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Abstract—This paper studies Gramian-based reachability
metrics for bilinear control systems. In the context of complex
networks, bilinear systems capture scenarios where an actuator
not only can affect the state of a node but also interconnections
among nodes. Under the assumption that the input’s infinity
norm is bounded by some function of the network dynamic
matrices, we derive a Gramian-based lower bound on the
minimum input energy required to steer the state from the
origin to any reachable target state. This result motivates our
study of various objects associated to the reachability Gramian
to quantify the ease of controllability of the bilinear network:
the minimum eigenvalue (worst-case minimum input energy to
reach a state), the trace (average minimum input energy to
reach a state), and its determinant (volume of the ellipsoid con-
taining the reachable states using control inputs with no more
than unit energy). We establish an increasing returns property
of the reachability Gramian as a function of the actuators,
which in turn allows us to derive a general lower bound on the
reachability metrics in terms of the aggregate contribution of
the individual actuators. We conclude by examining the effect
on the worst-case minimum input energy of the addition of
bilinear inputs to difficult-to-control linear symmetric networks.
We show that the bilinear networks resulting from the addition
of either inputs at a finite number of interconnections or at all
self loops with weight vanishing with the network scale remain
difficult-to-control. Various examples illustrate our results.

I. INTRODUCTION

Complex networks such as electrical power grids, social
networks, and transportation networks, play an increasingly
essential part in modern society. A complex network typi-
cally consists of many dynamical subsystems or nodes that
interact with each other. An important issue is understanding
to what extent the behavior of a large-scale, complex
network can be affected by controlling a few selected
components. Answering this question thoroughly would be
of extreme value in the analysis of biological networks and
the design of engineered networks with verifiable
performance. Existing results focus on linear control models,
where external control inputs can only directly affect the
state of a node, without affecting its interactions with other
nodes. In this paper, we are interested in taking the study of
complex networks to the nonlinear realm, where the control
inputs may not only affect directly node states but also
change the interconnections among nodes in the network.

Literature review: Controllability refers to the property of
being able to steer the state of a dynamical system from any
starting point to any terminal point by means of appropriate
inputs. The controllability question in the context of
multi-agent systems and complex networks has recently
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sparked an increasing body of research activity. The basic
idea is understanding to what extent the state of the entire
network can be controlled by changing the states of some of
its subsystems. Using graph-theoretic tools, [2] relates the
number of control nodes necessary to ensure controllability
of a linear control network to its degree distribution. [3] con-
siders the problem of rendering a linear network controllable
by affecting a small set of variables with an external input.
The controllability properties of consensus-type networks are
studied employing the algebraic properties of the network
interconnection graph by [4] in the linear case and, more re-
cently, by [5] in the nonlinear case. However, controllability
is a binary, qualitative property that does not quantify the
amount of effort required to steer the system to the terminal
state. In the case of linear-time invariant systems, this has
motivated the study of various quantitative controllability
metrics based on the reachability Gramian1. [6] discusses
upper and lower bounds on the minimum energy to drive a
network state from the origin to a target state. [7] considers
the selection of control nodes in a complex linear network to
reduce the worst-case minimum energy for reachability. [8]
proposes an optimal actuator placement strategy in complex
linear networks to reduce the average minimum control
energy over random target states. [9] considers the problem
of minimal actuator placement in a linear network so that a
given bound on the minimum control effort for a particular
state transfer is satisfied while guaranteeing controllability.

The use of linear control systems to model complex
networks presumes that the inputs only affect node states
and not the interconnections among them. This critical
assumption may be too limiting for certain classes of
complex networks. For example, in the study of effective
connectivity in the brain, it is strongly believed [10], [11]
that external inputs not only have an effect on brain states in
a particular area, but can also change the strength of the
coupling between the states of different areas in the brain.
These observations provide motivation for our study of
reachability metrics for complex networks modeled as
bilinear control systems.

Bilinear systems [12], [13], [14] are one of the simplest
classes of nonlinear systems but can be used to represent a
wide range of physical, chemical, economical, and biological
systems that cannot be effectively modeled using linear
systems. While reachability/controllability of bilinear
systems as a binary property has been widely investigated,
see e.g., [15], [16], [17], [18], [13] and references therein,
few results are available for quantitative metrics. A notion of
reachability Gramian exists for bilinear systems, but its

1For a linear system, the reachability and the controllability Gramian are
the same. However, this is not the case for bilinear systems. Since we only
discuss reachability, we use the term reachability Gramian.



relation with the input energy functional is not fully
understood. Under some assumptions, namely that at least
one of the coefficient matrices of the bilinear terms is
nonsingular, that the target state xf belongs to a
neighborhood of the origin, and that an integrability
condition holds, [19] shows that for a continuous-time stable
bilinear system with reachability Gramian Wc, the input
energy required to drive the state from the origin to xf is
always greater than xTfW−1c xf . However, the integrability
condition may not hold for a general continuous-time
bilinear system, see [20], [21] for a detailed discussion.
Instead of the integrability condition, [21] assumes that the
reachability Gramian is diagonal and proves similar results
for some ε > 0 and xf = εej , where ej is any canonical unit
vector in Rn. However, for discrete-time bilinear systems,
there do not exist results analogous to these.

Statement of contributions: We study the reachability
properties of complex networks modeled as bilinear control
systems. Our first contribution is the study of the minimum
input energy required to steer the system state from the
origin to any reachable target state. Even though no
closed-form expression exists for the optimal controller and
its associated cost due to the nonlinear nature of bilinear
systems, we establish a Gramian-based lower bound on the
minimum input energy required to reach a target state, under
the assumption that the infinity norm of the input is bounded
by some function of the system matrices. Moreover, we show
through a counterexample that this result does not hold in
general if the input is not constrained and, in fact, that there
does not exist a global positive lower bound for the ratio
between aggregate input norm and target state norm. Our
second contribution introduces several Gramian-based reach-
ability metrics for bilinear control networks that quantify the
worst-case and average minimum input energy over all target
states on the unit hypersphere in the state space and the
volume of the ellipsoid containing the reachable states using
control inputs with no more than unit energy. We prove that
the reachability Gramian, when viewed as a function of the
location of the actuators, exhibits an increasing returns
property. Building on this result, we derive a general lower
bound on the reachability metrics in terms of the aggregate
contribution of the individual actuators and lay out a greedy
maximization strategy based on selecting them sequentially
starting with the one that has the largest contribution. Our
third and final contribution involves bilinear systems built
from difficult to control linear networks. In particular, we
show that a bilinear system built from such a linear system
by adding a finite number of bilinear inputs is still difficult
to control. We also establish that a similar result holds even
if the bilinear input can equally affect all self loops in the
network, with a strength that vanishes with the network
scale. Throughout the paper, we provide numerous examples
to illustrate the strengths and limitations of our results.

