
Proceedings of ASME 2016 Dynamic Systems and Control Conference
DSCC 2016

October 12-14, 2016, Minneapolis, Minnesota, USA

DSCC2016-9820

VISIBILITY-BASED DISTRIBUTED DEPLOYMENT
OF ROBOTIC TEAMS IN POLYHEDRAL TERRAINS

Aaron Ma Jorge Cortés ∗

ABSTRACT
This paper presents deployment strategies for a team of mul-

tiple mobile robots with line-of-sight visibility in 1.5D and 2.5D
terrain environments. Our objective is to distributively achieve
full visibility of a polyhedral environment. In the 1.5D polyhe-
dral terrain, we achieve this by determining a set of locations
that the robots can distributively occupy. In the 2.5D polyhedral
terrain, we achieve full visibility by simultaneously exploring,
coloring, and guarding the environment.

1 Introduction
Currently there is large interest in distributed robotics and

automation for use in surveillance and disaster response. Simi-
larly to the guarding of art gallery problems, we guard the en-
vironment through the collective visibility of a team of robots.
Here we consider scenarios where the robots are constrained to
moving on the ground in 1.5D and 2.5D polyhedral terrains. Our
objective is to determine strategies for deploying robots in poly-
hedral terrains that are guaranteed to achieve complete visibility
within some determined time.

Literature review
This paper builds on research of the classical art-gallery

problem [1] in computational geometry. The work [2] shows
that n/3 guards are sufficient and sometimes necessary to guard
the inside of any polygon with n vertices. Many variations of

∗The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{aam021,cortes}@ucsd.edu

the art-gallery problem exist. We focus here on guarding polyhe-
dral environments. In [3], methods for calculating and analyzing
the visibility of polyhedral terrains are explored. [4] discusses
a polynomial time approximation scheme for guarding of 1.5-
dimensional terrains. A centralized, locally optimal, polynomial-
time approximation scheme (PTAS) for guarding a terrain is in-
troduced in [5]. In our analysis and algorithm design for guarding
2.5D polyhedral terrains, we use results from 4 coloring of pla-
nar graphs [6]. [7] characterizes the number of agents required to
guard a 2.5D terrain using coloring techniques on planar graphs.
A planar graph is considered colored when its vertices are la-
beled in such a way that no two neighbors share the same label.
Algorithms have been proposed to color such planar graphs in no
more than 5 colors [8,9] (in time linear with the number of graph
vertices), and no more than 4 colors [10] (in time quadratic with
the number of graph vertices). Our paper also builds on notions
from distributed robotic networks [11] and distributed deploy-
ment of mobile robots to guard art galleries based on visibility
and line of sight [12].

Statement of contributions
We design distributed algorithms for robotic teams to

achieve full visibility of polyhedral terrains. Our contributions
are structured in two blocks, one corresponding to 1.5D environ-
ments and the other one corresponding to 2.5D environments.

For 1.5D environments, we begin by characterizing a guard-
ing set to achieve full visibility of the terrain based on identifying
alternate peaks. This allows us to determine a number of agents
that are always sufficient and some times necessary to guard any
1.5D environment. Building on this result, we design two de-
ployment strategies and determine closed-form expressions for

1 Copyright c© 2016 by ASME

the time it takes each strategy to complete. The first strategy al-
lows for more flexible initial conditions, while the second strat-
egy that we introduce completes in less time. The strategies for
deployment in 1.5D environment are iterative processes where
the agents communicate through vision, compute, move, and de-
tect where they are in their environment.

In the 2.5D environment we define locations that are redun-
dant in terms of guarding and visibility. We determine the max-
imum number of locations that are not redundant (removing an
agent that guards a redundant location does not change the col-
lective visibility) and use this result as the sufficient number of
agents to guard any 2.5D terrain. We determine a distributed
2.5D deployment strategy that yields complete visibility by uti-
lizing planar graph coloring and redundant locations. Finally we
find the time that it takes for our 2.5D deployment strategy to
complete. Various simulations throughout the paper illustrate
our results. Some proofs are omitted for reasons of space and
will appear elsewhere.

2 Preliminaries
This section introduces basic notation, planar graphs and

coloring, and polyhedral terrains.

2.1 Notation
Given a set S, we let |S| denote its cardinality. We let ceil :

R→ Z denote the ceiling function which rounds its argument to
the next highest integer. We denote by p1 p2 the line segment
between points p1, p2 ∈ Rd . A set C ⊂ Rd is convex if the line
segment between any pair of its points is contained in C . In
R3, we use xp, yp, and zp to denote the components of the point
p ∈ R3. Given p1, p2 ∈ R3, the slope of p1 p2 is

sp1 p2 =
zp2 − zp1√

(xp2 − xp1)2 +(yp2 − yp1)2
.

When convenient, we embed the Euclidean plane R2 into the
Euclidean space R3 through the map i defined by i(a1,a2) =
(a1,0,a2). With this embedding, we have yp = 0 for any point
p ∈ i(R2)≡ R2.

