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Abstract— The problem of event-triggered control with rate-
limited communication is considered. For continuous-time
scalar systems without disturbances, a phase transition behavior
of the transmission rate required for stabilization as a function
of the communication delay is revealed. It is shown that for
low values of the delay the timing information carried by the
triggering events is large and the system can be stabilized
with any positive rate. On the other hand, when the delay
exceeds a certain threshold that depends on the given triggering
strategy, the timing information alone is not enough to achieve
stabilization and the rate must begin to grow, eventually
becoming larger than what required by the classic data-rate
theorem. The critical point where the transmission rate equals
the one imposed by the data-rate theorem occurs when the delay
equals the inverse of the entropy rate of the plant, representing
the intrinsic rate at which the system generates information.
At this critical point, the timing information supplied by event
triggering is completely balanced by the information loss due to
the communication delay. Exponential convergence guarantees
are also discussed, and an explicit construction providing a
sufficient condition for stabilization is given.

I. INTRODUCTION

Cyber-Physical Systems (CPS) [1] are next-generation en-
gineering systems that integrate computing, communication,
and control. They arise in diverse areas such as robotics,
energy, civil infrastructure, manufacturing, and transporta-
tion. Due to their integration of different components, their
modeling, analysis, and design present new and challenging
problems to the control engineer.

One key aspect is the presence of finite-rate, digital
communication channels in the feedback loop. To quantify
their effect on the ability to stabilize the system, data rate
theorems have been developed. These results essentially state
that, in order to achieve stabilization, the communication rate
available in the feedback loop should be at least as large
as the intrinsic entropy rate of the system, corresponding
to the sum of the logarithms of the unstable modes. In
this way, the controller can compensate for the expansion
of the state occurring during the communication process.
Early formulations of data rate theorems include [2]–[4].
Later key contributions are [5], [6]. More recent extensions
include stochastic, time-varying, and Markovian feedback
communication channels [7]–[9], as well as formulations for
nonlinear sytems [10]–[12]. Connections with information
theory are highlighted in [12]–[16]. Extended surveys of the
literature appear in [17] and in the book [18].
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Another important aspect of CPS is the need to use dis-
tributed resources efficiently. In this context, event-triggering
control techniques [19], [20] have emerged. These are based
on the idea of sending information in an opportunistic
manner between the controller and the plant. In this way,
communication occurs only when needed, and the primary
focus is on minimizing the number of transmissions while
guaranteeing the control objectives. Some recent results
about event-triggered implementations in the presence of data
rate constraints appear in [21], [22].

A key point raised in [22] is that if the channel does
not introduce any delay, then an event-triggering strategy
can achieve stabilization for any positive rate of transmis-
sion, thus apparently contradicting classic data-rate theorem
formulations that require a periodic and sufficiently high
data exchange between the plant and the controller. This
apparent contradiction is resolved by realizing that the timing
of the triggering events itself carries information, revealing
the state of the system. When communication occurs without
delay, the state can be tracked with arbitrary precision, and
transmitting a single bit at every triggering event is enough
to compute the appropriate control action. Hence, from the
point of view of information exchange, event triggering with
zero delay is analogous to conveying an infinite amount of
information to the controller.

The main contribution of this paper is to extend the above
observation to the whole spectrum of possible delay values.
We consider the point of view of the sensor that sends a
quantized observation to the controller at each triggering
event, and distinguish between the information access rate,
that is the rate at which the controller needs to receive
data, regulated by the classic data-rate theorem; and the
information transmission rate, that is the rate at which the
sensor needs to send data, regulated by a given triggering
control strategy. We show that for sufficiently low values of
the delay the timing information carried by the triggering
events is large enough and the system can be stabilized with
any positive information transmission rate. We also show
the existence of a critical value of the delay at which the
required information transmission rate begins to grow, and
the existence of a second critical value of the delay at which
the required information transmission rate becomes larger
than the information access rate imposed by the data-rate
theorem. Finally, we provide necessary conditions on the ac-
cess rate for asymptotic stabilizability and observability with
exponential convergence guarantees; necessary conditions
on the transmission rate for asymptotic observability with
exponential convergence guarantees; as well as a sufficient
condition with the same asymptotic behavior.



All results presented here are limited to scalar systems
without disturbances. Extensions to the vector case and
to systems subject to disturbances are planned in future
work. Other possible extensions regard different families of
triggering functions.