Organization: Section II introduces discrete-time bilinear
control systems and states the problem of interest.
Section III details basic properties of the associated
reachability Gramian and Section IV establishes its
relationship with the input energy functional. Motivated by

this result, Section V explores the problem of selecting
actuators to maximize various Gramian-based reachability
metrics. Section VI examines the effect that the addition of
bilinear inputs has on the worst-case minimum input energy
for difficult-to-control linear networks. We gather our
conclusions and ideas for future work in Section VII.

Notation: For a vector x ∈ Rn, we use xi to denote its
i-th component and ‖x‖∞ to denote its infinity norm. For a
matrix M ∈ Rn×m, we use Mi ∈ Rn to denote its i-th
column so that M = [M1 M2 . . . Mm]. The vector
generated by stacking the columns of M is
vec(M) = [MT

1 MT
2 . . . MT

m]T . The spectral norm
(maximum singular value) of M is denoted by ‖M‖. For
symmetric (square) matrices, we use λmax(M) to denote the
maximum eigenvalue and M > 0 (resp. M ≥ 0) to denote
that M is positive definite (resp. M is positive semidefinite).
The spectral radius of M , denoted ρ(M), is the supremum
among the magnitudes of its eigenvalues. The matrix M is
Schur stable if ρ(M) < 1. We let 0n and 0m×n denote the
n-vector and m × n matrix with all elements equal to zero,
respectively. We let In denote the identity matrix of
dimension n × n. Given a sequence {x(k)}∞k=0 and
j1 ≤ j2 ∈ Z≥0, we use {x}j2j1 to denote the finite sequence
{x(j1), x(j1 + 1), . . . , x(j2)}. We omit j1 if j1 = 0. We let
diag(A1, . . . , An) denote the block-diagonal matrix defined
by the matrices A1, . . . , An. Finally, the symbol ⊗
represents the Kronecker product of matrices.

II. PROBLEM FORMULATION

We consider the class of discrete-time bilinear control sys-
tems with state-space representation

x(k + 1) = Ax(k) +

m∑
j=1

(Fjx(k) +Bj)uj(k), (1)

where k ∈ Z≥0 is the time index, x(k) ∈ Rn is the system
state, u(k) = [u1(k), . . . , um(k)] ∈ Rm is the control input
and A, Fj ∈ Rn×n, Bj ∈ Rn, j ∈ {1, . . . ,m} are the system
matrices. When convenient, we simply refer to the bilinear
control system (1) by (A,F,B), where F = [F1 F2 . . . Fm]
and B = [B1 B2 . . . Bm]. Throughout the paper, we assume
that A is Schur stable. There is no loss of generality in letting
the same input uj(k) appear simultaneously in the bilinear and
linear terms in (1). In fact, a general bilinear system

x(k + 1) = Ax(k) +

p∑
j=1

F̄jx(k)vj(k) +

q∑
j=1

B̄jwj(k), (2)

with v(k) ∈ Rp and w(k) ∈ Rq , can be rewritten in the form
of (1) by defining u(k) = [vT (k) wT (k)]T , F = [F̄ 0n×nq],
B = [0n×p B̄], and m = p+ q.

The system (1) is controllable in a set S ⊆ Rn if, for any
given pair of initial and target states in S, there exists a finite
control sequence that drives the system from one to the other.
The notion of reachability corresponds to controllability from
the origin, i.e., the existence of a finite control sequence that
takes the state from the origin to an arbitrary target state in S.
Controllability and reachability are qualitative measures of a



system that do not precisely characterize how easy or difficult,
in terms of control effort, it is for the system to go from
one state to another. Our objective is to provide quantitative
measures of the degree of reachability for the bilinear control
system (1). Note that, unlike linear systems, the controllability
of a bilinear system depends on its initial condition. Here, we
focus on reachability. Formally, consider the minimum-energy
optimal control problem for a given target state xf and a time
horizon K ∈ Z>0, defined by

min{u}K−1

∑K−1
k=0 uT (k)u(k)

s.t. (1) holds ∀k = 0, . . . ,K − 1,
x(0) = 0n, x(K) = xf .

(3)

Our aim can then be formulated as seeking to characterize
the value of the optimal solution of (3) in terms of the data
(A,F,B) that defines the bilinear control system.

III. REACHABILITY GRAMIAN

This section introduces the notion of reachability Gramian
for stable discrete-time bilinear systems and characterizes
some useful properties. Our discussion sets the basis for our
later analysis on the relationship between the reachability
Gramian and the minimum-energy optimal control
problem (3).

Definition 1: (Reachability Gramian [22]). The
reachability Gramian for a stable discrete-time bilinear
system (A,F,B) is

W =

∞∑
i=1

Wi, (4)

where

Wi =

∞∑
k1,...,ki=0

Pi({k}i1)PTi ({k}i1),

P1({k}11) = AkB ∈ Rn×m,

Pi({k}i1) = AkiF (Im ⊗ Pi−1({k}i−11 )) ∈ Rn×m
i

, i ≥ 2.

The reachability Gramian for continuous-time bilinear
systems is defined analogously, see e.g., [23], [24]. This
notion of reachability Gramian is widely used in model order
reduction of bilinear systems [25], [26] and linear switched
systems [27]. Notice that, for linear control systems (i.e.,
F = 0n×nm in (1)), the reachability Gramian in (4) takes
the form

W =W1 =

∞∑
k=0

AkBBT (AT )k, (5)

which is the reachability Gramian associated to the
corresponding discrete-time linear time-invariant system [28].

Throughout the paper, we assume that (A,F,B) are such
that the series in (4) converges and the resulting matrix is
positive definite. A sufficient condition for the latter is that
(A,0n×nm, B) is controllable, which in turn is equivalent to
W1 > 0. We discuss necessary and sufficient conditions for
the convergence of the series below in (11).

