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Abstract— Controllability metrics based on the
controllability Gramian have been widely used in linear
control theory, and have recently seen renewed interests in
the study of complex networks of dynamical systems. For
example, the minimum eigenvalue and the trace of the
Gramian are related to the worst-case and average minimum
input energy, respectively, to steer the state from the origin to
a target state. This paper explores similar questions that
remain unanswered for bilinear control systems. In the
context of complex networks, bilinear systems characterize
scenarios where an actuator not only can affect the state of a
node, but also can affect the strength of the interconnections
among some neighboring nodes. Under the assumption that
the infinity norm of the input is bounded by some function of
the network dynamic matrices, we derive a lower bound on
the minimum input energy to steer the state of a bilinear
network from the origin to any reachable target state based
on the generalized reachability Gramian of bilinear systems.
We also provide a lower bound on the average minimum
input energy over all target states on the unit hypersphere in
the state space. Based on the reachability metrics proposed,
we propose an actuator selection method that provides
guaranteed minimum average input energy.

I. INTRODUCTION

Complex networks such as electrical power grids, brain
networks and transportation networks, are an essential part
of modern society. A complex network typically consists of
many dynamical subsystems (known as nodes) that interact
with each other. An important question is how to
manipulate the behavior of a large scale, complex network
through controlling a few selected nodes. Answering this
question facilitates the analysis and design of an
engineering network. So far, existing results on the control
of a complex network rely on the assumption that an
external control input can directly affect the state of a node
without affecting its interaction with other nodes. In this
paper, we study the class of complex networks where the
control input may not only affect directly the states of
controlled nodes, but also change the interconnections
among neighboring nodes in the network.

Literature review: Controllability of a complex network,
that is, how to steer the state of the entire network through
changing the states of some subsystems using external inputs
is a fundamental problem and has been studied by many
researchers [1], [2], [3].

A complex network is controllable if one can steer its
state from any starting point to any terminal point in the
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state space. Using graph-theoretic tools, Liu et al. [2] relate
the number of control nodes necessary to ensure
controllability of a complex network to the network’s
degree distribution. Also by exploring the properties of a
network’s connection graph, Rahmani et al. [1] consider
linear consensus-type networks, while Aguilar et al. [3]
consider nonlinear consensus-type networks.

Controllability is a binary, qualitative property that does
not characterize the difficulty in a control task. As a result,
various quantitative controllability metrics have been
proposed based on the reachability Gramian1 [4], [5], [6].
Pasqualetti et al. [4] consider the selection of control nodes
in a complex network to reduce the worst-case minimum
energy to drive its state from the origin to a target state.
Summers et al. [6] propose an optimal sensor and actuator
placement strategy in complex dynamical networks to
reduce the average minimum control energy over random
target states.

Most of the existing results on controllability of complex
networks rely on the assumption that the external inputs do
not affect the interconnections among the subsystems in the
network. This critical assumption may fail for certain
classes of complex networks. For example, in the study of
brain connectivity, it has been shown that external inputs
not only have direct effects on brain states in a particular
area (which corresponds to a node in the brain network),
but can also change the intrinsic or latent connections that
couple the states among different areas in the brain [7]. To
deal with the scenario when the external inputs for control
purposes may alter the interconnections among subsystems
in a complex network, we use bilinear models to
characterize the network instead of linear ones.

Bilinear systems are one of the simplest classes of
nonlinear systems but can be used to represent a wide
range of physical, chemical, economical and biological
systems that cannot be effectively modeled using linear
systems [8], [9], [10]. In the context of complex networks,
bilinear systems characterize scenarios where an actuator
not only can affect the state of a node, but also can affect
the strength of the interconnections among some
neighboring nodes. In this paper, we study reachability
metrics for bilinear networks that characterize the minimum
input energy required to steer the state of the entire
network from the origin to another point in the state space.

1For a linear time-invariant (LTI) system, the reachability Gramian is the
same as the controllability Gramian. This is not true for bilinear systems.
Since we only discuss reachability problems in this paper, we will use the
term reachability Gramian.