2.2 Planar graphs and coloring
An undirected graph G = (V,E) is a pair composed of a ver-

tex set V and an edge set E consisting of bidirectional edges be-
tween vertices. The degree of a vertex is the number of edges
connected to it. Planar graphs are undirected graphs whose ver-
tices belong to R2 and whose edges can be drawn on a plane in
such a way that no edges cross each other.

A planar graph is colored when its vertices are labeled in
such a way that no two neighboring vertices share the same la-
bel. Planar graphs can be colored with no more than 4 colors,
cf. [6]. Centralized algorithms can color planar graphs with no
more than 4 colors (in O(n2) time), see [10], and with no more
than 5 colors (in O(n) time), see [8].

2.3 Polyhedral terrains in 1.5D and 2.5D
1.5D and 2.5D polyhedral terrains correspond to the graphs

of continuous piecewise affine functions on R and R2, respec-
tively. Formally, given a continuous piecewise affine function
f : I ⊂ R→ R, with I an interval, its associated 1.5D terrain is
S1.5(f) = {(x, f (x)) : x ∈ I} ⊂ R2. Similarly, given a continuous
piecewise affine function f : I ⊂ R2 → R, with I a polygon, its
associated 2.5D terrain is S2.5(f) = {(x,y, f (x,y)) : (x,y) ∈ I} ⊂
R3. When convenient, we drop the dependence on f and simply
denote Sd.5 ⊂ Rd+1 to refer to either of these two cases.

Note that a polyhedral terrain Sd.5 can also be seen as an
undirected graph with vertices in Rd+1. In the case d = 1, these
vertices correspond to the points in R2 where the graph of two
affine components of f intersect. In the case d = 2, these ver-
tices correspond to the points in R3 where the graph of three
affine components of f intersect. The set of edges connect-
ing vertices in S1.5 and S2.5 are denoted E1.5 and E2.5, respec-
tively. All vertices, vi in S1.5, except for v1 and v|V | have de-
gree of 2, with neighbors, vi−1 and vi+1. It follows that v ∈
S1.5 are ordered monotonically with respect to the x-axis, such
that xv

i−1 < xv
i < xv

i+1 for i ∈ {2, . . . , |V | − 1}. In S1.5, we de-
fine J(v1,v2) (resp. J[v1,v2]) to be the set of all vertices v ∈ V such
that min(xv

1,x
v
2) < xv < max(xv

1,x
v
2) (resp. min(xv

1,x
v
2) ≤ xv ≤

max(xv
1,x

v
2)). A vertex vi in S1.5 is a peak if svi−1,vi > svi,vi+1 .

Conversely vi is a valley if it is not a peak. We denote by P and
V the collection of peaks and valleys, respectively, in increas-
ing order with respect to their x-coordinate. Given a vertex v,
we denote its adjacent peak to the right by p+(v) and to the left
by p−(v).

In our treatment of 2.5D terrains, we find it convenient to
use triangulated planar graphs. Denote by pr : R3→ R2 the pro-
jection map onto the first two components, pr(x,y,z) = (x,y).
This map projects S2.5 onto a planar graph, which denote by S∗2.5.
Edges maintain their connectivity through conversion, and we
denote them by e∗ ∈ E∗. Figure 1 shows a 2.5D terrain, S2.5,
transformed into its planar graph equivalent, S∗2.5.

Two vertices, v1 and v2, are visible to each other if v1v2 never
intersects with Sd.5. We use the following test to determine if
two vertices are visible. Given vertices v1,v2, the visibility test
consists of checking whether

sv1v2 > sv1w, ∀w ∈ Kv1v2 . (1)

2 Copyright c© 2016 by ASME

(a) A polyhedral terrain, S2.5. (b) The planar graph associated with S2.5.

Figure 1. The 2.5D terrain converted into a planar graph.

If the test is passed, then the vertices are visible to each other.
In S1.5, Kv1v2 = J(v1,v2) is the set of vertices between v1 and v2.
In S2.5, Kv1v2 is the set of points on S2.5 that share x and y-
coordinates with v1v2. The visibility set of a vertex v in Sd.5,
denoted Q(v), is the set of all vertices visible to v. Given Vw ⊂V ,
the collective visibility set,

Q(Vw) =
⋃

v∈Vw

Q(v),

is the set of all vertices visible to them. Sd.5 is completely visible
from Vw if Q(Vw) =V .

3 Problem statement
We consider scenarios where a team of robots, deployed

on Sd.5, with d ∈ {1,2}, seek to achieve full visibility of the en-
vironment. In this section we describe in detail the model for
the robotic network and its capabilities. Given a set of agents,
A, Each individual agent has a unique identifier i ∈ {1, . . . , |A|},
which provides a sense of priority when two agents decide to
execute conflicting actions. The agents are capable of omni-
directional vision and can localize vertices at infinite distance.
Agents are only able to communicate and share information
when they are visible to each other. The agents have the capa-
bility to share attributes about vertices such as their coordinates
and color assignments. In S2.5, we allow agents to place relays
on a vertex to allow communication between any two agents that
occupy vertices that are neighbors of it. In S1.5, agents are able
to traverse between adjacent peaks at every time step. In S2.5,
agents are able to traverse between vertices connected by an edge
at every time step. We consider the motion of the robots slow in
comparison to the time required for computation.

