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Abstract— In this paper, we present a fundamental limitation
of disturbance attenuation in discrete-time single-input single-
output (SISO) feedback systems when the controller has delayed
side information about the external disturbance. Specifically, we
assume that the delayed information about the disturbance is
transmitted to the controller across a finite Shannon-capacity
communication channel. Our main result is a lower bound on
the log sensitivity integral in terms of open-loop unstable poles
of the plant and the characteristics of the channel, similar to
the classical Bode integral formula. A comparison with prior
work that considers the effect of preview side information of
the disturbance at the controller indicates that delayed side
information and preview side information play different roles
in disturbance attenuation. In particular, we show that for open-
loop stable systems, delayed side information cannot reduce the
log integral of the sensitivity function whereas it can for open-
loop unstable systems, even when the disturbance is a white
stochastic process.

I. INTRODUCTION

In a typical closed-loop control system as depicted in Fig.
1, the transfer function from the external disturbance d to the
error signal e is a crucial measure of robustness and is known
as the sensitivity function. Ideally, one prefers the magnitude
of the sensitivity function to be small, which reflects good
disturbance rejection performance.

However, Bode’s integral equation [1] states that for an
open-loop stable transfer function with relative degree greater
than or equal to 2, the integral over all frequencies of the
logarithm of the magnitude of the sensitivity function is
0. This result indicates that it is not possible to decrease
the magnitude of sensitivity below 1 over all frequencies.
Furthermore, by designing the controller, the integral of log
sensitivity can only be shaped in frequency, which makes it a
fundamental limitation on disturbance rejection. Freudenberg
and Looze [2] generalized Bode’s result to unstable open-
loop systems and found that the integral of log sensitivity
function is equal to the sum of the logarithm of the unstable
open-loop poles.

A similar result is also known for discrete-time systems.
For a discrete-time single-input single-output (SISO) open-
loop system ΣO (which includes both the plant and the
controller) with a strictly proper transfer function L(ω),
as shown in Fig. 1, the sensitivity function S(ω) = (1 +
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L(ω))−1 satisfies, see [3], [4],

1

2π

∫ π

−π
log |S(ω)|dω =

∑
i:|pi|>1

log |pi|, (1)

where the pi’s are the poles of ω 7→ L(ω) (i.e., the open-loop
poles of ΣO).
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Fig. 1. Feedback system configuration with no side information. The
random process d denotes the external disturbance, e denotes the error and
y denotes the output of the system.

Due to its importance, the Bode integral formula has
been extensively studied and further extended for multi-input
multi-output (MIMO) systems [5]–[7], nonlinear systems [8],
stochastic systems driven by Gaussian disturbance [9]–
[12], switched systems [13], spatially invariant multi-agent
systems [14], and time-varying systems [15]–[17].
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Fig. 2. Feedback system configuration when the controller has preview
side information.

The work most closely related to the present one is [18],
where the Bode integral equation (1) is extended to the
case when the controller has a finite-horizon preview of
the white disturbance d through a finite Shannon-capacity
communication channel, as depicted in Fig. 21. For this case,
it holds that
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2π

∫ π

−π
log |S(ω)|dω ≥

∑
i:|pi|>1

log |pi| − C, (2)

1We have slightly adapted the configuration in [18] to better suit our
framework, without affecting its main result. First, the disturbance is now
directly added to the output y instead of the control input u. The proofs
of the main result in (2) for these two cases are similar, as shown in [12].
Second, instead of a physical delay block z−τ between the disturbance
and the plant, we introduce equivalently a preview block zτ between the
disturbance and the communication channel. Third, we assume that the
disturbance is a white stochastic process.



where C represents the Shannon capacity of the preview
channel. Inequality (2) shows that preview side information
will, in general, improve the disturbance attenuation per-
formance. In particular, if no preview information can be
transmitted (C is zero), then (2) is comparable to Bode’s
classical result. If the disturbance can be fully transmitted (C
is infinity), then the disturbance can be completely canceled
by the controller and S(ω) = 0 for all ω.
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Fig. 3. Feedback system configuration when the controller has delayed
side information.