While the reachability/controllability of bilinear systems
has been widely investigated [11], [12], [13], [14], [15],
[16], few results are available for (Gramian-based)
quantitative controllability or reachability metrics. Although
a notion of reachability Gramian has been proposed for
bilinear systems, its relation with the input energy
functional is less understood. Under the assumption that at
least one of the coefficient matrices of the bilinear terms is
nonsingular, the target state xf belongs to a neighborhood
of the origin, and an integrability condition2, Gray et al.
[19] show that for a continuous-time stable bilinear system
with reachability Gramian Wc, the input energy required to
drive the state from the origin to xf is always greater than
xTfW−1c xf . Instead of the integrability condition, Benner et
al. [18] assume that the reachability Gramian Wc is
diagonal and prove similar results for all xf = εej where ε
is some positive real number and ej is any canonical unit
vector in Rn.

Statement of contributions: Unlike linear control theory,
a (global) quantitative reachability metric is currently
lacking for bilinear systems. In this paper, we propose a
reachability Gramian-based lower bound to the minimum
input energy required to steer the system state from the
origin to any reachable target state. In particular, under the
assumption that the infinity norm of the input is bounded
by some function of the system matrices, we show that,
like in linear control theory, a Gramian-based lower bound
on the minimum input energy functional holds for any
reachable target state. We provide an example to illustrate
the tightness of this lower bound. We also provide a lower
bound on the average minimum input energy over all target
states on the unit hypersphere in the state space in terms of
the trace of the reachability Gramian. We then propose a
controller selection method in a bilinear network to
maximize this lower bound. Through an example, we show
that: 1. the lower bound is a good estimate of the actual
performance; 2. maximizing this lower bound actually
leads to the optimization of the actual performance. For
space reasons, most proofs are removed and will appear
elsewhere.

Organization: Section II introduces discrete-time bilinear
control systems and states the problem of interest.
Section III details basic properties of the associated reacha-
bility Gramian and Section IV establishes its relationship
with the input energy functional. Motivated by this result,
Section V explores the problem of selecting actuators in
order to maximize the trace of the Gramian. Section VI
provides our conclusions and ideas for future work.

Notation: For a vector x ∈ Rn, we use xi to denote its
i-th element and ‖x‖∞ to denote its infinity norm. For a
matrix M ∈ Rn×m, we use Mi ∈ Rn to denote its i-th
column, i.e., M =

[
M1 M2 . . . Mm

]
.

vec(M) =
[
MT

1 MT
2 . . . MT

m

]T
is the vector

2The integrability condition may not hold for a general continuous-time
bilinear system (see [17], [18] for detailed discussions).

generated by stacking the columns of matrix M . A matrix
is Schur stable if the magnitudes of all its eigenvalues are
all smaller than 1. For a symmetric matrix M ∈ Rn×n,
λmin(M) and λmax(M) denote its minimum and
maximum eigenvalues, respectively. For symmetric
matrices, we use the notation M > 0 (resp. M ≥ 0) to
denote that M is positive definite (resp. M is positive
semidefinite). The spectral norm (maximum singular value)
of a matrix M is denoted by ‖M‖. The n-vector with all
zero elements is denoted by 0n and the m× n matrix with
all zero elements is denoted by 0m×n. The identity matrix
of dimension n × n is denoted by In. For any
j ≤ k ∈ Z≥0, we use {x}kj to denote the series
{x(j), x(j + 1), . . . , x(k)}, and omit j if j = 0. We use
diag(A1, . . . , An) to denote a block-diagonal matrix. The
symbol ⊗ represents the Kronecker product.

II. PROBLEM FORMULATION

We consider the class of discrete-time bilinear control
systems with state-space representation

x(k + 1) = Ax(k) +

m∑
j=1

(Fjx(k) +Bj)uj(k), (1)

where k ∈ Z≥0 is the time index, x(k) ∈ Rn is the system
state, uj(k) ∈ R is the control input and A,Fj ∈ Rn×n,
Bj ∈ Rn are the system matrices. When convenient, we
simply refer to the bilinear control system (1) by (A,F,B).
Throughout the paper, we assume that A is Schur stable.

