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Abstract— This paper studies an electricity market consisting
of an independent system operator (ISO) and a group of
generators. The goal is to solve the economic dispatch (ED)
problem, i.e., make the generators collectively meet a given
amount of power demand while minimizing the aggregate
generation cost. The ISO by itself cannot solve the ED problem
as the generators are strategic and do not share their cost
functions. Instead, each generator submits to the ISO the price
per unit of electricity at which it is willing to provide power to
the ISO, which constitutes its bid. Based on the bids, the ISO
decides how much production to allocate to each generator.
The resulting Bertrand competition model defines the game
among the generators where the actions are the bids and
the payoffs are the profits. We provide a provably correct,
decentralized strategy, termed NE SEEKING ALGORITHM, that
takes the generators’ bids to a neighborhood of the efficient
Nash equilibrium and show that the optimal production of
the generators converges to the optimizer of the ED problem.
During the play, each generator only knows the amount of
power the ISO requests it to produce and is not aware of
the number of players, their actions, or their payoffs. Our
algorithm can be understood as “learning via repeated play”,
where generators are “myopically selfish”, changing their bid
at each iteration with the sole aim of maximizing their payoff.

I. INTRODUCTION

The envisioned architecture of the future power grid
calls for different types of agents interacting with each
other across multiple layers to enable the robust integration
of distributed energy resources. Depending on the specific
scenario, these interactions may fall anywhere within the
cooperative-competitive spectrum. A particularly relevant
problem is economic dispatch (ED), where a group of
generators faces the task of providing a required load while
minimizing the total generation cost. In this paper, we
are interested in the strategic version of this problem and,
particularly, in the policies that individual generators, in
conjunction with independent system operator (ISO), can
implement to solve it while acting in a selfish and rational
fashion.

Literature review: Competition in electricity markets is
a classical topic of study [1], [2]. Two extensively studied
models are the supply function bidding and the Cournot
(capacity) bidding, see [3], [4], respectively, and references
therein. In our setup, we consider price-based bidding,
a simplification of the supply function bidding. Most of
these studies have revolved around pricing mechanisms, the
resulting game, the existence and efficiency of the Nash
equilibria of the game. On the other hand, only a few
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works [5], [6], [7], [8] deal with the issue of computing the
Nash equilibrium via iterative algorithms designed for the
players. The factors differentiating these setups are: pricing
mechanisms, bidding functions, nature of demand (elastic
or inelastic); and consideration of power flow constraints.
However, these works either assume the generators know
the costs, bids or actions of other generators, or the demand
of each generator is a continuous function of the bids. We
relax these assumptions here which, in turn, also rules out the
possibility of using various other Nash equilibrium learning
algorithms, such as best-response [9], fictitious play [10], and
extremum seeking [11]. Our electricity market game falls
into the broader class of multi-leader-follower games [12],
[13], [14]. Equilibria of such games can be thought of
as optimizers of mathematical programs with equilibrium
constraints (MPEC) [15], [16] or equilibrium problem with
equilibrium constraints (EPEC) [17], [18]. An overview of
centralized solvers for MPEC problems is given in [19].
In [20], the authors present a distributed direct search method
to find the equilibria of the MPEC problem but the follower’s
(the ISO in our case) optimization is required to have
a unique equilibrium for each action of the leaders (the
generators), which is in general not the case for electricity
markets. Finally, our work has close connections with the
growing interest in the design of provably correct distributed
algorithms for the cooperative solution of the ED problem,
see [21], [22], [23], [24], [25] and references therein.

Statement of contributions: Our starting point is the for-
mulation of the inelastic electricity market game. Generators
are strategic and do not share their cost functions, so the
ISO cannot solve the ED problem by itself. Instead, each
generator submits to the ISO a bid (the price per unit of
electricity at which it is willing to provide power). Based on
the collected bids, the ISO decides how much production to
allocate to each generator. The resulting Bertrand competi-
tion model defines the game among the generators, where
the actions are the bids and the payoffs are the profits. We
define concepts of Nash and efficient Nash equilibrium, em-
phasizing the importance of the latter for the optimal dispatch
of generators. Our first contribution establishes the existence
of an efficient Nash equilibrium for the inelastic electricity
market game and a sufficient condition for uniqueness. Our
second and main contribution is the design and correctness
analysis of the NE SEEKING ALGORITHM. We show that
this decentralized iterative strategy is guaranteed to take
the bids of the generators to a neighborhood of the unique
efficient Nash equilibrium of the game. The NE SEEKING
ALGORITHM can be interpreted as “learning via repeated



