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The role of convexity on saddle-point dynamics:
Lyapunov function and robustness

Ashish Cherukuri Enrique Mallada Steven Low Jorge Cortés

Abstract—This paper studies the projected saddle-point dy-
namics associated to a convex-concave function, which we term
as saddle function. The dynamics consists of gradient descent
of the saddle function in variables corresponding to convexity
and (projected) gradient ascent in variables corresponding to
concavity. Under the assumption that the saddle function is twice
continuously differentiable, we provide a novel characterization
of the omega-limit set of the trajectories of this dynamics in terms
of the diagonal blocks of the Hessian. Using this characterization,
we establish global asymptotic convergence of the dynamics un-
der local strong convexity-concavity of the saddle function. When
strong convexity-concavity holds globally, we establish three
results. First, we identify a Lyapunov function for the projected
saddle-point dynamics when the saddle function corresponds to
the Lagrangian of a general constrained optimization problem.
Second, when the saddle function is the Lagrangian of an
optimization problem with equality constraints, we show input-
to-state stability of the saddle-point dynamics by providing an
ISS Lyapunov function. Third, we design an opportunistic state-
triggered implementation of the dynamics. Various examples
illustrate our results.

I. INTRODUCTION

Saddle-point dynamics and its variations have been used
extensively in the design and analysis of distributed feedback
controllers and optimization algorithms in several domains,
including power networks, network flow problems, and zero-
sum games. The analysis of the global convergence of this
class of dynamics typically relies on some global strong/strict
convexity-concavity property of the saddle function defining
the dynamics. The main aim of this paper is to refine this
analysis by unveiling two ways in which convexity-concavity
of the saddle function plays a role. First, we show that
local strong convexity-concavity is enough to conclude global
asymptotic convergence, thus generalizing previous results
that rely on global strong/strict convexity-concavity instead.
Second, we show that global strong convexity-concavity in
turn implies a stronger form of convergence, that is, input-to-
state stability (ISS) of the dynamics. We also explore some
of the important implications of this property in the practical
implementation of the saddle-point dynamics.

A preliminary version of this work will appear at the 2016 Allerton
Conference on Communication, Control, and Computing, Monticello, Illinois
as [1].
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Literature review: The analysis of the convergence prop-
erties of (projected) saddle-point dynamics to the set of
saddle points goes back to [2], [3], motivated by the study
of nonlinear programming and optimization. These works
employed direct methods, examining the approximate evo-
lution of the distance of the trajectories to the saddle point
and concluding attractivity by showing it to be decreasing.
Subsequently, motivated by the extensive use of the saddle-
point dynamics in congestion control problems, the literature
on communication networks developed a Lyapunov-based and
passivity-based asymptotic stability analysis, see e.g. [4] and
references therein. Motivated by network optimization, more
recent works [5], [6] have employed indirect, LaSalle-type
arguments to analyze asymptotic convergence. For this class of
problems, the aggregate nature of the objective function and
the local computability of the constraints make the saddle-
point dynamics corresponding to the Lagrangian naturally
distributed. Many other works exploit this dynamics to solve
network optimization problems for various applications, e.g.,
distributed convex optimization [6], [7], distributed linear
programming [8], bargaining problems [9], and power net-
works [10], [11], [12], [13], [14]. Another area of application
is game theory, where saddle-point dynamics is applied to
find the Nash equilibria of two-person zero-sum games [15],
[16]. In the context of distributed optimization, the recent
work [17] employs a (strict) Lyapunov function approach
to ensure asymptotic convergence of saddle-point-like dy-
namics. The work [18] examines the asymptotic behavior
of the saddle-point dynamics when the set of saddle points
is not asymptotically stable and, instead, trajectories exhibit
oscillatory behavior. Our previous work has established global
asymptotic convergence of the saddle-point dynamics [19]
and the projected saddle-point dynamics [20] under global
strict convexity-concavity assumptions. The works mentioned
above require similar or stronger global assumptions on the
convexity-concavity properties of the saddle function to ensure
convergence. Our results here directly generalize the conver-
gence properties reported above. Specifically, we show that
traditional assumptions on the problem setup can be relaxed
if convergence of the dynamics is the desired property: global
convergence of the projected saddle-point dynamics can be
guaranteed under local strong convexity-concavity assump-
tions. Furthermore, if traditional assumptions do hold, then
a stronger notion of convergence, that also implies robustness,
is guaranteed: if strong convexity-concavity holds globally, the
dynamics admits a Lyapunov function and in the absence of
projection, the dynamics is ISS, admitting an ISS Lyapunov
function.
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Statement of contributions: Our starting point is the defini-
tion of the projected saddle-point dynamics for a differentiable
convex-concave function, referred to as saddle function. The
dynamics has three components: gradient descent, projected
gradient ascent, and gradient ascent of the saddle function,
where each gradient is with respect to a subset of the argu-
ments of the function. This unified formulation encompasses
all forms of the saddle-point dynamics mentioned in the
literature review above. Our contributions shed light on the
effect that the convexity-concavity of the saddle function has
on the convergence attributes of the projected saddle-point
dynamics. Our first contribution is a novel characterization
of the omega-limit set of the trajectories of the projected
saddle-point dynamics in terms of the diagonal Hessian blocks
of the saddle function. To this end, we use the distance
to a saddle point as a LaSalle function, express the Lie
derivative of this function in terms of the Hessian blocks, and
show it is nonpositive using second-order properties of the
saddle function. Building on this characterization, our second
contribution establishes global asymptotic convergence of the
projected saddle-point dynamics to a saddle point assuming
only local strong convexity-concavity of the saddle function.
Our third contribution identifies a novel Lyapunov function for
the projected saddle-point dynamics for the case when strong
convexity-concavity holds globally and the saddle function
can be written as the Lagrangian of a constrained optimiza-
tion problem. This discontinuous Lyapunov function can be
interpreted as multiple continuously differentiable Lyapunov
functions, one for each set in a particular partition of the
domain determined by the projection operator of the dynamics.
Interestingly, the identified Lyapunov function is the sum of
two previously known and independently considered LaSalle
functions. When the saddle function takes the form of the
Lagrangian of an equality constrained optimization, then no
projection is present. In such scenarios, if the saddle function
satisfies global strong convexity-concavity, our fourth contri-
bution establishes input-to-state stability (ISS) of the dynamics
with respect to the saddle point by providing an ISS Lyapunov
function. Our last contribution uses this function to design
an opportunistic state-triggered implementation of the saddle-
point dynamics. We show that the trajectories of this discrete-
time system converge asymptotically to the saddle points and
that executions are Zeno-free, i.e., that the difference between
any two consecutive triggering times is lower bounded by
a common positive quantity. Various examples illustrate our
results.

II. PRELIMINARIES

This section introduces our notation and preliminary no-
tions on convex-concave functions, discontinuous dynamical
systems, and input-to-state stability.

A. Notation

Let R, R≥0, and N denote the set of real, nonnegative real,
and natural numbers, respectively. We let ‖ · ‖ denote the
2-norm on Rn and the respective induced norm on Rn×m.
Given x, y ∈ Rn, xi denotes the i-th component of x, and

x ≤ y denotes xi ≤ yi for i ∈ {1, . . . , n}. For vectors
u ∈ Rn and w ∈ Rm, the vector (u;w) ∈ Rn+m denotes
their concatenation. For a ∈ R and b ∈ R≥0, we let

[a]+b =

{
a, if b > 0,

max{0, a}, if b = 0.

For vectors a ∈ Rn and b ∈ Rn≥0, [a]+b denotes the vector
whose i-th component is [ai]

+
bi

, for i ∈ {1, . . . , n}. Given a
set S ⊂ Rn, we denote by cl(S), int(S), and |S| its closure,
interior, and cardinality, respectively. The distance of a point
x ∈ Rn to the set S ⊂ Rn in 2-norm is ‖x‖S = infy∈S ‖x−
y‖. The projection of x onto a closed set S is defined as the
set projS(x) = {y ∈ S | ‖x − y‖ = ‖x‖S}. When S is
also convex, projS(x) is a singleton for any x ∈ Rn. For a
matrix A ∈ Rn×n, we use A � 0, A � 0, A � 0, and A ≺
0 to denote that A is positive semidefinite, positive definite,
negative semidefinite, and negative definite, respectively. For
a symmetric matrix A ∈ Rn×n, λmin(A) and λmax(A) denote
the minimum and maximum eigenvalue of A. For a real-valued
function F : Rn ×Rm → R, (x, y) 7→ F (x, y), we denote by
∇xF and ∇yF the column vector of partial derivatives of
F with respect to the first and second arguments, respectively.
Higher-order derivatives follow the convention ∇xyF = ∂2F

∂x∂y ,
∇xxF = ∂2F

∂x2 , and so on. A function α : R≥0 → R≥0 is class
K if it is continuous, strictly increasing, and α(0) = 0. The
set of unbounded class K functions are called K∞ functions.
A function β : R≥0 × R≥0 → R≥0 is class KL if for any
t ∈ R≥0, x 7→ β(x, t) is class K and for any x ∈ R≥0,
t 7→ β(x, t) is continuous, decreasing with β(t, x) → 0 as
t→∞.