Organization: In Section II, we illustrate the system
model and formulate the problem. In Section III we present
necessary conditions on the information access rate for
asymptotic observability and stabilizability with exponential
convergence guarantees. In Section IV we determine the
necessary transmission rate for an event-triggered implemen-
tation. In section V we explain the phase transition behavior
of the transmission rate. Section VI present a corresponding
sufficient condition. Section VII concludes the paper and
mentions some open problems.

Notation: Let R and N denote the set of real numbers
and the set of positive integers. We let m(.) denote the
Lebesgue measure on R, and we indicate a ball of radius
ε by B(ε). We let log(.) and ln(.) denote the logarithm
with the base 2 and the natural logarithm, respectively. For a
function f : R→ Rn and any t ∈ R, we let f(t+) denote the
limit from the right, namely lims↓t f(s). We let bxc denote
the greatest integer less than or equal to x. We denote the
modulo function by mod(x, y), which is the remainder left
after dividing x by y.

II. PROBLEM FORMULATION

We now describe the problem setup, including the system
evolution, the model of the communication channel, and
the role of event triggering in the controller design for
observability and stabilizability.

A. System model

We consider a networked control system composed by the
plant-sensor-channel-controller tuple indicated in Figure 1.
The plant dynamics are described by a scalar, continuous-

Fig. 1. System model.

time, linear time-invariant (LTI) system

ẋ = Ax(t) +Bu(t), (1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the plant
state and control input, respectively. Here, A is a positive
real number, B ∈ R, and

|x(0)| ≤ L

for some positive real number L.

The sensor can measure the state of the system exactly, and
the controller can apply the control input to the plant with
infinite precision and without delay. However, sensor and
controller communicate through a channel that can support
only a finite data rate.

B. Information access rate

Letting bc(t) be the number of bits encoding the state
of the system at time t, and that are also available to the
controller at the same time t, we define the information
access rate

Rc = lim
t→∞

bc(t)

t
. (2)

In this setting, data-rate theorems describe the trade-
off between the information access rate and the ability to
stabilize the system. There is a large literature on them,
see [17] for a review. They are generally stated for discrete-
time systems, albeit similar arguments hold in continuous
time as well, see e.g. [21]. They are based on the fundamental
observation that there is an inherent entropy rate

h =
A

ln 2
(3)

at which the plant generates information. It follows that to
guarantee stability it is necessary for the controller to have
access to state information at a rate

Rc > h. (4)

This result indicates what is required by the controller,
and it does not depend on the feedback structure - including
aspects such as communication delays, information pattern at
the sensor and the controller, and whether the times at which
transmissions occur are state dependent, as in event-triggered
control, or not, as in time-triggered control.

C. Information transmission rate

We now make two key observations regarding data-rate
theorems of the form illustrated above. First, bc(t) in def-
inition (2) represents the quantized state at time t that is
also accessible by the controller at the same time t. In the
presence of communication delays the state estimate received
by the controller might be slightly out of date, so that the
sensor might need to send data at a higher rate than what
indicated in (4) to make-up for such discrepancy.

A second observation is that in the case of event-triggered
transmissions, the timing of the triggering events in itself
carries some information. In this case, if the communication
channel does not introduce any delay, then a triggering
event may reveal the state of the system very precisely, and
effectively carry an unbounded amount of information. The
controller may then be able to stabilize the system even if
the sensor uses the channel very sparingly, transmitting at a
smaller rate than what indicated in (4).

Motivated by these observations, we now consider the
point of view of the sensor rather then the controller. We
let bs(t) be the number of bits transmitted by the sensor up



to time t, and define the information transmission rate

Rs = lim
t→∞

bs(t)

t
. (5)

The main objective is to quantify the transmission rate Rs
required to stabilize the system in the presence of communi-
cation delays and using an event-triggering strategy, and to
explore its relationship with the corresponding requirement
for the information access rate Rc.

D. Event triggering and delay

We denote by {tks}k∈N the sequences of triggering times
at which the sensor performs a transmission of a packet
composed of p bits. We let {tkc}k∈N be the sequence of times
at which the controller receives the complete packet of data
and decodes it. We assume that the communication delays
are uniformly upper-bounded by γ, a finite non-negative real
number, namely

∆k = tkc − tks ≤ γ, (6)

where ∆k is the kth communication delay. For all k ≥ 1 we
also define the kth triggering interval

∆′k = tk+1
s − tks . (7)

When referring to a generic triggering time or reception time,
we shall skip the super-script k in tkr and tkc .