play”, where at each iteration, generators act rationally and
selfishly, trying to maximize their own profit. Along the
execution, the only information available to the generators is
their bid and the amount of generation that the ISO request
from them. In particular, generators are not aware of the
number of other generators, their costs, bids, or payoffs.
Simulations illustrate our results. For reasons of space, most
proofs are omitted and will appear elsewhere.

Organization: Section II introduces the problem state-
ment. Section III establishes the existence and uniqueness of
efficient Nash equilibrium of the inelastic electricity market
game. Section III presents the NE SEEKING ALGORITHM
and its convergence properties. Section V provides the sim-
ulation example and Section VI gathers our conclusions and
ideas for future work.

Notation: Let R, R≥0, Z≥1 denote the set of real, nonneg-
ative real, and positive integer numbers, respectively. The 1-
and 2-norm on Rn is denoted by ‖ ·‖1 and ‖ ·‖, respectively.
Let Bδ(x) = {y ∈ Rn | ‖y − x‖ < δ} denote the open ball
centered at x ∈ Rn with radius δ > 0. The projection of a
point x ∈ Rn onto a closed and convex set D ⊂ Rn, denoted
projD(x) satisfies ‖x − projD(x)‖ = miny∈D ‖x − y‖.
For x ∈ R, the ceiling operator dxe gives the smallest
integer greater than x. Given x, y ∈ Rn, xi denotes the
i-th component of x, and x ≤ y denotes xi ≤ yi for
i ∈ {1, . . . , n}. We use 0N = (0, . . . , 0) ∈ RN and
1N = (1, . . . , 1) ∈ RN . A map f : Rn → Rm is locally
Lipschitz at x ∈ Rn if there exist δx, Lx > 0 such that
‖f(y1)− f(y2)‖ ≤ Lx‖y1− y2‖ for any y1, y2 ∈ Bδx(x). If
f is locally Lipschitz at every x ∈ S ⊂ Rn, then we simply
say that f is locally Lipschitz on S. The map f is Lipschitz
with constant L > 0 on S ⊂ Rn if ‖f(x)−f(y)‖ ≤ L‖x−y‖
for any x, y ∈ S. Note that if f is locally Lipschitz on
S ⊂ Rn, then it is Lipschitz on every compact set Sc ⊂ S.
A twice continuously differentiable function f : Rn → R is
µ-strongly convex on S ⊂ Rn with µ > 0 if it is convex and
its Hessian satisfies ∇2f(x) > µ for all x ∈ S.

II. PROBLEM STATEMENT

Consider a group of N ∈ Z≥1 generators that aim to
collectively meet the inelastic demand of the consumers
through a competitive bidding process in the electricity
market. The cost of power generation for each generator n ∈
{1, . . . , N} is given by a twice continuously differentiable
and µ-strongly convex function fn : R≥0 → R≥0, with
fn(0) = 0 and ∇fn(0) ≥ 0 (in particular, the inverse
(∇fn)−1 of the gradient is a well-defined single-valued
function on the interval [∇fn(0),∞)). The cost of generating
xn ∈ R≥0 amount of power by the n-th generator is fn(xn).
For these functions, we assume that ∇fn and (∇fn)−1 are
locally Lipschitz on [0,∞) and (∇fn(0),∞), respectively.
Given a power allocation x = (x1, . . . , xN ) ∈ RN≥0 for
the group of generators, the aggregate cost is

∑N
n=1 fn(xn).