The reachability Gramian is a solution of a generalized
Lyapunov equation [19], [24]. The next result appears

in [22], [21]. We provide a formal proof for the sake of
completeness.

Theorem 1: (Generalized Lyapunov equation). The
reachability Gramian W satisfies the following generalized
Lyapunov equation

AWAT −W +

m∑
j=1

FjWFTj +BBT = 0n×n. (6)

Proof: From (5), one can see that W1 satisfies

AW1A
T −W1 +BBT = 0n×n. (7)

For i ≥ 2, we obtain

Wi =

∞∑
k1,...,ki=0

Pi({k}i1)PTi ({k}i1)

=

∞∑
k1,...,ki=0

AkiF
(
Im ⊗ Pi−1PTi−1)FT (Aki

)T
=

∞∑
ki=0

Aki
( m∑
j=1

Fj

∞∑
k1,...,ki−1=0

Pi−1PTi−1FTj
)
(Aki)T

=

∞∑
ki=0

Aki
( m∑
j=1

FjWi−1F
T
j

)
(Aki)T . (8)

Therefore,

AWiA
T −Wi +

m∑
j=1

FjWi−1F
T
j = 0n×n. (9)

We obtain (6) by summing (7) and (9) with i ranging from 2
to ∞.

It is thus possible to obtain the reachability Gramian W by
solving the generalized Lyapunov equation (6), which one can
do by computing

vec(W) = (In2 −A⊗A−
m∑
j=1

Fj ⊗Fj)−1 vec(BBT ). (10)

Moreover, [29] shows that a unique positive semi-definite so-
lution W exists if and only if

ρ(A⊗A+

m∑
j=1

Fj ⊗ Fj) < 1, (11)

a condition that we assume to hold throughout the paper.
Remark 1: (Connection with mean-square stability of

stochastic bilinear systems). Following [30], [31], consider
the time-invariant discrete-time stochastic bilinear system

x(k + 1) = Ax(k) +

p∑
j=1

Fjx(k)vj(k) +

q∑
j=1

Bjwj(k), (12)

where v(k) ∈ Rp and w(k) ∈ Rq are random variables. We
have used the form (2), which is equivalent to (1). Assume
{w}∞ and {v}∞ are uncorrelated stationary zero-mean white
processes satisfying

E[v(k)vT (j)] = Ipδkj , E[w(k)wT (j)] = Iqδkj .

If the system is mean-square stable, then the positive
semi-definite steady state covariance E[x(k)xT (k)] satisfies



the generalized Lyapunov equation (6). Therefore, the
existence of the reachability Gramian is related to the mean
square stability of the corresponding stochastic bilinear
system (12), which is equivalent to (11). •

To conclude this section, we show that any target state xf
that is reachable from the origin, x(0) = 0n, belongs to
Im(W). An analogous result is known for continuous-time
bilinear systems [21, Theorem 3.1].

Proposition 1: The subspace Im(W) is invariant under the
bilinear control system (1) defined by (A,F,B).

Proof: For all v ∈ Ker(W), it holds that

0 = vTWv = vT (AWAT +

m∑
j=1

FjWFTj +BBT )v,

where the last equation follows from (6). As a result,

AT v ∈ Ker(W), FTj v ∈ Ker(W), BT v = 0.

Note that since W is symmetric, Im(W) = (Ker(W))⊥.
Therefore, if x(k) ∈ Im(W), then

xT (k+1)v = xT (k)AT v+

m∑
j=1

uj(k)(xT (k)FTj v+BTj v) = 0,

which implies that x(k + 1) ∈ Im(W) because x(k + 1) is
orthogonal to all v ∈ Ker(W) and the proof is complete.

Given that x(0) = 0n ∈ Im(W), Theorem 1 implies that
x(k) ∈ Im(W) for all k ∈ Z≥0, and therefore, any target state
xf that is reachable from the origin belongs to Im(W).

IV. MINIMUM INPUT ENERGY FOR REACHABILITY

In this section, we obtain a lower bound on the minimum
input energy required to steer the state of a bilinear control
system from the origin to any reachable state under the
assumption that the input norm is upper bounded. The bound
on the minimum input energy is a function of the
reachability Gramian. We build on this result later to define
reachability metrics for bilinear control systems.

From the formulation (3) of the optimal control problem in
Section II, the necessary optimality conditions for the solution
{u∗}K−1 lead to the following nonlinear two-point boundary-
value problem [32] for k = 0, . . . ,K − 1

x(k + 1) = Ax(k) +
1

2

m∑
j=1

(Fjx(k) +Bj)(Fjx(k) +Bj)
T

η(k),

η(k − 1) = AT η(k) +
1

2

m∑
j=1

η(k)
T (
Fjx(k) +Bj

)
· F

T

j η(k),

u∗j (k) =
1

2
(Fjx(k) +Bj)

T

η(k). (13)

For a stable, controllable, linear time-invariant system
(A,0n×nm, B), one can obtain analytically the optimal
control sequence from (13),

u∗(k) = B
T

(A
T

)K−k−1W−11,Kxf ,

with associated minimum control energy
K−1∑
k=0

(u∗(k))Tu∗(k) = xTfW−11,Kxf > xTfW−11 xf , (14)

where W1,K ,
∑K−1
k=0 AkBBT (AT )k denotes the K-step

controllability Gramian of the linear time-invariant system.
In general, the nonlinear two-point boundary-value
problem (13) does not admit an analytical solution, which
has motivated the use of numerical approaches such as
successive approximations [33] and iterative methods [34].
Given the paper goals, we do not try to find the optimal
control sequence but instead focus on the expression for the
minimum control energy and, specifically, on its connection
with the reachability Gramian.

The next result shows how, when the infinity norm of the
input is upper bounded by a specific function of the system
matrices, the lower bound in (14) also holds.

Theorem 2: (The reachability Gramian is a metric for
reachability). For the bilinear control system (1), define

β , −
m∑
j=1

‖ATΨFj + FTj ΨA‖+
(( m∑

j=1

‖ATΨFj + FTj ΨA‖
)2

− 4
m∑

i,j=1

‖FTj ΨFi‖·λmax(ATΨA−W−1)
)1/2

,

Ψ ,W−1 −W−1B(BTW−1B − Im)−1BTW−1.