We refer to the guarding set, G ⊂ V , as the set of vertices
that the agents decide to occupy. This set is determined in a
dynamic fashion by the agents as they explore the environment.

Sd.5 is fully guarded if Q(G) = V . Our objective is to design a
coordinated strategy for the agents to distributively explore the
polyhedral terrain Sd.5 and determine the guarding set to achieve
full visibility. We also seek to characterize the number of agents
required to achieve this as well as the time required by the coor-
dination strategies for achieving full visibility.

4 Distributed deployment over 1.5D terrains
This section studies the distributed deployment problem

over 1.5D polyhedral terrains. We identify a guarding set that
guarantees full visibility and study its size to obtain a characteri-
zation of a sufficient and sometimes necessary number of robotic
agents required to complete the task. Building on this charac-
terization, we design strategies to place agents in the identified
guarding set.

4.1 Guarding set via alternate peaks
Here we characterize a guarding set that achieves full visi-

bility of a 1.5D polyhedral terrain S1.5. We begin our analysis
with a simple fact about the visibility regions of adjacent peaks.

Lemma 4.1. (Visibility from adjacent peaks): Given two adja-
cent peaks, v1 and v2 ∈ P , all intermediate vertices of S1.5 are
visible to them, i.e., J[v1,v2] ⊂ Q(v1) and J[v1,v2] ⊂ Q(v2).

Proof. Since v1 and v2 are adjacent peaks, all vertices vi ∈ J(v1,v2)

are valleys and have the property, svi−1,vi ≤ svi,vi+1 . Therefore the
slope between adjacent vertices, vi and vi+1 ∈ J(v1,v2), monotoni-
cally increases with increasing x along the interval xv1 to xv2 , im-
plying sv1v > sv1k for all v∈ J(v1,v2) and k ∈Kv1v = J(v1,v). Hence,
all vertices between v1 and v2 are visible from either v1 or v2.
�

As a consequence of Lemma 4.1, we deduce that
J[p−(v),p+(v)] is visible from v. Inspired by this observation, we

3 Copyright c© 2016 by ASME

consider the subset of alternating peaks, denoted Gap ⊂ P , cor-
responding to all peaks with odd indices. Note that if |P | is even,
then one can alternatively consider the set of peaks with even in-
dices. The set Gap is the largest set of peaks in S1.5 such that
every other peak is skipped. This results in |Gap| = ceil(|P |/2).
We order the indices of Gap in increasing order with respect to
their x-coordinate. The next result determines the set of vertices
visible from Gap.

Proposition 4.2. (Visibility set of Gap): The visibility set of
Gap is given by

Q(Gap) =

{
V if |P | odd,
J[v1,p|P |] if |P | even.

Proof. From Lemma 4.1, we deduce that if v1 and v2 are two
peaks with a single peak v between them, so that p+(v1) = v =
p−(v2), then Q(v1∪v2) contains J[p−(v1),p+(v2)]. Thus, Q(Gap) is
equal to J[p−(g1),p+(g|Gap|)] and the result follows. �

As a consequence of this result, we identify Gap∪{p|P |} as
a sufficient set of vertices to achieve full visibility.

Theorem 4.3. (Complete visibility): The 1.5D environment
S1.5 is fully visible from G = Gap ∪{p|P |}. Furthermore, |G| =
floor(|P |/2)+1 is sufficient and sometimes necessary to achieve
full visibility of S1.5.

Proof. The fact that Q(G) = V readily follows from Propo-
sition 4.2. If |P | is odd, then G = Gap and therefore
|G| = ceil(|P |/2) = floor(|P |/2) + 1. If |P | is even, |G| =
ceil(|P |/2)+ 1 = floor(|P |/2)+ 1. To show that |G| agents are
sometimes necessary, we provide a specific example. Consider
an environment where all vertices are peaks. Then, the visibility
set of any vertex v is exactly Q(v) = J[p−(v),p+(v)], which implies
that any guarding set must contain at least every other vertex in
order to achieve full visibility. �

4.2 1.5D alternate peak strategy

Given our analysis in Section 4.1, here we design distributed
strategies to deploy |A| = floor(|P |/2)+1 agents on G = Gap∪
{p|P |}. We begin with an informal description of the algorithm.