The system (1) is controllable in a set S if, for any given
pair of initial state and target state in S, there exists a finite
control sequence that drives the system from one to the other.
The notion of reachability corresponds to controllability from
the origin, i.e., the existence of a finite control sequence that
takes the state from the origin to an arbitrary target state in
S. Controllability and reachability are qualitative measures
of a system that do not precisely characterize how easy or
difficult, in terms of control effort, it is for the system to go
from one state to another.

Our objective in this paper is to provide quantitative
measures of the degree of controllability for the bilinear
control system (1). Formally, consider the minimum-energy
optimal control problem for a given target state xf and a
time horizon K ∈ Z>0, defined by

min
{u}K−1

∑K−1
k=0 uT (k)u(k)

s.t. ∀k = 0, . . . ,K − 1,
Dynamics (1) holds,

x(0) = 0n, x(K) = xf .

(2)

Our aim then can be understood as seeking to characterize
the value of the optimal solution of (2) in terms of the data
(A,F,B) defining the bilinear control system. Given that,
in the case of linear systems, this characterization relies on
the notion of reachability Gramian, our ensuing discussion
presents a generalized notion of Gramian for bilinear control
systems and explores its properties in detail.



III. REACHABILITY GRAMIAN FOR BILINEAR CONTROL
SYSTEMS

This section introduces the notion of reachability
Gramian for stable discrete-time bilinear systems and
characterizes some useful properties. Our discussion here is
the basis for our analysis later where we establish the
relationship of the reachability Gramian with the
minimum-energy optimal control problem (2).

A. Reachability Gramian

The reachability Gramian for a stable discrete-time bilin-
ear system (A,F,B) is, cf. [20],

W =

∞∑
i=1

Wi, (3)

where

Wi =
∞∑

k1,...,ki=0

Pi({k}i1)PT
i ({k}i1),

P1(k) = AkB ∈ Rn×m,

Pi({k}i1) = AkiF (Im ⊗ Pi−1({k}i−11 )) ∈ Rn×mi

, i ≥ 2.

The reachability Gramian for continuous-time bilinear
systems is defined analogously, see e.g., [21], [22]. This
notion of reachability Gramian is widely used in model
order reduction of bilinear systems [23], [24] and linear
switched systems [25]. Notice that, for linear control
systems (i.e., F = 0n×nm in (1)), the reachability Gramian
in (3)

W =W1 =

∞∑
k=0

AkBBT (AT )k

is the reachability Gramian associated to the corresponding
discrete-time linear time-invariant system.

Throughout this paper, we assume that (A,F,B) are such
that the series in (3) converges and the resulting matrix is
positive definite. A sufficient condition for the latter is that
(A,0n×mn, B) is controllable, which in turn is equivalent to
W1 > 0. Our next section discusses sufficient conditions for
the convergence of the series in (3).

B. Properties of the Gramian

For linear control systems, it is well known that the
reachability Gramian is a solution of the Lyapunov
equation [26]. Similarly, the generalized reachability
Gramian is a solution of a generalized Lyapunov
equation [19], [22]. The following result has appeared
in [20], [18]. For the sake of completeness, we state the
result and provide a formal proof.

Theorem 1: (Generalized Lyapunov equation). The
generalized reachability Gramian W satisfies the following
generalized Lyapunov equation

AWAT −W +

m∑
j=1

FjWFT
j +BBT = 0n×n. (4)

Proof: From the definition (3), one can see that W1 =∑∞
k1=0A

k1BBT (Ak1)T satisfies

AW1A
T −W1 +BBT = 0n×n. (5)

For i ≥ 2, we obtain

Wi =

∞∑
k1,...,ki=0

Pi({k}i1)PT
i ({k}i1)

=

∞∑
k1,...,ki=0

AkiF (I ⊗ Pi−1PT
i−1)FT (Aki)T

=

∞∑
ki=0

Aki
( m∑
j=1

Fj

∞∑
k1,...,ki−1=0

Pi−1PT
i−1F

T
j

)
(Aki)T

=

∞∑
ki=0

Aki
( m∑
j=1

FjWi−1F
T
j

)
(Aki)T . (6)

Therefore,

AWiA
T −Wi +

m∑
j=1

FjWi−1F
T
j = 0n×n. (7)

By summing (5) and (7) with i ranging from 2 to ∞, we
obtain (4) and the proof is complete.