For K ∈ Z≥1, if

‖u(k)‖∞ ≤ 2−1
( m∑
i,j=1

‖FTj ΨFi‖
)−1

β, (15)

for all k = 0, 1, . . . ,K − 1, then
K−1∑
k=0

uT (k)u(k) ≥ xT (K)W−1x(K). (16)

Proof: We consider the Lyapunov functional
V (x) = xTW−1x and obtain

V (x(k + 1))− V (x(k))− uT (k)u(k)

=

[
x(k)
u(k)

]T [
Φ11(k) ΦT21(k)
Φ21(k) Φ22(k)

] [
x(k)
u(k)

]
, (17)

where

Φ11(k) = ATW−1A−W−1+

m∑
i,j=1

uj(k)FTj W−1Fiui(k)

+

m∑
j=1

(ATW−1Fj + FTj W−1A)uj(k) ∈ Rn×n,

Φ21(k) = BTW−1A+BTW−1
m∑
j=1

Fjuj(k) ∈ Rn×m,

Φ22(k) = BTW−1B − Im ∈ Rm×m.

In the rest of the proof, we show that the matrix Φ(k) =
[Φij(k)] ∈ R(n+m)×(n+m) ≤ 0 under (15). First, multiplying
the generalized Lyapunov equation (6) by the vector W−1B
from the right-hand side, and by the vector BTW−1 from the
left-hand side, we obtain after some manipulation

Φ22(k) = −(BTW−1B)−1BTW−1
(
AWAT

+

m∑
j=1

FjWFTj
)
W−1B < 0, (18)



where we have used the fact that W is positive definite.
Moreover, it follows that

Φ11(k)− ΦT21(k)Φ−122 (k)Φ21(k)

=

m∑
i,j=1

uj(k)FTj ΨFiui(k) +ATΨA−W−1

+

m∑
j=1

(ATΨFj + FTj ΨA)uj(k)

≤
( m∑
i,j=1

‖FTj ΨFi‖·‖u(k)‖2∞+λmax(ATΨA−W−1)

+

m∑
j=1

‖ATΨFj + FTj ΨA‖·‖u(k)‖∞
)
In ≤ 0, (19)

where the last inequality holds because of (15). Using the
Schur complement lemma [35], (18) and (19) imply Φ(k) ≤ 0.
Finally, summing (17) with respect to k = 0, 1, . . . ,K−1 and
noting V (x(0)) = 0, we get (16).

The sufficient condition (15) is a magnitude constraint at
every actuator. Theorem 2 provides a reachability Gramian-
based lower bound on the minimum input energy required to
drive the state from the origin to any reachable state. There
are two reasons why this bound may be conservative. First,
instead of considering the sign of the sum over the entire time
horizon k = 0, 1, . . . ,K − 1, the proof’s strategy relies on
each individual inequality

xT (k + 1)W−1x(k + 1)− xT (k)W−1x(k) ≤ uT (k)u(k)

to hold for every time step k. Second, the bounding in
inequality (19) may introduce conservativeness.

Remark 2: (Positivity of the input upper bound in (15)).
From the definition of β in Theorem 2, it is clear that the upper
bound in (15) on the infinity norm of the input is positive if
and only if the matrix G(A,F,B) = ATΨA−W−1 is negative
definite. We have computed the upper bound for hundreds of
randomly generated matrix tuples (A,F,B) and they all turn
out to be positive. However, we have not been able to establish
analytically the negative definiteness of G in general due to its
complex dependence on A,F,B. This fact can be established
directly for the class of scalar bilinear systems. •

Corollary 1: (Scalar case for Theorem 2). Consider the
class of scalar bilinear systems (a, f, b):

x(k + 1) = ax(k) + fx(k)u(k) + bu(k). (20)

If ∀k = 1, 2, . . . ,K,

|u(k) + af−1| ≤
√
a2f−2 + 1, (21)

then
K−1∑
k=0

u2(k) ≥ W−1x2(K).

Proof: For a scalar bilinear system (20), we
immediately have W = (1 − a2 − f2)−1b2, either from the
reachability Gramian definition (4) or from the generalized

Lyapunov equation (6). Using the Lyapunov function
V (x) = xTW−1x, we obtain after some manipulation,

V (x(k + 1))− V (x(k))− u2(k)

= −(1− (a+ fu(k))2)W−1x2(k)

+ 2b(a+ fu(k))W−1u(k)x(k)− (1− b2W−1)u2(k)

(a)

≤ −(|b|W−1|x(k)| −
√
a2 + f2|u(k)|)2 ≤ 0, (22)

where (a) holds because of (21). By summing inequality (22)
with respect to k = 1, 2, . . . ,K−1 and noting that V (x(0)) =
0, the proof is complete.

We end this section with two examples to complement the
result in Theorem 2. First, we show through a counter example
that the inequality (16) does not hold in general if the input
norm is unconstrained. In fact, there does not exist a global
lower bound for ∑K−1

k=0 uT (k)u(k)

‖x(K)‖2

that is strictly greater than 0.
Example 1: (There is no positive global lower bound for∑K−1
k=0 uT (k)u(k)/‖x(K)‖2). Consider the 2-step reachability

problem for the scalar bilinear system (a, f, 1),

x(k + 1) = ax(k) + fx(k)u(k) + u(k),

x(0) = 0, x(2) = xf . (23)

It is easy to obtain from (23) that

u(0) = (a+ fu(1))−1(xf − u(1)).

By denoting xf = Mu(1) with M ∈ R, we have for any
positive scalar w,

u2(0) + u2(1)− w−1x2f
=
(
((a+ fu(1))−2 − w−1)M2 − 2(a+ fu(1))−2M

+ 1 + (a+ fu(1))−2
)
u2(1).

Choosing u(1) large enough such that (a+fu(1))2 > w, there
exists M such that

u2(0) + u2(1)− w−1x2f < 0.

Therefore, there exists xf , u(0), u(1) such that under the dy-
namics (23), u2(0) + u2(1) < w−1x2f for any w > 0. •

Our second example illustrates the tightness of the Gramian-
based lower bound (16) for the input energy functional.