[Informal description]: All agents are initially located
at vertex, v0, whose position in S1.5 is unknown to them.
Agents explore S1.5 and incrementally distribute them-
selves on G = Gap ∪ {p|P |}. Half of the agents, Alft,
go left, while the other half, Arght, goes right (if |A| is
odd, we let Alft have one extra agent). Depending on
the location of v0 within the environment, one of these

two sets contains too many agents. Agents keep track
of a variable termed “goal”. Once an agent detects the
edge of S1.5 (either v1 or v|V |), it raises its “goal” flag,
which signals visible neighboring agents that the other
group needs more agents to complete the algorithm.
Two strategies are then possible. Let A− be the group of
agents that does not have enough agents, and A+ be the
group that has too many. In both strategies, A− deploys
until they guard as many alternating peaks as they can.
Then, in the 1.5D alternate peak strategy
with wait, agents in A− wait until they receive a
“goal” message from A+ to continue exploring and fi-
nally guarding S1.5. Instead, in the 1.5D alternate
peak strategy w/o wait, agents in A− make
the assumption that the “goal” flag will eventually come
from A+ and continue deploying towards the boundary
of S1.5 (creating a void in visibility coverage that will
eventually be filled by the agents in A+).

Algorithm 1 provides a formal description of 1.5D
alternate peak strategy with wait and 1.5D
alternate peak strategy w/o wait. The steps
that are only executed under 1.5D alternate peak
strategy w/o wait are marked with the symbol †. All
other steps are common to both strategies.

Remark 4.4. (Wait versus no wait): The strategies differ in
how the agents react when they determine that there are not
enough agents in their group to reach the boundary of the en-
vironment. While the 1.5D alternate peak strategy
w/o wait completes in less time, it requires all agents to start
on the same initial condition (otherwise the use of the “continue”
flag might be detrimental to algorithm completion). Instead,
the 1.5D alternate peak strategy with wait re-
quires in general more time to complete, but agents can be ini-
tialized at multiple locations. •

Remark 4.5. (Ordering of agents): Agents occupy a peak only
if no other agent with lower ID occupies the same peak. As the
algorithm executes, the agents naturally order themselves within
their respective groups of A− and A+ in decreasing order of ID
from v0 in the direction they are initialized. This enables the
agents to rationalize when the “goal” flag should have arrived
by (agents in A+ with lower ID receive the “goal” flag before
agents with greater ID). Due to the speed at which the “goal”
flag propagates in A+, agents in A− rationalize that they are not
in A+ if they do not receive the “goal” flag in 2A−+ ID −2 time
steps. •

Figure 2 shows an example of agents being deployed
on S1.5 using the 1.5D alternate peak strategy
with wait. At time step: 4, A+ reaches the leftmost bound-
ary and raises the “goal” flag. At time step: 7, A− runs out of

4 Copyright c© 2016 by ASME

Algorithm 1 : 1.5D alternate peak strategy

Agent a variables:
bool goal=False, continue=False
int direction=-1 | a ∈ Alft or 1 | a ∈ Arght

While Q(G) is not V :
Communicate

if any visible agents to a have goal is True:
a sets goal to True
a sets direction to direction of agent with goal to True

Move

if any of the following conditions are met:
• Agent a occupies v 6∈ P
• a ∈ Alft and J(v,p+(v)] is occupied or a ∈ Arght and J[p−(v),v)
is occupied
• a does not have the greatest ID of all agents that occupy v
• †: a has goal is False and continue is True

a moves one peak dictated by direction
else:

a stays at vertex v

Detect

if v1 or v|V | is visible:
a sets goal to True
a sets direction away from detected v1 or v|V |

†: if the time elapsed is equal to 2A−+a.ID−2
a sets continue to True

agents and begins to wait for the “goal” flag. By time step: 15,
the network has completely deployed achieving full visibility of
the environment.

4.3 Time steps for algorithm completion
In this section we characterize the number of time steps re-

quired by the proposed strategies for completion. We recall that
an agent can move between adjacent peaks in one time step. For
the following analysis, let i be the index of v0 in P and define

i∗ =

{
i if i≤ |P |/2,
|P |− i+1 if i > |P |/2.

(2)

Figure 2. Execution of 1.5D alternate peak strategy
with wait on a 1.5D environment with 16 peaks. From Theorem 4.3,
|A| = 9 agents are sufficient to achieve full visibility. All agents begin at
the same initial location, v0, of index 6 with respect to P , and split into two
groups. The location of agents with the “goal” flag not raised are shown
by a red dot where the number states the number of agents on that
vertex. Agents with a raised “goal” flag are denoted with a cross .

The following three sets cover all possibilities for the location of
the initial vertex v0,

A = {v0 | if |A| even, i≤ |P |/6+1 or i≥ 5|P |/6−1
and if |A| odd, i≤ |P |/6 or i≥ 5|P |/6},

B = {v0 | if |A| even, |P |/6+1 < i < 5|P |/6−1
and if |A| odd, |P |/6 < i < 5|P |/6},

and region C , which only exists if |P | is odd and corresponds to
i = |P |+1

2 . Figure 3 illustrates these three cases. We are ready to
characterize the time complexity of the strategy with wait.