It is thus possible to obtain the reachability Gramian W
through solving the generalized Lyapunov equation (4),
which one can do by computing

vec(W) = (In2 −A⊗A−
m∑
j=1

Fj ⊗Fj)
−1 vec(BBT ), (8)

assuming that the inverse exists.

IV. MINIMUM INPUT ENERGY FOR REACHABILITY

In this section, we obtain a lower bound on the
minimum input energy required to steer the state of a
bilinear control system from the origin to any reachable
state, under the assumption that the infinity norm of the
input is upper bounded. This bound is expressed in terms
of the reachability Gramian.

From the formulation (2) of the optimal control problem
in Section II, the necessary optimality conditions for the
solution {u∗}K−1 lead to the following nonlinear two-point
boundary-value problem for k = 0, . . . ,K − 1,

x(k + 1) = Ax(k) +
1

2

m∑
j=1

(Fjx(k) +Bj)

· (Fjx(k) +Bj)
T

η(k),

η(k − 1) = AT η(k) +
1

2

m∑
j=1

(η
T

(k)Fjx(k)

+ η
T

(k)Bj)F
T

j η(k) ∈ Rn,

u∗j (k) =
1

2
(Fjx(k) +Bj)

T

η(k). (9)



For a stable, controllable, linear time-invariant system
(A,0n×mn, B), one can obtain analytically the optimal
control sequence from (9),

u∗(k) = B
T

(A
T

)K−k−1W−11,Kxf ,

and associated minimum control energy,
K−1∑
k=0

(u∗(k))Tu∗(k) = xTfW−11,Kxf > xTfW−11 xf , (10)

where W1,K ,
∑K−1

k=0 AkBBT (AT )k denotes the K-step
controllability Gramian of the linear time-invariant system.
Unfortunately, the nonlinear two-point boundary-value
problem (9) does not admit an analytical solution in
general (motivating the use of numerical approaches such
as successive approximations [27], [28] and iterative
methods [29]). Given our objective in this paper, we do not
try to find the optimal control sequence but instead focus
on the expression for the minimum control energy and,
specifically, on its connection with the reachability
Gramian.

The next result shows how, when the infinity norm of the
input is upper bounded by a specific function of the system
matrices A, F , and B defining the bilinear control system,
then the lower bound in (10) also holds.

Theorem 2: (The generalized reachability Gramian is a
metric for reachability). Consider the bilinear control
system (1). If ∀k = 1, 2, . . . ,K,

‖u(k)‖∞ ≤ 2−1
( m∑
i,j=1

‖FT
j ΨFi‖

)−1
β, (11)

where

β , −
m∑
j=1

||AT ΨFj + FT
j ΨA||

+
(( m∑

j=1

||AT ΨFj + FT
j ΨA||

)2
− 4

m∑
i,j=1

||FT
j ΨFi|| · λmax(AT ΨA−W−1)

)1/2
,

Ψ ,W−1 −W−1B(BTW−1B − Im)−1BTW−1,

then ∀K ∈ Z≥1,

K−1∑
k=0

uT (k)u(k) ≥ xT (K)W−1x(K). (12)

The sufficient condition (11) is a magnitude constraint at
every actuator. Theorem 2 provides a reachability Gramian-
based lower bound to the minimum input energy required to
drive the state from the origin to any reachable state. It is in
this sense that we use the generalized reachability Gramian
W as a reachability metric for bilinear systems.

Remark 1: (Positivity of the input upper bound in (11)).
From the definition of β, it is obvious that the upper bound
in (11) on the infinity norm of the input is positive if and

only if the matrix G(A,B, F ) = AT ΨA−W−1 is negative
definite. We have computed the upper bounds for hundreds of
randomly generated matrix tuples (A,B, F ) and they all turn
out to be positive. However, to prove analytically the negative
definiteness of G is in general difficult since G depends on
A,B, F in a complicated manner. For scalar bilinear systems,
one can prove the positivity of the upper bound easily.

