
Distributed algorithms for convex network optimization under
non-sparse equality constraints

Ashish Cherukuri Jorge Cortés

Abstract— This paper studies a class of network optimization
problems where the objective function is the summation of
individual agents’ convex functions and their decision variables
are coupled by linear equality constraints. These constraints
are not sparse, meaning that they do not match the pattern
of the network adjacency matrix. We propose two approaches
to design efficient distributed algorithms to solve the network
optimization problem. Our first approach consists of trans-
forming the non-sparse equality constraints into sparse ones
by increasing the number of the agents’ decision variables,
yielding an exact reformulation of the original optimization
problem. We discuss two reformulations, based on the addition
of consensus variables and of constraint-mismatch variables,
and discuss the scalability of the strategies resulting from
them. Our second approach consists instead of sparsifying the
non-sparse constraints by zeroing some coefficients, yielding
an approximate reformulation of the original problem. We
formally characterize the gap on the distance between the
optimizers of the original and approximated problems as a
function of the number of entries made zero in the constraints.
Various simulations illustrate our results.

I. INTRODUCTION

An increasing body of work deals with the design and
analysis of distributed algorithms to solve constrained con-
vex optimization problems for networks. These works rely
on versatile algorithm design methods, such as primal-
dual algorithms [1] or the alternating direction method of
multipliers [2], to synthesize distributed strategies provided
that the optimization problem is locally expressible. By
locally expressible we mean that the objective function is the
aggregate of functions available to the agents that depend
on their state and those of their neighbors, and that each
constraint can be evaluated with knowledge of the state of
a given specific agent and those of its neighbors. The above
mentioned design methods do not result in a distributed
algorithm when the optimization problem is instead global
in nature. This observation provides the motivation for our
work here on solution approaches to overcome the challenges
posed by global constraints.

Literature review

The use of distributed algorithms to solve network opti-
mization problems span multiple areas, such as power net-
works [3], communication networks [4], and transportation
networks [5], to name only a few. While many network
optimization problems have a locally expressible structure,

Ashish Cherukuri and Jorge Cortés are with the Department of Me-
chanical and Aerospace Engineering, University of California, San Diego,
{acheruku,cortes}@ucsd.edu.

there are others that have a global nature, such as economic
dispatch problem [6] and its variants [7]. Many distributed
algorithms exist for constrained network optimization prob-
lems, see e.g., [8], [9], [10], [11] and references therein. In
these works, either the constraints can be expressed locally
or the size of the optimization variable is independent of the
network size. In contrast, both conditions are not valid for
the class of network optimization problems we consider here.
The technical approach for our approximate formulations of
the optimization problem using constraint sparsification is
related to the vast literature on optimization problems with
perturbations, see e.g. [12], and references therein. Most of
these works establish analytical properties of the optimizer
map when the optimization data is perturbed. In contrast,
we derive quantifiable bounds on error in optimizers under
perturbation to the feasibility set. The closest related work
along these lines is [13], which derives error bounds for conic
constraints.

Statement of contributions

Our starting point is the definition of a general class of
convex optimization problems over networks. The objective
function for this problem is the aggregate of local objective
functions, each belonging to an agent, and the constraints
include equalities that are non-sparse, meaning that their
evaluation requires state information beyond that provided
by neighboring agents. We propose two approaches to tackle
the problem of designing distributed algorithms to solve the
optimization problem. We assume any distributed algorithm
to satisfy two requirements: (i) each agent can only com-
municate with its neighboring agents in the network; and,
(ii) each agent knows and does not share with its neighbors
the data about the constraints it is involved in, albeit it need
not have access to states of all gents involved in the said
constraints as the constraints are non-sparse.

Our first approach is to develop exact reformulations of
the optimization in terms of problem data that is locally
expressible. Within this approach, we present two exact
reformulations. The first reformulation is based on ideas of
consensus where each agent maintains an estimate of the
whole network state, making sure that its estimate satisfies
the constraints that are known to it while at the same
time seeking to agree with its neighbors on a common
value for it. While the reformulation has constraints that
are locally expressible, any distributed strategy that solves
this reformulation lacks scalability. This is because the state
of each agent is of the same size as the network’s and

so, the size of the interchanged messages in the algorithm
grows with the number of agents. This motivates the sec-
ond reformulation, which is based on the introduction of
constraint-mismatch variables in the state of each agent, one
per constraint. We show that this reformulation is exact and
results in agents having states whose dimension scales with
the number of constraints. Therefore, distributed strategies
for this reformulation are scalable, provided the number of
constraints is independent of the network size.

Finally, for the case when this is not the case, we propose
the second approach that makes the constraint sparse by
zeroing the entries of the matrix that defines it. As a result
of this process, the optimizer of the problem and its optimal
value change. We provide results that characterize the size of
this error in terms of the perturbation of the affine constraints
due to the sparsification process. The first result here con-
siders a general convex optimization problem with a convex
compact constraint set and analyzes the affect of perturbation
to this set on the optimizer. The error bound for this case
is non-Lipschitzian. In the second result, we consider affine
constraint and using the KKT conditions of the original and
the perturbed problem, we provide a Lipschitz error bound
on the distance between the optimizers of the original and the
perturbed problem. Various simulations illustrate our results.