Example 2: (Tightness of the Gramian-based lower bound
in Theorem 2). Consider the following single-input bilinear
control system taken from [36],

(A, f, b) : x(k + 1) = Ax(k) + fu(k)x(k) + bu(k), (24)

where

A =


0 0 0.024 0 0
1 0 −0.26 0 0
0 1 0.9 0 0
0 0 0.2 0 −0.06
0 0 0.15 1 0.5

 , b =


0.8
0.6
0.4
0.2
0.5

 ,
f = diag(0.1, 0.2, 0.3, 0.4, 0.5).



We use (10) to compute the reachability Gramian W as
0.6505 0.4572 0.4741 0.1945 0.5342
0.4572 1.2846 −0.4169 −0.1165 −0.3682
0.4741 −0.4169 6.9412 1.1619 4.5490
0.1945 −0.1165 1.1619 0.2708 0.9262
0.5342 −0.3682 4.5490 0.9262 5.2681

 .
Inequality (15) provides an upper bound on ‖u(k)‖∞,

‖u(k)‖∞ ≤ 0.0011. (25)

Figure 1 compares the input energy functional
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with the Gramian-based lower bound xT (k)W−1x(k) for
k ≤ K = 10 and an arbitrarily chosen input sequence
{u}K−1 satisfying (25). Since the gap between the minimum
input energy and the lower bound cannot be greater than the
one shown in the plot, Figure 1 shows that the
Gramian-based lower bound is a good estimate of the
minimum input energy required to drive the state from the
origin to another state. •

V. REACHABILITY METRICS FOR BILINEAR NETWORKS

The inequality (16) connecting the reachability Gramian
and the minimum energy required to steer the system from
the origin to an arbitrary terminal state allows us to extend
the reachability metrics defined for complex linear systems
in [7], [6], [8] to bilinear control systems. We therefore
consider the minimum eigenvalue, the trace, and the
determinant of the Gramian as reachability metrics. The
minimum eigenvalue λmin(W) characterizes the minimum
input energy required in the worst case to reach a state.
Given the observation, cf. [8], that∫

{x∈Rn|‖x‖=1} x
TW−1xdx∫

{x∈Rn|‖x‖=1} dx
=

tr(W−1)

n
≥ n

tr(W)
,

the trace tr(W) characterizes the average minimum control
energy required to reach a state. Finally, the determinant

det(W) reflects the volume of the ellipsoid containing the
reachable states using inputs with no more than unit energy.

Formally, our goal is to choose m actuators from a given
group of M candidates (m ≤M ) such that λmin(W), tr(W)
or det(W) is maximized, depending on the specific objective
at hand. Denoting V = {1, . . . ,M} and S = {s1, . . . , sm},
we write this combinatorial optimization problem as

max
S⊆V

f(W(S)), (26)

where f : Rn×n → R≥0 can be tr(·), λmin(·) or det(·). We
use W(S) instead of W to indicate its dependence on the
choice of S. Similarly, we denote the input matrices B and
F as BS = [bs1 . . . bsm ] and FS = [Fs1 . . . Fsm ],
respectively, where bi ∈ Rn, Fi ∈ Rn×n for each i ∈ V . In
general, the optimization problem (26) is NP-hard, as we
justify below. The next result shows that the function
mapping S to W(S) displays the increasing returns property.

Theorem 3: (Increasing returns property of the function
mapping S to W(S)). For any S1 ⊆ S2 ⊆ V and s ∈ V \S2,

W(S2 ∪ {s})−W(S2) ≥ W(S1 ∪ {s})−W(S1). (27)

Proof: Without loss of generality, we relabel the elements
in V such that S1 = {1, . . . ,m1}, S2 = {1, . . . ,m1+m2} and
s = m1 +m2 + 1 with m1 ≥ 1, m2 ≥ 0 and m1 +m2 + 1 ≤
|V | = M . For any S = {s1, . . . , sm} ⊆ V , we have

W1(S) =

∞∑
k=0

AkBSB
T
S (AT )k

=

m∑
j=1

∞∑
k=0

Akbsj b
T
sj (AT )k =

∑
s∈S
W1(s), (28)

which implies that

W1(S2 ∪ {s})−W1(S2) =W1(s)

=W1(S1 ∪ {s})−W1(S1). (29)

For i ≥ 2, using the last equation in (8) and cancelling terms
in common, we obtain

Wi(S2 ∪ {s})−Wi(S2)−Wi(S1 ∪ {s}) +Wi(S1)

=

m1+m2+1∑
j1,j2=1

∞∑
k=0

AkFj2Wi−1(sj1)FTj2(AT )k

−
m1+m2∑
j1,j2=1

∞∑
k=0

AkFj2Wi−1(sj1)FTj2(AT )k

−
∑

j1,j2∈S1∪{s}

∞∑
k=0

AkFj2Wi−1(sj1)FTj2(AT )k

+

m1∑
j1,j2=1

∞∑
k=0

AkFj2Wi−1(sj1)FTj2(AT )k

=

m2∑
j=m1+1

∞∑
k=0

AkFm1+m2+1Wi−1(sj)F
T
m1+m2+1(AT )k

+

m2∑
j=m1+1

∞∑
k=0

AkFjWi−1(sm1+m2+1)FTj (AT )k

≥ 0.



The proof then follows using the definition (4) of W .
Since the trace function is linear, Theorem 3 immediately

implies that tr(W) is a supermodular function. For linear
time-invariant systems, the inequality in (27) becomes an
equality. This can be seen from the proof of Theorem 3 or
found in [8]. Supermodularity in combinatorial optimization
of functions over subsets is analogous to convexity in
optimization of functions defined over Euclidean space. The
maximization of supermodular functions under cardinality
constraints is known to be NP-hard, but its Lagrangian dual
and its continuous relaxation can be solved in polynomial
time [37], which provides an upper bound on the optimal
value. On the other hand, a lower bound on the optimal
value follows from the following result.

Corollary 2: For any S1 ⊆ S2 ⊆ V and S3 ⊆ V \S2,

W(S2 ∪ S3)−W(S2) ≥ W(S1 ∪ S3)−W(S1). (30)

Proof: Denote S3 = {s1, . . . , s|S3|}, it follows
immediately from (27) that for any i = 1, . . . , |S3|,

W(S2 ∪ {s1, . . . , si})−W(S2 ∪ {s1, . . . , si−1})
≥ W(S1 ∪ {s1, . . . , si})−W(S1 ∪ {s1, . . . , si−1}). (31)

By summing inequality (31) with respect to i = 1, . . . , |S3|,
we obtain (30).