Since at every triggering interval, the sensor sends p bits,
we have

Rs = lim
N→∞

Np∑N
k=1 ∆′k

. (8)

The objective is now to precisely quantify the value of Rs
required for stabilization when γ is in the interval [0,∞).

E. Controller dynamics

We let x̂ be the state estimate available at the controller,
which evolves according to

˙̂x(t) = Ax̂(t) +Bu(t), (9)

with x̂(0) = 0. We define the state estimation error

z(t) = x(t)− x̂(t), (10)

where z(0) = x(0). A triggering event occurs when

|z(t)| = v(t), (11)

where v(t) is the event-triggering function

v(t) = De−σt, (12)

and D and σ are positive real numbers.
If the controller knows the triggering time ts, then it also

knows that x(ts) = ±v(ts)+x̂(ts). It follows that in this case
it may compute the exact value of x(ts) by just transmitting
one single bit at every triggering time. In general, however,
the controller does not have knowledge of ts, but only knows
the bound in (6). Let z̄(tc) be an estimate of z(tc) constructed
by the controller knowing that |z(ts)| = v(ts) and using (6)
and the decoded packet received through the communication

channel. We define the following updating procedure, called
jump strategy

x̂(t+c ) = z̄(tc) + x̂(tc). (13)

Note that with this jump strategy, we have

z(t+c ) = x(tc)− x̂(t+c ) = z(tc)− z̄(tc).

We conclude this section by stating the definitions of
asymptotic observability and asymptotic stabilizability of our
continuous-time system.

Definition 1 (Asymptotic observability): The system (1) is
asymptotically observable if there exists an encoder and
decoder such that for every trajectory of control u(t), for
t ∈ [0,∞) we have
• ∀ε > 0, ∃δ > 0 such that |x(0)| ≤ δ implies |z(t)| ≤ ε

for all t ∈ [0,∞).
• ∀ε > 0 and ∀δ > 0, ∃T such that |x(0)| ≤ δ implies
|z(t)| ≤ ε, for all t ≥ T .

Definition 2 (Asymptotic stabilizability): The system (1)
is asymptotically stabilizable if there exists an encoder,
decoder, and a controller such that
• ∀ε > 0, ∃δ > 0 such that |x(0)| ≤ δ implies |x(t)| ≤ ε

for all t ∈ [0,∞).
• ∀ε > 0 and ∀δ > 0, ∃T such that |x(0)| ≤ δ implies
|x(t)| ≤ ε, for all t ≥ T .

III. NECESSARY CONDITION ON THE ACCESS RATE

We begin illustrating our results by showing a data-rate
theorem for the information access rate that is required for
exponential convergence of the estimation error and the plant
state to zero.

Theorem 1: The following necessary conditions hold:
• If the state estimation error satisfies

|z(t)| ≤ |z(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
+ log

L

|z(0)|
. (14)

• If the system in (1) is stabilizable and

|x(t)| ≤ |x(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
+ log

L

|x(0)|
. (15)

• In both of the above cases the information access rate
is

Rc >
A+ σ

ln 2
. (16)

Proof: The solution to (1) is given by

x(t) = eAtx(0) + α(t), α(t) = eAt
∫ t

0

e−AτBu(τ)dτ.

We then define,

Γt = {x(t) : x(t) = eAtx(0) + α(t) ; |x(0)| ≤ L},



that is a set which represents the uncertainty at time t given
the bound L on the norm of the initial condition x(0) and
α(t). The state of the system can be any point in this
uncertainty set. We can find a lower bound on bc(t) by
counting the number of balls of radius ε(t), that cover Γt,
where ε(t) = |z(0)| e−σt. Therefore bc(t), the number of
bits of information that the controller must have access to
by time t, should satisfy

bc(t) ≥ log
m(Γt)

m(B(ε(t)))
= log

eAtm(|x(0)| ≤ L)

2|z(0)| e−σt

= t log eA+σ + log
L

|z(0)|
.

With access to bc(t) bits of information, the controller can
at best be able to identify x(t) up to a ball of radius ε(t). If
at any time t, if x̂(t) does not belong to the identified ball,
then x̂(t) could be re-initialized to an arbitrary point in the
ball. Consequently, the result on exponential observability
follows.

Recall that |x(0)| ≤ L. For any given control trajectory
{u(τ)}τ=tτ=0 define

Π{u(τ)}τ=tτ=0
= {x(0), |x(t)| < ε(t)},

where ε(t) = |x(0)| e−σt. These are the sets of all initial
conditions for which by choosing the control trajectory
{u(τ)}τ=tτ=0, the plant state at time t, x(t), will be in a ball
of radius ε(t). As discussed above, we have

x(t) = eAtx(0) + eAt
∫ t

0

e−AτBu(τ)dτ.