Organization

The paper is organized as follows. Section II presents
the notation and basic concepts on graph theory. Section III
describes the non-sparse network convex optimization prob-
lem and the requirements on the distributed algorithm to
solve it. Section IV proposes two exact reformulations based
on consensus variables and the introduction of constraint-
mismatch variables, respectively. Section V instead describes
the approach based on sparsifying the non-sparse constraints
and characterizes the distance between the optimizers of the
original and the approximated problem. Finally, Section VI
describes our conclusions and ideas for future work.

II. PRELIMINARIES

This section introduces the notation and basic notions on
algebraic graph theory used throughout the paper.

A. Notation

Let R, R≥0 and Z≥1 denote the set of real, real non-
negative, and positive integer numbers, respectively. For a
vector x ∈ Rn, the i-th component is xi ∈ R. For two
vectors x, y ∈ Rn, x ≤ y is equivalent to xi ≤ yi for all
i ∈ {1, . . . , n}. We follow a similar convention for strict
inequality. The vector of all zeros and all ones of size n are
denoted as 0n and 1n, respectively. For two vectors u ∈ Rn,
v ∈ Rm, the vector (u; v) ∈ Rn+m represents stacking them
one after another. The cardinality of a set S is given by
|S|. For a matrix A ∈ Rn×m, the i-th row and the (i, j)-
th element are denoted as [A]i and [A]i,j , respectively. For

A ∈ Rn1×n2 and B ∈ Rm1×m2 , A ⊗ B ∈ Rn1m1×n2m2 is
the Kronecker product.

B. Graph theory

Here we give a brief overview of necessary concepts
from algebraic graph theory following [14]. A (weighted)
undirected graph is a triplet G = (V, E ,A), where V is
a finite set called the vertex set, E ⊆ V × V is called
the edge set where (i, j) ∈ E if and only (j, i) ∈ E ,
and A ∈ R|V|×|V|≥0 the called the adjacency matrix. The set
Ni ⊂ V denotes the set of neighbors of a vertex i, that is,
Ni = {j ∈ V | (i, j) ∈ E}. The adjacency matrix satisfies
the property [A]i,j = [A]j,i > 0 if (i, j) ∈ E and [A]i,j = 0,
otherwise. The positive value [A]i,j for some (i, j) ∈ E is
called the edge-weight of (i, j). The weighted degree of a
vertex i is d(i) =

∑n
j=1[A]i,j . The weighted degree matrix

D is the diagonal matrix defined by [D]i,i = d(i), for all
i ∈ {1, . . . , n}. The Laplacian matrix is L = D−A. Note that
L is symmetric and satisfies L1n = 0. A path is an ordered
sequence of vertices such that two subsequent vertices form
an edge. The undirected graph is connected if there is path
between any two vertices of the graph. The Laplacian of a
connected graph has 0 as a simple eigenvalue, with all other
eigenvalues positive.

III. PROBLEM STATEMENT

Consider a network of n ∈ Z≥1 agents whose commu-
nication topology is represented by a connected weighted
graph G = (V, E ,A). An edge (i, j) ∈ E represents two-
way communication between agents i and j. Each agent
i is associated with a decision variable xi ∈ R and a
cost function fi : R → R, which we assume convex and
continuously differentiable. Consider the following network
optimization problem for the group of agents

minimize
x

n∑
i=1

fi(xi), (1a)

subject to Ax = b, (1b)

xm ≤ x ≤ xM , (1c)

where A ∈ Rm×n, b ∈ Rm, and xm, xM ∈ Rn satisfy
0 < xmi < xMi < ∞ for all i ∈ {1, . . . , n}. We denote the
set of feasible points and the set of optimizers of (1) by F
and F∗, respectively.

In problem (1), the objective function has a separable
structure, that is, it is the summation of the individual agents’
objectives, each depending on its own decision variable.
However, we do not assume any sparsity structure for the
matrix A and so the constraint (1b) is (possibly) global
in nature, coupling the decision variables of all agents.
Formally, a function g : Rn → Rm is local with respect
to the graph G if for each k ∈ {1, . . . ,m} there exists
i ∈ {1, . . . , n} such that gk is a function of (xi, {xj}j∈Ni). A
constraint is local with respect to the graph G if the function
defining it is local. Otherwise, the constraint is global. In

words, each component of a local constraint depends only
on the decision variables of some agent and its neighbors.
While (1c) is a local constraint, (1b) need not be.

Our objective is to design distributed algorithms that
allow the agents to find the optimizer of the problem (1).
Informally, by distributed we mean that there is no central
computing entity and instead each agent seeks to determine
its decision variable at the global optimum of (1) by com-
municating with neighboring agents. Formally, a distributed
algorithm has the following properties

(i) local exchange of information: each agent i can only
communicate with its neighbors Ni in the graph G;
and

(ii) private information: each agent i only knows its cost
function fi, the min- and max-limits xmi and xMi ,
and the constraint components ([A]k, bk) for all k ∈
{1, . . . ,m} such that [A]k,i 6= 0 (i.e., where its state is
involved). This is private information for i that is not
shared with its neighbors.