Theorem 4: (Lower bound on reachability metrics). Let f :
Rn×n → R≥0 be either tr, λmin or det. Then for any set S
of m actuators

f(W(S)) ≥
N∑
i=1

f(W(Si)), (32)

where S1, . . . , SN is any partition of S.
Proof: By letting S1 = ∅ in (30) and using the fact that

W(∅) = 0n×n, it holds immediately that for any subset
S ⊆ V , W(S) ≥

∑N
i=1W(Si). This directly implies that

tr(W(S)) ≥
∑N
i=1 tr(W(Si)). Moreover,

λmin(W(S)) = min
‖x‖=1

xTW(S)x

≥ min
‖x‖=1

xT
( N∑
i=1

W(Si)
)
x

≥
N∑
i=1

min
‖x‖=1

xTW(Si)x =

N∑
i=1

λmin(W(Si)).

Finally, employing the Minkowski’s determinant inequal-
ity [38] (if A, B ∈ Rn×n are positive definite matrices, then
det(A+B) ≥ det(A) + det(B)) repeatedly, we obtain

det(W(S)) ≥
N∑
i=1

det(W(Si))

and the proof is complete.
To maximize the lower bound in (32), one simply needs to

compute f(W(s)) individually for every s ∈ V , order the re-
sults in decreasing order, and select the actuators sequentially
starting with the one with largest value. We refer to this pro-
cedure as the greedy algorithm. The following example illus-
trates its performance.

Example 3: (Controller selection via the greedy algorithm).
Consider an augmented bilinear control system based on the
model in Example 2,

x(k + 1) = Ax(k) +
∑
j∈S

(Fjx(k) +Bj)uj(k),

where A, B0 = b and F0 = f are the same as those given in
(24). The other actuator candidates are (Fj , Bj), where Bj is
the j-th canonical vector in R5 for j ∈ {1, 2, 3}. We let
F1(1, 2) = F1(2, 3) = 0.02, F2(2, 5) = 0.01,
F2(4, 2) = 0.05, and F3(1, 1) = 0.05, F3(4, 5) = 0.02, with
all the other elements in Fj being zero, for j ∈ {1, 2, 3}.
Table I shows their individual and combined contributions to
λmin(W(S)), tr(W(S)), and det(W(S)). We make the
following observations:

(i) Actuators with a large individual contribution provide
a large combinatorial contribution. This fact suggests
that the greedy algorithm is a sensible strategy, even
though

∑
s∈S f(W(s)) can be considerably smaller

than f(W(S)) for f = λmin and det.
(ii) For f = tr,

∑
s∈S tr(W(s)) is a good estimate of

tr(W(S)). For example,

tr(W({0, 1}))−
∑
s∈{0,1} tr(W(s))

tr(W({0, 1}))

=
20.98− 14.42− 5.03

20.98
= 0.073,

i.e., a relative error less than 8%.
As an example, for the case m = 2, the greedy algorithm will
select {0, 1}, which is the optimal choice. We have observed
similar results for various simulations of this example with
several sets of randomly generated (Bj , Fj). •

VI. ADDITION OF BILINEAR INPUTS TO LINEAR
SYMMETRIC NETWORKS

In this section, we examine the effect that the addition of
bilinear inputs has on the worst-case minimum input energy
for difficult-to-control linear networks. We begin by
formalizing this notion.

Definition 2: (Difficult-to-control networks). A class of
networks is said to be difficult to control (DTC) if, for a
fixed number of control inputs, the normalized worst-case
minimum energy grows unbounded with the scale of the
network, i.e.,

lim
n→∞

sup
xf∈Rn

inf
{u}∞:u(k)∈Rm,

x(∞)=xf

‖{u}∞‖2

‖xf‖2
→∞,

where x(∞) , limk→∞ x(k).
For linear networks (A(n),0n×nm, B(n)), one can see

from (14) that

sup
xf∈Rn:‖xf‖2=1

inf
{u}∞:u(k)∈Rm,

x(∞)=xf

‖{u}∞‖2 = λ−1min(W1(n)).

Therefore, if the linear network is difficult to control, this
implies that the minimum eigenvalue of the reachability
Gramian approaches 0 as n grows. A typical class of



TABLE I
CONTRIBUTION OF CHOSEN SETS OF ACTUATORS TO THE GRAMIAN-BASED REACHABILITY METRICS.

S tr(W (S)) λmin(W (S)) det(W (S)) S tr(W (S)) λmin(W (S)) det(W (S))
{0} 14.42 0.027 0.242 {0, 2} 19.91 0.07 3.32
{1} 5.03 0.023 0.025 {0, 3} 18.69 0.05 1.13
{2} 4.04 3× 10−5 9× 10−7 {0, 1, 2} 26.50 0.137 46.15
{3} 3.03 1.6× 10−6 4× 10−11 {0, 1, 3} 25.28 0.125 28.68
{0, 1} 20.98 0.09 11.704 {0, 2, 3} 24.19 0.103 8.34

difficult-to-control linear networks is the class of stable and
symmetric networks for which, cf. [7, Corollary 3.2], the
worst-case minimum input energy grows exponentially with
rate n

m for any choice of B(n) ∈ Rn×m whose columns are
canonical vectors in Rn (here, m is the number of control
inputs or control nodes).

Our first result of this section shows that difficult-to-control
linear symmetric networks remain so after the addition of a
finite number of bilinear inputs.

Theorem 5: (Difficult-to-control linear symmetric networks
remain so after granted the ability to control a finite number
of interconnections). Consider a class of difficult-to-control
linear symmetric networks (A(n),0n×nm, B(n)). The class
of bilinear networks (A(n), F (n), B(n)) is also DTC if the
number of nonzero entries in the matrix F (n) ∈ Rn×nm and
‖F (n)‖max , maxi,j |Fij(n)| are uniformly bounded with
respect to n.