Theorem 4.6. (1.5D alternate peak strategy
with wait completion time): The number of time steps re-
quired by the 1.5D alternate peak strategy with

5 Copyright c© 2016 by ASME

Figure 3. Illustration of cases A , B , and C for the locations of the
common initial condition of the agents. The 1.5D environment S1.5
has |P |= 17.

wait to complete is

T =

|P |− i∗ v0 ∈ A ,

|P |+ i∗
2 −|A−|−

3
2 v0 ∈ B,

3(|P |−1)
4 v0 ∈ C .

(3)

Proof. For simplicity of exposition, we only consider the case
when i≤ (|P |+1)/2 (the case when i > |P |

2 is analogous). Con-
sequently, i∗ = i, Alft = A+, and Arght = A−. We first consider the
scenario when both groups of agents reach the boundary of the
environment at the same time. Note that this is only possible if
v0 ∈ C .

Case C : If |P | is odd and v0 is the peak with index |P |+1
2 , the

agents split up perfectly since there are the same number of peaks
to the left and right. The agents reach the boundaries and send
the “goal” message at the same time. The algorithm completes
when the goal messages meet at |P |+1

2 . The time to completion
is then the sum of the time to reach the boundaries, and the time
that it takes for the flags to reach the |P |+1

2 , which is

|P |+1
2
−1+

|P |+1
2 −1

2
=

3(|P |−1)
4

.

Next, we consider the scenario when both groups of agents
do not reach the boundary of the environment at the same time.
In this scenario, it is A+ which reaches the boundary first. Agents
move one peak at a time, distributing themselves on every other
peak. Because of this, note that A− runs out of agents after ex-
actly 2|A−| time steps. On the other hand, it takes exactly i∗−1
time steps for agents in A+ to reach the boundary of S1.5 and
raise the “goal” flag. At this time, the rightmost agents in A−
are located at peak i∗+(i∗− 1) = 2i∗− 1. Once the “goal” flag
is raised, since agents can communicate with agents at adjacent
peaks, the speed at which the “goal” flag is communicated is ef-
fectively two peaks per time step.

Two things might happen depending on whether or not the

“goal” flag reaches the rightmost agents in A− before this group
runs out of agents. Let t denote the number of time steps elapsed
since A+ first raised the “goal” flag. After t time steps, the goal
flag is at 1+2t. If A− does not run of agents, its rightmost agents
are at 2i∗− 1+ t. Therefore, we are looking for the solution to
1+2t = 2i∗−1+ t, which is

t = 2i∗−2.

The total elapsed time since the beginning is then i∗−1+(2i∗−
2) = 3i∗− 3. This time must be less than or equal to than the
time it takes A− to run out of agents, i.e.,

i∗ ≤ 2
3
|A−|+1. (4)

Case A : One can see that equation (4) is satisfied if and only if
v0 ∈ A . Because the “goal” flag reaches the rightmost agent in
A− before A− runs out of agents, A− moves at one time step to-
wards the rightmost boundary through the entirety of the strategy.
Once A− reaches the boundary, the agents will have distributed
themselves on G. Therefore, if v0 ∈ A , we deduce that the num-
ber of time steps required for completion is T = |P |− i∗.

Case B: If instead, v0 ∈ B , this means that equation (4) is not
satisfied, i.e., A− runs out of agents before the “goal” flag reaches
its rightmost agents. After the “goal” flag is raised, agents in
A+ move at 1 peak per time step and occupy their half of G by
the time the “goal” flag reaches the rightmost boundary, since
no agent has to travel more than |P |/2 peaks. Since agents in
A− previously occupy alternating peaks, they all must travel the
same number of peaks to reach their final configuration. The
rightmost agent in A− receives the “goal” flag last and is the last
agent to occupy its peak in G. Therefore, we need to compute the
time it takes for A− to receive the message and the leftover time
needed for the rightmost agent in A− to move to the boundary
of S1.5. A− runs out of agents at vertex d = i∗+ 2|A−|. With
the notation used above, the time required for the “goal” flag to
reach this vertex is the solution to 1+2t = d, i.e., t = (d−1)/2.
Once the A− has received the message it takes

|P |−d,

steps to reach the boundary. Therefore, the total number of time
steps is

T = i∗−1+(d−1)/2+ |P |−d = |P |+ i∗

2
−|A−|−

3
2
. �

6 Copyright c© 2016 by ASME

From Theorem 4.6, one can see that, in region B , the time
complexity monotonically increases as the initial location moves
from the left boundary of this region (at |P |/6 + 1 or |P |/6,
depending on whether |A| is even or not), to the peak closest
to |P |

2 , Next, we determine the completion time of the 1.5D
alternate peak strategy w/o wait.

Theorem 4.7. (1.5D alternate peak strategy
w/o wait completion time): The number of time steps re-
quired for the 1.5D alternate peak strategy w/o
wait to complete is

T =

|P |− i∗ v0 ∈ A ,
7|P |

8 −
i∗
4 v0 ∈ B,

3(|P |−1)
4 v0 ∈ C .