We assume the total power demand from the consumers to
be inelastic, denoted by y > 0, a quantity known to the
Independent System Operator (ISO). An ISO is the central
regulatory authority of the electricity market. The ISO can

interact with the generators, whereas each generator can only
communicate with the ISO and is not even aware of the
number of other generators participating in the market and
their respective cost functions. The goal for the ISO is to
seek the allocation x ∈ RN≥0 that minimizes the total cost
incurred by the generators in catering the demand y,

minimize
x

∑N
n=1 fn(xn), (1a)

subject to
∑N
n=1 xn = y, (1b)

x ≥ 0N . (1c)

This problem is termed as the economic dispatch (ED)
problem or welfare optimization problem, see e.g. [3]. We
assume (1) is feasible. Note that its optimizer, denoted x∗,
is unique as the cost functions are µ-strongly convex [26].

The ISO could solve the above problem provided it
knows all the cost functions of the generators. However, this
information is not available to the ISO when generators are
strategic and power allocation takes place by following a
bidding process, resulting into a game-theoretic formulation
of the dispatch. Instead of sharing their cost with the ISO,
the generators bid the price per unit of power that they are
willing to provide the power at. This kind of price-based
bidding is also well known in the economics literature as
price or Bertrand competition [27, Chapter 12]. Specifically,
generator n bids the cost per unit power bn ∈ R≥0 and, when
convenient, we represent the bids of all other generators
except n by b−n = (b1, . . . , bn−1, bn+1, . . . , bN ). Given
all the bids b = (b1, . . . , bN ) ∈ RN≥0, the ISO solves the
following strategic economic dispatch (SED) problem

minimize
x

∑N
n=1 bnxn, (2a)

subject to
∑N
n=1 xn = y, (2b)

x ≥ 0N . (2c)

Note that the difference between (2) and (1) is the objective
function which is linear in the former and nonlinear, convex
in the latter. For problem (2), at the optimizer, the generator
with the minimum bid (assuming it is unique) gets to
provide y units of power and the rest produce nothing. We
refer to the generator with the minimum bid as the winner
of the bid. If more than one generator has the minimum
bid, then there exists infinitely many optimizers where y is
provided collectively by the set of winners. Given the fact
that the ISO solves (2) once all the bids are gathered, the
objective of each generator n is to bid a quantity bn ≥ 0
that maximizes its payoff un : R2

≥0 → R,

un(bn, x
opt
n (bn, b−n)) = bnx

opt
n (bn, b−n)

− fn(xoptn (bn, b−n)), (3)

where xoptn (bn, b−n) is the n-th component of an optimizer
xopt(bn, b−n) of the SED problem (2) corresponding to the
bidding (bn, b−n). For convenience, we use xopt(bn, b−n)
and xopt(b) interchangeably to denote an optimizer of (2).
Note that the payoff of the players is not only defined by the
bids of other players but also by the optimizer of (2) that the
ISO selects. For this reason, the definition of the pure Nash



equilibrium for the game described below will be slightly
different from the standard one, see e.g. [28].

Definition 2.1: (Inelastic electricity market game): The
inelastic electricity market game is defined by the following

(i) Players: the set of generators {1, . . . , N},
(ii) Action: for each player n, the bid bn ∈ R≥0,

(iii) Payoff: for each player n, the payoff un in (3). •
The (pure) Nash equilibrium of the inelastic electricity

market game is the bid profile of the group b∗ ∈ RN≥0 for
which there exists an optimizer xopt(b∗) of the optimiza-
tion (2) that satisfies the following: for each n ∈ {1, . . . , N},
and each bid bn ∈ R≥0 with bn 6= b∗n, and each optimizer
xopt(bn, b

∗
−n) of (2) for the bid profile (bn, b

∗
−n), we have

un(bn, x
opt
n (bn, b

∗
−n)) ≤ un(b∗n, xoptn (b∗)). (4)

An efficient Nash equilibrium b∗ of the inelastic electricity
market game is a Nash equilibrium for which the optimizer
x∗ of (1) is also an optimizer of (2) given bids b∗ and

x∗n = argmaxx≥0b
∗
nx− fn(x), (5)

for all n ∈ {1, . . . , N}. Note that the right-hand side of (5)
is unique as the functions are µ-strongly convex. At the
efficient Nash equilibrium, the production that the generators
are willing to provide, maximizing their profit, coincides with
the optimal generation for the ED problem (1). This property
justifies the study of efficient Nash equilibria.

