by a value umax > 0.

III. PROBLEM STATEMENT

We assume there are NI infrastructure locations, NU
users, and NV vehicles (balloons or gliders). Infrastructure
locations have antennae with large capacity wireless channels
that can communicate with the vehicles and route the users’
Internet data to and from them. The static location of the
infrastructure i ∈ NI = {1, . . . , NI} is xIi = θIi ∈ S.
Here, we model groups of individual consumers together as
one user. The position of user i ∈ NU = {1, . . . , NU} is
xUi = θUi ∈ S. For simplicity, we neglect the elevation of
users and infrastructure because their variation is assumed
small compared to the altitude of the vehicles. Dependent on
the number of people and their preferences, each user i has
a desired capacity preference κi that it would like to receive.
Finally, the position of vehicle i ∈ NV = {1, . . . , NV } is
xVi = (θVi , hi) ∈ S× R. Then, the network dynamics is

ẋV = g(xV , u), (3)
where gi is (1) or (2) depending on i’s vehicle type.

We consider the objective of providing optimal network
capacity to the users using the vehicles to connect them
to the infrastructure. Because the vehicles are constantly
moving and this motion affects the network’s throughput,
the goal is to determine a control strategy maximizes the
achievable average network capacity over one revolution
around the Earth while minimizing control effort. Given an
initial vehicle configuration xV (0), let U(xV (0)) be the set
of admissible control trajectories that result in trajectories
of (3) that respect the height constraints, i.e.,

U(xV (0)) = {u : R≥0 → RNV | u(t) ∈ [−umax, umax]
NV ,

xV (t) ∈ [hmin, hmax]
NV ,∀t ≥ 0}.

Given a function R : (S × R)NV × (S)NI × (S)NU → R
that captures the quality of service for a static set of vehicle
positions and a function G : RNV → R that penalizes
energy consumption, we wish to find the optimal trajectories
generated by the control inputs that solve

J(xV (0);T ;xI ;xU ) =

max
u∈U(xV (0))

1

T

∫ T

0

(R(xV (t);xI ;xU ) +G(u(t)))dt. (4)

T is a design parameter which can correspond to, for
instance, the maximum time that it would take a vehicle to

circle the Earth. Later, we will take it to be a variable that
we optimize over, so that T is exactly the time it takes the
network of balloons to make one complete revolution with
the given control strategy.

IV. NETWORK PERFORMANCE MODEL

Now we define a quality-of-service function R for (4).

A. Wireless communication model for channel capacity

We introduce here the wireless communication model for
the channel capacity between two agents (users, vehicles, and
infrastructure nodes) i and j located at positions xi and xj .
The Shannon-Hartley theorem [7] provides an upper bound
on the channel capacity Cij (bits per second) for point-to-
point line-of-sight radio communication from i to j,

Cij = Bij log
(
1 +

Pij
N0Bij

)
, (5)

where Bij is the allowable bandwidth, Pij is the received
power, and N0 is the noise power per unit bandwidth. Here,
we assume a fixed transmitted power P and free-space path
loss [19] leading to the power of the received signal Pij ∝

P
‖xi−xj‖2 . In principle, given a network of agents commu-
nicating wirelessly, bandwidth allocation policies may allow
for time-varying bandwidth allocations. However, we make
the simplifying assumption that the bandwidth allocations are
fixed and equal for all channels of the same type (vehicle-
to-vehicle, user-to-vehicle, and vehicle-to-infrastructure).

B. Linear program formulation of network capacity

We now define the model to measure the capacity provided
by a static vehicle configuration to users. Because routing
information is cheaper and faster amongst the wired in-
frastructure, we simplify the capacity problem. We consider
the goal of the vehicle network to route the most capacity
from each user to any infrastructure node. We view the
network as a graph with the vehicles, users, and infrastructure
as nodes. Two nodes are connected with an edge if they
can communicate wirelessly with each other and the edge’s
weight equal is to their link capacity according to (5).
Then, one natural measure for the capacity of given network
configuration is a (modified) max flow through the network
when viewing the users as sources and the infrastructure as
sinks. To do this, we artificially set the allowable bandwidth
from vehicles to users and from infrastructure nodes to
vehicles to 0. Then, the maximum flow between the users
and the infrastructure nodes can be formally written as the
optimal solution of a linear program, as described next.