Thus, x(t) depends linearly on {u(τ)}τ=tτ=0. As a conse-
quence, all of the sets Π{u(τ)}τ=tτ=0

, are linear transformation
of each other. So, all of them have the same measure which is
equal to m(Π) = 2|x(0)|e−Ate−σt. We can then determine
a lower bound for bc(t) by counting the number of Π sets
(for different control trajectories {u(τ)}τ=tτ=0) which takes to
cover the ball |x(0)| ≤ L. Thus, the controller must have
access to at least bc(t) bits by time t, where

bc(t) ≥ log
m(|x(0)| ≤ L)

m(Π)
= log

2L

2|x(0)|e−(A+σ)t

= t
A+ σ

ln 2
+ log

L

|x(0)|
,

and this proves (15).
The proof of (16) now follows immediately by divid-

ing (14) and (15) by t and taking the limit for t → ∞.

Remark 1: The proof of above theorem follows the same
argument of [5] for discrete time systems. A similar result
for continuous systems appears in [21]. The result in [21],
however, is restricted to linear feedback controllers. The
classic condition of the data-rate theorem (4) obtained in
[5] is a special case of our theorem with σ → 0. •

IV. NECESSARY CONDITION ON THE TRANSMISSION
RATE

We now quantify the necessary transmission rate Rs for
exponential convergence of the estimation error in the pres-

ence of communication delays, using our event-triggering
and jump strategy for control.

Theorem 2: For the system in (1) when |z(0)| ≤ D, using
the event triggering strategy (11), triggering function (12)
and the jump strategy (13), if the state estimation error
satisfies

|z(t)| ≤ e(A+σ)γv(t),

then

Rs >
A+ σ

ln 2
max

{
0, 1 +

log(eAγ − 1)

− log(ρ0e−σγ)

}
, (17)

where ρ0 is a constant in the interval (0, 1).

Proof: We define

Ωtc = {y : y = z(ts)e
A(tc−ts), tc ∈ [ts, ts + γ]} (18)

that is the set of uncertainty for the sensor at time ts without
knowing tc. We wish to cover Ωtc with balls B(ρ(ts)), where
ρ(t) = ρ0e

−σγv(t), and 0 < ρ0 < 1 is a constant design
parameter. We show that this choice of radius guarantees
|z(t+c )| < ρ0v(tc), and

v(tc)

v(ts)
=
De−σtc

De−σts
= e−σ(tc−ts).

Since tc−ts ≤ γ; we have that v(tc) ≥ v(ts)e
−σγ . Hence,

by choosing

ρ(t) = ρoe
−σγv(ts) ≤ ρ0v(tc),

we can guarantee |z(t+c )| ≤ ρ0v(tc) as follows. Let us define,

Hρ(ts) = log
m(Ωtc)

m(B(ρ(ts)))
= log

m(Ωtc)

2ρ(ts)
, (19)

the second equality is true specifically in the scalar system
case. Thus, we see that Hρ(ts) quantifies the number of bits
required to bring the uncertainty from Ωtc to a ball of radius
ρ(ts). Now, denote the number of bits that we need to send at
ts by g(ts). Then, in order to ensure that |z(t+c )| < ρ0v(tc),
we must have

g(ts) ≥ max
{

0, Hρ(ts)

}
.

The first step for calculating this lower bound is looking
at the differential equation which governs z(t);

ż(t) = A(x(t)− x̂(t)) = Az(t).

Consequently,

z(t) = ±v(ts)e
A(t−ts),

where t can be any number in [ts, tc], with tc ≤ ts + γ.
Hence,

g(ts) ≥ max

{
0, log

2 maxs∈(ts,ts+γ) v(s)m(χγ)

2ρ0e−σγv(ts)

}
,

where χγ = {eAt : t ∈ [0, γ]}. Therefore,

g(ts) ≥ max

{
0, log

2v(ts)(e
Aγ − 1)

2ρ0e−σγv(ts)

}



or,

g(ts) ≥ max
{

0, log(eAγ − 1)− log ρ0e
−σγ} . (20)

At this point, we have covered the uncertainty space
with balls of radius ρ(ts). As a result, by this scheme the
controller knows that z(tc) is in one of these balls; therefore,
the controller can choose an arbitrary point in this specific
ball, namely, z̄(tc). Since |z̄(tc)−z(tc)| ≤ ρ(ts), by using the
information in z̄(tc), the controller updates x̂(t+c ) according
to the jump strategy x̂(t+c ) = x̂(tc) + z̄(tc). Hence, we have

|z(t+c )| = |x(tc)− x̂(t+c )| = |z(tc)− z̄(tc)| ≤ ρ0e−σγv(ts).