B. Saddle points and convex-concave functions

Here, we review notions of convexity, concavity, and saddle
points from [21]. A function f : X → R is convex if

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′),

for all x, x′ ∈ X (where X is a convex domain) and all λ ∈
[0, 1]. A convex differentiable f satisfies the following first-
order convexity condition

f(x′) ≥ f(x) + (x′ − x)>∇f(x),

for all x, x′ ∈ X . A twice differentiable function f is locally
strongly convex at x ∈ X if f is convex and ∇2f(x) � mI
for some m > 0. Moreover, a twice differentiable f is strongly
convex if ∇2f(x) � mI for all x ∈ X for some m > 0. A
function f : X → R is concave, locally strongly concave, or
strongly concave if −f is convex, locally strongly convex, or
strongly convex, respectively. A function F : X × Y → R is
convex-concave (on X×Y) if, given any point (x̃, ỹ) ∈ X×Y ,
x 7→ F (x, ỹ) is convex and y 7→ F (x̃, y) is concave. When the
space X×Y is clear from the context, we refer to this property
as F being convex-concave in (x, y). A point (x∗, y∗) ∈ X ×
Y is a saddle point of F on the set X × Y if F (x∗, y) ≤
F (x∗, y∗) ≤ F (x, y∗), for all x ∈ X and y ∈ Y . The set of
saddle points of a convex-concave function F is convex. The
function F is locally strongly convex-concave at a saddle point
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(x, y) if it is convex-concave and either ∇xxF (x, y) � mI or
∇yyF (x, y) � −mI for some m > 0. Finally, F is globally
strongly convex-concave if it is convex-concave and either x 7→
F (x, y) is strongly convex for all y ∈ Y or y 7→ F (x, y) is
strongly concave for all x ∈ X .

C. Discontinuous dynamical systems

Here we present notions of discontinuous dynamical sys-
tems [22], [23]. Let f : Rn → Rn be Lebesgue measurable
and locally bounded. Consider the differential equation

ẋ = f(x). (1)

A map γ : [0, T ) → Rn is a (Caratheodory) solution of (1)
on the interval [0, T ) if it is absolutely continuous on [0, T )
and satisfies γ̇(t) = f(γ(t)) almost everywhere in [0, T ). We
use the terms solution and trajectory interchangeably. A set
S ⊂ Rn is invariant under (1) if every solution starting in
S remains in S. For a solution γ of (1) defined on the time
interval [0,∞), the omega-limit set Ω(γ) is defined by

Ω(γ) = {y ∈ Rn | ∃{tk}∞k=1 ⊂ [0,∞) with lim
k→∞

tk =∞

and lim
k→∞

γ(tk) = y}.

If the solution γ is bounded, then Ω(γ) 6= ∅ by the Bolzano-
Weierstrass theorem [24, p. 33]. Given a continuously differen-
tiable function V : Rn → R, the Lie derivative of V along (1)
at x ∈ Rn is LfV (x) = ∇V (x)>f(x). The next result is a
simplified version of [22, Proposition 3].

Proposition 2.1: (Invariance principle for discontinuous
Caratheodory systems): Let S ∈ Rn be compact and invariant.
Assume that, for each point x0 ∈ S , there exists a unique
solution of (1) starting at x0 and that its omega-limit set is
invariant too. Let V : Rn → R be a continuously differentiable
map such that LfV (x) ≤ 0 for all x ∈ S. Then, any solution
of (1) starting at S converges to the largest invariant set in
cl({x ∈ S | LfV (x) = 0}).

D. Input-to-state stability

Here, we review the notion of input-to-state stability (ISS)
following [25]. Consider a system

ẋ = f(x, u), (2)

where x ∈ Rn is the state, u : R≥0 → Rm is the input
that is measurable and locally essentially bounded, and f :
Rn×Rm → Rn is locally Lipschitz. Assume that starting from
any point in Rn, the trajectory of (2) is defined on R≥0 for any
given control. Let Eq(f) ⊂ Rn be the set of equilibrium points
of the unforced system. Then, the system (2) is input-to-state
stable (ISS) with respect to Eq(f) if there exists β ∈ KL and
γ ∈ K such that each trajectory t 7→ x(t) of (2) satisfies

‖x(t)‖Eq(f) ≤ β(‖(x(0)‖Eq(f), t) + γ(‖u‖∞)

for all t ≥ 0, where ‖u‖∞ = ess supt≥0‖u(t)‖ is the essential
supremum (see [24, p. 185] for the definition) of u. This
notion captures the graceful degradation of the asymptotic
convergence properties of the unforced system as the size of

the disturbance input grows. One convenient way of showing
ISS is by finding an ISS-Lyapunov function. An ISS-Lyapunov
function with respect to the set Eq(f) for system (2) is a
differentiable function V : Rn → R≥0 such that

(i) there exist α1, α2 ∈ K∞ such that for all x ∈ Rn,

α1(‖x‖Eq(f)) ≤ V (x) ≤ α2(‖x‖Eq(f)); (3)

(ii) there exists a continuous, positive definite function α3 :
R≥0 → R≥0 and γ ∈ K∞ such that

∇V (x)>f(x, v) ≤ −α3(‖x‖Eq(f)) (4)

for all x ∈ Rn, v ∈ Rm for which ‖x‖Eq(f) ≥ γ(‖v‖).

Proposition 2.2: (ISS-Lyapunov function implies ISS):
If (2) admits an ISS-Lyapunov function, then it is ISS.

III. PROBLEM STATEMENT

In this section, we provide a formal statement of the prob-
lem of interest. Consider a twice continuously differentiable
function F : Rn × Rp≥0 × Rm → R, (x, y, z) 7→ F (x, y, z),
which we refer to as saddle function. With the notation of
Section II-B, we set X = Rn and Y = Rp≥0 × Rm, and
assume that F is convex-concave on (Rn)× (Rp≥0×Rm). Let
Saddle(F ) denote its (non-empty) set of saddle points. We
define the projected saddle-point dynamics for F as

ẋ = −∇xF (x, y, z), (5a)

ẏ = [∇yF (x, y, z)]+y , (5b)

ż = ∇zF (x, y, z). (5c)

When convenient, we use the map Xp-sp : Rn×Rp≥0×Rm →
Rn × Rp × Rm to refer to the dynamics (5). Note that the
domain Rn×Rp≥0×Rm is invariant under Xp-sp (this follows
from the definition of the projection operator) and its set of
equilibrium points precisely corresponds to Saddle(F ) (this
follows from the defining property of saddle points and the
first-order condition for convexity-concavity of F ). Thus, a
saddle point (x∗, y∗, z∗) satisfies

∇xF (x∗, y∗, z∗) = 0, ∇zF (x∗, y∗, z∗) = 0, (6a)

∇yF (x∗, y∗, z∗) ≤ 0, y>∗ ∇yF (x∗, y∗, z∗) = 0. (6b)

Our interest in the dynamics (5) is motivated by two bodies of
work in the literature: one that analyzes primal-dual dynamics,
corresponding to (5a) together with (5b), for solving inequality
constrained network optimization problems, see e.g., [3], [5],
[14], [11]; and the other one analyzing saddle-point dynamics,
corresponding to (5a) together with (5c), for solving equality
constrained problems and finding Nash equilibrium of zero-
sum games, see e.g., [19] and references therein. By consid-
ering (5a)-(5c) together, we aim to unify these lines of work.

Our main objectives are to identify conditions that guarantee
that the set of saddle points is globally asymptotically stable
under the dynamics (5) and formally characterize the robust-
ness properties using the concept of input-to-state stability. We
also seek to use the latter to explore the design of opportunistic
state-triggered implementations of the dynamics for scenarios
where the hardware imposes limits on the sampling rate.
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IV. LOCAL PROPERTIES OF THE SADDLE FUNCTION IMPLY
GLOBAL CONVERGENCE

Our first result of this section provides a novel characteriza-
tion of the omega-limit set of the trajectories of the projected
saddle-point dynamics (5).

Proposition 4.1: (Characterization of the omega-limit set of
solutions of Xp-sp): Given a twice continuously differentiable,
convex-concave function F , the set Saddle(F ) is stable under
the projected saddle-point dynamics Xp-sp and the omega-limit
set of every solution is contained in the largest invariant set
M in E(F ), where

E(F ) = {(x, y, z) ∈ Rn × Rp≥0 × Rm |
(x− x∗; y − y∗; z − z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗)),

for all (x∗, y∗, z∗) ∈ Saddle(F )}, (7)

and

H(x, y, z, x∗, y∗, z∗) =

∫ 1

0

H(x(s), y(s), z(s))ds,

(x(s), y(s), z(s)) = (x∗, y∗, z∗) + s(x− x∗, y − y∗, z − z∗),

H(x, y, z) =

 −∇xxF 0 0
0 ∇yyF ∇yzF
0 ∇zy ∇zzF


(x,y,z)

. (8)

Proof: The proof follows from the application of the
LaSalle Invariance Principle for discontinuous Caratheodory
systems (cf. Proposition 2.1). Let (x∗, y∗, z∗) ∈ Saddle(F )
and V1 : Rn × Rp≥0 × Rm → R≥0 be defined as

V1(x, y, z)=
1

2

(
‖x− x∗‖2+‖y − y∗‖2+‖z − z∗‖2

)
. (9)

The Lie derivative of V1 along (5) is

LXp-spV1(x, y, z)

= −(x− x∗)>∇xF (x, y, z) + (y − y∗)>[∇yF (x, y, z)]+y

+ (z − z∗)>∇zF (x, y, z)