Distributed algorithms to solve convex optimization prob-
lems defined by separable objective functions and local
constraints can be designed by using a variety of meth-
ods, such as primal-dual dynamics or alternating direction
method of multipliers. However, such methods do not yield
distributed strategies for problems of the form (1) because of
the non-sparsity of the constraints. To tackle this problem,
we propose two alternative approaches: exact reformulations
and constraint sparsification.

We end this section with a motivating optimization prob-
lem from power systems that includes global affine con-
straints.

Example 3.1: (Economic dispatch problem: definition):
Consider n ∈ Z≥1 power generators communicating over a
connected weighted graph G. Each generator i ∈ {1, . . . , n}
has a convex, continuously differentiable, cost function fi :
R≥0 → R≥0 associated with the power generation: given the
power generated by i as Pi ∈ R≥0, the cost incurred by i
is fi(Pi). The objective for the generators is to collectively
meet a load Pl ∈ R≥0 while minimizing the total incurred
cost of generation and satisfying the min- and max- genera-
tion constraint for each generator, that is, Pmi ≤ Pi ≤ PMi
for all i ∈ {1, . . . , n}. Formally,

minimize
n∑
i=1

fi(Pi), (2a)

subject to
n∑
i=1

Pi = Pl, (2b)

Pm ≤ P ≤ PM . (2c)

Notice that the load balance condition (2b) is a global con-
straint. In our previous work [6], we have given a distributed
algorithmic solution that finds the optimizer of the economic
dispatch problem, where we use the special structure of the
equality constraint to devise the solution strategy. In the

following section, we give an exact reformulation that leads
to the design of a distributed primal-dual algorithm. •

IV. EXACT FORMULATION AS NETWORK OPTIMIZATION
WITH LOCAL CONSTRAINS

Here we develop two equivalent reformulations of the
network optimization problem (1) such that the global con-
straint is expressed as a collection of local constraints. In
both cases, the reformulation involves the introduction of
additional variables.

A. Reformulation using consensus

The basic idea behind the reformulation using consensus is
to have each agent maintain an estimate of the whole network
state, rewrite the global constraint as a collection of local
constraints that can be expressed in terms of these estimates,
and introduce additional consensus constraints to make sure
all agents agree on the same network state. Consequently, for
each i ∈ {1, . . . , n}, we define a decision variable x̂i ∈ Rn.
We let x̂ = (x̂1; x̂2; . . . ; x̂n) ∈ (Rn)n be the collection of all
decision variables. We let Ãi and b̃i denote the submatrices
formed by the collection of rows k ∈ {1, . . . ,m} of A and
b, respectively, for which [A]k,i 6= 0. Recall that under the
network model described in Section III, each agent i knows
(Ãi, b̃i). Consider the following optimization problem

minimize
x̂

n∑
i=1

fi(x̂
i
i), (3a)

subject to Ãix̂i = b̃i, ∀i, (3b)

xmi ≤ x̂ii ≤ xMi , ∀i, (3c)
(L⊗ In)x̂ = 0n2 . (3d)

Note that constraints (3b) and (3c) are local because x̂i is
the decision variable of agent i. Further, the constraint (3d)
is local due to the sparsity structure of the Laplacian. For
convenience, we denote the set of feasible points of (3) by
Fc ⊂ Rn2

and the set of optimizers by F∗c . The following
result establishes the bijection between the optimizers of (1)
and (3).

Proposition 4.1: (Exact reformulation using consensus):
For problems (1) and (3), we have (F∗)n = F∗c .

Proof: Since G is connected, one has that (L⊗ In)x̂ =
0n2 if and only if x̂ = 1n ⊗ x, with x ∈ Rn. For x̂ ∈ Fc,
this fact together with (3b) implies that Ax = b and xm ≤
x ≤ xM , i.e., x ∈ F . Conversely, if x ∈ F , then one can
show that 1n ⊗ x ∈ Fc, and the statement follows.

The appealing feature of problem (3) is that its objective
function has a separable structure and, at the same time, the
constraints are local, making it amenable to the design of
distributed algorithms. However, the variable that each agent
maintains has dimension n, the size of the network. This
means that in order to execute any such distributed strategy,
agents need to either communicate messages of order n
or schedule n communication rounds to transmit messages

of order 1. In either case, the volume of communication
required by the algorithm executions does not scale well with
the network size.

B. Reformulation using constraint-mismatch variables

The basic idea behind the reformulation using constraint-
mismatch variables is to add one variable per non-sparse
constraint to the state of each agent. In turn, this allows each
agent to compute a proxy of the contribution of other agents
to the satisfaction of that non-sparse constraint in a way that
collectively makes their original state satisfy it.

