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0.1
Introduction

In this chapter we look at one of the canonical driving examples for multi-agent sys-
tems: average consensus. In this scenario, a group of agents seek to agree on the aver-
age of their initial states. Depending on the particular application, such states might
correspond to sensor measurements, estimates about the position of a target, or some
other data that needs to be fused. Due to its numerous applications in networked sys-
tems, many algorithmic solutions exist to themulti-agent average consensus problem;
however, a majority of them rely on agents having continuous or periodic availability
of information from other agents. Unfortunately, this assumption leads to inefficient
implementations in terms of energy consumption, communication bandwidth, net-
work congestion, and processor usage. Motivated by these observations, our main
goal here is the design of provably correct distributed event-triggered strategies that
autonomously decide when communication and control updates should occur so that
the resulting asynchronous network executions still achieve average consensus.
The literature and motivation behind multi-agent average consensus is extensive,

see e.g., [1, 2, 3, 4] and references therein. This chapter aims to provide a conceptu-
al introduction to event-triggered control strategies applied to consensus problems.
Triggered controllers seek to understand the trade-offs between computation, com-
munication, sensing, and actuator effort in achieving a desired task with a guaranteed
level of performance. Early works [5] only consider tuning controller executions to
the state evolution of a given system, but these ideas have since been extended to
consider other tasks such as when to take the sample of a state or when to broad-
cast information over a wireless network; see [6] and references therein for a recent
overview. Among the many references in the context of multi-agent systems, [7]
specifies the responsibility of each agent in updating the control signals, [8] consid-
ers network scenarios with disturbances, communication delays, and packet drops,
and [9] studies decentralized event-based control that incorporates estimators of the
interconnection signals among agents. These works are all concerned with design-
ing event-triggers that ultimately determine when control signals should be updated
in addition to how. Several works have explored the application of event-triggered
ideas to the acquisition of information by the agents rather than only for actuation. To
this end, [10, 11, 12] combine event-triggered controller updates with sampled data
that allows for the periodic evaluation of the triggers. Instead, some works [13] drop
the need for periodic access to information by considering event-based broadcasts,
where agents decide with local information only when to obtain further information
about neighbors. Self-triggered control [14, 15] relaxes the need for local informa-
tion by deciding when a future sample of the state should be taken based on the
available information from the last sampled state. Team-triggered coordination [16]
combines the strengths of event- and self-triggered control into a unified approach
for networked systems.
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Triggered Trigger Memory Graph Trigger Provably
comm? dependence structure structure evaluation no Zeno?

[17] no state centralized undirected continuous yes
[17] no state decentralized undirected continuous no
[18] no state centralized directed continuous yes
[18] no state decentralized directed continuous no
[19] yes time decentralized undirected continuous no
[19] yes time requires λ2 undirected continuous yes
[20] yes state requiresN undirected continuous no
[21] yes state requiresK directed periodic yes
[12] yes state decentralized undirected periodic yes
[22, 23] yes state decentralized directed periodic yes

Table 1 Event-triggered multi-agent average consensus

Organization
Table 1 shows the progression of event-triggered consensus problems that are cov-
ered in this chapter. It should be noted that this is a very narrow scope on the field
of event-triggered consensus problems intended to introduce the high-level ideas be-
hind event-triggered communication and control laws and provide insight into how
they are designed. In particular, this chapter only discusses works that consider
single-integrator dynamics and no uncertainties (e.g., disturbances, noise, quantiza-
tion, wireless communication issues). Given that this is currently an active area of re-
search, it goes without saying that there are many important related works that are not
highlighted here. Examples include scenarios with disturbances, sensor noise, de-
layed communication, quantized communication, packet drops, more general dynam-
ics, dynamic topologies, and heterogeneous agents; to name a few. Lastly, it should
also be noted that although the table references journal articles that first present these
ideas going back to 2012, preliminary results from these works has been presented
at various conferences as early as 2008. The contents of the chapter are summarized
next.
The first application of event-triggered control to the multi-agent consensus prob-

lem was in [17], where the authors propose a Lyapunov-based event-triggered con-
trol strategy that dictates when agents should update their control signals. Unfor-
tunately, its implementation relies on each agent having perfect information about
their neighbors at all times. Identifying this limitation, the authors in [19] propose
an event-triggered communication and control law that not only determines when
agents should update their control signals, but also when they should broadcast state
information to their neighbors. However, the drawback of the proposed algorithm is
that it is a time-dependent triggering rule with design parameters that are difficult to
choose to yield good performance. Instead, a state-dependent triggering rule is pro-
posed in [20] which better aligns the events with the desired task; this is explained in
more detail later. Lastly, all the above algorithms assume continuous evaluation of
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some function is possible to determine exactly when some event has occurred. Even
in scenarios where Zeno behavior (an infinite number of events occurring in a finite
period of time) can be provably avoided, the time between events may still be arbi-
trarily small which can be problematic for digital implementations. Consequently,
the works [21, 12, 22, 23] propose algorithms that only require triggering functions
to be evaluated periodically rather than continuously. Finally, we close the chapter
by identifying some shortcomings of the current state of the art and ideas for future
work.