Let tks and tk+1
s be two successive triggering times. We have

that |z(tk+c )| ≤ ρ0e−σγv(ts), and therefore we have an upper
bound for the difference between two consecutive triggering
times which is independent of k

|z(tk+c )eA(tk+1
s −tkc )| = |v(tk+1

s )|.

Since |z(tk+c )| ≤ ρ0e−σγv(ts), we have

ρ0e
−σγv(tks)eA(tk+1

s −tkc ) ≥ v(tk+1
s ).

Since we also have tks ≤ tkc , it follows that

ρ0e
−σγDe−σt

k
s eA(tk+1

s −tks ) ≥ De−σt
k+1
s ,

eA(tk+1
s −tks ) ≥ e−σ(t

k+1
s −tks )

ρ0e−σγ
,

A(tk+1
s − tks) ≥ − ln(ρ0e

−σγ)− σ(tk+1
s − tks).

Thus, the triggering intervals (7) have a uniform lower bound

∆′k = tk+1
s − tks ≥

− ln(ρ0e
−σγ)

A+ σ
. (21)

Consequently, we have the upper bound on triggering rate,
namely

Rt =
1

tk+1
s − tks

≤ A+ σ

− ln(ρ0e−σγ)
. (22)

We want our communication rate to be larger than this
upper bound, and in every triggering time we transfer g(ts)
bits. As a result, the required bit rate should satisfy this
inequality

Rs > max

{
0,

A+ σ

− ln(ρ0e−σγ)
log

(
eAγ − 1

ρ0e−σγ

)}
.

The last statement can be seen directly from the definition of
Rs in (8) too. Since we proved that the number of bits that
the encoder needs to send at time tks which will be received
after a delay ∆k is uniformly upper bounded as (20), and
∆′k is upper bounded uniformly as (21).

Since

|z(tc)| ≤ v(ts)e
Aγ = De−σtseAγ

≤ De−σ(tc−γ)eAγ = De−σtce(A+σ)γ ,

the result follows.
Remark 2: While the result in Theorem 1 is independent

γ

Rs

ln 2

A

A+ σ

ln 2

γc(ρ0)

Fig. 2. Illustration of the necessary transmission rate for asymptotic
observability versus the upper bound of delay in the communication channel.
Here, A = 5, σ = 3, and ρ0 = 0.7.

of the feedback structure, the result in Theorem 2 depends on
the delay, event triggering and jump strategy used for control.
This is to be expected for a result on the transmission rate
of a specific event-triggering implementation. •

Remark 3: It is easy to check that the condition (17) with
σ → 0 also gives a necessary condition for asymptotic
stability (provided the system in (1) is stabilizable), although
it does not provide any exponential convergence guarantee
of the state to zero. •

V. PHASE TRANSITION BEHAVIOR

Figure 2 illustrates the result of Theorem 2. For small
values of γ, the amount of timing information carried by the
triggering events is higher than what is needed to stabilize
the system and the value of Rs is arbitrarily close to zero.
This means that if the delay is sufficiently small then only
a positive transmission rate is required to track the state of
the system with an exponential convergence guarantee on the
estimation error, and the controller can successfully stabilize
the system by receiving a single bit of information at every
triggering event. This situation persists until a critical value
γ = γc(ρ0), that is solution of the equation eAγ−ρ0e−σγ =
1, is reached. For this level of delay, which depends on the
given jump strategy, the timing information of the triggering
events becomes so much out of date that the transmission
rate must begin to increase.

When γ reaches a second critical value (ln 2)/A, that
equals the inverse of the intrinsic entropy rate of the sys-
tem indicated in (3), the timing information carried by the
triggering events compensates exactly the loss of information
due to the delay introduced by the communication channel.
This situation is analogous to having no delay, but also no
timing information. It follows that in this case the required
transmission rate matches the access rate in Theorem 1, and
we have Rs = (A + σ)/ ln 2. For σ → 0, there is no



γ

Rs

ln 2

A

A+ σ

ln 2

A + σ

ln2
(1 +

A

σ
)

ρ0 = 0.9

ρ0 = 0.5

ρ0 = 0.2

ρ0 = 0.01

Fig. 3. Illustration of the necessary transmission rate for asymptotic
observability versus the upper bound of delay for different values of ρ0.
Here A = 1, σ = 0.5, and ρ0 ∈ {0.01, 0.2, 0.5, 0.9}.

exponential convergence guarantee and the classic data-rate
theorem is recovered with the critical rate Rs = A/ ln 2.