Proof: Our proof has two parts. First, we construct a
class of bilinear control system whose trajectories include
the trajectories of the systems (A(n), F (n), B(n)). Second,
we establish a correspondence between the constructed
bilinear systems and linear control networks, and build on it
to show that they are difficult to control. For the first step,
let |·|nz denote the number of nonzero entries in a matrix
and define MF =

∑m
j=1|Fj(n)|nz . Select matrices F̂j(n)

with |F̂j(n)|nz = 1 for j ∈ {1, . . . ,MF } and

|Fi(n)|nz∑
j=|Fi−1(n)|nz+1

F̂j(n) = Fi(n),

for i ∈ {1, . . . ,m}, where |F0(n)|nz , 0 for convenience.
Consider the bilinear system

x(k+1) = A(n)x(k)+

MF∑
j=1

F̂j(n)x(k)vj(k)+

m∑
j=1

Bj(n)uj(k),

(33)
with state x(k) ∈ Rn, inputs uj(k), vj(k) ∈ R, and system
matrices A(n), F̂j(n) ∈ Rn×n, Bj(n) ∈ Rn. Note that, se-
lecting vj(k) = ui(k) for j = |Fi−1(n)|nz + 1, . . . , |Fi(n)|nz
and i ∈ {1, . . . ,m} makes (33) take the form

x(k + 1) = A(n)x(k) +

m∑
j=1

(Fj(n)x(k) +Bj(n))uj(k),

which corresponds to the bilinear network
(A(n), F (n), B(n)). This implies that the optimal control
sequence {u∗}∞ for (A(n), F (n), B(n)) generates the same
network state trajectory as the (not necessarily optimal)
control sequence {v∗, u∗}∞ for (33).

Our second step establishes that the bilinear network
in (33) is difficult to control. Assume that the nonzero entry
in F̂j(n) is in the i-th row. Then, there exist MF scalar
sequences {ûj(k)} such that for all j ∈ {1, . . . ,MF } and all
k ∈ Z≥0,

F̂j(n)x(k)vj(k) = B̂j ûj(k), (34)

where B̂j = ei is the i-th canonical unit vector in Rn.
Substituting this into (33), we obtain

x(k+1) = A(n)x(k)+

MF∑
j=1

B̂j ûj(k)+
m∑
j=1

Bj(n)uj(k), (35)

which is linear, symmetric and difficult to control because its
number of control nodes is at most m+MF , which is constant.
Furthermore, there exists a constant X̄ ∈ R>0, such that for
all i = 1, . . . , n, and all k ∈ Z≥0, ‖xi(k)‖ ≤ X̄ since the
state trajectory starts at the origin, the network is stable and
the input is bounded. As a result,

sup
xf∈Rn

inf
{u,v}∞
equation (33)

‖{u, v}∞‖2‖xf‖−2

(34)
≥ sup

xf∈Rn:‖xf‖2=1

inf
{u,û}∞
equation (35)

(‖{u}∞‖2+‖F‖−2maxX̄
−2‖{û}∞‖2)

≥ min(1, ‖F‖−2maxX̄
−2)

· sup
xf∈Rn:‖xf‖2=1

inf
{u,û}∞
equation (35)

(‖{u}∞‖2 + ‖{û}∞‖2),

which implies the result.
Our next result shows that difficult-to-control linear

symmetric networks might remain so even after relaxing the
finiteness of the number of interconnections that can be
affected by the addition of bilinear inputs. More concretely,
we study the reachability properties of the class of networks
(A,F,B) with symmetric adjacency matrices A = AT and
F = αIn, | tr(F )| ≤ µ(n) ∈ o(

√
n) (without loss of

generality, we let α ≥ 0). For instance, this corresponds to
the case when a central controller can affect the strengths of
the self-loops of all agents simultaneously in a linear
symmetric network or when all agents simultaneously adjust
the strength of their self-loops by the same amount.

Theorem 6: (Worst-case control energy for linear
symmetric networks with self-loop modulation). Consider the
class of bilinear networks given by

x(k + 1) = (A+ αv(k)In)x(k) +

m∑
j=1

Bjuj(k),

with A = AT , | tr(αIn)| ≤ µ(n) ∈ o(
√
n) and

ρ(A) <
√

1− T−1m , where Tm ,
⌈
n
m

⌉
− 1. Then the



reachability Gramian of the network satisfies, for any
n > m−1µ2(n),

λmin(W) ≤ (1− Tmα2)−1

1− ρ2(A)− T−1m

ρ2Tm(A). (36)

Proof: Define sum(k, i) , k1 + · · ·+ki for k ∈ {Z≥0}∞
and i ∈ Z≥1. By definition of the reachability Gramian (4), it
follows that

Wi = α2(i−1)
∞∑

k1,...,ki=0

Asum(k,i)BBT (AT )sum(k,i)

=Wi,s +Wi,f ,

where

Wi,s , α2(i−1)
sum(k,i)<Tm∑
k1,...,ki=0

Asum(k,i)BBT (AT )sum(k,i),

Wi,f , α2(i−1)
sum(k,i)≥Tm∑
k1,...,ki=0

Asum(k,i)BBT (AT )sum(k,i).

Therefore,

λmin(W) = λmin

( ∞∑
i=1

Wi,s +

∞∑
i=1

Wi,f

)
(37)

≤ λmin

( ∞∑
i=1

Wi,s

)
+

∞∑
i=1

‖Wi,f‖ ≤
∞∑
i=1

‖Wi,f‖,

where the first inequality follows from the Bauer-Fike
theorem [38] and the second inequality follows by noting
that

∑∞
i=1Wi,s is singular because its column space is

contained in the space spanned by {B,AB, . . . , ATm−1B},
whose dimension is smaller than n by definition of Tm. We
can write Wi,f in a recursive manner as follows,

Wi,f = α2(i−1)
∞∑
ki=0

Aki
(sum(k,i−1)≥Tm∑
k1,...,ki−1=0

Asum(k,i−1)B

·BT (AT )sum(k,i−1))(AT )ki

+ α2(i−1)
Tm−1∑
j=0

∞∑
ki=Tm−j

(sum(k,i−1)=j∑
k1,...,ki−1=0

Asum(k,i)B

·BT (AT )sum(k,i)
)

= α2
∞∑
ki=0

AkiWi−1,f (AT )ki

+ α2(i−1)
Tm−1∑
j=0

η(i− 1, j)W1,f ,

where η(N,M) is the number of ways of choosing N ∈ Z≥0
non-negative integers such that their sum equals M ∈ Z≥0.
Two properties of this function are useful to us: (i) η(N,M) =∑M
j=0 η(N − 1, j) and (ii) η(N,M) is an increasing function

of N and M . Using (i), we obtain

Wi,f = α2
∞∑
ki=0

AkiWi−1,f (AT )ki+α2(i−1)η(i, Tm − 1)W1,f .