Let FV V ∈ RNV ×NV≥0 , FV I ∈ RNV ×NI≥0 , and FUV ∈
RNU×NV≥0 represent the information flow between vehicles,
between vehicles and infrastructure nodes, and users and
vehicles, respectively. The ijth entry is the amount of flow
from i to j. Similarly, define CV V ∈ RNV ×NV≥0 , CV I ∈
RNV ×NI≥0 , and CUV ∈ RNU×NV≥0 as the channel capacities of
the links as in (5). Then, we define the following constraints



FV Vij + FV Vji ≤ CV Vij , ∀i, j ∈ NV (6a)

FV Iij ≤ CV Iij , ∀i ∈ NV , j ∈ NI (6b)

FUVij ≤ CUVij , ∀i ∈ NU , j ∈ NV (6c)

FV V ≥ 0, FUV ≥ 0, FV I ≥ 0, (6d)
stating that the information flow across each link must be
non-negative and bounded by the link capacity. and vehicle-
to-vehicle channels are shared between each direction of
communication. No information can be saved at a vehicle:
((FV V−(FV V )T )1NV+FV I1NI−(FUV )T1NU=0NV . (7)

The maximum flow from users to infrastructure nodes is
Rwmf(x

V , xI , xU ) = min
FV V ,FV I ,FUV

−dTFUV 1NV , (8)

subject to (6) and (7). Note that this function sums the
outgoing information from the users to all the vehicles
and weights them by d ∈ RNU≥1 . For a feasible set of
flows FV V , FUV , FV I , all information leaving every source
reaches an infrastructure node, so summing all of the flows
out of the sources is the network’s maximum flow. Choosing
some elements of d strictly greater than 1 gives them
more importance, incentivizing the network to provide more
capacity to those users. One should choose d as a function of
the capacity preference κ. Alternatively, one could handle the
capacity preferences directly with the constraint FUV 1NV ≥
κ. However, this may make the linear program infeasible.

C. Approximation of network capacity

We assume the limiting link between the users and the in-
frastructure positions are the uplinks and downlinks between
the vehicles and the surface (users and infrastructure posi-
tions). For instance, the vehicles could efficiently communi-
cate using free space optics, which has a much larger range
and throughput than air-to-surface communications via radio
waves. This approximation becomes better the more vehicles
there are. Hence, we only consider the links between vehicles
and ground features (users and infrastructure locations) and
approximate the capacity in (8) by

R̂wmf(x
V , xI , xU )=

1

2
(1TNV C

V I1NI + 1TNUC
UV 1NV). (9)

V. DYNAMIC DEPLOYMENT

In this section, we describe our solution to the problem
stated in Section III. Our discussion consists of the following
parts: we find an optimal periodic trajectory for a single
vehicle, provide justification for a solution that spaces out
all vehicles homogeneously along it, and finally introduce a
coordination algorithm that achieves this objective.

A. Dynamic deployment on optimal single-vehicle trajectory

We employ the approximation (9) as the quality-of-service
function for the single vehicle optimization problem:

max
xVi (0),u∈U(xVi (0)),T

1

T

∫ T

0

1

2

(
CV I1NI + (1TNUC

UV )T
)
i

−Gi(u(t))dt, (10)
subject to the dynamics ((1) or (2)) and enforcing xVi (0) =
xVi (T ) to generate a periodic reference trajectory. Since
the dynamics are autonomous, maximizing (10) yields a

trajectory g : [0, T ] → S × R. The vehicle’s complete
trajectory is then the periodic function where g(t+T ) = g(t).
This trajectory, in turn, can be expressed as two coupled
differential equations. Although θ̇i and ḣi are explicitly
functions of time, they can be parameterized in terms of
θi, yielding a family of goal trajectories satisfying

θ̇i = fθ(θi), ḣi = fh(θi), (11)
for i in {1, . . . , N}, where (θi(0), hi(0)) can be g(τ), for any
τ ∈ [0, T ]. Choosing τ corresponds to the vehicle following
the shifted trajectory where (θi(t), hi(t)) = g(t+ τ).