Remark 2.2: (Cooperation versus competition in economic
dispatch): In our previous work [29], [21] and in other dis-
tributed solution strategies for economic dispatch, e.g. [22],
[23], [24], [25], the generators cooperatively find the op-
timizer of the ED problem. In a cooperative framework,
generators are willing to share their information (state, gra-
dient of the cost function, or Lagrange multiplier) with their
neighboring generators. However, in the strategic framework
considered here, generators aim only to maximize their
own profits and do not share information with any other
generator or the ISO. Both frameworks fit well into the
envisioned hierarchical architecture of the future grid [30]
that aims to integrate efficiently distributed energy resources
(DERs) and flexible loads into the bulk power grid. At
the top level, distributed energy resource providers (DERPs
or aggregators) are strategic and compete in the electricity
market regulated by the ISO. At a lower level, each DERP
does not own generation but, instead, has agreements in place
with a set of heterogeneous DERs and flexible loads that
work cooperatively to meet the power demand entasked to
the DERP. Recent works, see e.g. [3], [4] and references
therein, consider different scenarios of strategic generators
in economic dispatch but do not provide strategies for the
generators to find the equilibrium of the resulting games. •

III. EXISTENCE AND UNIQUENESS OF EFFICIENT NASH
EQUILIBRIUM

In this section, we first establish the existence of an
efficient Nash equilibrium of the inelastic electricity market
game described in Section II and later provide a condition
under which this equilibrium is unique.

Proposition 3.1: (Existence of efficient Nash equilibrium
for the inelastic electricity market game): Let x∗ =
(x∗1, x

∗
2, . . . , x

∗
N ) ∈ RN≥0 be the solution of the ED prob-

lem (1). Let x∗n > 0 for some n ∈ {1, . . . , N}. Then,
b∗ = ∇fn(x∗n)1N is an efficient Nash equilibrium of the
inelastic electricity market game.

Proof: The Lagrangian of the optimization (1) is

L(x, ν, λ) =
∑N
n=1 fn(xn) + ν

(∑N
n=1 xn − y

)
− λ>x,

where ν ∈ R and λ ∈ RN≥0 are Lagrange multipliers cor-
responding to constraints (1b) and (1c), respectively. Since
constraints (1b) and (1c) are affine and the feasibility set
is nonempty, the refined Slater condition is satisfied for (1)
and hence, the duality gap between the primal and the dual
optimization problems is zero [26]. Under this condition,
a primal-dual optimizer (x∗, ν∗, λ∗) satisfies the following
Karush-Kuhn-Tucker (KKT) conditions

∇fn(x∗n) + ν∗ − λ∗n = 0, for all n, (6a)∑N
n=1 x

∗
n = y, x∗ ≥ 0N , (6b)

λ∗ ≥ 0N , x∗nλ
∗
n = 0, for all n. (6c)

By hypothesis, x∗n > 0 for some n and so, from (6c), λ∗n =
0 and from (6a), ν∗ = −∇fn(x∗n). Now consider the bid
profile b∗ = ∇fn(x∗n)1N = −ν∗1N . First we show that

x∗n = argmaxx≥0b
∗
nx− fn(x), (7)

for all n ∈ {1, . . . , N}, which establishes the efficiency (5)
for the bid profile b∗. For each n, consider the optimization
maxx≥0 b

∗
nx − fn(x). Because zero duality holds for this

optimization, a point xo ∈ R≥0 is an optimizer if and only
if it satisfies the KKT conditions

b∗n −∇fn(xo) + µo = 0,

µo ≥ 0, xo ≥ 0, µoxo = 0,

where µo is the dual optimizer. Since x∗n satisfies the above
conditions with µo = λ∗n, the expression (7) holds.

Our next step is to show the Nash equilibrium condi-
tion (4) for the bid profile b∗. Since all bids are same at
this bid profile, x∗ is one of the optimizers of the SED
problem (2) and so we set xopt(b∗) = x∗. Further, for
each n, the payoff at the bid profile b∗ and the optimizer
xopt(b∗) = x∗ is nonnegative. Specifically, if x∗n = 0,
then un(b

∗
n, x

opt
n (b∗)) = 0. If x∗n > 0 then from the

KKT condition (6a) we get b∗n = ∇fn(x∗n). Since ∇fn is
increasing, we get ∇fn(x) ≤ b∗n for all x ∈ [0, x∗n]. Hence,

un(b
∗
n, x

opt
n (b∗)) = b∗nx

∗
n − fn(x∗n)

=

∫ x∗
n

0

∇(b∗nx− fn(x))dx

=

∫ x∗
n

0

(b∗n −∇fn(x))dx ≥ 0.