We start with some notation. For each k ∈ {1, . . . ,m},
let the vector ek ∈ Rn be such that eki = 1 if [A]k,i 6= 0
and eki = 0 otherwise. That is, ek encodes agents whose
decision variables are coupled in the k-th component of
the constraint (1b). Note that ek is known to each agent
involved in the k-th constraint as each of these agents know
([A]k, bk) under the network model described in Section III.
Corresponding to each k ∈ {1, . . . ,m}, define a variable
yk ∈ Rn and let the decision variable for each agent
i ∈ {1, . . . , n} be (xi, {yki }mk=1). Consider the following
optimization problem

minimize
x,{yk}mk=1

n∑
i=1

fi(xi), (4a)

subject to diag([A]k)x+ Lyk =
bk

1>n e
k
ek, ∀k, (4b)

xm ≤ x ≤ xM . (4c)

Note that the structure of the Laplacian and the way we have
partitioned the auxiliary variables {yk} into each agents’
decision variable makes the constraints in (4b) local. In fact,
we can rewrite them as

[A]k,ixi +
∑
j∈Ni

[A]i,j(y
k
i − ykj) =

bk
1>n e

k
eki ,

for all k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. For convenience,
we denote the set of feasible points of the above optimization
problem by Fr ⊂ Rn × Rnm and its set of optimizers
by F∗r . The next result establishes the bijection between the
optimizers of (1) and (4).

Proposition 4.2: (Exact reformulation using constraint-
mismatch variables): For problems (1) and (3), we have
F∗ = Πx(F∗r), where Πx is the projection onto the first
n coordinates.

Proof: Note that it is enough to show Πx(Fr) = F
because the objective function of (1) and (4) are same. Let
x ∈ F . Clearly, x satisfies (4c). Since x satisfies (1b), we
get

1>n

(
diag([A]k)x− bk

1>n e
k
ek
)

= 0,

for all k ∈ {1, . . . ,m}. This implies that diag([A]k)x −
bk

1>
n e

k e
k belongs to the range space of L and so there exists

yk ∈ Rn such that

−Lyk = diag([A]k)x− bk
1>n e

k
ek.

Collecting these yk vectors, we get (x, {yk}mk=1) ∈ Fr.
Thus, x ∈ Πx(Fr) and so, F ⊆ Πx(Fr). Now let x ∈
Πx(Fr). Then, x satisfies (1c). Further, there exists {yk}mk=1

such that (x, {yk}mk=1) satisfy (4b). Pre-multiplying each
equation of (4b) with 1>n yields [A]kx = bk for all k ∈
{1, . . . ,m}. That is, x satisfies (1b). Therefore,, x ∈ F and
so Πx(Fr) ⊆ F . This concludes the proof.

Distributed algorithms can be designed for (4) as the
objective is separable and the constraints are local. There is
however a key difference between reformulations (3) and (4),
which is the size of the decision variables for each agent. In
the former, this size is n while in the later it is m + 1.
Assuming that the time and communication complexity of a
distributed algorithm increases with the size of the decision
variables for each agent, the second formulation has therefore
a clear advantage.

Remark 4.3: (Dual problem): Here we discuss the nature
of the dual problem of (1) and explain why it is difficult to
design a distributed algorithm for it. The Lagrangian of (1)
is

L(x, λm, λM , ν) =

n∑
i=1

fi(xi) + ν>(Ax− b)

+ (λm)>(xm − x) + (λM)>(x− xM),

where λm, λM ∈ Rn≥0 and ν ∈ Rm are Lagrange multipliers
corresponding to the constraints (1b) and (1c), respectively.
Let D : Rm × R2n

≥0 → R be the objective function of the
dual problem. Then,

D(λm, λM , ν) = min
x∈Rn

L(x, λm, λM , ν). (5)

The dual problem is given as

maximize
λm,λM ,ν

D(λm, λM , ν), (6a)

subject to λm, λM ≥ 0n. (6b)

Since the constraints of the primal problem (1) are affine,
the refined Slater condition is satisfied and so the duality
gap between the primal and the dual problems is zero [15].
Note that the constraints of this dual problem are local.
However, the objective function does not have the separable
form as in (1) and so the formulation (6) is not amenable
for distributed algorithms. To see why, we first define a
partition of (λm, λM , ν) into decision variables of each of the
agents. Let λmi and λMi be part of the decision variables of
agent i. Further, assign νk, k ∈ {1, . . . ,m}, to some agent
ik that has information of ([A]k, bk) (that is, [A]k,ik 6= 0
for all k). Note that the dual function D(λm, λM , ν) =
L(x∗(λm, λM , ν), λm, λM , ν), where x∗(λm, λM , ν) is the
minimizer of the convex function L(·, λm, λM , ν). Thus, we
get ∇xL(x∗(λm, λM , ν), λm, λM , ν) = 0n from first-order

optimality condition. That is,∇fi(x
∗
i (λ

m, λM , ν))
...

∇fn(x∗n(λm, λM , ν))

+A>ν − λm + λM = 0n.