(5)

5 Distributed deployment over 2.5D terrains
This section studies the distributed deployment problem

over 2.5D polyhedral terrains. We introduce the concept of a
non-redundant vertex of a guarding set and characterize a suffi-
cient and sometimes necessary number of vertices of guarding
sets without redundant vertices. We build on this result to design
a distributed strategy to efficiently place the robotic agents and
achieve full visibility.

5.1 Guarding set via non-redundant vertices
S2.5 contains many sets of vertices, G, such that Q(G) = V .

We begin by defining a reducible set of vertices that are analo-
gous to valleys in S1.5. In this section we determine S∗∗2.5, a planar
graph determined by contracting reducible sets in S∗2.5. Next we
define a redundant vertex and quantify how many non-redundant
vertices can exist in S∗∗2.5.

Consider a set of vertices, R ∗, such that all vertices within
the convex hull of R ∗ are visible to each other. Refer to Rhull
as the set of vertices that contribute to the convex hull of R ∗,
and R as the set of all other vertices, R = R ∗\Rhull . We call
R a reducible set. We create a new planar graph, S∗∗2.5, which
is a modification of S∗2.5, where every R in S∗2.5 contracts into a
vertex as shown in Figure 4. The vertices that remain in S∗∗2.5 are
then V ∗∗.

We now define a redundant vertex in S2.5.

Definition 5.1. (Redundant vertex): Consider a vertex, v, that
is occupied in guarding set G. Define ∆v as the set of triangles,
t, in contact with v as determined by vertices and edges in S∗∗2.5.
v is a redundant vertex if there is another occupied vertex that is
able to see t for all t ∈ ∆v. Conversely v is non-redundant, if and
only if there exists t ∈ ∆v such that t is not visible to any other

(a) S∗2.5 (b) S∗∗2.5

Figure 4. Example of a reducible set in S∗2.5 being contracted. The sym-
bol represents vertices in R . |R | = 7 is reduced to |R | = 1 after
contraction.

occupied vertex. Furthermore, if v is a redundant vertex with
respect to some guarding set, G, then Q(G) = Q(G\v).

Figure 5 provides an illustration of the concept of redundant
vertex.

(a) G with a redundant vertex (b) G with a non-redundant vertex

Figure 5. Illustration of the concept of redundant vertex. Green squares
correspond to vertices in the guarding set G. In (a), a vertex that does not
uniquely guard neighboring triangles is redundant. In (b), the same vertex
uniquely guards a neighboring triangle, and is therefore non-redundant.

Let Γ denote the set of all non-redundant vertices and let
non-redundant pairs, p, be two vertices, v1 and v2, that define v
to be non-redundant. v1 and v2 are connected with each other and
v to form a triangle uniquely visible to v. Both v1 and v2 must be
unoccupied to satisfy that v is a non-redundant vertex. In general,
if v is non-redundant, it can have any number of p that belong to
set P(v). Vertices that are unoccupied, but do not have any un-
occupied neighbors belong to U. A pair of vertices form an edge
that belongs to, at most, two triangles in S∗∗2.5. By manipulating Γ

such that pairs are shared among two non-redundant agents, we
are able to maximize the Γ.

Theorem 5.2. (Upper bound of |Γ|): The maximum number of
non-redundant vertices is |Γ|= |2V ∗∗|/3.

For the following deployment strategy, we guard non-
redundant vertices. We conclude that |A|= 2|V ∗∗|/3 is sufficient

7 Copyright c© 2016 by ASME

and sometimes necessary as a result of Theorem 5.2.

Figure 6. The configuration that contains the maximum number of non-
redundant vertices in S∗∗2.5. Here, the green squares are in G and are
non-redundant. The red circles represent vertices that cannot be added
to G without creating redundant vertices.

5.2 S2.5 exploration and guarding algorithm
Given |A| = 2|V ∗∗|/3 we determine an algorithm for dis-

tributed coverage of S2.5. We design an algorithm that distributes
agents on G, determined by a general coloring of S∗∗2.5. Our strat-
egy for coordinated exploration and guarding entails maintaining
strong connectivity of the communication between agents and
relays at any given time of deployment. We allow the agents
to place relays, r ∈ R, which provide communication between
neighboring vertices. The agents start on a single vertex and de-
tect vertices in S2.5 as they explore. Let U = V\Q(G) be the
set of vertices that the agents have not detected yet. Let K be
the set of vertices that are not in U and have no neighbors in
U. Finally let D be the set of vertices that are not in U but
have neighbors in U. Agents assign colors to the vertices as they
are detected (v 6∈ U). We refer to the colors that the agents as-
sign to vertices as {1,2,Gc}, where Gc is a label for a color in
{3,4,5,6} that is instantiated during the execution of the algo-
rithm and denotes vertices that agents plan to occupy or place a
relay (Q(G) = Q(Gc)).