If γ is increased even further, then the timing information
carried by event triggering is excessively out of date and
cannot fully compensate for the channel’s delay. The required
transmission rate then exceeds the access rate imposed by the
data-rate theorem. In practice, a more precise estimate of the
state must be sent at every triggering time to compensate
for the larger delay. Another interpretation of this behavior
follows by considering the definition Hρ(ts) in (19). The
value γ = (ln 2)/A marks a transition point for Hρ(ts)

from negative to positive values. For γ > (ln 2)/A event
triggering does not supply enough information and Hρ(ts)

presents a positive information balance in terms of number
of bits required to cover the uncertainty space. On the other
hand, for γ < (ln 2)/A, event triggering supplies more
than enough information, and Hρ(ts) presents a negative
information balance. We can then think of event triggering as
a “source” supplying information, the controller as a “sink”
consuming information, and Hρ(ts) as measuring the balance
between the two, indicating whether additional information
is needed in terms of quantized observations sent through
the channel.

Figure 3 illustrates the result of Theorem 2 for different
values of ρ0. For γ < (ln 2/A), the timing information
carried by the triggering events is useful for stabilization.
Since smaller values of ρ0 imply fewer triggering events, it
follows that curves associated to smaller values of ρ0 must
have larger transmission rates to compensate for the lack of
timing information. On the other hand, for γ > (ln 2/A)
the situation is reversed. The timing information carried
by the triggering events is now completely exhausted by
the delay and the controller relies only on the additional
information due to the quantized packets sent through the
channel. Since smaller values of ρ0 now imply larger packets
sent through the channel, and the information in the larger

packets becomes out of date at a slower rate than that
in the smaller packets, it follows that in this case curves
associated to smaller values of ρ0 correspond to smaller
transmission rates. Finally, we observe that all curves have
the same asymptotic behavior for large values of γ, which is
independent of ρ0. This occurs because as γ increases, more
information needs to be sent through the channel and also
the triggering rate decreases. When both of these effects are
taken into account the asymptotic value of the transmission
rate A+σ

ln 2 (1 + A
σ ) is obtained.

VI. SUFFICIENT CONDITION ON THE TRANSMISSION
RATE

We now consider a sufficient condition for asymptotic
observability and asymptotic stabilizability of our system.

Theorem 3: For the system in (1) when |z(0)| ≤ D, using
the event triggering strategy (11), triggering function (12)
and the jump strategy (13), a sufficient transmission rate for

|z(t)| ≤ e(A+σ)γv(t),

is

Rs ≥
A+ σ

− ln(ρ0e−σγ)
max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
,

(23)

where ρ0 is a constant in the interval (0, 1), and b > 1.
Proof: Similar to the proof of Theorem 2, we want

to cover the uncertainty space with balls of radius ρ(t) =
ρoe
−σγv(ts). However, here we need to explicitly construct

the covering. Recall that z̄(tc) denotes the estimate of z(tc)
at time tc constructed by the controller. We want to ensure

|z(tc)− z̄(tc)| ≤ ρ0e−σγv(ts) ≤ ρ0v(tc). (24)

Assume the sensor sends a quantized version of ts to the
controller, which we denote by q(ts). After receiving q(ts),
the controller approximates z(tc) with

z̄(tc) = v(q(ts))e
A(tc−q(ts)).

It follows that

|z(tc)− z̄(tc)| = v(ts)e
A(tc−ts)

∣∣∣∣1− v(q(ts))

v(ts)
eA(ts−q(ts))

∣∣∣∣ ,
and to satisfy (24) we need∣∣∣∣1− v(q(ts))

v(ts)
eA(ts−q(ts))

∣∣∣∣ ≤ ρ0e−A(tc−ts) v(tc)

v(ts)
.

The smallest possible values for v(tc)/v(ts) and e−A(tc−ts)

are e−σγ and e−Aγ , respectively. Hence, we need∣∣∣∣1− v(q(ts))

v(ts)
eA(ts−q(ts))

∣∣∣∣ ≤ ρ0e−(σ+A)γ .