For simplicity, assume that the map ∇fi is invertible for
each i. Then, one can find x∗i (λ

m, λM , ν), for all i, from
the above equation and use it to obtain the dual objective
function D. Following the algebra, one can show that ∂D

∂λi

depends on νk for all k such that [A]k,i 6= 0, and therefore
one cannot express D as an addition of individual objective
function of agents.

The above discussion shows that it is not straightforward
to design a distributed algorithm for the dual problem (6).
However, this does not completely rule out the possibil-
ity of coming up with a different partition for variables
(λm, λM , ν) or a reformulation of (6) such that the resulting
optimization has a separable cost and local constraints. •

Note that the two reformulations presented in this section
can also be carried out, in a similar fashion, when the global
constraint (1b) is an inequality instead of an equality. This
would entail replacing the equality in (3b) and (4b) with
inequalities.

Example 4.4: (Economic dispatch problem: comparison
between reformulations): Consider the economic dispatch
problem described in Example 3.1. For simplicity, assume
that the inequality constraints (2c) are absent and the cost
function for each generator i is fi(Pi) = ciP

2
i , ci > 0. Here,

we compare the two reformulations (3) and (4) as the size of
the network increases. To do this, we use the same distributed
algorithm design approach for each of the reformulations
and compare the performance of the resulting strategies on
the basis of two metrics. The first comparison metric is the
number of iterations each algorithm takes to converge to
an optimizer of that particular reformulation. The second
metric is the volume of the message passed during each
iteration of the algorithm (where the volume is measured
in terms of the number of real variables interchanged). To
perform this comparison, we select the primal-dual dynamics
for the Lagrangian and the primal-dual dynamics for the
augmented Lagrangian as the candidate distributed algorithm
for reformulation (4) and (3), respectively. We consider four
networks with number of generators 5, 15, 25, and 35. For
each network, the cost coefficients are selected randomly in
the interval (0, 1] and the power demand for a network of
size n is n/2. Figure 1 summarizes the results, showing how
the formulation based on consensus does not scale well with
the network size, while the formulation based on constraint-
mismatch variables does. Note that the simulation results
depend on the selection of distributed algorithm for each
formulation, the choice of stepsize, and the communication
graph. •

V. APPROXIMATE FORMULATION VIA CONSTRAINT
SPARSIFICATION

In this section we study an alternative approach to deal
with network optimization problems with non-sparse con-
straints of the form (1). This approach is motivated by
the observation that, in scenarios where the number m of
constraints is of the same size as the number n of agents
in the network, distributed algorithm designs resulting from
exact reformulations are not scalable with the network size.
For such scenarios, we propose to sparsify the constraints by
zeroing entries in the rows of the matrix A in (1b). Formally,
we consider the following perturbed version of (1)

minimize
x

n∑
i=1

fi(xi), (7a)

subject to (A+Ap)x = b+ bp, (7b)

xm ≤ x ≤ xM , (7c)

where for generality, we also consider perturbation in the
right-hand side of (7b). This process naturally results in a
different optimizer and a different optimal value. Our aim in
this section is to provide upper bounds between the optimiz-
ers of the original and the perturbed problems as a function
of the constraint sparsification. Note that an optimizer of
the perturbed problem (7) might not be a feasible point of
the original problem (1). Therefore, when feasibility is more
important than optimality, one could possibly additionally
modify the objective function in (7) (while maintaining the
separable structure) so that the distance of the optimizer
of the perturbed problem to the original feasible set is
minimized. Alternatively, one could neglect the infeasibility
in cases where the decision variables of the agents are states
of a network dynamics and the feasibility of constraints is
ensured by the dynamics itself, such as for instance in power
networks, where load satisfaction is ensured by primary and
secondary controllers [16].

Our first result provides one such upper bound for a
general convex optimization problem.

Proposition 5.1: (Perturbation to general convex optimiza-
tion problem: upper bound between optimizers): Consider the
two optimizations on Rn,

min{f(x) | x ∈ F1}, (8a)
min{f(x) | x ∈ F2}. (8b)

where F1 and F2 are compact subsets of Rn. Assume that
f : Rn → R is twice continuously differentiable, strongly
convex, satisfying mI � ∇2f(x) �MI for all x ∈ Rn and
some constants 0 < m < M < ∞. Let x∗1, x

∗
2 ∈ Rn be the

optimizers of (8a) and (8b), respectively. Then,

‖x∗1 − x∗2‖ ≤√
3

2m

(
Md(F1,F2)2+(G1+G2)d(F1,F2)

) 1
2

+d(F1,F2).