= −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z)

+ (y − y∗)>([∇yF (x, y, z)]+y −∇yF (x, y, z))

≤ −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z), (10)

where the last inequality follows from the fact that Ti =
(y − y∗)i([∇yF (x, y, z)]+y − ∇yF (x, y, z))i ≤ 0 for each
i ∈ {1, . . . , p}. Indeed if yi > 0, then Ti = 0 and if yi = 0,
then (y−y∗)i ≤ 0 and ([∇yF (x, y, z)]+y −∇yF (x, y, z))i ≥ 0
which implies that Ti ≤ 0. Next, denoting λ = (y; z) and
λ∗ = (y∗, z∗), we simplify the above inequality as

LXp-spV1(x, y, z)

≤ −(x− x∗)>∇xF (x, λ) + (λ− λ∗)>∇λF (x, λ)

(a)
= −(x− x∗)>

∫ 1

0

(
∇xxF (x(s), λ(s))(x− x∗)

+∇λxF (x(s), λ(s))(λ− λ∗)
)
ds

+ (λ− λ∗)>
∫ 1

0

(
∇xλF (x(s), λ(s))(x− x∗)

+∇λλF (x(s), λ(s))(λ− λ∗)
)
ds

(b)
= [x− x∗;λ− λ∗]>H(x, λ, x∗, λ∗)

[
x− x∗
λ− λ∗

]
(c)

≤ 0,

where (a) follows from the fundamental theorem of calculus
using the notation x(s) = x∗ + s(x − x∗) and λ(s) = λ∗ +
s(λ − λ∗) and recalling from (6) that ∇xF (x∗, λ∗) = 0 and
(λ − λ∗)>∇λF (x∗, λ∗) ≤ 0; (b) follows from the definition
of H using (∇λxF (x, λ))> = ∇xλF (x, λ); and (c) follows
from the fact that H is negative semi-definite. Now using this
fact that LXp-spV1 is nonpositive at any point, one can deduce,
see e.g. [20, Lemma 4.2-4.4], that starting from any point
(x(0), y(0), z(0)) a unique trajectory of Xp-sp exists, is con-
tained in the compact set V −11 (V1(x(0), y(0), z(0))) ∩ (Rn ×
Rp≥0 × Rm) at all times, and its omega-limit set is invariant.
These facts imply that the hypotheses of Proposition 2.1 hold
and so, we deduce that the solutions of the dynamics Xp-sp
converge to the largest invariant set where the Lie derivative
is zero, that is, the set

E(F, x∗, y∗, z∗) = {(x, y, z) ∈ Rn × Rp≥0 × Rm |
(x; y; z)− (x∗; y∗; z∗) ∈ ker(H(x, y, z, x∗, y∗, z∗))}. (11)

Finally, since (x∗, y∗, z∗) was chosen arbitrary, we get that the
solutions converge to the largest invariant set M contained
in E(F ) =

⋂
(x∗,y∗,z∗)∈Saddle(F ) E(F, x∗, y∗, z∗), concluding

the proof.
Note that the proof of Proposition 4.1 shows that the Lie

derivative of the function V1 is negative, but not strictly
negative, outside the set Saddle(F ). The next result shows
that local strong convexity-concavity around a saddle point
together with global convexity-concavity of the saddle function
are enough to guarantee global convergence.

Theorem 4.2: (Global asymptotic stability of the set of sad-
dle points under Xp-sp): Given a twice continuously differen-
tiable, convex-concave function F which is locally strongly
convex-concave at a saddle point, the set Saddle(F ) is globally
asymptotically stable under the projected saddle-point dynam-
ics Xp-sp and the convergence of trajectories is to a point.

Proof: Our proof proceeds by characterizing the set
E(F ) defined in (7). Let (x∗, y∗, z∗) be a saddle point at
which F is locally strongly convex-concave. Without loss
of generality, assume that ∇xxF (x∗, y∗, z∗) � 0 (the case
of negative definiteness of the other Hessian block can be
reasoned analogously). Let (x, y, z) ∈ E(F, x∗, y∗, z∗) (recall
the definition of this set in (11)). Since ∇xxF (x∗, y∗, z∗) � 0
and F is twice continuously differentiable, we have that ∇xxF
is positive definite in a neighborhood of (x∗, y∗, z∗) and so∫ 1

0

∇xxF (x(s), y(s), z(s))ds � 0,

where x(s) = x∗+s(x−x∗), y(s) = y∗+s(y−y∗), and z(s) =
z∗ + s(z − z∗). Therefore, by definition of E(F, x∗, y∗, z∗), it
follows that x = x∗ and so, E(F, x∗, y∗, z∗) ⊆ {x∗}×(Rp≥0×
Rm). From Proposition 4.1 the trajectories of Xp-sp converge
to the largest invariant set M contained in E(F, x∗, y∗, z∗).



5

To characterize this set, let (x∗, y, z) ∈ M and t 7→
(x∗, y(t), z(t)) be a trajectory of Xp-sp that is contained in
M and hence in E(F, x∗, y∗, z∗). From (10), we get

LXp-spV1(x, y, z)

≤ −(x− x∗)>∇xF (x, y, z) + (y − y∗)>∇yF (x, y, z)

+ (z − z∗)>∇zF (x, y, z)

≤ F (x, y, z)− F (x, y∗, z∗) + F (x∗, y, z)− F (x, y, z)

≤ F (x∗, y∗, z∗)− F (x, y∗, z∗) + F (x∗, y, z)

− F (x∗, y∗, z∗) ≤ 0, (12)

where in the second inequality we have used the first-order
convexity and concavity property of the maps x 7→ F (x, y, z)
and (y, z) 7→ F (x, y, z). Now since E(F, x∗, y∗, z∗) =
{(x∗, y, z) | LXp-spV1(x∗, y, z) = 0}, using the above inequal-
ity, we get F (x∗, y(t), z(t)) = F (x∗, y∗, z∗) for all t ≥ 0.
Thus, for all t ≥ 0, LXp-spF (x∗, y(t), z(t)) = 0 which yields

∇yF (x∗, y(t), z(t))>[∇yF (x∗, y(t), z(t))]+y(t)

+ ‖∇zF (x∗, y(t), z(t))‖2 = 0

Note that both terms in the above expression are nonneg-
ative and so, we get [∇yF (x∗, y(t), z(t))]+y(t) = 0 and
∇zF (x∗, y(t), z(t)) = 0 for all t ≥ 0. In particular, this holds
at t = 0 and so, (x, y, z) ∈ Saddle(F ), and we conclude
M⊂ Saddle(F ). Hence Saddle(F ) is globally asymptotically
stable. Combining this with the fact that individual saddle
points are stable, one deduces the pointwise convergence of
trajectories along the same lines as in [26, Corollary 5.2].

A closer look at the proof of the above result reveals
that the same conclusion also holds under milder conditions
on the saddle function. In particular, F need only be twice
continuously differentiable in a neighborhood of the saddle
point and the local strong convexity-concavity can be relaxed
to a condition on the line integral of Hessian blocks of F . We
state next this stronger result.

Theorem 4.3: (Global asymptotic stability of the set of sad-
dle points under Xp-sp): Let F be convex-concave and contin-
uously differentiable with locally Lipschitz gradient. Suppose
there is a saddle point (x∗, y∗, z∗) and a neighborhood of this
point U∗ ⊂ Rn×Rp≥0×Rm such that F is twice continuously
differentiable on U∗ and either of the following holds

(i) for all (x, y, z) ∈ U∗,∫ 1

0

∇xxF (x(s), y(s), z(s))ds � 0,

(ii) for all (x, y, z) ∈ U∗,∫ 1

0

[
∇yyF ∇yzF
∇zyF ∇zzF

]
(x(s),y(s),z(s))

ds ≺ 0,

where (x(s), y(s), z(s)) are given in (8). Then, Saddle(F ) is
globally asymptotically stable under the projected saddle-point
dynamics Xp-sp and the convergence of trajectories is to a
point.

We omit the proof of this result for space reasons: the
argument is analogous to the proof of Theorem 4.2, where
one replaces the integral of Hessian blocks by the integral of

generalized Hessian blocks (see [27, Chapter 2] for the defi-
nition of the latter), as the function is not twice continuously
differentiable everywhere.

Example 4.4: (Illustration of global asymptotic conver-
gence): Consider F : R2 × R≥0 × R→ R given as

F (x, y, z) = f(x) + y(−x1 − 1) + z(x1 − x2), (13)

where

f(x) =

{
‖x‖4, if ‖x‖ ≤ 1

2 ,
1
16 + 1

2 (‖x‖ − 1
2 ), if ‖x‖ ≥ 1

2 .

Note that F is convex-concave on (R2) × (R≥0 × R) and
Saddle(F ) = {0}. Also, F is continuously differentiable on
the entire domain and its gradient is locally Lipschitz. Finally,
F is twice continuously differentiable on the neighborhood
U∗ = B1/2(0) ∩ (R2 × R≥0 × R) of the saddle point 0 and
hypothesis (i) of Theorem 4.3 holds on U∗. Therefore, we con-
clude from Theorem 4.3 that the trajectories of the projected
saddle-point dynamics of F converge globally asymptotically
to the saddle point 0. Figure 1 shows an execution. •

0 10 20 30 40 50 60 70
-0.5

0

0.5

1

1.5

2
x1 x2 y z

(a) (x, y, z)
0 10 20 30 40 50 60 70
0

1

2

40 50 60 70
2

2.5

3

3.5

4 ×10-3

(b) V1

Fig. 1. Execution of the projected saddle-point dynamics (5) starting
from (1.7256, 0.1793, 2.4696, 0.3532) for Example 4.4. As guaranteed by
Theorem 4.3, the trajectory converges to the unique saddle point 0 and the
function V1 defined in (9) decreases monotonically.