This condition can be rewritten as∣∣∣∣1− De−σq(ts)

De−σts
eA(ts−q(ts))

∣∣∣∣ ≤ ρ0e−(σ+A)γ ,

∣∣∣1− e(A+σ)(ts−q(ts))
∣∣∣ ≤ ρ0e−(σ+A)γ ,



−ρ0e−(σ+A)γ ≤ 1− e(A+σ)(ts−q(ts)) ≤ ρ0e−(σ+A)γ ,

1− ρ0e−(σ+A)γ ≤ e(A+σ)(ts−q(ts)) ≤ 1 + ρ0e
−(σ+A)γ .

Taking logarithms and dividing by (A+ σ), we obtain

1

A+ σ
ln(1− x) ≤ ts − q(ts) ≤

1

A+ σ
ln(1 + x),

where x = ρ0e
−(σ+A)γ . It follows that to satisfy (24) it is

enough that

|ts − q(ts)| ≤ min{| 1

A+ σ
ln(1− x)|, | 1

A+ σ
ln(1 + x)|},

or by the properties of the logarithmic function that

|ts − q(ts)| ≤
1

A+ σ
ln(1 + ρ0e

−(σ+A)γ). (25)

We now design a quantizer to construct a packet p(ts) of
length g(ts) that the encoder sends to the decoder. Using the
packet p(ts) the decoder reconstructs q(ts) that satisfies (25).
First bit of p(ts) is used to determine the sign of z(ts), i.e., to
determine whether z(ts) = +v(ts) or z(ts) = −v(ts). The
second bit of p(ts) is mod

(
b tsbγ c, 2

)
. This second bit informs

the decoder that ts ∈ [jbγ, (j+ 1)bγ] for some fixed j. As a
part of quantization process the encoder divides this interval
uniformly into 2g(ts)−2 sub-interval. Thus, ts belongs to at
least one of these sub-intervals. After receiving the packet,
the decoder chooses q(ts) as the middle point of the sub-
interval that ts belongs to. The packet length g(ts) is large
enough that

bγ

2g(ts)−1
≤ 1

A+ σ
ln(1 + ρ0e

−(σ+A)γ). (26)

With this strategy, since

|ts − q(ts)| ≤
bγ

2g(ts)−1
,

it follows that (25) is satisfied. From (26), we have

g(ts) ≥ max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
,

and this choice also guarantees (24).

Finally, the controller updates x(t+c ) according to the jump
strategy, so that |z(t+c )| ≤ ρ0e−σγv(ts). We can then use the
upper bound on the triggering rate (22) and since we want a
communication rate larger than this upper bound it follows
that a sufficient transmission rate should also satisfy

Rs ≥
A+ σ

− ln(ρ0e−σγ)
max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
,

and the proof is complete.

Corollary 1: If (A,B) is a stabilizable pair, and u(t) =
−Kx̂(t), then inequality (23) is a sufficient condition for
asymptotic stabilizability.

Proof: Since (1) can be rewritten as

ẋ(t) = (A−KB)x(t) +Bz(t),

we have

x(t) = e(A−KB)tx(0) + e(A−KB)t

∫ t

0

e−(A−KB)τBz(τ)dτ.

We proved that (23) is sufficient for limt→∞ z(t) = 0. Since
(A,B) is a stabilizable pair, and A + BK is Hurwitz it
follows that, criterion (23) is sufficient for limt→∞ x(t) = 0
too. On top of that, ∀ε > 0 there exist an L small enough
such that |x(t)| ≤ ε for all t ∈ [0,∞).
Figure 4-(a) shows that for small values of γ, both necessary
and sufficient conditions reduce to Rs > 0. Figure 4-(b)
shows that for large values of γ, both necessary and sufficient
conditions converge to same asymptote. As we discussed in
the previous section, the asymptotic value of the necessary
transmission rate is A+σ

ln 2 (1 + A
σ ). For sufficient transmission

rate we have

lim
γ→∞

max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
= 1 + log

bγ(A+ σ)

ρ0e−(σ+A)γ

= 1 + log bγ(A+ σ) +
1

ln 2
(− ln ρ0 +Aγ + σγ).

Hence, the limit of the lower bound in (23) as γ →∞ is
equal to

lim
γ→∞

A+ σ

ln 2
(1 +

ln 2(1 + log bγ(A+ σ)) +Aγ

− ln ρ0 + σγ
)

=
A+ σ

ln 2
(1 +

A

σ
).

It remains to be seen if the gap between the sufficient and
necessary conditions could be closed completely.