Now pick any generator n ∈ {1, . . . , N}. For bid bn 6=
b∗n we have two cases, first, bn > b∗n and second, bn ≤
b∗n. For the first case, any optimizer xopt(bn, b∗−n) of (2)



satisfies xoptn (bn, b
∗
−n) = 0 as n does not win the bid. Hence,

u(bn, x
opt
n (bn, b

∗
−n)) = 0 ≤ u(b∗n, x∗n). For the second case,

u(bn, x
opt
n (bn, b

∗
−n)) = bnx

opt
n (bn, b

∗
−n)− fn(xoptn (bn, b

∗
−n))

≤ b∗nxoptn (bn, b
∗
−n)− fn(xoptn (bn, b

∗
−n))

≤ b∗nx∗n − fn(x∗n) = u(b∗n, x
∗
n),

where in the first inequality we have used bn ≤ b∗n and in the
second we have used (7). This shows (4) for the bid profile
b∗, concluding the proof.

From the KKT conditions (6) in the proof of Proposi-
tion 3.1, one can deduce that for any n1, n2 ∈ {1, . . . , N}
if x∗n1

> 0 and x∗n2
> 0, one has ∇fn1

(x∗n1
) = ∇fn2

(x∗n2
).

For convenience, hereafter, we denote

bNE = ∇fn(x∗n), for any x∗n > 0, (8)

and the corresponding efficient Nash equilibrium is bNE1N .
Note that bNE > 0 because following the assumption on the
costs, ∇fn(x) > 0 for all x > 0 and all n ∈ {1, . . . , N}.

Next we provide a sufficient condition that ensures unique-
ness of bNE1N as the efficient Nash equilibrium of the
inelastic electricity market game.

Lemma 3.2: (Uniqueness of the efficient Nash equilibrium
of the inelastic electricity market game): If the optimizer x∗

of (1) satisfies x∗ > 0N , then bNE1N is the unique efficient
Nash equilibrium of the inelastic electricity market game.

In the reminder of the paper, we assume that the sufficient
condition in Lemma 3.2 holds, unless otherwise stated.

IV. THE NE SEEKING ALGORITHM AND ITS
CONVERGENCE PROPERTIES

In this section, we introduce a decentralized Nash equilib-
rium learning algorithm, termed NE SEEKING ALGORITHM,
and show that any of its executions takes the generators to
the unique efficient Nash equilibrium (and consequently, to
the optimizer of the ED problem (1)).

A. NE SEEKING ALGORITHM

We start with an informal description of the NE SEEK-
ING ALGORITHM. The algorithm is iterative and can be
interpreted as “learning via repeated play” of the inelastic
electricity market game by the generators. Both ISO and
generators have bounded rationality, with each generator
trying to maximize its own profit and the ISO trying to
maximize the welfare of the entities.

[Informal description]: At each iteration k, gener-
ators decide on a bid and send it to the ISO. Once
the ISO has obtained the bids, it computes an op-
timizer of the SED problem (2) and sends the pro-
duction level of each generator at the optimizer to
the respective generator. At the (k+1)-th iteration,
generators adjust their bid based on their previous
bid, the quantity that maximizes their payoff for
the previous bid, and the allocation of generation
assigned by the ISO. The iterative process starts
with the generators arbitrarily selecting initial bids.

The NE SEEKING ALGORITHM is formally presented in
Algorithm 1. In the NE SEEKING ALGORITHM, the role of

Algorithm 1: NE SEEKING ALGORITHM

Executed by: generators n ∈ {1, . . . , N} and ISO
Data : cost fn and stepsizes {βk}k∈Z≥1

for each
generator n, and load y for ISO

Initialize : Each generator n selects arbitrarily
bn(1) ≥ 0, sets k = 1, and jumps to step 4;
ISO sets k = 1 and waits for step 6

1 while k > 0 do
/* For each generator n: */

2 Receive rn(k − 1) from ISO
3 Set bn(k) =

projR≥0
(bn(k − 1) + βk(rn(k − 1)− qn(k − 1)))

4 Set qn(k) = argmaxq≥0bn(k)q − fn(q)
5 Send bn(k) to the ISO; set k = k + 1

/* For ISO: */
6 Receive bn(k) from each n ∈ {1, . . . , N}
7 Set N (k) = argminn∈{1,...,N} bn(k)

8 Compute for all n ∈ {1, . . . , N},

rn(k) =

{
y, if n = max{i | i ∈ N (k)},
0, otherwise.