Remark 4.5: (Comparison with the literature):
Theorems 4.2 and 4.3 complement the available results
in the literature concerning the asymptotic convergence
properties of saddle-point [3], [19], [17] and primal-dual
dynamics [5], [20]. The former dynamics corresponds to (5)
when the variable y is absent and the later to (5) when the
variable z is absent. For both saddle-point and primal-dual
dynamics, existing global asymptotic stability results require
assumptions on the global properties of F , in addition to
the global convexity-concavity of F , such as global strong
convexity-concavity [3], global strict convexity-concavity,
and its generalizations [19]. In contrast, the novelty of our
results lies in establishing that certain local properties of the
saddle function are enough to guarantee global asymptotic
convergence. •

V. LYAPUNOV FUNCTION FOR CONSTRAINED
OPTIMIZATION PROBLEMS

Our discussion above has established the global asymptotic
stability of the set of saddle points resorting to LaSalle-type
arguments (because the function V1 defined in (9) is not a strict
Lyapunov function). In this section, we identify instead a strict
Lyapunov function for the projected saddle-point dynamics
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when the saddle function F corresponds to the Lagrangian
of a constrained optimization problem. The relevance of this
result stems from two facts. On the one hand, the projected
saddle-point dynamics has been employed profusely to solve
network optimization problems. On the other hand, although
the conclusions on the asymptotic convergence of this dy-
namics that can be obtained with the identified Lyapunov
function are the same as in the previous section, having a
Lyapunov function available is advantageous for a number of
reasons, including the study of robustness against disturbances,
the characterization of the algorithm convergence rate, or
as a design tool for developing opportunistic state-triggered
implementations. We come back to this point later.

Theorem 5.1: (Lyapunov function for Xp-sp): Let F : Rn ×
Rp≥0 × Rm → R be defined as

F (x, y, z) = f(x) + y>g(x) + z>(Ax− b), (14)

where f : Rn → R is strongly convex, twice continuously
differentiable, g : Rn → Rp is convex, twice continuously
differentiable, A ∈ Rm×n, and b ∈ Rm. For each (x, y, z) ∈
Rn × Rp≥0 × Rm, define the index set of active constraints

J (x, y, z) = {j ∈ {1, . . . , p} | yj = 0 and
(∇yF (x, y, z))j < 0}.

Then, the function V2 : Rn × Rp≥0 × Rm → R,

V2(x, y, z) =
1

2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2

+
∑

j∈{1,...,p}\J (x,y,z)

((∇yF (x, y, z))j)
2
)

+
1

2
‖(x, y, z)‖2Saddle(F )

satisfies the following

(i) V2(x, y, z) ≥ 0 for all (x, y, z) ∈ Rn × Rp≥0 × Rm and
V2(x, y, z) = 0 if and only if (x, y, z) ∈ Saddle(F ),

(ii) for any trajectory t 7→ (x(t), y(t), z(t)) of Xp-sp,
the map t 7→ V2(x(t), y(t), z(t)) is right-continuous,
almost everywhere differentiable, satisfying (a)
d
dtV2(x(t), y(t), z(t)) < 0 for all t ≥ 0 where the
derivative exists and (x(t), y(t), z(t)) 6∈ Saddle(F ) (b)
V2(x(t′), y(t′), z(t′)) ≤ limt↑t′ V2(x(t), y(t), z(t)) for
all t′ ≥ 0.

As a consequence, the set Saddle(F ) is globally asymptoti-
cally stable under Xp-sp and convergence of trajectories is to
a point.

Proof: We start by partitioning the domain so that the
function V2 is continuously differentiable in the interior of
each of the sets of the partition. Let I ⊂ {1, . . . , p} and

D(I) = {(x, y, z) ∈ Rn × Rp≥0 × Rm | J (x, y, z) = I}.

Note that for I1, I2 ⊂ {1, . . . , p}, I1 6= I2, we have D(I1)∩
D(I2) = ∅. Moreover,

Rn × Rp≥0 × Rm =
⋃

I⊂{1,...,p}

D(I).

Next, consider a trajectory t 7→ (x(t), y(t), z(t)) of Xp-sp
starting at some point (x(0), y(0), z(0)) ∈ Rn × Rp≥0 × Rm.
Let (a, b) ⊂ R≥0 be a time interval for which there exists a set
I ′ ⊂ {1, . . . , p} such that (x(s), y(s), z(s)) ∈ D(I ′) for all
s ∈ (a, b). That is, the trajectory does not switch domains in
the interval (a, b). We wish to show that d

dtV2(x(t), y(t), z(t))
exists almost everywhere on (a, b) and its value is less than
zero at all times s ∈ (a, b) whenever (x(s), y(s), z(s)) 6∈
Saddle(F ). To this end, define the function

V I
′

2 (x, y, z) =
1

2

(
‖∇xF (x, y, z)‖2 + ‖∇zF (x, y, z)‖2

+
∑
j 6∈I′

((∇yF (x, y, z))j)
2
)

+
1

2
‖(x, y, z)‖2Saddle(F )

.

Since V I
′

2 is continuously differentiable on Rn × Rp≥0 × Rm
and t 7→ (x(t), y(t), z(t)) is absolutely continuous, we de-
duce that t 7→ V I

′

2 (x(t), y(t), z(t)) is absolutely continuous.
Therefore, by Rademacher’s Theorem [27], the map t 7→
V I
′

2 (x(t), y(t), z(t)) is differentiable almost everywhere. By
definition, V2(x(s), y(s), z(s)) = V I

′

2 (x(s), y(s), z(s)) for all
s ∈ (a, b). Therefore

d

dt
V2(x(t), y(t), z(t))

∣∣∣
t=s

=
d

dt
V I
′

2 (x(t), y(t), z(t))
∣∣∣
t=s

for almost all s ∈ (a, b). Further, since V I
′

2 is continuously
differentiable, we have

d

dt
V I
′

2 (x(t), y(t), z(t))
∣∣∣
t=s

= LXp-spV
I′
2 (x(s), y(s), z(s)).

Now consider any (x, y, z) ∈ D(I ′) \ Saddle(F ). Then,

LXp-spV
I′
2 (x, y, z)

= −∇xF (x, y, z)>∇xxF (x, y, z)∇xF (x, y, z)

+

[
[∇yF (x, y, z)]+y
∇zF (x, y, z)

]> [∇yyF ∇yzF
∇zyF ∇zzF

]
(x,y,z)[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]
+ LXp-sp

(1

2
‖(x, y, z)‖2Saddle(F )

)
. (15)

The first two terms in the above expression are the Lie
derivative of (x, y, z) 7→ V I

′

2 (x, y, z)− 1
2‖(x, y, z)‖

2
Saddle(F )

.
This computation can be shown using the properties of the
operator [·]+y . Now let (x∗, y∗, z∗) = projSaddle(F )(x, y, z).
Then, by Danskin’s Theorem [28, p. 99], we have

∇‖(x, y, z)‖2Saddle(F )
= 2(x− x∗; y − y∗; z − z∗) (16)

Using this expression, we get

LXp-sp

(1

2
‖(x, y, z)‖2Saddle(F )

)
= −(x− x∗)>∇xF (x, y, z) + (y − y∗)>[∇yF (x, y, z)]+y

+ (z − z∗)>∇zF (x, y, z)

≤ F (x∗, y, z)− F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗),
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where the last inequality follows from (12). Now using the
above expression in (15) we get

LXp-spV
I′
2 (x, y, z)

≤ −∇xF (x, y, z)∇xxF (x, y, z)∇xF (x, y, z)

+

[
[∇yF (x, y, z)]+y
∇zF (x, y, z)

]> [∇yyF ∇yzF
∇zyF ∇zzF

]
(x,y,z)[

[∇yF (x, y, z)]+y
∇zF (x, y, z)

]
+ F (x∗, y, z)− F (x∗, y∗, z∗) + F (x∗, y∗, z∗)

− F (x, y∗, z∗) ≤ 0.

If LXp-spV
I′
2 (x, y, z) = 0, then (a) ∇xF (x, y, z) = 0; (b)

x = x∗; and (c) F (x∗, y, z) = F (x∗, y∗, z∗). From (b) and (6),
we conclude that ∇zF (x, y, z) = 0. From (c) and (14),
we deduce that (y − y∗)

>g(x∗) = 0. Note that for each
i ∈ {1, . . . , p}, we have (yi − (y∗)i)(g(x∗))i ≤ 0. This is
because either (g(x∗))i = 0 in which case it is trivial or
(g(x∗))i < 0 in which case (y∗)i = 0 (as y∗ maximizes the
map y 7→ y>g(x∗)) thereby making yi − (y∗)i ≥ 0. Since,
(yi − (y∗)i)(g(x∗))i ≤ 0 for each i and (y − y∗)>g(x∗) = 0,
we get that for each i ∈ {1, . . . , p}, either (g(x∗))i = 0
or yi = (y∗)i. Thus, [∇yF (x, y, z)]+y = 0. These facts
imply that (x, y, z) ∈ Saddle(F ). Therefore, if (x, y, z) ∈
D(I ′) \ Saddle(F ) then LXp-spV

I′
2 (x, y, z) < 0.