(a) Number of iterations (b) Communication volume per iteration

Fig. 1. Illustration comparing the performance of candidate distributed algorithms for the consensus-based reformulation (3) and the constraint-mismatch
reformulation (4) of the network optimization problem. For each network size, the initial condition is at the origin. The communication graph is the same
for both algorithms. The step size is constant and the optimization is stopped once the distance to the optimizer decreases to 0.1% of the initial value. Plot
(a) shows the number of iterations to convergence for the algorithms for different network size. For small networks, the algorithm for the consensus-based
reformulation (3) is faster. However, the algorithm for the constraint-mismatch variable-based reformulation (4) starts outperforming it as the network
size increases. Plot (b) shows the volume of message passed per each iteration of the algorithms, where volume refers to the total number of real-valued
variables.

where

d(F1,F2) = max{ sup
x∈F1

inf
y∈F2

‖x− y‖, sup
x∈F2

inf
y∈F1

‖x− y‖},

and G1 = max{‖∇f(x)‖ | x ∈ F1} , G2 =
max{‖∇f(x)‖ | x ∈ F2}.

Proof: Let y1 ∈ F1 and y2 ∈ F2 be such that

‖y1 − x∗2‖ = min
y∈F1

‖y − x∗2‖,

‖y2 − x∗1‖ = min
y∈F2

‖y − x∗1‖.

Then, by definition

‖y1 − x∗2‖ ≤ d(F1,F2), (9a)
‖y2 − x∗1‖ ≤ d(F1,F2). (9b)

The second-order condition for strong convexity gives

f(y1) ≥ f(x∗1) +∇f(x∗1)>(y1 − x∗1) +
m

2
‖y1 − x∗1‖2.

Since x∗1 is the optimizer of f on F1 and y1 ∈ F1, we
deduce that ∇f(x∗1)>(y1 − x∗1) ≥ 0. Employing this fact in
the above inequality yields

f(y1) ≥ f(x∗1) +
m

2
‖y1 − x∗1‖2. (10)

Note that from the second-order condition we also have

f(y1) ≤ f(x∗2) +∇f(x∗2)>(y1 − x∗2) +
M

2
‖y1 − x∗2‖2.

Using the above expression and (10) we get

f(x∗1) +
m

2
‖y1 − x∗1‖2 ≤ f(x∗2)

+∇f(x∗2)>(y1 − x∗2) +
M

2
d(F1,F2)2, (11)

where we have used (9b) to bound ‖y1 − x∗2‖. Similar line
of reasoning gives us the following bound

f(x∗2) +
m

2
‖y2 − x∗2‖2 ≤ f(x∗1)

+∇f(x∗1)>(y2 − x∗1) +
M

2
d(F1,F2)2. (12)

Adding (11) and (12), we obtain
m

2

(
‖y1 − x∗1‖2 + ‖y2 − x∗2‖2

)
≤Md(F1,F2)2

+∇f(x∗2)>(y1 − x∗2) +∇f(x∗1)>(y2 − x∗1). (13)

Note that

a+ b = (a2 + b2 + 2ab)1/2 ≤ (a2 + b2 + 2a2 + 2b2)1/2

=
√

3(a2 + b2)1/2.

Therefore,

‖y1 − x∗1‖+ ‖y2 − x∗2‖ ≤
√

3
(
‖y1 − x∗1‖2

+ ‖y2 − x∗2‖2
)1/2

.

Further, using (13) in the above expression results into

‖y1 − x∗1‖+ ‖y2 − x∗2‖ ≤
√

6

m

(
Md(F1,F2)2

+∇f(x∗2)>(y1 − x∗2) +∇f(x∗1)>(y2 − x∗1)
)1/2

.

Finally,

‖x∗1 − x∗2‖ = ‖1

2
(x∗1 − y1 + y1 − x∗2)

+
1

2
(x∗1 − y2 + y2 − x∗2)‖,

≤ 1

2
(‖y1 − x∗1‖+ ‖y2 − x∗2‖)

+
1

2
(‖y1 − x∗2‖+ ‖y2 − x∗1‖),

≤ 1

2

√
6

m

(
Md(F1,F2)2 +∇f(x∗2)>(y1 − x∗2)

+∇f(x∗1)>(y2 − x∗1)
)1/2

+ d(F1,F2).

Using bounds on gradients, we obtain

‖x∗1 − x∗2‖ ≤
√

3

2m

(
Md(F1,F2)2 + (G1 +G2)d(F1,F2)

)1/2
+ d(F1,F2).

This completes the proof.

In the above result, one can take F1 as the feasibility set
of the original optimization problem and F2 as its perturbed
version. Since these sets are fairly general, the result has
a broader scope of application. However, as a result, the
error bound we obtain on the optimizers is conservative.
Instead, the next result focuses on a much more specific class
of optimization problems (quadratic with affine constraints)
and establishes a Lipschitz bound on the distance between
optimizers by making use of the affine nature of constraints.