9 Send rn(k) to each n ∈ {1, . . . , N}; set k = k + 1
10 end

the ISO is to compute an optimizer of the SED problem after
the bids are submitted. The bid adjustment at each iteration is
done by the generators in a “myopically selfish” and rational
fashion, since their sole aim is to maximize their payoff and
not to make the other generators converge to a strategy that
might make its payoff higher in the future. Roughly speaking,
the algorithm prescribes that
if n loses the bid: two things can happen. (i) n was willing

to produce a positive quantity qn(k) > 0 at bid bn(k)
but the demand from ISO is rn(k) = 0. Thus, the
rational choice for n would be to decrease the bid in
the next iteration to increase its chances of winning and
getting positive payoff. (ii) n was willing to produce
nothing qn(k) = 0 at bid bn(k) and got rn(k). At this
point, reducing the bid will not increase the payoff as
it will not be willing to produce more at a lower bid.
On the other hand increasing the bid will not make it
win. Therefore, the bid stays put.

if n wins the bid and gets rn(k) = y: then it would want
to move the bid in the direction that makes its payoff
higher in the next iteration, assuming that n wins the
next round of play. If qn(k) < y, then the amount
demanded by the ISO is more than what the generator
is willing to produce, so n increases its cost, i.e., the
bid. If qn(k) > y, then the demand is less than what the
generator is willing to supply so n decreases its bid.

Remark 4.1: (Information structure and alternative learn-
ing approaches): The generators have no knowledge of the
number of other players, their actions or their payoffs. The
only information available to them at each iteration is their
own bid and the amount that the ISO requests from them.



This information structure rules out the applicability of a
number of Nash equilibrium learning methods, including
best-response dynamics [9], fictitious play [10], or other
gradient-based adjustments [7], all requiring some kind of
information about other players. Methods that relax this
requirement, such as the extremum seeking techniques used
in [11], rely on the payoff functions being continuous in the
actions of the players, which is not the case for the inelastic
electricity market game. •

B. Convergence analysis

In this section, we show that for constant stepsize, the
bids of the generators along any execution of NE SEEKING
ALGORITHM converge to a neighborhood of the unique effi-
cient Nash equilibrium bNE1N . The size of the neighborhood
is a decreasing function of the stepsize and can be made
arbitrarily small.

For each generator n ∈ {1, . . . , N}, the optimum quantity
function qoptn : R≥0 → R≥0 is defined as

qoptn (bn) = argmaxq≥0bnq − fn(q). (9)

This represents the optimal generation of n given the bid
bn ≥ 0. Also, at each iteration of the NE SEEKING AL-
GORITHM, qn(k) = qoptn (bn(k)) for each n. The following
result outlines the properties of qoptn .

Lemma 4.2: (Properties of optimum quantity function):
For each n ∈ {1, . . . , N}, the optimum quantity function
qoptn given in (9) is single-valued on R≥0, strictly increasing
on [∇fn(0),∞), and locally Lipschitz on (∇fn(0),∞).

Next, we present our main result regarding the conver-
gence of the NE SEEKING ALGORITHM.