The final step is to show that there is only a countable
number of time instances when the trajectory switches its
domain. To this end, let t′ > 0 be a time instant for
which there exists a δ > 0 such that (x(t′), y(t′), z(t′)) ∈
D(I ′) and (x(t), y(t), z(t)) ∈ D(I) for all t ∈ (t′ − δ, t′)
for some I, I ′ ⊂ {1, . . . , p}. One can deduce by defini-
tion that if I ′ \ I 6= ∅, then limt↑t′ V2(x(t), y(t), z(t)) >
V2(x(t′), y(t′), z(t′)). Thus, at each point of discontinuity
of V2, its value decreases. This implies that there is only
a countable number of discontinuities, as (1) V2 is lower
bounded by zero, (2) rationals are countable, and (3) at each
point of discontinuity, there is rational between the left limit
and the value of V2 at that point. Further, because there is
a finite number of subsets of {1, . . . , p}, there is a finite
number of domain switchings between any two consecutive
time instances where V2 is discontinuous. This is because
any domain switch that makes the index set corresponding to
the domain of trajectory bigger causes a discontinuity in V2.
With this, we conclude that there are only a countable number
of time instances when the trajectory switches its domain,
completing the proof.

Remark 5.2: (Multiple Lyapunov functions): The Lyapunov
function V2 is discontinuous on the domain Rn ×Rp≥0 ×Rm.
However, it can be seen as multiple (continuously differen-
tiable) Lyapunov functions [29], each valid on a domain,
patched together in an appropriate way such that along the
trajectories of Xp-sp, the evolution of V2 is continuously
differentiable with negative derivative at intervals where it
is continuous and at times of discontinuity the value of V2
only decreases. Note that in the absence of the projection in
Xp-sp (that is, no y-component of the dynamics), the function
V2 takes a much simpler form with no discontinuities and is

continuously differentiable on the entire domain. •
Remark 5.3: (Connection with the literature: II): The two

functions whose sum defines V2 are, individually by them-
selves, sufficient to establish asymptotic convergence of Xp-sp
using LaSalle Invariance arguments, see e.g., [5], [20]. How-
ever, the fact that their combination results in a strict Lyapunov
function for the projected saddle-point dynamics is a novelty
of our analysis here. In [17], a different Lyapunov function is
proposed and an exponential rate of convergence is established
for a saddle-point-like dynamics which is similar to Xp-sp but
without projection components. •

VI. ISS AND SELF-TRIGGERED IMPLEMENTATION OF THE
SADDLE-POINT DYNAMICS

Here, we build on the novel Lyapunov function identified
in Section V to explore other properties of the projected
saddle-point dynamics beyond global asymptotic convergence.
Throughout this section, we consider saddle functions F
that corresponds to the Lagrangian of an equality-constrained
optimization problem, i.e.,

F (x, z) = f(x) + z>(Ax− b), (17)

where A ∈ Rm×n, b ∈ Rm, and f : Rn → R. The reason
behind this focus is that, in this case, the dynamics (5) is
smooth and the Lyapunov function identified in Theorem 5.1
is continuously differentiable. These simplifications allow us
to analyze input-to-state stability of the dynamics using the
theory of ISS-Lyapunov functions (cf. Section II-D). On the
other hand, we do not know of such a theory for projected
systems, which precludes us from carrying out ISS analysis
for dynamics (5) for a general saddle function. The projected
saddle-point dynamics (5) for the class of saddle functions
given in (17) takes the form

ẋ = −∇xF (x, z) = −∇f(x)−A>z, (18a)
ż = ∇zF (x, z) = Ax− b, (18b)

corresponding to equations (5a) and (5c). We term these
dynamics simply saddle-point dynamics and denote it as
Xsp : Rn × Rm → Rn × Rm.

A. Input-to-state stability

Here, we establish that the saddle-point dynamics (18) is
ISS with respect to the set Saddle(F ) when disturbance inputs
affect it additively. Disturbance inputs can arise when imple-
menting the saddle-point dynamics as a controller of a physical
system because of a variety of malfunctions, including errors
in the gradient computation, noise in state measurements, and
errors in the controller implementation. In such scenarios,
the following result shows that the dynamics (18) exhibits a
graceful degradation of its convergence properties, one that
scales with the size of the disturbance.

Theorem 6.1: (ISS of saddle-point dynamics): Let the sad-
dle function F be of the form (17), with f strongly con-
vex, twice continuously differentiable, and satisfying mI �
∇2f(x) � MI for all x ∈ Rn and some constants 0 < m ≤
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M <∞. Then, the dynamics[
ẋ
ż

]
=

[
−∇xF (x, z)
∇zF (x, z)

]
+

[
ux
uz

]
, (19)

where (ux, uz) : R≥0 → Rn×Rm is a measurable and locally
essentially bounded map, is ISS with respect to Saddle(F ).

Proof: For notational convenience, we refer to (19) by
Xp

sp : Rn × Rm × Rn × Rm → Rn × Rm. Our proof consists
of establishing that the function V3 : Rn × Rm → R≥0,

V3(x, z) =
β1
2
‖Xsp(x, z)‖2 +

β2
2
‖(x, z)‖2Saddle(F )

(20)

with β1 > 0, β2 = 4β1M
4

m2 , is an ISS-Lyapunov function
with respect to Saddle(F ) for Xp

sp. The statement then directly
follows from Proposition 2.2.

We first show (3) for V3, that is, there exist α1, α2 > 0 such
that α1‖(x, z)‖2Saddle(F )

≤ V3(x, z) ≤ α2‖(x, z)‖2Saddle(F )

for all (x, z) ∈ Rn×Rm. The lower bound follows by choosing
α1 = β2/2. For the upper bound, define the function U :
Rn × Rn → Rn×n by

U(x1, x2) =

∫ 1

0

∇2f(x1 + s(x2 − x1))ds. (21)

By assumption, it holds that mI � U(x1, x2) � MI for all
x1, x2 ∈ Rn. Also, from the fundamental theorem of calculus,
we have ∇f(x2) − ∇f(x1) = U(x1, x2)(x2 − x1) for all
x1, x2 ∈ Rn. Now pick any (x, z) ∈ Rn×Rm. Let (x∗, z∗) =
projSaddle(F )(x, z), that is, the projection of (x, z) on the set
Saddle(F ). This projection is unique as Saddle(F ) is convex.
Then, one can write

∇xF (x, z) = ∇xF (x∗, z∗) +

∫ 1

0

∇xxF (x(s), z(s))(x− x∗)ds

+

∫ 1

0

∇zxF (x(s), z(s))(z − z∗)ds,

= U(x∗, x)(x− x∗) +A>(z − z∗), (22)

where x(s) = x∗+s(x−x∗) and z(s) = z∗+s(z−z∗). Also,
note that

∇zF (x, z) = ∇zF (x∗, z∗) +

∫ 1

0

∇xzF (x(s), z(s))(x− x∗)ds

= A(x− x∗). (23)

The expressions (22) and (23) use ∇xF (x∗, z∗) = 0,
∇zF (x∗, z∗) = 0, and ∇zxF (x, z) = ∇xzF (x, z)> = A>

for all (x, z). From (22) and (23), we get

‖Xsp(x, z)‖2 ≤ α̃2(‖x− x∗‖2 + ‖z − z∗‖2)

= α̃2‖(x, z)‖2Saddle(F )
,

where α̃2 = 3
2 (M2 + ‖A‖2). In the above computation, we

have used the inequality (a+ b)2 ≤ 3(a2 + b2) for any a, b ∈
R. The above inequality gives the upper bound V3(x, z) ≤
α2‖(x, z)‖2Saddle(F )

, where α2 = 3β1

2 (M2 + ‖A‖2) + β2

2 .

The next step is to show that the Lie derivative of V3 along
the dynamics Xp

sp satisfies the ISS property (4). Again, pick
any (x, z) ∈ Rn×Rm and let (x∗, z∗) = projSaddle(F )(x, z).

Then, by Danskin’s Theorem [28, p. 99], we get

∇‖(x, z)‖2Saddle(F )
= 2(x− x∗; z − z∗).

Using the above expression, one can compute the Lie deriva-
tive of V3 along the dynamics Xp

sp as

LXp
sp
V3(x, z) = −β1∇xF (x, z)∇xxF (x, z)∇xF (x, z)

− β2(x− x∗)>∇xF (x, z) + β2(z − z∗)>∇zF (x, z)

+ β1∇xF (x, z)>∇xxF (x, z)ux

+ β1∇xF (x, z)>∇xzF (x, z)uz

+ β1∇zF (x, z)>∇zxF (x, z)ux

+ β2(x− x∗)>ux + β2(z − z∗)>uz.

Due to the particular form of F , we have

∇xF (x, z) = ∇f(x) +A>z, ∇zF (x, z) = Ax− b,
∇xxF (x, z) = ∇2f(x), ∇xzF (x, z) = A>,

∇zxF (x, z) = A, ∇zzF (x, z) = 0.