In practice, it is often easier to obtain delayed side
information (DSI) rather than preview side information
(PSI). It seems reasonable to believe that, for a stochastic
disturbance process that is white, DSI is not useful for
disturbance attenuation because it provides no knowledge
about the current or future disturbance. However, our main
result of the paper shows the counterintuitive fact that even
delayed side information of a white stochastic process d can
improve the disturbance attenuation performance for unstable
plants. For the problem setup depicted in Fig. 3, we obtain
the following fundamental limitation

1

2π

∫ π

−π
log |S(ω)|dω ≥

( ∑
i:|pi|>1

log |pi| − C
)+
, (3)

where (x)+ , max(x, 0) and C represents the Shannon
capacity of the side communication channel. Note the simi-
larity between (3) and Bode’s integral equation without side
information (1) and with preview side information (2).

Inequality (3) has various important implications. First, if
the plant is stable, then no DSI can reduce the log integral of
sensitivity. Second, if the plant is unstable, then DSI, even
under a white stochastic disturbance process, can improve
disturbance rejection. Third, unlike PSI, the contribution of
DSI to the disturbance attenuation performance is upper
bounded by the summation of the logarithm of the open-
loop unstable poles. The intuition behind the latter fact is that
DSI can only help stabilize the open-loop system but cannot
reduce the controller’s uncertainty about the disturbance.

The rest of the paper is organized as follows. Sec-
tion II provides a brief review of basic information-theoretic
concepts and Section III presents the problem statement.
Section IV studies the effect of DSI on the differential
entropy rate of the error signal. Section V presents the main
result of the paper characterizing the effect of DSI on the
log integral of sensitivity. Finally, we gather our conclusions
and ideas for future work in Section VI.

II. PRELIMINARIES

In this section we review basic notions and notation from
stochastic processes and information theory following [19],
[20]. Throughout the paper, we denote random variables and
random processes using boldface letters. For any j ≤ k, we
let xkj = [x(j), x(j + 1), . . . , x(k)] denote the row vector
formed by a finite segment of a sequence x = {x(k)}∞k=1.
We omit the subscript j when it is equal to 0. A zero-
mean stochastic process x = {x(k)}∞k=1 is asymptotically
stationary if

Rx(n) , lim
k→∞

E
[
x(k)xT (k + n)

]
(4)

exists for every n ∈ Z. The power spectral density ω 7→
Φx(ω) of x is the discrete-time Fourier transform of Rx.
From [18], the sensitivity function ω 7→ Sx,y(ω), between
two asymptotically stationary stochastic processes x and y
with power spectral densities Φx and Φy, respectively, is

Sx,y(ω) ,
√

Φy(ω)/Φx(ω). (5)

Given a continuous random vector xk with probability
density function f(xk) (in short xk ∼ f(xk)), the differential
entropy xk 7→ h(xk) is

h(xk) , −
∫
f(xk) log f(xk)dxk = −E[log(f(xk))].

For a continuously differentiable bijective function ψ :
Rk+1 → Rk+1, one has

h
(
ψ(xk)

)
= h(xk) + E[log |det(J)|], (6)

where J is the Jacobian matrix of ψ with respect to xk. For
xk ∼ f(xk) and yk|{xk = xk} ∼ f(yk|xk), the conditional
differential entropy of yk given xk is

h(yk|xk) , −Exk,yk [log(f(yk|xk))].

Finally, the mutual information I(xk;yk) between continu-
ous random vectors (xk,yk) ∼ f(xk, yk) is defined as

I(xk;yk) =

∫
f(xk, yk) log

f(xk, yk)

f(xk)f(yk)
dxkdyk.

The mutual information is symmetric (i.e., I(xk;yk) =
I(yk;xk)) and nonnegative (i.e., I(xk;yk) ≥ 0), which
implies that conditioning reduces entropy (i.e., h(yk) ≥
h(yk|xk)). Let zk ∼ f(zk) and (xk,yk)|{zk = zk} ∼
f(xk, yk|zk). Denote the mutual information between xk

and yk given {zk = zk} by I(xk;yk|zk = zk). Then, the
conditional mutual information I(xk;yk|zk) between xk and
yk given zk is defined as

I(xk;yk|zk) =

∫
I(xk;yk|zk = zk)f(zk)dzk.