Proposition 5.2: (Perturbation to quadratic programming
with affine constraints: Lipschitz upper bound between op-
timizers): Consider the following optimization problems for
x ∈ Rn,

min{‖x− x0‖2 | A1x = b1}, (14a)

min{‖x− x0‖2 | A2x = b2}. (14b)

where x0 ∈ Rn, A1, A2 ∈ Rm×n, and b1, b2 ∈ Rm. Let A1

and A2 have full row-rank. Denote x∗1, x
∗
2 ∈ Rn to be the

optimizers of (14a) and (14b), respectively. Then,

‖x∗1 − x∗2‖ ≤ α‖A1 −A2‖+ β‖b1 − b2‖,

where

α = (‖x0‖+ ‖b2‖)α̃,

α̃ = ‖A>1 (A1A
>
1)−1‖+ ‖A2‖

(
‖(A1A

>
1)−1‖

+ ‖A2‖‖(A2A
>
2)−1‖‖(A1A

>
1)−1‖(‖A1‖+ ‖A2‖)

)
,

β = ‖A>1 (A1A
>
1)−1‖.

Proof: Consider (14a). The Lagrangian is

L1(x, λ) = ‖x− x0‖2 + λ>(A1x− b1),

where λ ∈ Rm is the Lagrange multiplier. Since the
constraint is linear, the refined Slater condition is satisfied
for this problem and so a primal-dual optimizer (x∗1, λ

∗
1)

of (14a) satisfies the following Karush-Kuhn-Tucker (KKT)
conditions [15]

2(x∗1 − x0) +A>1 λ
∗
1 = 0, (15a)

A1x
∗
1 = b1. (15b)

Solving the above set of equations for (x∗1, λ
∗
1) yields

x∗1 = x0 −A>1 (A1A
>
1)−1(A1x0 − b1). (16)

Using the same reasoning for (14b), we have

x∗2 = x0 −A>2 (A2A
>
2)−1(A2x0 − b2). (17)

From (16) and (17), we obtain

‖x∗1−x∗2‖ = ‖A>2 (A2A
>
2)−1(A2x0 − b2)

−A>1 (A1A
>
1)−1(A1x0 − b1)‖

(a)

≤ ‖A>2 (A2A
>
2)−1A2x0 −A>1 (A1A

>
1)−1A1x0‖

+ ‖A>1 (A1A
>
1)−1b1 −A>2 (A2A

>
2)−1b2‖

(b)
= α̃‖A1 −A2‖‖x0‖

+ ‖A>1 (A1A
>
1)−1b1 −A>1 (A1A

>
1)−1b2

+A>1 (A1A
>
1)−1b2 −A>2 (A2A

>
2)−1b2‖

(c)

≤ α̃‖A1 −A2‖‖x0‖+ ‖A>1 (A1A
>
1)−1‖‖b1 − b2‖

+ ‖b2‖‖A>1 (A1A
>
1)−1 −A>2 (A2A

>
2)−1‖

(d)

≤ α̃(‖x0‖+ ‖b2‖)‖A1 −A2‖
+ ‖A>1 (A1A

>
1)−1‖‖b1 − b2‖,

where in (a) and (c), we have used the triangle inequality; in
(b) and (d) we have used the bound from Lemma A.3. This
completes the proof.

Comparing with the original and the perturbed network op-
timization problems, the constraint data (A1, b1) and (A2, b2)
in the above result represent (A, b) and (A + Ap, b + bp)
from (1b) and (7b), respectively. The above result has lim-
itations in the sense that the cost has a specific structure
and there are no inequality constraints. Nonetheless, we
conjecture that one can drop these limitations and generalize
the result by using the second-order strong convexity bounds.

VI. CONCLUSIONS

We have considered a constrained network optimization
problem where the objective function is the summation of
individual agents’ objective and the agents’ decisions are
coupled through affine global equality constraints. We have
explored two approaches that make this optimization problem
amenable to the design of distributed algorithms. In the first
approach, we have introduced additional variables to give
two exact reformulations that only have local constraints in
the decision variables of the agents. We have also discussed
the scalability properties with the network size of these
reformulations. In the second approach, we have analyzed
the effect of perturbing the feasibility set of the problem
on its optimizer. Our results help determine bounds on the
distance between the optimizers of the original and perturbed
problems when we eliminate some entries of the global affine
constraints to improve sparsity. Future work will extend our
perturbation analysis to general class of convex functions
with affine constraints, analyze the effect of perturbation
from a geometric perspective to identify entries of the affine
constraint matrix that deviate the optimizer the least, and
develop distributed algorithms for optimal sparsification. We
also plan to apply our results to find efficient distributed
algorithms for power system optimization problems.

ACKNOWLEDGMENTS

This work was partially supported by NSF award
ECCS-1307176 and ARPA-e Cooperative Agreement DE-

AR0000695.

REFERENCES

[1] K. Arrow, L. Hurwitz, and H. Uzawa, Studies in Linear and Non-
Linear Programming. Stanford, California: Stanford University Press,
1958.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[3] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal
power flow for smart microgirds,” IEEE Transactions on Smart Grid,
vol. 4, no. 3, pp. 1464–1475, 2013.

[4] D. P. Palomar and M. Chiang, “Alternative distributed algorithms
for network utility maximization: Framework and applications,” IEEE
Transactions on Automatic Control, vol. 52, no. 12, pp. 2254–2269,
2007.

[5] Q. Ba, K. Savla, and G. Como, “Distributed optimal equilibrium
selection for traffic flow over networks,” in IEEE Conf. on Decision
and Control, (Osaka, Japan), pp. 6942–6947, 2015.