Theorem 4.3: (Convergence of NE SEEKING ALGO-
RITHM to the efficient Nash equilibrium): Let x∗ > 0N
where x∗ is the optimizer of (1). Then, for an execution
of NE SEEKING ALGORITHM starting at any initial bid
b(1) = (b1(1), b2(1), . . . , bN (1)) ∈ RN≥0 and having constant
stepsize βk = β > 0 for all k ∈ Z≥1, there exists a finite
iteration kβ ∈ Z≥1 such that

bn(k) ∈ [bNE − C1(β), bNE + C2(β)] ∩ R≥0, (10a)
qn(k) ∈ [qoptn (bNE − C1(β)), q

opt
n (bNE + C2(β)], (10b)

for all k > kβ and all n ∈ {1, . . . , N}. Where functions

C1(β) = β
(
(N − 1)(2y + 1) +N2LgLg−1(2y + 1)

+N maxn(q
opt
n (bNE + 2βy + β))

)
, (11a)

C2(β) = β(2y + 1), (11b)

constant Lg > 0 is an upper bound on the Lipschitz
constants of set of functions {∇fn}Nn=1 on the set of intervals
{[0, qoptn (bNE)]}Nn=1, respectively, and the constant Lg−1 > 0
is an upper bound on the Lipschitz constants of set of
functions {qoptn }Nn=1 on the set [bNE, bNE + 2βy + β].

Remark 4.4: (Accuracy versus convergence speed in
reaching the Nash equilibrium): Theorem 4.3 states that the
size of the neighborhood of the efficient Nash equilibrium
that the bids reach is a decreasing function of the stepsize β.

Simulations show that a smaller stepsize leads to an in-
creasing convergence time, which presents a trade-off to the
designer between accuracy and convergence speed. An alter-
native strategy to reach a small-sized neighborhood of the
Nash equilibrium is to decrease the stepsize incrementally,
i.e., to execute the algorithm with a specific β until the bids
reach [bNE − C1(β), bNE + C2(β)], then reduce the stepsize
and follow the same procedure. Our current work seeks to
explicitly characterize these trade-offs and the most efficient
way of reaching the Nash equilibrium. •

Remark 4.5: (ED problem with x∗ 6> 0N ): If the sufficient
condition in Lemma 3.2 does not hold, i.e., the optimizer
x∗ 6> 0N , then not all bids converge necessarily to the
efficient Nash equilibrium bNE1N . However, using the same
arguments as in the proof of Theorem 4.3, one can show that
the bids of those generators for which x∗n > 0 still converge
to a neighborhood of bNE. For the remaining generators with
x∗n = 0, even though the bid might not converge to bNE,
the optimal generation qn(k) becomes zero in finite time,
which is exactly what the generator needs to provide at the
optimizer of the ED problem. •

V. SIMULATIONS

Here, we illustrate the application of the NE SEEKING
ALGORITHM to find an efficient Nash equilibrium for an
inelastic electricity market game with 5 generators. The cost
functions for the generators are

fn(xn) = anx
2
n, where a = (5, 2, 3, 1, 4). (12)

The load is y = 50 units. The optimizer of the economic
dispatch problem (1) defined with these cost functions and
load is x∗ = (4.4, 10.9, 7.3, 21.9, 5.5). For the execution of
the NE SEEKING ALGORITHM, the initial generator bids are
arbitrarily selected to be b(1) = (8, 3, 53, 78, 94) and the
stepsizes βk are chosen constant at value 0.001. Figure 1
shows the evolution of the bids and the optimal quantities
that the generators would want to produce. As predicted by
Theorem 4.3, the bids and the optimal quantities converge,
respectively, to a neighborhood of the efficient Nash equilib-
rium b∗ = bNE15, bNE = 43.79, and the optimizer x∗.

VI. CONCLUSIONS

We have formulated the inelastic electricity market game
and shown the existence of an efficient Nash equilibrium for
it. We have designed the NE SEEKING ALGORITHM that is
decentralized in implementation and that provably converges
to a neighborhood of the efficient Nash equilibrium of the
inelastic electricity market game. The algorithm can be
interpreted as a repeated play of the game with minimal
information available to the generators with selfish and
rational decisions at each iteration. In the future, we aim
to strengthen our results with time-varying stepsizes and
the characterization of the time-to-convergence, extend the
formulation of economic dispatch to include elastic demand,
generator bounds, power flow constraints, and storage fa-
cilities, and study other bidding strategies, such as Cournot
bidding, supply function bidding, and price-capacity bidding.
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Fig. 1. Illustration of the execution of NE SEEKING ALGORITHM for the 5 generator example. The cost functions are given in (12) and the load is
y = 50. The efficient Nash equilibrium of the inelastic electricity market game is 43.7915. As shown in (a), the bids converge to a neighborhood of the
efficient Nash equilibrium in finite time (each color corresponding to a generator). (b) shows that the optimal quantity that the generators are willing to
produce converges to a neighborhood of the optimizer x∗ = (4.4, 10.9, 7.3, 21.9, 5.5) of the ED problem (1). (c) shows the evolution of the average bid.
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noncooperative games,” IEEE Transactions on Automatic Control,
vol. 57, no. 5, pp. 1192–1207, 2012.