Lemma 5.3. (Three-coloring of a triangle): Every triangular
face in S∗∗2.5 contains a vertex labeled a color in Gc after coloring.

Occupying all vertices that are not {1,2} guarantees com-
plete visibility, since every face on S2.5 is a triangle. We proceed
to define 2.5D non-redundant peak strategy:

[Informal description]: |A| agents start on v0 that is as-
signed color Gc. All neighboring vertices are visible
and are put into a set, D. D contains vertices that have
been detected, but not yet colored. Once all vertices
in D are colored, D is set to /0. While exploring, the
agents color vertices in D and keep track of a graph, C ,

that contains vertices and edges they detect, as well as
the colors they assign. Agents color a vertex with ei-
ther 1 or 2 if possible. If that is not possible, the agents
non-uniquely label the vertex Gc. The agents simulta-
neously explore S2.5 and create a tree T with v0 as the
root. Agents look one at a time for an unoccupied (by
relay or agent) vertex v in D of color Gc if it exists.
If it does not exist, the agents find a vertex ∈ D with
color in {1,2}. The agent that finds v, moves to it. The
color of v is changed from either 1 or 2 to Gc. If a
child agent of a with respect to T moves, then a moves
to the vertex that the child agent last occupied. Agents
then use Algorithm 3 to refine the guarding set so that
|A| is sufficient. We consider the coloring and refin-
ing guarding set processes to take negligible time with
respect to the exploration routine. Finally the S2.5 De-
ployment algorithm repeats until agents occupy G such
that Q(G) = V .

Remark 5.4. (Exploration): As a result of moving to the explo-
ration process, vertices in S∗2.5 are discovered. These vertices are
visible and now belong to Q(G) through completion of the 2.5D
non-redundant peak strategy. When new vertices are
discovered, agents re-evaluate S∗∗2.5 andD. •

Lemma 5.5. (Completion of the 2.5D non-redundant
peak strategy): The exploration process results in com-
plete exploration of S2.5.

We proceed to define Algorithm 3:

[Informal description]: Agent, a, independently deter-
mines if it is a redundant agent by checking if another
active agent shares a triangle in ∆v. If a is redundant, it
broadcasts that it is a redundant and counts the number
of neighboring redundant neighbors, n. Then a broad-
casts n. If a is redundant and has the lowest n of all
agents, then a places a relay on its vertex. If there are
multiple agents that have the lowest number of neigh-
boring redundant neighbors, then the agent with the
lowest index in A executes this action.

Remark 5.6. (Redundant agent removal): By con-
struction, this process guarantees |Q| never decreases. It is nec-
essary that Algorithm 3 be recursive because the set of redundant
agents changes every time a redundant agent is removed. •

Finally, we determine that 2.5D non-redundant
peak strategy will complete in under |V ∗∗|−1 time steps.

8 Copyright c© 2016 by ASME

(a) Initialization of the 2.5D
non-redundant peak strategy

(b) Exploration and coloring after one
time step

(c) Exploration and coloring after 4 time
steps

(d) Fully guarded S2.5

Figure 7. Execution of 2.5D non-redundant peak strategy on S∗∗2.5 with 135 vertices. In (a) the agents start on arbitrary vertex, v0,
represented by . The vertices that are visible to the agents are denoted with . The agents label the newly detected vertices surrounding v0 with
colors priority: 1 = , 2 = , and Gc = . In (b), one agent moves to the unoccupied vertex with color Gc, and colors the newly discovered vertices.
The vertices that the agents actively guard are represented with and the shift of the robots is represented by a black arrow. Notice that in D , there
are no vertices with color Gc. The agents must change the color of a vertex in D with color 1 or 2 to Gc. In (c), four time steps have passed as the
agents continue deployment. At this point, one of them detects that it occupies a redundant vertex, v. In order to resolve this, the agent places a relay,
represented by , at v to maintain communication to the agents and to notify other agents not to occupy v. Finally in (c), after 74 time steps, the 2.5D
non-redundant peak strategy completes with 63 active agents and 11 relays.

(a) Fully guarded S2.5 (0◦) (b) Fully guarded S2.5 (120◦)

Figure 8. Results of 2.5D non-redundant peak strategy in S2.5 are shown.

Theorem 5.7. (The 2.5D non-redundant peak
strategy completion time): The S2.5 deployment strat-
egy takes at most |V ∗∗|−3 time steps to complete.