The validity of (9) is based on reliable connections be-
tween the vehicles. Thus, the vehicles should not only follow
the prescribed trajectory, but also be well spaced to ensure
that inter-vehicle communication is not the limiting factor
and justify that links through the vehicle network exist
between a user and infrastructure, even though they are not
explicitly modeled. To aid in this goal, we define the total
travel time Ttot to make one revolution while following the
optimal reference trajectory as Ttot =

∫ 2π

0
1

fθ(ζ)
dζ. Now, we

define the travel time T : RN → RN between vehicle i at
longitude θi and vehicle i+1 at θi+1 for a vehicle following
the desired trajectory θ̇ = fθ(θ) and starting at θi as

Ti(θ) =
∫ θi+1

θi

1

fθ(ζ)
dζ, ∀i ∈ {1, . . . , N − 1},

TN (θ) = Ttot −
∫ θN

θ1

1

fθ(ζ)
dζ.

Note that this function only corresponds to the true travel
time if θi < θj and θ1 < θN . Thus, the goal is for all of
the vehicles to follow an optimal trajectory, i.e., follow the
dynamics (11) while also equally spaced out: Ti(θ) = Tj(θ),
for all i, j ∈ {1, . . . , N}.

B. Distributed coordination under wind dynamics

Here we describe our distributed strategy to make the
vehicles achieve the objective described in the previous
section. We consider first the case of balloon dynamics. Our
design first deals with a “virtual” control law that assumes
angular velocity can be directly actuated (even though the
balloons are actually controlled by changing their vertical
velocity). Once this is in place, we design the altitude control
law to converge to the virtual control law using backstepping.

For each i ∈ {1, . . . , N}, let the “virtual” dynamics be
θ̇i = fθ(θi) + vi. (12)

When vi = 0, balloon i follows the goal trajectory in the
θ-direction. Because the trajectory is periodic, the balloon
can be following any trajectory in the family of trajectories
that satisfy θ̇i = fθ(θi). By choosing vi non-zero for some
time, the balloon changes the specific trajectory in this family
for which it is following. Since the goal is for all of the
balloons to follow a trajectory in this family while being
equally spaced out in time, we construct a control law vi that
speeds up/slows down a balloon depending on the travel time
between the balloons, vi = fθ(θi)(α(Ti(θ)− Ti−1(θ))), or

v = αD(θ)MT , (13)
more compactly, where D(θ)ii = fθ(θi) and is 0 otherwise
and α ∈ R>0 is a design parameter. From the structure of v,



note that if all of the travel times are equal, v = 0, and so,
the balloons simply follow the optimal reference trajectory.

Theorem 5.1: For a network of N agents with the dy-
namics of (12) and starting from any θ(0) ∈ [0, 2π)N such
that θi(0) < θi+1(0) for all i ∈ {1, . . . , N − 1}, the
control law (13) causes the travel times of all agents to
asymptotically converge to Ttot

N . Furthermore, each balloon
asymptotically follows the desired trajectory.