Also, ∇xF (x∗, z∗) = ∇xf(x∗) + A>z∗ = 0 and
∇zF (x∗, z∗) = Ax∗ − b = 0. Substituting these val-
ues in the expression of LXp

sp
V3, replacing ∇xF (x, z) =

∇xF (x, z)−∇xF (x∗, z∗) = ∇f(x)−∇f(x∗)+A>(z−z∗) =
U(x∗, x)(x− x∗) +A>(z − z∗), and simplifying,

LXp
sp
V3(x, z) =

− β1(U(x∗, x)(x− x∗))>∇2f(x)(U(x∗, x)(x− x∗))
− β1(z − z∗)>A∇2f(x)A>(z − z∗)
− β1(U(x∗, x)(x− x∗))>∇2f(x)A>(z − z∗)
− β1(z − z∗)>A∇2f(x)(U(x∗, x)(x− x∗))
− (x− x∗)>U(x∗, x)(x− x∗)
+ β1(U(x∗, x)(x− x∗) +A>(z − z∗))>∇2f(x)ux

+ β1(U(x∗, x)(x− x∗) +A>(z − z∗))>A>uz
+ β2(x− x∗)>ux + β1(A(x− x∗))>Aux + β2(z − z∗)>uz.

Upper bounding now the terms using
‖∇2f(x)‖, ‖U(x∗, x)‖ ≤M for all x ∈ Rn yields

LXp
sp
V3(x, z)

≤ −[x− x∗; A>(z − z∗)]>U(x∗, x)[x− x∗; A>(z − z∗)]
+ Cx(x, z)‖ux‖+ Cz(x, z)‖uz‖, (24)

where

Cx(x, z) =
(
β1M

2‖x− x∗‖+ β1M‖A‖‖z − z∗‖

+ β2‖x− x∗‖+ β1‖A‖2‖x− x∗‖
)
,

Cz(x, z) =
(
β1M‖A‖‖x− x∗‖+ β1‖A‖2‖z − z∗‖

+ β2‖z − z∗‖
)
,

and U(x∗, x) is[
β1U∇2f(x)U + β2U β1U∇2f(x)

β1∇2f(x)U β1∇2f(x)

]
.
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where U = U(x∗, x). Note that Cx(x, z) ≤ C̃x‖x − x∗; z −
z∗‖ = C̃x‖(x, z)‖Saddle(F ) and Cz(x, z) ≤ C̃z‖x − x∗; z −
z∗‖ = C̃z‖(x, z)‖Saddle(F ), where

C̃x = β1M
2 + β1M‖A‖+ β2 + β1‖A‖2,

C̃z = β1M‖A‖+ β1‖A‖2 + β2.

From Lemma A.1, we have U(x∗, x) � λmI , where λm > 0.
Employing these facts in (24), we obtain

LXp
sp
V3(x, z) ≤ −λm(‖x− x∗‖2 + ‖A>(z − z∗)‖2)

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )‖u‖

From Lemma A.2, we get

LXp
sp
V3(x, z) ≤ −λm(‖x− x∗‖2 + λs(AA

>)‖z − z∗‖2

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )‖u‖

≤ −λ̃m‖(x, z)‖2Saddle(F )

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )‖u‖,

where λ̃m = λm min{1, λs(AA>)}. Now pick any θ ∈ (0, 1).
Then,

LXp
sp
V3(x, z) ≤ −(1− θ)λ̃m‖(x, z)‖2Saddle(F )

− θλ̃m‖(x, z)‖2Saddle(F )

+ (C̃x + C̃z)‖(x, z)‖Saddle(F )‖u‖

≤ −(1− θ)λ̃m‖(x, z)‖2Saddle(F )
,

whenever ‖(x, z)‖Saddle(F ) ≥
C̃x+C̃z

θλ̃m
‖u‖, which proves the

ISS property.
Remark 6.2: (Relaxing global bounds on Hessian of f ): The

assumption on the Hessian of f in Theorem 6.1 is restrictive,
but there are functions other than quadratic that satisfy it, see
e.g. [30, Section 6]. We conjecture that the global upper bound
on the Hessian can be relaxed by resorting to the notion of
semiglobal ISS, and we will explore this in the future. •

The above result has the following consequence.
Corollary 6.3: (Lyapunov function for saddle-point dynam-

ics): Let the saddle function F be of the form (17), with f
strongly convex, twice continuously differentiable, and satisfy-
ing mI � ∇2f(x) �MI for all x ∈ Rn and some constants
0 < m ≤M <∞. Then, the function V3 (20) is a Lyapunov
function with respect to the set Saddle(F ) for the saddle-point
dynamics (18).

Remark 6.4: (ISS with respect to Saddle(F ) does not imply
bounded trajectories): Note that Theorem 6.1 bounds only
the distance of the trajectories of (19) to Saddle(F ). Thus,
if Saddle(F ) is unbounded, the trajectories of (19) can be
unbounded under arbitrarily small constant disturbances. How-
ever, if matrix A has full row-rank, then Saddle(F ) is a
singleton and the ISS property implies that the trajectory
of (19) remains bounded under bounded disturbances. •

As pointed out in the above remark, if Saddle(F ) is not
unique, then the trajectories of the dynamics might not be
bounded. We next look at a particular type of disturbance input
which guarantees bounded trajectories even when Saddle(F )
is unbounded. Pick any (x∗, z∗) ∈ Saddle(F ) and define the

function Ṽ3 : Rn × Rm → R≥0 as

Ṽ3(x, z) =
β1
2
‖Xsp(x, z)‖2 +

β2
2

(‖x−x∗‖2 +‖z−z∗‖2)

with β1 > 0, β2 = 4β1M
4

m2 . One can show, following similar
steps as those of proof of Theorem 6.1, that the function Ṽ3 is
an ISS Lyapunov function with respect to the point (x∗, z∗) for
the dynamics Xp

sp when the disturbance input to z-dynamics
has the special structure uz = Aũz , ũz ∈ Rn. This type
of disturbance is motivated by scenarios with measurement
errors in the values of x and z used in (18) and without any
computation error of the gradient term in the z-dynamics. The
following statement makes precise the ISS property for this
particular disturbance.

Corollary 6.5: (ISS of saddle-point dynamics): Let the sad-
dle function F be of the form (17), with f strongly con-
vex, twice continuously differentiable, and satisfying mI �
∇2f(x) � MI for all x ∈ Rn and some constants 0 < m ≤
M <∞. Then, the dynamics[

ẋ
ż

]
=

[
−∇xF (x, z)
∇zF (x, z)

]
+

[
ux
Aũz

]
, (25)

where (ux, ũz) : R≥0 → R2n is measurable and locally
essentially bounded input, is ISS with respect to every point
of Saddle(F ).

The proof is analogous to that of Theorem 6.1 with the
key difference that the terms Cx(x, z) and Cz(x, z) appearing
in (24) need to be upper bounded in terms of ‖x − x∗‖ and
‖A>(z − z∗)‖. This can be done due to the special structure
of uz . With these bounds, one arrives at the condition (4)
for Lyapunov Ṽ3 and dynamics (25). One can deduce from
Corollary 6.5 that the trajectory of (25) remains bounded for
bounded input even when Saddle(F ) is unbounded.

Example 6.6: (ISS property of saddle-point dynamics):
Consider F : R2 × R3 → R of the form (17) with

f(x) = ‖x‖2, A =

1 1
1 0
0 1

 , and b =

2
1
1

 . (26)

Then, Saddle(F ) = {(x, z) ∈ R2 × R3 | x = (1, 1), z =
(−1,−1,−1)+λ(1,−1,−1), λ ∈ R} is a continuum of points.
Note that ∇2f(x) = 2I , thus, satisfying the assumption of
bounds on the Hessian of f . By Theorem 6.1, the saddle-
point dynamics for this saddle function F is input-to-state
stable with respect to the set Saddle(F ). This fact is illustrated
in Figure 2, which also depicts how the specific structure of
the disturbance input in (25) affects the boundedness of the
trajectories. •

B. Self-triggered implementation

In this section we develop an opportunistic state-triggered
implementation of the (continuous-time) saddle-point dynam-
ics. Our aim is to provide a discrete-time execution of the
algorithm, either on a physical system or as an optimization
strategy, that do not require the continuous evaluation of the
vector field and instead adjust the stepsize based on the current
state of the system. Formally, given a sequence of triggering
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Fig. 2. Plots (a)-(b) show the ISS property, cf Theorem 6.1, of the
dynamics (19) for the saddle function F defined by (26). The initial condition
is x(0) = (−0.0377, 2.3819) and z(0) = (0.2580, 0.5229, 1.0799) and
the input u is exponentially decaying in magnitude. As shown in (a)-(b), the
trajectory converges asymptotically to a saddle point as the input is vanishing.
Plots (c)-(d) have the same initial condition but the disturbance input consists
of a constant plus a sinusoid. The trajectory is unbounded under bounded input
while the distance to the set of saddle points remains bounded, cf. Remark 6.4.
Plots (e)-(f) have the same initial condition but the disturbance input to the
z-dynamics is of the form (25). In this case, the trajectory remains bounded
as the dynamics is ISS with respect to each saddle point, cf. Corollary 6.5.

time instants {tk}∞k=0, with t0 = 0, we consider the following
implementation of the saddle-point dynamics

ẋ(t) = −∇xF (x(tk), z(tk)), (27a)
ż(t) = ∇zF (x(tk), z(tk)). (27b)

for t ∈ [tk, tk+1) and k ∈ Z≥0. The objective is then to
design a criterium to opportunistically select the sequence
of triggering instants, guaranteeing at the same time the
feasibility of the execution and global asymptotic convergence,
see e.g., [31]. Towards this goal, we look at the evolution of
the Lyapunov function V3 in (20) along (27),

∇V3(x(t), z(t))>Xsp(x(tk), z(tk))

= LXspV3(x(tk), z(tk)) (28)

+
(
∇V3(x(t), z(t))−∇V3(x(tk), z(tk))

)>
Xsp(x(tk), z(tk)).