The chain rule of differential entropy states that h(xk) =∑k
i=1 h(x(i)|xi−1) and implies the chain rule of mutual

information I(xk;yk) =
∑k
i=1 I(x(i);yk|xi−1).



The maximum entropy theorem states that if xk ∼ f(xk)
has covariance matrix Rxk = E

[
(xk)Txk

]
> 0, then

h(xk) ≤ 1

2
log
(
(2πe) det(Rxk)

)
(7)

with equality if and only if xk is Gaussian distributed. If
x ∈ R, we denote its covariance by rx to indicate that
it is a scalar. The above definitions can be extended to
stationary stochastic processes. The differential entropy rate
h̄(x) of a stationary continuous-valued stochastic process
x = {x(k)}∞k=1 is defined as

h̄(x) , lim
k→∞

1

k
h(xk) = lim

k→∞
h(x(k)|xk−1). (8)

If x with x(k) ∈ Rn has power spectral density Φx, then

h̄(x) ≤ 1

2π

∫ π

−π

1

2
log
(
(2πe)nΦx(ω)

)
dω (9)

with equality if and only if x is a stationary Gaussian process.

III. PROBLEM FORMULATION

Consider the problem setup depicted in Fig. 3 with the
plant dynamics given by

x(k + 1) =Ax(k) +Bu(k),

y(k) =Hx(k), (10)

where x(k) ∈ Rn is the system state, y(k) ∈ R is the
system output and u(k) ∈ R is the control input. At time
k ∈ Z≥0, the controller has access to the error signal
e = d− y ∈ R as well as side information d̂ provided
across a side communication channel with delay τ ∈ Z>0.
Formally, the side channel is defined by2 an input set M,
an output set N , and a transition probability mass function
p(n(k)|m(k)). The latter characterizes the probability of the
decoder receiving the output symbol n(k) ∈ N given that
the symbol m(k) ∈ M is transmitted at time k ∈ Z≥0
by the encoder. We assume that the channel has Shannon
capacity [19] equal to C (bits/sec).

At time k ∈ Z≥0, the encoder E maps dk−τ into a symbol
m(k) ∈ M, which is transmitted to the controller over
the communication channel. The controller uses the error
sequence ek and the channel output sequence d̂

k
to generate

a control sequence of the form

u(k) = uk(k, d̂
k
, ek), (11)

where uk : R2k+3 → R is a time-varying, possibly
nonlinear, function. We assume that the control laws in (11)
are such that the random processes describing the closed-
loop dynamics have well defined continuous joint probability
density functions and are asymptotically stationary processes.
In addition, we make the following assumptions.

Assumption 1: All the random processes have stable co-
variances, that is, the system is mean-square stable.

2The input/output set is finite for digital channels and infinite for analog
channels.

Assumption 2: The disturbance process d is a zero-mean
Gaussian process with independent and identically
distributed (i.i.d.) random variables d(k). The plant’s initial
condition x(0) is a zero-mean random variable with
covariance Rx(0) and finite differential entropy, and is
independent of the disturbance process d.

In this framework, we follow an information–theoretic
approach and compute a lower bound on

1

2π

∫ π

−π
logSd,e(ω)dω (12)

where Sd,e(ω) is the sensitivity function defined in (5). Note
that if the control law is linear time-invariant, then Sd,e(ω)
reduces to the magnitude of the transfer function between d
and e at frequency ω.

IV. EFFECT OF DELAYED SIDE INFORMATION ON THE
DIFFERENTIAL ENTROPY RATE OF THE ERROR

Here we study the impact that DSI has on the differential
entropy rate of the error signal available to the controller.
The results of this section will help us establish later in
Section V our main result on the fundamental limitation of
the log integral of the sensitivity.

Lemma 1: (A lower bound on the differential entropy rate
of the error). For the feedback configuration in Fig. 3, the
following holds

h̄(e) ≥ h̄(d) +
(
Ī(e;x(0)|d̂)− Ī(d; d̂)

)+
. (13)

Proof: From the definition of mutual information, for
any k ∈ Z≥0, one has

h(e(k)|ek−1) = h(e(k)|ek−1, d̂
k−1

,x(0))

+ I(e(k); d̂
k−1

,x(0)|ek−1). (14)

For the first term on the right-hand side of (14) it holds that

h(e(k)|ek−1, d̂
k−1

,x(0))
(a)
= h(e(k)|ek−1, d̂

k−1
,x(0),yk)

(b)
= h(d(k)|dk−1, d̂

k−1
,x(0))

(c)
= h(d(k)|dk−1), (15)

where (a) holds because yk is a function of
(ek−1, d̂

k−1
,x(0)), (b) follows from the relation that

e(k) = d(k)− y(k), and (c) holds because x(0) and d are
independent, d is white and the side information is
delayed, i.e., I(d̂

k−1
;d(k)|dk−1) = 0.