[6] A. Cherukuri and J. Cortés, “Initialization-free distributed coordination
for economic dispatch under varying loads and generator commit-
ment,” Automatica, vol. 74, pp. 183–193, 2016.

[7] K. E. V. Horn, A. D. Domı́nguez-Garcı́a, and P. W. Sauer,
“Measurement-based real-time security-constrained economic dis-
patch,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3548–
3560, 2016.

[8] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[9] M. Zhu and S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 151–164, 2012.

[10] J. Wang and N. Elia, “A control perspective for centralized and
distributed convex optimization,” in IEEE Conf. on Decision and
Control, (Orlando, Florida), pp. 3800–3805, 2011.

[11] D. Richert and J. Cortés, “Robust distributed linear programming,”
IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2567–
2582, 2015.

[12] J. F. Bonnans and A. Shapiro, “Optimization problems with pertur-
bations: a guided tour,” SIAM Review, vol. 40, no. 2, pp. 228–264,
1998.

[13] R. Janin and J. Gauvin, “Lipschitz-type stability in nonsmooth convex
programs,” SIAM Journal on Optimization, vol. 38, no. 1, pp. 124–137,
1999.

[14] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks. Applied Mathematics Series, Princeton University Press,
2009. Electronically available at http://coordinationbook.
info.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[16] J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynam-
ics: Stability and Control. Chichester, England: Wiley, 2008.

APPENDIX

The following results support the proof of Proposition 5.2.

Lemma A.1: Let B1, B2 ∈ Rn×n be symmetric nonsingu-
lar matrices. Then,

‖B−11 −B−12 ‖ ≤ ‖B
−1
1 ‖‖B

−1
2 ‖‖B1 −B2‖,

Proof: The reasoning follows as

‖B−11 −B−12 ‖ = ‖B−11 B1(B−11 −B−12)B2B
−1
2 ‖

= ‖B−11 (B2 −B1)B−12 ‖
≤ ‖B−11 ‖‖B

−1
2 ‖‖B1 −B2‖.

Lemma A.2: Let A1, A2 ∈ Rm×n be full row-rank matri-
ces. Then,

‖(A2A
>
2)−1 − (A1A

>
1)−1‖ ≤ a‖A1 −A2‖,

where a = ‖(A2A
>
2)−1‖‖(A1A

>
1)−1‖

(
‖A1‖+ ‖A2‖

)
.

Proof: From Lemma A.1, we obtain

‖(A2A
>
2)−1 − (A1A

>
1)−1‖ ≤ ‖(A2A

>
2)−1‖‖(A1A

>
1)−1‖

‖A2A
>
2 −A1A

>
1 ‖.

Further,

‖A2A
>
2 −A1A

>
1 ‖ = ‖A2A

>
2 −A2A

>
1 +A2A

>
1 −A1A

>
1 ‖

≤ (‖A2‖+ ‖A1‖)‖A1 −A2‖,

where we have used the triangle inequality in the above
expression. Combining the above sets of inequalities yields
the result.

The next result uses the previous two.

Lemma A.3: Let A1, A2 ∈ Rm×n be full row-rank matri-
ces. Then,

‖A>1 (A1A
>
1)−1A1 −A>2 (A2A

>
2)−1A2‖ ≤ α̃‖A1 −A2‖,

where

α̃ = ‖A>1 (A1A
>
1)−1‖+ ‖A2‖

(
‖(A1A

>
1)−1‖

+ ‖A2‖‖(A2A
>
2)−1‖‖(A1A

>
1)−1‖(‖A1‖+ ‖A2‖)

)
Proof: Note that

‖A>1 (A1A
>
1)−1A1 −A>2 (A2A

>
2)−1A2‖

= ‖A>1 (A1A
>
1)−1A1 −A>1 (A1A

>
1)−1A2

+A>1 (A1A
>
1)−1A2 −A>2 (A2A

>
2)−1A2‖

≤ ‖A>1 (A1A
>
1)−1‖‖A1 −A2‖

+ ‖A2‖‖A>1 (A1A
>
1)−1 −A>2 (A2A

>
2)−1‖. (A.18)

For the second term in the last expression, we write

‖A>1 (A1A
>
1)−1 −A>2 (A2A

>
2)−1‖

= ‖A>1 (A1A
>
1)−1 −A>2 (A1A

>
1)

+A>2 (A1A
>
1)−1 −A>2 (A2A

>
2)−1‖

≤ ‖(A1A
>
1)−1‖‖A1 −A2‖

+ ‖A>2 ‖‖(A1A
>
1)−1 − (A2A

>
2)−1‖

≤
(
‖(A1A

>
1)−1‖+ ‖A2‖‖(A2A

>
2)−1‖‖(A1A

>
1)−1‖

(‖A1‖+ ‖A2‖)
)
‖A1 −A2‖,

where the last inequality follows from Lemma A.2. The
above inequality along with (A.18) completes the proof.