We know from Corollary 6.3 that the first summand is negative
outside Saddle(F ). Clearly, for t = tk, the second summand

vanishes, and by continuity, for t sufficiently close to tk, this
summand remains smaller in magnitude than the first, ensuring
the decrease of V3. The next result is helpful in making this
argument precise.

Proposition 6.7: (Gradient of V3 is locally Lipschitz): Let
the saddle function F be of the form (17), with f twice
differentiable, map x 7→ ∇2f(x) Lipschitz with some constant
L > 0, and mI � ∇2f(x) � MI for all x ∈ Rn and some
constants 0 < m ≤ M < ∞. Then, for V3 given in (20), the
following holds

‖∇V3(x2, z2)−∇V3(x1, z1)‖ ≤ ξ(x1, z1)‖x2 − x1; z2 − z1‖,

for all (x1, z1), (x2, z2) ∈ Rn × Rm, where

ξ(x1, z1) =
√

3
(
β2
1(ξ1(x1, z1)2 + ‖A‖4 + ‖A‖2ξ22) + β2

2

) 1
2

,

ξ1(x1, z1) = Mξ2 + L‖∇xF (x1, z1)‖,
ξ2 = max{M, ‖A‖}. (29)

Proof: For the map (x, z) 7→ ∇xF (x, z), note that

‖∇xF (x2, z2)−∇xF (x1, z1)‖

=
∥∥∥ ∫ 1

0

∇xxF (x(s), z(s))(x2 − x1)ds

+

∫ 1

0

∇zxF (x(s), z(s))(z2 − z1)
∥∥∥

≤M‖x2 − x1‖+ ‖A‖‖z2 − z1‖
≤ ξ2‖x2 − x1; z2 − z1‖, (30)

where x(s) = x1 + s(x2 − x1), z(s) = z1 + s(z2 − z1) and
ξ2 = max{M, ‖A‖}. In the above inequalities we have used
the fact that ‖∇xxF (x, z)‖ = ‖∇2f(x)‖ ≤M for any (x, z).
Further, the following Lipschitz condition holds by assumption

‖∇xxF (x2, z2)−∇xxF (x1, z1)‖ ≤ L‖x2 − x1‖ (31)

Using (30) and (31), we get

‖∇xxF (x2, z2)∇xF (x2, z2)−∇xxF (x1, z1)∇xF (x1, z1)‖
≤ ‖∇xxF (x2, z2)(∇xF (x2, z2)−∇xF (x1, z1))‖

+ ‖(∇xxF (x2, z2)−∇xxF (x1, z1))∇xF (x1, z1)‖
≤ ξ1(x1, z1)‖x2 − x1; z2 − z1‖, (32)

where ξ1(x1, z1) = Mξ2 + L‖∇xF (x1, z1)‖. Also,

‖∇zF (x2, z2)−∇zF (x1, z1)‖ = ‖A(x2 − x1)‖
≤ ‖A‖‖x2 − x1; z2 − z1‖ (33)

Now note that

∇xV3(x, z) = β1

(
∇xxF (x, z)∇xF (x, z) +A>∇zF (x, z)

)
+ β2(x− x∗),

∇zV3(x, z) = β1A∇xF (x, z) + β2(z − z∗).

Finally, using (30), (32), and (33), we get

‖∇V3(x2, z2)−∇V3(x1, z1)‖2 = ‖∇xV3(x2, z2)

−∇xV3(x1, z1)‖2 + ‖∇zV3(x2, z2)−∇zV3(x1, z1)‖2
(a)

≤ 3β2
1‖∇xxF (x2, z2)∇xF (x2, z2)
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−∇xxF (x1, z1)∇xF (x1, z1)‖2

+ 3β2
1‖A>(∇zF (x2, z2)−∇zF (x1, z1))‖2+3β2

2‖x2 − x1‖2

+ 3β2
1‖A(∇xF (x2, z2)−∇xF (x1, z1))‖2+3β2

2‖z2 − z1‖2

≤ ξ(x1, z1)2‖x2 − x1; z2 − z1‖2,

where in (a), we have used the inequality (a+b)2 ≤ 3(a2+b2)
for any a, b ∈ R. This concludes the proof.

Using Proposition 6.7 in (28), we obtain

∇V3(x(t), z(t))>Xsp(x(tk), z(tk))

≤ LXspV3(x(tk), z(tk)) + ξ(x(tk), z(tk))

‖(x(t)− x(tk)); (z(t)− z(tk))‖‖Xsp(x(tk), z(tk))‖
= LXspV3(x(tk), z(tk))

+ (t− tk)ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2,

where the equality follows from writing (x(t), z(t)) in terms
of (x(tk), z(tk)) by integrating (27). Therefore, in order to
ensure the monotonic decrease of V3, we require the above
expression to be nonpositive. That is,

tk+1 ≤ tk −
LXspV3(x(tk), z(tk))

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
. (34)

Note that to set tk+1 equal to the right-hand side of the
above expression, one needs to compute the Lie derivative
at (x(tk), z(tk)). We then distinguish between two possibil-
ities. If the self-triggered saddle-point dynamics acts as a
closed-loop physical system and its equilibrium points are
known, then computing the Lie derivative is feasible and one
can use (34) to determine the triggering times. If, however, the
dynamics is employed to seek the primal-dual optimizers of
an optimization problem, then computing the Lie derivative
is infeasible as it requires knowledge of the optimizer. To
overcome this limitation, we propose the following alternative
triggering criterium which satisfies (34) as shown later in our
convergence analysis,

tk+1 = tk +
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))
, (35)

where λ̃m = λm min{1, λs(AA>)}, λm is given in
Lemma A.1, and λs(AA>) is the smallest nonzero eigenvalue
of AA>. In either (34) or (35), the right-hand side depends
only on the state (x(tk), z(tk)). These triggering times for
the dynamics (27) define a first-order Euler discretization of
the saddle-point dynamics with step-size selection based on
the current state of the system. It is for this reason that we
refer to (27) together with either the triggering criterium (34)
or (35) as the self-triggered saddle-point dynamics. In integral
form, this dynamics results in a discrete-time implementation
of (18) given as[

x(tk+1)
z(tk+1)

]
=

[
x(tk)
z(tk)

]
+ (tk+1 − tk)Xsp(x(tk), z(tk)).

We understand the solution of (27) in the Caratheodory sense
(note that this dynamics has a discontinuous right-hand side).
The existence of such solutions, possibly defined only on a
finite time interval, is guaranteed from the fact that along any
trajectory of the dynamics there are only countable number

of discontinuities encountered in the vector field. The next
result however shows that solutions of (27) exist over the
entire domain [0,∞) as the difference between consecutive
triggering times of the solution is lower bounded by a positive
constant. Also, it establishes the asymptotic convergence of
solutions to the set of saddle points.

Theorem 6.8: (Convergence of the self-triggered saddle-
point dynamics): Let the saddle function F be of the form (17),
with A having full row rank, f strongly convex, twice differen-
tiable, and satisfying mI � ∇2f(x) �MI for all x ∈ Rn and
some constants 0 < m ≤M <∞. Let the map x 7→ ∇2f(x)
be Lipschitz with some constant L > 0. Then, Saddle(F ) is
singleton. Let Saddle(F ) = {(x∗, z∗)}. Then, for any initial
condition (x(0), z(0)) ∈ Rn × Rm, we have

lim
k→∞

(x(tk), z(tk)) = (x∗, z∗)

for the solution of the self-triggered saddle-point dynamics,
defined by (27) and (35), starting at (x(0), z(0)). Further, there
exists µ(x(0),z(0)) > 0 such that the triggering times of this
solution satisfy

tk+1 − tk ≥ µ(x(0),z(0)), for all k ∈ N.

Proof: Note that there is a unique equilibrium point to
the saddle-point dynamics (18) for F satisfying the stated
hypotheses. Therefore, the set of saddle point is singleton
for this F . Now, given (x(0), z(0)) ∈ Rn × Rm, let V 0

3 =
V3(x(0), z(0)) and define

G = max{‖∇xF (x, z)‖ | (x, z) ∈ V −13 (≤ V 0
3 )},

where, we use the notation for the sublevel set of V3 as

V −13 (≤ α) = {(x, z) ∈ Rn × Rm | V3(x, z) ≤ α}

for any α ≥ 0. Since V3 is radially unbounded, the set
V −13 (≤ V 0

3 ) is compact and so, G is well-defined and finite.
If the trajectory of the self-triggered saddle-point dynam-
ics is contained in V −13 (≤ V 0

3 ), then we can bound the
difference between triggering times in the following way.
From Proposition 6.7 for all (x, z) ∈ V −13 (≤ V 0

3 ), we have
ξ1(x, z) = Mξ2+L‖∇xF (x, z)‖ ≤Mξ2+LG =: T1. Hence,
for all (x, z) ∈ V −13 (≤ V 0

3 ), we get

ξ(x, z) =
(
β2
1(ξ1(x, z)2 + ‖A‖4 + ‖A‖2ξ22) + β2

2

) 1
2

≤
(
β2
1(T 2

1 + ‖A‖4 + ‖A‖2 + ξ22) + β2
2

) 1
2

=: T2.