For the second term on the right-hand side of (14), we take
an arbitrary integer N ≥ k and obtain

I(e(k); d̂
k−1

,x(0)|ek−1)

(a)
= I(e(k); d̂

N
,x(0)|ek−1)

− I(e(k); d̂
N

k |d̂
k−1

,x(0), ek−1)

(b)
= I(e(k); d̂

N
,x(0)|ek−1)



− I(d(k); d̂
N

k |d̂
k−1

,x(0),dk−1)

(c)

≥ I(e(k);x(0)|ek−1, d̂
N

)

− I(d(k); d̂
N
|dk−1,x(0)), (16)

where (a) follows from the chain rule of mutual information,
(b) holds because e(k) = d(k)− y(k) and yk is a function
of (ek−1, d̂

k−1
,x(0)), and (c) follows from the fact that

conditioning reduces entropy.

Substituting (15) and (16) into (14), and by summation
from k = 0 to k = N , dividing by N , and taking the limit
as N →∞, we obtain

h̄(e) ≥ h̄(d) + Ī(e;x(0)|d̂)− Ī(d; d̂|x(0)). (17)

Moreover, from (14) and (15) and the nonnegativity of
mutual information, we deduce that

h̄(e) ≥ h̄(d). (18)

The result follows from the combination of (17) and (18)
and the assumption that x(0) is independent with (d, d̂).

We make the following remarks on the result in Lemma 1.

Remark 1 (Case with no side information): The differen-
tial entropy rate is closely related to the power spectral
density, as shown in (9), and itself can be used as a
performance measure [18]. In the case when the side channel
is absent, Lemma 1 reduces to

h̄(e) ≥ h̄(d) + Ī(e;x(0)), (19)

which is similar to [10, Theorem 4.2]. �

Remark 2: (Delayed side information provides informa-
tion about the initial condition). One can see from (13) that
the differential entropy rate h̄(e) stems from two sources:
the uncertainty in d(k) (characterized by the first term
in the right-hand side of (13)) and information about the
initial condition (characterized by the second term in the
right-hand side of (13)) that is necessary for mean-square
stabilization of the closed-loop system. Since the disturbance
process d is assumed to be white and the side information
d̂ is delayed, d̂

k
cannot provide any information about

d(k). Nevertheless, even if d̂ is independent of x(0), it can
still help to stabilize the system by providing conditional
information about the initial condition, in other words,
I(d̂

k
;x(0)|ek) can be greater than zero. �

Based on Lemma 1, we prove the following result.

Lemma 2: (DSI can reduce the differential entropy rate
of the error). For the feedback configuration in Fig. 3, the
following holds

h̄(e) ≥ h̄(d) +
( ∑
i:|λi(A)|>1

log |λi(A)| − C
)+
, (20)

where λi(A) are the eigenvalues of the system matrix A in
(10).

Proof: The proof proceeds in two steps. First, by the
chain rule of mutual information, one has

I(eN−1;x(0)|d̂
N−1

)

= I(eN−1, d̂
N−1

;x (0))− I(d̂
N−1

;x (0))

(a)

≥ I(uN−1;x(0)), (21)

where (a) follows from the data processing inequality [19]
and the assumption that x (0) is independent of d (and thus
d̂). Therefore,

Ī(e;x(0)|d̂) ≥ Ī(u;x(0))
(b)

≥
∑

i:|λi(A)|>1

log |λi(A)|, (22)

where (b) follows from Assumption 1 and [18, Lemma 4.1].

Second, by the definition of channel capacity [19] it holds
that Ī(d; d̂) ≤ C, which combines with (22) and Lemma 1
yields the result.

In the appendix we present an example where (b) in (22)
is achieved.