The next result shows that Theorem 2 admits a simpler
form for scalar bilinear systems.

Corollary 1: (Scalar case for Theorem 2). Consider the
class of scalar bilinear systems (a, f, b). If ∀k = 1, 2, . . . ,K,

|u(k) + af−1| ≤
√
a2f−2 + 1, (13)

then inequality (12) holds ∀K ∈ Z≥1.

Next, we show through a counter example that the
inequality (12) does not hold in general if the magnitude of
the input is unconstrained.

Example 1: (Inequality (12) does not hold when the input
is unconstrained). Consider the 2-step reachability problem
for the scalar bilinear system (a, f, 1),

x(k + 1) = ax(k) + fx(k)u(k) + u(k),

x(0) = 0, x(2) = xf , (14)

whose reachability Gramian is given by W = (1 − a2 −
f2)−1. It is easy to obtain from (14) that

u(0) = (a+ fu(1))−1(xf − u(1)).

By denoting xf = Mu(1), M ∈ R, we have

u2(0) + u2(1)− xTfW−1xf
=
(
((a+ fu(1))−2 −W−1)M2 − 2(a+ fu(1))−2M

+ 1 + (a+ fu(1))−2
)
u2(1).

Choose u(1) large enough such that (a+fu(1))2 >W , then
there obviously exists M such that

u2(0) + u2(1)− xTfW−1xf < 0.

Therefore, there exists u(0), u(1), xf such that under the
dynamics (14)), u2(0) + u2(1) < xTfW−1xf . •

The following example illustrates the tightness of the
Gramian-based lower bound (12) for the input energy
functional.

Example 2: (Tightness of the Gramian-based lower bound
in Theorem 2). Consider the following single-input bilinear
control system taken from [30],

(A, f, b) : x(k + 1) = Ax(k) + fu(k)x(k) + bu(k), (15)

where

A =


0 0 0.024 0 0
1 0 −0.26 0 0
0 1 0.9 0 0
0 0 0.2 0 −0.06
0 0 0.15 1 0.5

 , b =


0.8
0.6
0.4
0.2
0.5

 ,
f = diag(0.1, 0.2, 0.3, 0.4, 0.5).



We use (8) to compute the reachability Gramian W and use
(11) to obtain the upper bound on ‖u(k)‖∞ as

‖u(k)‖∞ ≤ 0.0011. (16)

Figure 1 compares the input energy functional
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with the Gramian-based lower bound xT (k)W−1x(k) for
k ≤ K = 10 and an arbitrarily chosen input sequence
{u}K−1 satisfying (16). Since the gap between the
minimum input energy and the lower bound cannot be
greater than that shown in the plot, Figure 1 shows that the
Gramian-based lower bound is a good estimate of the
minimum input energy required to drive the state from the
origin to another state. •

V. ACTUATOR SELECTION WITH GUARANTEED
REACHABILITY PERFORMANCE

This section explores the selection of actuators in light
of our result in Section IV lower bounding the minimum
energy required to steer the system from the origin to an
arbitrary terminal state in terms of the reachability Gramian.
Depending on the specific objective at hand, one can look
at various metrics for actuator selection, such as the energy
required in the worst case, in the average, etc. Particularly,
by following the same approach as in [4], one can show
that the worst-case control energy depends on the minimum
eigenvalue of the reachability Gramian. Here, we focus on
the average minimum control energy. Given (12) and the
observation, cf. [6], that∫

{x∈Rn|||x||=1} x
TW−1xdx∫

{x∈Rn|||x||=1} dx
=

tr(W−1)

n
≥ n

tr(W)
.

we focus on maximizing the trace of the reachability
Gramian. Formally, the objective is to choose m actuators
from a given group of M candidates (m ≤ M ) such that
tr(W) is maximized. Denoting V = {1, . . . ,M} and

S = {s1, . . . , sm}, we write the combinatorial optimization
problem as

max
S⊆V

tr(W(S)). (17)

We use W(S) instead of W to indicate its dependence on
the choice of S. Similarly, we denote the input matrix B as
BS =

[
bs1 . . . bsm

]
, where bi ∈ Rn is the input

vector associated with actuator i for all i ∈ V . The
optimization problem (17) may be difficult to solve for a
large-scale network. In the following result, we provide a
lower bound on tr(W).