We now consider rewriting (3) to capture the error between
the actual θ-dynamics and the desired one:

θ̇ = D(θ)(1n + αMT (θ)) + e,

ė = Ku− d

dt
[D(θ)(1n + αMT (θ))],

where e = Cθ1n +Kh−D(θ)(1n + αMT (θ)). We design
the control law

u=
1

K

(d
dt

[D(θ)(1n+αMT (θ))]+D−1(θ)MTLT(θ)−e
)

(15)

leading to closed-loop dynamics of
θ̇=D(θ)(1n+αMT (θ))+e, ė=D−1(θ)MTLT (θ)−e. (16)

Expressing the T dynamics as in Theorem 5.1 leads to
Ṫ = −αLT (θ)−MTD−1(θ)e, ė = D−1(θ)MLT − e,

Note that the control law (15) is distributed. Each agent
i requires only the state of its 2-hop neighbors, making
the complexity of each agent’s control law independent of
the size of the network. The next result establishes that
this controller makes the overall network achieve a uniform
deployment in time over the desired trajectory.

Theorem 5.2: For any θ(0) ∈ [0, 2π)N such that θi(0) <
θi+1(0) for all i ∈ {1, . . . , N − 1} and h(0) ∈ RN>0,
trajectories of the dynamics (16) asymptotically satisfy
limt→∞ T (θi(t), θi+1(t)) =

Ttot
N , for all i ∈ {1, . . . , N} and

all balloons asymptotically follow the desired trajectory.
Given that the vehicles all converge to the same periodic

trajectory and are equally spaced in time, this allows us to
guarantee that a vehicle will be directly overhead every Ttot

N
seconds. By adding more vehicles, the time between vehicles
decreases causing the average throughput to increase

Remark 5.3: (Glider dynamics analysis) The gliders may
actuate in the θ-direction, see (2), and so, for a glider
trajectory optimizing (10), Theorem 5.1 may directly be used
to cause the gliders to spread out equally in time. •

VI. STATIC DEPLOYMENT FOR GLIDERS

The trajectory optimizing (10) depends on the relative
importance of the benefit of providing service to the cost
of motion. The next result states that for sufficiently small
cost of actuation, the optimal choice for a group of gliders is
to remain at a fixed location rather than maintain a periodic
trajectory, regardless of the network performance function.

Lemma 6.1: Given a team of N gliders each following
the dynamics of (2) with a network performance function
R : SN → R>0 and cost of actuation G : RN → R>0,
define an optimal trajectory by its initial location and the
control strategy, i.e, (xV (0)∗, u∗) ∈

argmaxxV (0),u∈U(xV (0))

1

T

∫ T

0

(R(xV (t))− αG(u(t))dt.

For α sufficiently small, an optimal initial location xV
∗

is a set of vehicle locations that optimize R, i.e., xV
∗ ∈

argmaxxV ∈[0,2π)NV R(x
V ) and its corresponding optimal

control strategy is u(t) = −wθ(xV
∗
), for all t ∈ [0, T ].

This result motivates the desire to find local optimizers of
Rwmf. To this end, we examine gradient-based optimization
of Rwmf. However, in general, Rwmf is not always differen-
tiable. We note that if it is differentiable at xV , then

∂Rwmf

∂xVk
(xV ) = −

∑
ij

λV Vij (xV )
∂CV Vij
∂xVk

(xV )

−
∑
ij

λV Iij (xV )
∂CV Iij
∂xVk

(xV )−
∑
ij

λUVij (xV )
∂CUVij
∂xVk

(xV ),

where λV Vij is, for example, the optimal dual variable cor-
responding to the constraint FV Vij + FV Vji ≤ CV Vij . This is
a result of the fact that the optimal dual variables directly
describe the sensitivity of the optimal value with respect to
perturbations of the constraints, as seen in [20, (5.58)]. Thus,
a network of gliders could implement ẋV = dRwmf

dxV
(xV ) to

converge to a local optimizer of Rwmf.