VII. CONCLUSIONS

In this paper we introduced an event-triggered control
strategy for stablization in the presence of delay in the com-
munication channel between the plant and the controller. We
characterized the value of the timing information carried by
each triggering event and derived data-rate theorems from the
point of view of the sensor sending quantized state estimates
to the controller. We determined the necessary and sufficient
transmission rate for stabilizability and observability of the
system. The central result revealed critical transition points
for the transmission rate as a function of the communication
delay. Important open problems for future research include
extensions to vector systems, including the effect of system
disturbances, tightening necessary and sufficient conditions,
and obtain exponential convergence guarantees for the stabi-
lizability of the system.

VIII. ACKNOWLEDGMENT

This research was partially supported by NSF award CNS-
1446891.

REFERENCES

[1] K.-D. Kim and P. R. Kumar, “Cyber–physical systems: A perspec-
tive at the centennial,” Proceedings of the IEEE, vol. 100 (Special
Centennial Issue), pp. 1287–1308, 2012.



γ

Rs

 

 

sufficient
necessary

(a)

Rs

γ

 

 

sufficient
necessary

(b)

Fig. 4. Illustration of the sufficient and necessary transmission rate for asymptotic observability for small (a) and large (b) values of delay. Here, A = 1,
σ = 0.5, b = 1.0001, and ρ0 = 0.1.

[2] D. F. Delchamps, “Stabilizing a linear system with quantized state
feedback,” IEEE Transactions on Automatic Control, vol. 35, no. 8,
pp. 916–924, 1990.

[3] W. S. Wong and R. W. Brockett, “Systems with finite communication
bandwidth constraints. II. stabilization with limited information feed-
back,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp.
1049–1053, 1999.

[4] J. Baillieul, “Feedback designs for controlling device arrays with
communication channel bandwidth constraints,” in ARO Workshop on

Smart Structures, Pennsylvania State Univ, 1999, pp. 16–18.

[5] S. Tatikonda and S. Mitter, “Control under communication con-
straints,” IEEE Transactions on Automatic Control, vol. 49, no. 7,
pp. 1056–1068, 2004.

[6] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear
systems with finite feedback data rates,” SIAM Journal on Control

and Optimization, vol. 43, no. 2, pp. 413–436, 2004.

[7] N. C. Martins, M. A. Dahleh, and N. Elia, “Feedback stabilization of
uncertain systems in the presence of a direct link,” IEEE Transactions

on Automatic Control, vol. 51, no. 3, pp. 438–447, 2006.

[8] P. Minero, M. Franceschetti, S. Dey, and G. N. Nair, “Data rate
theorem for stabilization over time-varying feedback channels,” IEEE

Transactions on Automatic Control, vol. 54, no. 2, p. 243, 2009.

[9] P. Minero, L. Coviello, and M. Franceschetti, “Stabilization over
Markov feedback channels: the general case,” IEEE Transactions on

Automatic Control, vol. 58, no. 2, pp. 349–362, 2013.

[10] C. De Persis, “n-bit stabilization of n-dimensional nonlinear systems in
feedforward form,” IEEE Transactions on Automatic Control, vol. 50,
no. 3, pp. 299–311, 2005.

[11] D. Liberzon, “Nonlinear control with limited information,” Communi-

cations in Information & Systems, vol. 9, no. 1, pp. 41–58, 2009.

[12] G. N. Nair, R. J. Evans, I. M. Mareels, and W. Moran, “Topological
feedback entropy and nonlinear stabilization,” IEEE Transactions on

Automatic Control, vol. 49, no. 9, pp. 1585–1597, 2004.

[13] A. Sahai and S. Mitter, “The necessity and sufficiency of anytime
capacity for stabilization of a linear system over a noisy communica-
tion link. Part I: Scalar systems,” IEEE transactions on Information

Theory, vol. 52, no. 8, pp. 3369–3395, 2006.

[14] A. S. Matveev and A. V. Savkin, “An analogue of Shannon information
theory for detection and stabilization via noisy discrete communication
channels,” SIAM journal on Control and Optimization, vol. 46, no. 4,
pp. 1323–1367, 2007.

[15] M. Franceschetti and P. Minero, “Anytime capacity of a class of
Markov channels,” IEEE Transactions on Automatic Control, 2016,
in press.

[16] G. Nair, “A non-stochastic information theory for communication and
state estimation,” IEEE Transactions on Automatic Control, vol. 58,
pp. 1497–1510, 2013.

[17] M. Franceschetti and P. Minero, “Elements of information theory for
networked control systems,” in Information and Control in Networks.
Springer, 2014, pp. 3–37.
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