V. MAIN RESULT: EFFECT OF DELAYED SIDE
INFORMATION ON THE LOG INTEGRAL OF SENSITIVITY

In this section, we present the main result of this paper.
The result shows that the log integral of sensitivity can only
be reduced by delayed side information about the disturbance
at the controller when the plant is unstable, and the reduction
is no more than min(

∑
i:|λi(A)|>1 log |λi(A)|, C).

Theorem 1: (DSI can reduce the log integral of sensi-
tivity). For the feedback configuration in Fig. 3 and under
Assumptions 1 and 2,

1

2π

∫ π

−π
logSd,e(ω)dω ≥

( ∑
i:|λi(A)|>1

log |λi(A)| − C
)+
.

(23)

Proof: Note that the log integral of the sensitivity
function can be lower bounded by the difference of the
entropy rates h̄(d) and h̄(e) of the disturbance and error
processes as follows

1

2π

∫ π

−π
logSd,e(ω)dω

=
1

4π

∫ π

−π

(
log Φe(ω)− log Φd(ω)

)
dω (24a)

=
1

4π

∫ π

−π
log Φe(ω)dω − h̄(d) (24b)

≥ h̄(e)− h̄(d) (24c)

Here (24a) follows from the definition of sensitivity function
in (5), (24b) and (24c) follow from the maximum entropy
theorem and the assumption that d is Gaussian (equality
in (24c) holds iff e is a Gaussian process with power spectral
density Φe). The result then follows from combining this
inequality with Lemma 2.



An important observation about the result in (23) is
that, unlike PSI, the contribution of DSI to the disturbance
attenuation performance is upper bounded by the summation
of the logarithm of the open-loop unstable poles. The reason
is that DSI can only help stabilize the open-loop system
but cannot reduce the controller’s uncertainty about the
disturbance, cf. also Remark 2. In general, the lower bound
in Theorem 1 is tight, as illustrated by the following example.

Example 1: (Lower bound on log integral of sensitivity is
tight). Consider the configuration in Fig. 3 for the special
case of a scalar plant

x(k + 1) = ax(k) + u(k),

y(k) = x(k), (25)

for some |a| > 1. Assume that d(0) is a zero-mean
continuous random variable uniformly distributed over a
compact support and d∞1 is a zero-mean stationary Gaussian
process with i.i.d. random variables, independent with d(0).
Let the side channel be a noiseless digital channel with
capacity C > log |a| bits/sec.

Let the side channel transmit d(0) at every time step
k, so that the controller has an increasingly better estimate
d̂0(k) of d(0). In particular, we can find an encoder/decoder
pair such that E(‖d(0)− d̂0(k)‖2) ≤ 2−2Ck E(‖d(0)‖2). A
simple design is to divide the compact support of d(0) into
2C boxes of equal size and transmit the index of the box
where d(0) resides in and let d̂(0) = E(d(0)) = 0.

Under the control law

u(k) =

{
a(d̂0(0)− e(0)), k = 0,

ak+1(d̂0(k)− d̂0(k − 1)), k ≥ 1,

the corresponding closed-loop dynamics is given by

x(k) = ak(d̂0(k − 1)− d(0)).

It then follows that

E(‖x(k)‖2) = a2k E(‖d̂0(k − 1)− d(0)‖2)

≤ (2−Ca)2k22C E(‖d(0)‖2).

Since (2−Ca)2 < 1 by the assumption that C > log |a|,
E(‖x(k)‖2) converges to 0 exponentially and the closed-loop
system is mean-square stable.

Notice that E[x(k1)dT (k2)] = 0, ∀k1, k2 ∈ Z>0. More-
over, lim

k→∞
E
[
x(k)xT (k + n)

]
= 0 because

lim
k→∞

E
(
‖x(k)‖2 + ‖x(k + n)‖2

)
= 0.