VII. SIMULATIONS

We consider the simple but illustrative example of vehicles
deploying on a ring, i.e., fixed latitude, where the latitudinal
velocity increases with altitude. In this case, there is one
user at 0 and one infrastructure located at π and the network
of 20 balloons are constrained to remain between 25 and
30 km above the Earth’s surface. The wind flowfield (in
rad
hr ) is given by wθ = .0017h − .0388. The bandwidth B

between a vehicle and a ground feature is 100 and P
N0B

= 10.
Because vehicles can communicate more efficiently by laser
optics, the bandwidth between vehicles is 1000. The cost of
control is G(u) = .1‖u‖2. Figure 2(a) shows the capacity
that a balloon can deliver to/from users as a function of
its latitude and altitude as given by (9). Note that we have
also introduced a term that allows for no capacity when the
balloon is more than π

10 radians away from a surface feature
to account for its occlusion beyond the horizon. Similarly,
vehicles can only send data between each other if they are
less than π

5 radians apart. The plot highlights the intuitive
fact that higher altitudes contribute to less capacity due to the
increased distance for the approximate capacity function (9).
Figure 2(b) depicts a locally optimal solution of (10) using
(9) for one balloon. Note that the balloon is at a lower altitude
(with better capacity and slower wind) while over the user
or infrastructure and then moves to the higher altitude while
in between. This results in a higher average capacity, as seen
in Figure 2(c), which compares the average capacity for a
balloon remaining at a fixed altitude (the maximum is around
.2) to the average capacity of a balloon following the locally
optimal periodic trajectory in Figure 2(b), which is .3.

Figure 3(b) shows the convergence of the travel time
between each balloon and the one ahead of it to the same
value. Figure 3(c) shows a balloon configuration after the
dynamic deployment algorithm as in Theorem 5.2 has been
run. The smallest circle is the Earth with a user at 0 and
an infrastructure at π. Notice that more balloons are located
over the user and infrastructure than above the open space
in between them. This allows more balloons to be passing
data to/from the user/infrastructure but with enough balloons
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(c) Comparison of average capacity

Fig. 2. (a) depicts the approximate capacity (9) that one balloon can provide to a user/infrastructure location while at fixed altitudes of 25 km and 30 km.
Note that in this simplified scenario there is one user at 0 and one infrastructure located at π. (b) shows a locally optimal solution to (10). The balloon
maintains a low, slow altitude while over surface features (near 0 and π as in (a)) and moves to a higher, fast altitude to quickly move to the next feature.
(c) compares the average capacity of a balloon to the ground as a function of the fixed altitude that it maintains to the average capacity of the trajectory
in (b). Note that the optimal trajectory outperforms all fixed altitude trajectories.
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(a) Convergence of travel times (b) Steady-state dynamic deployment

Fig. 3. (a) shows the convergence of the travel times to the next balloon
to Ttot

N
, which makes all balloons equally spaced in time. (b) depicts one

instant in the steady-state dynamic deployment of the balloons after they
have converged to being equally spaced in time as in Theorem 5.2. Balloons
are more densely spaced above the user and infrastructure. Since the Earth’s
radius is larger than the balloons’ range of motion, the figure is not to scale.

to also bridge the gap between the user and infrastructure.
Because the Earth’s radius is much larger than the balloons’
range of altitude, the figure is not to scale.

VIII. CONCLUSIONS

We have proposed an algorithmic solution to a global
network integrity problem that relies on coordinated motion
control of high-altitude platforms acting as an ad hoc network
of wireless communication repeaters. We proposed a measure
of network quality based on a simplified throughput model.
Because the vehicles are in constant motion, we considered
the average performance over one period around the Earth.
Since the associated optimal control was intractable for large
numbers of vehicles, we derived an approximate metric that
allowed us to determine an optimal periodic trajectory for
one vehicle. Given this trajectory, we designed a distributed
method for all vehicles to converge to it while being spaced
out equally in time. Simulations show that this formation
leads to good network throughput. For the case of gliders, we
also provided a bound on the critical actuation cost for which
the optimal trajectories result in static deployments. Future
work will include investigating better numerical methods for
determining the optimal periodic solutions of these high-
dimensional, nonconvex optimal control problems, consider-
ing more general wind dynamics, and determining strategies
for heterogeneous teams of both gliders and balloons.
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