6 Conclusions
We have explored algorithms on distributed exploration and

guarding deployment for coordinated agents in 1.5D and 2.5D
environments. In the 1.5D setting, we have determined that the
minimum sufficient and some times necessary number of agents
required to guard the terrain is floor(|P |/2) + 1. We have de-
veloped a method for both exploration and guarding of the 1.5D
terrain. In the 2.5D setting, we have introduced the concept of
guarding sets with non-redundant vertices. Combining this con-

cept with coloring strategies for planar graphs, we have devised a
distributed algorithm for simultaneous exploration and guarding.
The resulting algorithm constructs a tree for communication and
removes redundant vertices so that |A| = 2|V ∗∗|/3 is sufficient.
Future work will explore the extension of our algorithm design
to scenarios where agents have limited visibility regions, such as
those determined by limited ranges or cone-like shapes, the con-
sideration of other motion models for the agents that allow them
to traverse across the planes of a 2.5D terrain instead of just the
edges, and the implementation of our results on an experimental
testbed with a fleet of quadrotors.

9 Copyright c© 2016 by ASME

Algorithm 2 : 2.5D non-redundant peak strategy

Agent a variables:
bool explored=False
int ID

While Q(G) is not V :
Coloring

if explored is True:
for all v ∈ D that neighbor a:

if v has no neighbors with color 1:
a colors v to 1

else if v has no neighbors with color 2:
a colors v to 2

else:
a colors v to Gc

a sets explored to False
a broadcasts and updates colors in D
a sets D to /0

Explore

if an unoccupied vertex v ∈D of color Gc exists:
if a has the lowest ID that neighbors v

a moves to v
a broadcasts and updates tree
a sets explored to True

else if a neighbors v ∈D of color 1 or 2:
if no agents with lower ID have moved this time step

a moves to v
a broadcasts and updates tree
a sets explored True

if a child agent, ac, of a moved:
a moves to last occupied vertex of ac

Refine guarding set

execute Algorithm 3

Acknowledgments
This work was supported in part by Northrop Grumman

through seed funding of the UCSD Contextual Robotics Insti-
tute.

REFERENCES
[1] O’Rourke, J., 1987. Art Gallery Theorems and Algorithms. Oxford

University Press.
[2] Chvátal, V., 1975. “A combinatorial theorem in plane geometry”.

Journal of Combinatorial Theory. Series B, 18, pp. 39–41.
[3] Hurtado, F., Loffler, M., Matos, I., Sacristan, V., Saumell, M., Sil-

veria, R. I., and Staals, F., 2014. “Terrain visibility with multi-
ple viewpoints”. In International Symposium on Algorithms and
Computation, pp. 317–327.

Algorithm 3 : Redundant agent removal

Agent a variables:
bool redundancy = True
int n = 0

While an agent occupies a redundant vertex:
Calculate

if there exists t ∈ ∆v that is exclusive to a:
a sets redundancy to False

Communicate

if redundancy is True:
a communicates redundancy to neighbors
for each neighbor with redundancy equal to True

n = n+1

Place relay

if redundancy is True and n least of all redundant agents
a places a relay at v
a no longer occupies v

[4] Friedrichs, S., Hemmer, M., and Schmidt, C., 2014. “A PTAS
for the continuous 1.5d terrain guarding problem”. In Canadian
Conference on Computational Geometry. Electronic Proceedings.

[5] Gibson, M., Kanade, G., Krohn, E., and Varadarajan, K., 2014.
“Guarding terrains via local search”. Journal of Computational
Geometry, 5(1), pp. 168–178.

[6] Appel, K., and Haken, W., 1977. “Every planar map is four col-
orable. Part i: Discharging”. Illinois J. Math, 21, pp. 429–490.

[7] Bose, P., Shermer, T., Toussaint, G., and Zhu, B., 1997. “Guarding
polyhedral terrains”. Computational Geometry, 7, pp. 173–185.

[8] Chiba, N., Nishizeki, T., and Saito, N., 1981. “A linear 5-coloring
algorithm of planar graphs”. Journal of Algorithms, 2, pp. 317–
327.

[9] Williams, M. H., 1985. “A linear algorithm for colouring planar
graphs with five colours”. The Computer Journal, 28, pp. 78–81.

[10] Robertson, N., Sanders, D. P., Seymour, P., and Thomas, R., 1996.
“Efficiently four-coloring planar graphs”. In ACM Symposium on
Theory of Computing, pp. 571–575.

[11] Bullo, F., Cortés, J., and Martı́nez, S., 2009. Distributed Con-
trol of Robotic Networks. Applied Mathematics Series. Prince-
ton University Press. Electronically available at http://
coordinationbook.info.

[12] Ganguli, A., Cortés, J., and Bullo, F., 2006. “Distributed deploy-
ment of asynchronous guards in art galleries”. In American Con-
trol Conference, pp. 1416–1421.

10 Copyright c© 2016 by ASME

http://coordinationbook.info
http://coordinationbook.info

	Introduction
	Preliminaries
	Notation
	Planar graphs and coloring
	Polyhedral terrains in 1.5D and 2.5D

	Problem statement
	Distributed deployment over 1.5D terrains
	Guarding set via alternate peaks
	1.5D alternate peak strategy
	Time steps for algorithm completion

	Distributed deployment over 2.5D terrains
	Guarding set via non-redundant vertices
	S2.5 exploration and guarding algorithm

	Conclusions