Then, from (4),

Re(n) = lim
k→∞

E
[
e(k)eT(k + n)

]
= lim
k→∞

E
[
(x(k) + d(k))(x(k + n) + d(k + n))T

]
= lim
k→∞

E[d(k)dT (k + n)] = Rd(n),

which means that Φe(ω) = Φd(ω) (for stationary Gaussian
processes, this also implies h̄e = h̄d) and thus Sd,e(ω) = 1,
∀ω ∈ [0, 2π). Therefore,

1

2π

∫ π

−π
log |Sd,e(ω)|dω = 0 =

(
log |a| − C, 0

)+
,

which shows that we can achieve the lower bound for any
C > log |a|. �

Remark 3: (Use of delayed side information versus the
error signal for disturbance attenuation). Without any side
information, information about the initial condition x(0) can
only be carried by e to the controller for stabilization. In
particular, a necessary condition for the closed-loop system
to be mean-square stable is Ī(e;x(0)) ≥ log |a|, cf. [18,
Lemma 4.1], which is a factor in the lower bound of h̄e, cf.
(19). Under the delayed side information d̂, the controller can
stabilize the system without using the error signal e (except
for e(0)), as shown in Example 1. From this viewpoint,
the delayed side information d̂ can improve the disturbance
attenuation performance by taking over the stabilization task
from the error signal e. �

VI. CONCLUSIONS

We have studied the effect of delayed side information on a
Bode-like fundamental limitation for disturbance attenuation
in discrete-time systems. Our result is valid for linear time-
invariant plants with controllers that can be nonlinear and
time-varying. We have shown the somewhat counterintuitive
result that, for plants with unstable poles, delayed side
information about the external stochastic disturbance can
reduce the log integral of sensitivity even if the disturbance
is white. Unlike the case of preview side information, we
have also observed that delayed side information can only
reduce the log integral of sensitivity by a limited amount.
Future work will study the effect of delayed and preview
side information on other fundamental limitations, such as
the log integral of the complementary sensitivity function,
and the extension of the results to multi-agent networked
scenarios.
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APPENDIX I
ACHIEVING THE EQUALITY IN (22)

We show through a specific scalar system example that
the inequality in (b) in (22), see also [18, Lemma 4.1], can
hold with equality. Consider the configuration in Fig. 1 with
the scalar plant

x (k + 1) = ax (k) + bu (k) , |a| > 1. (26)

Let Assumption 2 be satisfied and further assume that x (0)
is Gaussian distributed. The state at any time k can be written
as a function of the initial condition x (0) and the input
sequence uk−1,

x (k) = akx (0) + ak
k−1∑
j=0

a−(j+1)bu (j) . (27)

Define x̂0 (k) , −
k−1∑
j=0

a−(j+1)bu (j) as an estimate of the

initial condition x (0) at time k ≥ 1 and let x̂0 (0) = 0.

Denote xe (k) , x (0) − x̂0 (k) as the estimation error and
rewrite (27) as

x (k) = akxe (k) . (28)

Define rxe
(k) , E

[
xe(k)xT

e (k)
]

and propose the following
linear time-varying control law

u (k) = K(k)e (k) ,
−ab−1rxe (k)

rxe
(k) + a−2krd

e (k) . (29)

Under this controller, the error covariance is obtained as

rxe
(k) =

rx0

(
k−1∑
i=0

a2i)r−1d rx0 + 1

. (30)

Note that the controller (29) makes x̂0 (k) the minimum
mean square error estimate of x (0). Thus, xe (k) and uk−1

are independent, which means

I
(
xe (k) ;uk−1

)
= 0. (31)

It can also be easily verified that the closed-loop system is
mean-quare stable and

lim
k→∞

rx (k) = lim
k→∞

a2krxe
(k) = (a2 − 1)rd

is finite, which implies that limk→∞ h(x (k))/k = 0 by (7).
Moreover, the gain of the controller also converges to

lim
k→∞

K(k) = −b−1(a− a−1).

Finally, it holds that

lim
k→∞

I
(
x (0) ;uk−1

)
k

= lim
k→∞

h (x (0))

k

− lim
k→∞

h
(
x (0)

∣∣uk−1 )
k

(a)
= − lim

k→∞

h
(
xe (k)

∣∣uk−1 )
k

(b)
= − lim

k→∞

h (xe (k))

k
(c)
= log |a| − lim

k→∞

h(x (k))

k
= log |a| ,

where (a) holds because limk→∞ h(x (0))/k = 0, x (0) =
xe (k)+ x̂0 (k) and x̂0 (k) is a function of uk−1, (b) follows
from (31), (c) holds because of (28).