Taking norms and upper bounding, we get

‖Wi,f‖ ≤
α2

1− ‖A‖2
‖Wi−1,f‖+ α2(i−1)η(i, Tm − 1)‖W1,f‖.

Using this inequality repeatedly, we obtain

‖Wi,f‖ ≤
i−1∑
j=0

α2(i−1)

(1− ‖A‖2)j
η(i− j, Tm − 1)‖W1,f‖

≤ (Tmα
2)(i−1)‖W1,f‖

i−1∑
j=0

T−jm (1− ‖A‖2)−j

where we have used η(N,M) ≤ (M+1)η(N−1,M) ≤ (M+
1)N−1η(1,M) = (M+1)N−1, which follows from properties
(i) and (ii) of η above. Since A is symmetric and Schur stable,
‖A‖ = ρ(A), which together with ρ(A) <

√
1− T−1m implies

T−1m (1− ‖A‖2)−1 < 1. Therefore, we conclude

‖Wi,f‖ ≤
(Tmα

2)(i−1)‖W1,f‖
1− T−1m (1− ‖A‖2)−1

. (38)

Combining (37) with (38), we obtain

λmin(W) ≤
∞∑
i=1

(Tmα
2)(i−1)‖W1,f‖

1− T−1m (1− ρ2(A))−1

=
(1− Tmα2)−1

1− T−1m (1− ρ2(A))−1
‖W1,f‖,

where we have used the fact that | tr(F )| ≤ µ(n) implies that
Tmα

2 < 1 for n > m−1µ2(n). Using [7, Theorem 3.1], we
obtain

λmin(W) ≤ (1− Tmα2)−1

1− T−1m (1− ρ2(A))−1
ρ2Tm(A)

1− ρ2(A)

=
(1− Tmα2)−1

1− ρ2(A)− T−1m

ρ2Tm(A),

and the proof is complete.
Note that, for a large-scale network with a fixed number

of control nodes, the assumption that ρ(A) <
√

1− T−1m in
Theorem 6 is not restrictive because

√
1− T−1m becomes

arbitrarily close to 1 as n increases. One can show that
(1−Tmα

2)−1

1−ρ2(A)−T−1
m

in (36) is a decreasing function of n and that

lim
n→∞

(1− Tmα2)−1

1− ρ2(A)− T−1m

= (1− ρ2(A))−1.

Thus, λmin(W) decreases at least exponentially as n in-
creases, which means the worst-case control energy increases
exponentially, as indicated by Theorem 2. Therefore
Theorem 6 can be interpreted as saying that bounded
homogeneous self-loop modulation through bilinear inputs
does not make a linear symmetric network easier to control.

We illustrate the result in Theorem 6 with an example.
Example 4: (Line network with self-loop modulation).

Consider the group of line networks for n ∈ {1, . . . , 15}
with adjacency matrices A = [aij ], where aij = 0.25 if
|i − j| ≤ 1 and aij = 0 otherwise for i, j ∈ {1, . . . , n}. Let
m = 3, with B1, B2, B3 being canonical vectors chosen
optimally using exhaustive search to maximize λmin(W),
and let | tr(αIn)| = 0.9. The minimum eigenvalue of the



reachability Gramian is plotted in a logarithmic scale in
Figure 2 as a function of n. It can be seen that λmin(W)
decreases exponentially as n increases, which implies that
the worst-case control energy increases exponentially with
the scale of the network, even with self-loop modulation. •
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(A,0n×n, B) : log10(λmin (W1))

(A,αIn,B) : log10(λmin(W ))

Fig. 2. For the class of line networks described in Example 4,
log10(λmin(W)) is plotted in red diamonds as the scale n of the network
increases from 1 to 15. The same quantity is also plotted in blue circles for
the case without self-loop modulation (F = 0n×n). As predicted by Theo-
rem 6, symmetric networks with or without self-loop modulation are difficult
to control with a fixed number of control nodes.

We conclude this section with an example that shows that a
difficult-to-control linear network can be made easy to control
by adding a single bilinear input that affects an infinite number
of interconnections with strength that is independent of the
scale of the network.

Example 5: (Linear symmetric line network with
n-dependent interconnection modulation). Consider the
group of bilinear networks (A(n), F (n), B(n)) with

A(n) =



0.05 0.05 0 . . . 0

0.05 0.05 0.05
. . .

...

0 0.05
. . . . . . 0

...
. . . . . . . . . 0.05

0 . . . 0 0.05 0.05


∈ Rn×n,

B(n) =
[

1 0 . . . 0
]T ∈ Rn,

and F (n) = [fij ] with fij = 1 if i = j + 1 and all the other
entries 0. Figure 3 compares λmin(W1) of the linear line
network (A(n),0n×nm, B(n)) with λmin(W) of the bilinear
network (A(n), F (n), B(n)). One can see that λmin(W1) de-
creases exponentially as the scale n of the network increases,
which implies that the linear network is difficult to control.
By employing the bilinear control through F (n), λmin(W) is
kept constant as n increases. Note that the number of
interconnections we need to modulate increases with n. •

VII. CONCLUSIONS

We have proposed Gramian-based reachability metrics for
discrete-time bilinear control networks to quantify the input
energy required to steer the state from the origin to an
arbitrary point. Our reachability notions build on the fact
that, when the infinity norm of the input is upper bounded
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Fig. 3. The class of linear networks (A,0n×nm, B) are difficult to control
while the corresponding bilinear networks (A,F,B) are easy to control.

by some function of the system matrices, then the required
minimum input energy can be lower bounded in terms of the
reachability Gramian. We have studied the supermodularity
properties of Gramian as a function of the actuators and
derived lower bounds on the reachability metrics in terms of
the aggregate contribution of the individual actuators. Finally,
we have studied the effect that the addition of bilinear inputs
has on the difficult-to-control character of linear symmetric
networks. Future work will include the design of algorithms
for optimal selection of control nodes in complex networks,
where both the nodes and the interconnection strength among
neighboring nodes can be affected by actuators, the study of
the more general problem of steering the network state from
an arbitrary initial condition to an arbitrary target state, and
the analysis of observability metrics for bilinear control
systems based on the generalized observability Gramian.
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