Using the above bound in (35), we get for all k ∈ N

tk+1 − tk =
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))

≥ λ̃m
3(M2 + ‖A‖2)T2

> 0.

This implies that as long as the trajectory is contained in
V −13 (≤ V 0

3 ), the inter-trigger times are lower bounded by
a positive quantity. Our next step is to show that the tra-
jectory is contained in V −13 (≤ V 0

3 ). Note that if (34) is
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satisfied for the triggering condition (35), then the sequence
{V3(x(tk), z(tk))}k∈N is strictly decreasing. Since V3 is non-
negative, this implies that limk→∞ V3(x(tk), z(tk)) = 0 and
so, by continuity, limk→∞(x(tk), z(tk)) = (x∗, z∗). Thus, it
remains to show that (35) implies (34). To this end, first note
the following inequalities shown in the proof of Theorem 6.1

‖Xsp(x, z)‖2

3(M2 + ‖A‖2)
≤ ‖(x− x∗); (z − z∗)‖2, (36a)∣∣LXspV3(x, z)
∣∣ ≥ λ̃m‖(x− x∗); (z − z∗)‖2. (36b)

Using these bounds, we get from (35)

tk+1 − tk

=
λ̃m

3(M2 + ‖A‖2)ξ(x(tk), z(tk))

(a)
=

λ̃m‖Xsp(x(tk), z(tk))‖2

3(M2 + ‖A‖2)ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
(b)

≤ λ̃m‖(x(tk)− x∗); (z(tk)− z∗)‖2

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
(c)

≤
∣∣LXspV3(x(tk), z(tk))

∣∣
ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2

= −
LXspV3(x(tk), z(tk))

ξ(x(tk), z(tk))‖Xsp(x(tk), z(tk))‖2
,

where (a) is valid as ‖Xsp(x(tk), z(tk))‖ 6= 0, (b) follows
from (36a), and (c) follows from (36b). Thus, (35) implies (34)
which completes the proof.

Note from the above proof that the convergence implication
of Theorem 6.8 is also valid when the triggering criterium is
given by (34) with the inequality replaced by the equality.

Example 6.9: (Self-triggered saddle-point dynamics): Con-
sider the function F : R3 × R→ R,

F (x, z) = ‖x‖2 + z(x1 + x2 + x3 − 1). (37)

Then, with the notation of (17), we have f(x) = ‖x‖2,
A = [1, 1, 1], and b = 1. The set of saddle points is a singleton,
Saddle(F ) = {(( 1

3 ,
1
3 ,

1
3 ),− 2

3 )}. Note that ∇2f(x) = 2I and
A has full row-rank, thus, the hypotheses of Theorem 6.8 are
met. Hence, for this F , the self-triggered saddle-point dynam-
ics (27) with triggering times (35) converges asymptotically to
the saddle point of F . Moreover, the difference between two
consecutive triggering times is lower bounded by a finite quan-
tity. Figure 3 illustrates a simulation of dynamics (27) with
triggering criteria (34) (replacing inequality with equality),
showing that this triggering criteria also ensures convergence
as commented above. •

VII. CONCLUSIONS

This paper has studied the global convergence and robust-
ness properties of the projected saddle-point dynamics. We
have provided a characterization of the omega-limit set in
terms of the Hessian blocks of the saddle function. Building on
this result, we have established global asymptotic convergence
assuming only local strong convexity-concavity of the saddle
function. For the case when this strong convexity-concavity
property is global, we have identified a Lyapunov function for
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Fig. 3. Illustration of the self-triggered saddle-point dynamics defined by (27)
with the triggering criterium (34). The saddle function F is defined in (37).
With respect to the notation of Theorem 6.8, we have m = M = 2 and
‖A‖ =

√
3. We select β1 = 0.1, then β2 = 1.6, and from (29), ξ1 =

2. These constants define functions V3 (cf. (20)), ξ, and ξ2 (cf. (29)) and
also, the triggering times (35). In plot(a), the initial condition is x(0) =
(0.6210, 3.9201,−4.0817), z(0) = 2.0675. The trajectory converges to the
unique saddle-point and the inter-trigger times are lower bounded by a positive
quantity.

the dynamics. In addition, when the saddle function takes the
form of a Lagrangian of an equality constrained optimization
problem, we have established the input-to-state stability of the
saddle-point dynamics by identifying an ISS Lyapunov func-
tion, which we have used to design a self-triggered discrete-
time implementation. In the future, we aim to generalize the
ISS results to more general classes of saddle functions. In
particular, we wish to define a “semi-global” ISS property
that we conjecture will hold for the saddle-point dynamics
when we relax the global upper bound on the Hessian block
of the saddle function. Further, to extend the ISS results to
the projected saddle-point dynamics, we plan to develop the
theory of ISS for general projected dynamical systems. Finally,
we intend to apply these theoretical guarantees to determine
robustness margins and design opportunistic state-triggered
implementations for frequency regulation controllers in power
networks.

APPENDIX

Here we collect a couple of auxiliary results used in the
proof of Theorem 6.1.

Lemma A.1: (Auxiliary result for Theorem 6.1: I): Let
B1, B2 ∈ Rn×n be symmetric matrices satisfying mI �
B1, B2 � MI for some 0 < m ≤ M < ∞. Let β1 > 0,
β2 = 4β1M

4

m2 , and λm = min{ 12β1m,β1m
3}. Then,

W :=

[
β1B1B2B1 + β2B1 β1B1B2

β1B2B1 β1B2

]
� λmI.

Proof: Reasoning with Schur complement [21, Section
A.5.5], the expression W − λmI � 0 holds if and only if the
following hold

β1B1B2B1 + β2B1 − λmI � 0,

β1B2 − λmI− (A.38)

β1B2B1(β1B1B2B1 + β2B1 − λmI)−1β1B1B2 � 0.

The first of the above inequalities is true since β1B1B2B1 +
β2B1 − λmI � β1m

3I + β2mI − λmI � 0 as λm ≤ β1m
3.

For the second inequality note that

β1B2 − λmI
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− β1B2B1(β1B1B2B1 + β2B1 − λmI)−1β1B1B2

� (β1m− λm)I

− β2
1M

4λmax

(
(β1B1B2B1 + β2B1 − λmI)−1

)
I

�
(1

2
β1m−

β2
1M

4

λmin(β1B1B2B1 + β2B1 − λmI)

)
I,

where in the last inequality we have used the fact that λm ≤
β1m/2. Note that λmin

(
β1B1B2B1+β2B1−λmI

)
≥ β1m3+

β2m−λm ≥ β2m. Using this lower bound, the following holds

1

2
β1m−

β2
1M

4

λmin(β1B1B2B1 + β2B1 − λmI)

≥ 1

2
β1m−

β2
1M

4

β2m
=

1

4
β1m.

The above set of inequalities show that the second inequality
in (A.38) holds, which concludes the proof.

Lemma A.2: (Auxiliary result for Theorem 6.1: II): Let F
be of the form (17) with f strongly convex. Let (x, z) ∈
Rn×Rm and (x∗, z∗) = projSaddle(F )(x, z). Then, z− z∗ is
orthogonal to the kernel of A>, and

‖A>(z − z∗)‖2 ≥ λs(AA>)‖z − z∗‖2,

where λs(AA>) is the smallest nonzero eigenvalue of AA>.
Proof: Our first step is to show that there exists x∗ ∈ Rn

such that if (x, z) ∈ Saddle(F ), then x = x∗. By contradic-
tion, assume that (x1, z1), (x2, z2) ∈ Saddle(F ) and x1 6= x2.
The saddle point property at (x1, z1) and (x2, z2) yields

F (x1, z1) ≤ F (x2, z1) ≤ F (x2, z2) ≤ F (x1, z2) ≤ F (x1, z1).

This implies that F (x1, z1) = F (x2, z1), which is a contradic-
tion as x 7→ F (x, z1) is strongly convex and x1 is a minimizer
of this map. Therefore, Saddle(F ) = {x∗} × Z , Z ⊂ Rm.
Further, recall that the set of saddle points of F are the set of
equilibrium points of the saddle point dynamics (18). Hence,
(x∗, z) ∈ Saddle(F ) if and only if

∇f(x∗) +A>z = 0.

We conclude from this that

Z = −(A>)†∇f(x∗) + ker(A>), (A.39)

where (A>)† and ker(A>) are the Moore-Penrose pseudoin-
verse [21, Section A.5.4] and the kernel of A>, respec-
tively. By definition of the projection operator, if (x∗, z∗) =
projSaddle(F )(x, z), then z∗ = projZ(z) and so, from (A.39),
we deduce that (z − z∗)>v = 0 for all v ∈ ker(A>). Using
this fact, we conclude the proof by writing

‖A>(z − z∗)‖2 = (z − z∗)>AA>(z − z∗)
≥ λs(AA>)‖z − z∗‖2,

where the inequality follows by writing the eigenvalue de-
composition of AA>, expanding the quadratic expression in
(z − z∗), and lower-bounding the terms.
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