[12] A. A. Kulkarni and U. V. Shanbhag, “A shared-constraint approach
to multi-leader multi-follower games,” Set-Valued and Variational
Analysis, vol. 22, no. 4, pp. 691–720, 2014.

[13] S. Leyffer and T. Munson, “Solving multi-leader-common-follower
games,” Optimization Methods and Software, vol. 25, no. 4, pp. 601–
623, 2010.

[14] J.-S. Pang and M. Fukushima, “Quasi-variational inequalities, general-
ized nash equilbria, and multi-leader-follower games,” Computational
Management Science, vol. 2, no. 1, pp. 21–56, 2005.

[15] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with
equilibrium constraints. Cambridge, UK: Cambridge University Press,
1996.

[16] H. Scheel and S. Scholtes, “Mathematical programs with complemen-
tarity constraints: stationarity, optimality, and sensitivity,” Mathematics
of Operations Research, vol. 25, no. 1, pp. 1–22, 2000.

[17] C.-L. Su, Equilibrium problems with equilibrium constraints: station-
arities, algorithms, and applications. PhD thesis, Stanford University,
2005. Electronically available at http://web.stanford.edu/
group/SOL/dissertations/clsu-thesis.pdf.

[18] J. V. Outrata, “A note on a class of equilibrium problems with
equilibrium constraints,” Kybernetika, vol. 40, no. 5, pp. 585–594,
2004.

[19] M. C. Ferris, S. P. Dirkse, and A. Meeraus, “Mathematical programs
with equilibrium constraints: automatic reformulation and solution via
constrained optimization,” in Frontiers in Applied General Equilibrium
Modeling, pp. 67–94, Cambridge, UK: Cambridge University Press,
2005.

[20] D. Zhang and G.-H. Lin, “Bilevel direct search method for leader-
follower problems and application in health insurance,” Computers &
Operations Research, vol. 41, pp. 359–373, 2014.

[21] A. Cherukuri and J. Cortés, “Initialization-free distributed coordi-
nation for economic dispatch under varying loads and generator
commitment,” Automatica, 2014. Submitted. Available at http:
//carmenere.ucsd.edu/jorge.

[22] S. Kar and G. Hug, “Distributed robust economic dispatch in power
systems: A consensus + innovations approach,” in IEEE Power and
Energy Society General Meeting, (San Diego, CA), July 2012. Elec-
tronic proceedings.

[23] A. D. Dominguez-Garcia, S. T. Cady, and C. N. Hadjicostis, “De-
centralized optimal dispatch of distributed energy resources,” in IEEE
Conf. on Decision and Control, (Hawaii, USA), pp. 3688–3693, Dec.
2012.

[24] G. Binetti, A. Davoudi, F. L. Lewis, D. Naso, and B. Turchiano,
“Distributed consensus-based economic dispatch with transmission
losses,” IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1711–
1720, 2014.

[25] R. Mudumbai, S. Dasgupta, and B. B. Cho, “Distributed control for
optimal economic dispatch of a network of heterogeneous power
generators,” IEEE Transactions on Power Systems, vol. 27, no. 4,
pp. 1750–1760, 2012.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[27] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory.
Oxford, UK: Oxford University Press, 1995.

[28] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT
Press, 1991.

[29] A. Cherukuri and J. Cortés, “Distributed generator coordination for
initialization and anytime optimization in economic dispatch,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 3, pp. 226–
237, 2015.

[30] CAISO, “Expanded metering and telemetry options phase
2 - distributed energy resource provider,” 2015. Draft
proposal electronically available at https://www.
caiso.com/Documents/DraftFinalProposal_
ExpandedMetering_TelemetryOptionsPhase2_
DistributedEnergyResourceProvider.pdf.