Theorem 3: (A lower bound on W(S) that can be maxi-
mized globally). For any subset S ⊆ V , it holds that

W(S) ≥
∑
s∈S
W(s). (18)

Remark 2: (Lower bound on tr(W(S))). Theorem 3
implies immediately that tr(W(S)) ≥

∑
s∈S tr(W(s)). To

maximize this lower bound, one simply needs to compute
tr(W(s)) individually for every s ∈ V . •

The following example shows that the lower bound in (18)
provides a good reference for actuator selection.

Example 3: (Controller selection in a bilinear network
system). Consider an augmented bilinear control system
based on the model in Example 2,

x(k + 1) = Ax(k) +
∑
j∈S

(Fjx(k) +Bj)uj(k),

where A, B0 = b and F0 = f are the same as those given
in (15). The control node with index 0 represents the
baseline controller that is always chosen to ensure that the
reachability Gramian is nonsingular. This corresponds to
the scenario when the network already has a set of
actuators that provide controllability and one would like to
add additional actuators to improve controllability.

The actuator candidates are (Fj , Bj) where Bj is the j-th
canonical vector in R5 for j = 1, 2, 3. We let F1(1, 2) =
F1(2, 3) = 0.02, F2(2, 5) = 0.01, F1(4, 2) = 0.05, and
F3(1, 1) = 0.05, F3(4, 5) = 0.02, all the rest elements in Fj

are zero for j = 1, 2, 3. Table I shows their individual and
combinational contributions to the trace of the Gramian. We

TABLE I
CONTRIBUTION OF CHOSEN SETS OF ACTUATORS TO THE TRACE OF THE

GRAMIAN.

S tr(W (S)) S tr(W (S))
{0} 14.4151 {0, 2} 19.9132
{1} 5.0347 {0, 3} 18.6893
{2} 4.0363 {0, 1, 2} 26.4962
{3} 3.0301 {0, 1, 3} 25.2767

{0, 1} 20.9790 {0, 2, 3} 24.1914

make the following observations,

(i)
∑

s∈S tr(W(s)) is a good estimate of tr(W(S)). For
example,

tr(W({0, 1}))−
∑

s∈{0,1} tr(W(s))

tr(W({0, 1}))
= 0.0729,



which gives less than 8% estimation error.
(ii) Actuators with a large individual contribution provide

a large combinational contribution. This fact suggests
that ordering {tr(W(s))}s∈S in decreasing order and
selecting actuators sequentially is a sensible strategy.

It is worth mentioning that we have simulated this example
for several sets of randomly generated (Bj , Fj) and observed
similar results. •

VI. CONCLUSIONS

We have proposed a quantitative, Gramian-based
reachability metric for discrete-time bilinear complex
networks characterizing the minimum input energy required
to steer the system state from the origin to an arbitrary
point in the state space. Specifically, we showed that if the
infinity norm of the input is upper bounded by some
function of the system matrices, then the same relation
between the reachability Gramian and input energy
functional in linear control theory extends to bilinear
systems. Further, we gave a lower bound on the average
minimum input energy over all target states on the unit
hypersphere in the state space. We also proposed an
actuator selection method that maximizes this lower bound
and provides guaranteed average minimum input energy.

Future work will include the consideration of other
reachability metrics such as the worst-case minimum input
energy and its relationship with the minimum eigenvalue of
the reachability Gramian, the design of algorithms for
selection of control inputs in complex networks, where
both the nodes and the interconnection strength among
neighboring nodes can be affected by actuators, and the
study of observability metrics for bilinear control systems
based on the generalized observability Gramian.
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