0.2
Preliminaries

This section introduces some notational conventions and notions on graph theory.
LetR, R>0, R≥0, and Z>0 denote the set of real, positive real, nonnegative real, and
positive integer numbers, respectively. We denote by 1N and 0N ∈ RN the column
vectors with entries all equal to one and zero, respectively. We let ‖ · ‖ denote the
Euclidean norm on RN . We let diag(RN ) = {x ∈ RN | x1 = · · · = xN} ⊂ RN
be the agreement subspace inRN . For a finite set S, we let |S| denote its cardinality.
Given x, y ∈ R, Young’s inequality states that, for any ε ∈ R>0,

xy ≤ x2

2ε
+
εy2

2
. (1)

A weighted directed graph (or weighted digraph) G = (V,E,W ) is comprised of a
set of verticesV = {1, . . . , N}, directed edgesE ⊂ V ×V and weighted adjacency
matrixW ∈ RN×N≥0 . Given an edge (i, j) ∈ E, we refer to j as an out-neighbor of
i and i as an in-neighbor of j. The sets of out- and in-neighbors of a given node i are
N out
i andN in

i , respectively. The weighted adjacency matrixW ∈ RN×N satisfies
wij > 0 if (i, j) ∈ E and wij = 0 otherwise. The graph G is undirected if and
only if wij = wji for all i, j ∈ V . A path from vertex i to j is an ordered sequence
of vertices such that each intermediate pair of vertices is an edge. A digraph G is
strongly connected if there exists a path from all i ∈ V to all j ∈ V . The out- and
in-degree matricesDout andDin are diagonal matrices where

douti =
∑

j∈N out
i

wij , dini =
∑
j∈N in

i

wji,

respectively. A digraph is weight-balanced if Dout = Din. The (weighted) Lapla-
cian matrix is L = Dout − W . Based on the structure of L, at least one of
its eigenvalues is zero and the rest of them have nonnegative real parts. If the di-
graph G is strongly connected, 0 is a simple eigenvalue with associated eigenvector
1N . The digraph G is weight-balanced if and only if 1TNL = 0N if and only if
Ls = 1

2 (L + LT ) is positive semidefinite. For a strongly connected and weight-
balanced digraph, zero is a simple eigenvalue of Ls. In this case, we order its eigen-
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values as λ1 = 0 < λ2 ≤ · · · ≤ λN , and note the inequality

xTLx ≥ λ2(Ls)‖x−
1

N
(1TNx)1N‖2, (2)

for all x ∈ RN . The following property will also be of use later,

λ2(Ls)x
TLx ≤ xTL2

sx ≤ λN (Ls)x
TLx. (3)

This can be seen by noting that Ls is diagonalizable and rewriting Ls = S−1DS,
whereD is a diagonal matrix containing the eigenvalues of Ls.

0.2.1
Event-triggered control of linear systems

Here we provide a very basic working introduction to the general idea of event-
triggered control by working through a simple linear control problem. The expo-
sition closely follows [24]. The remainder of this chapter then focuses on how these
elementary ideas are extended to be applied to much more in the context of multi-
agent consensus on networks. We refer the interested reader to [6] for further details
on the subject of event-triggered control in general.
Consider a linear control system

ẋ = Ax+Bu, (4)

with x ∈ Rn and u ∈ Rm. Our starting point is the availability of a linear feedback
controller u∗ = Kx such that the closed-loop system

ẋ = (A+BK)x,

is asymptotically stable. Given a positive definite matrixQ ∈ Rn×n, let P ∈ Rn×n
be the unique solution to the Lyapunov equation (A+BK)TP + P (A+BK) =
−Q. Then, the evolution of the Lyapunov function Vc(x) = xTPx along the tra-
jectories of the closed-loop system is

V̇c = xT ((A+BK)TP + P (A+BK))x = −xTQx.

Consider now a sample-and-hold implementation of the controller, where the input
is not updated continuously, but instead at a sequence of to-be-determined times
{t`}`∈Z≥0

⊂ R≥0,

u(t) = Kx(t`), t ∈ [t`, t`+1). (5)

Such an implementation makes sense in practical scenarios given the inherent nature
of digital systems. With this controller implementation, the closed-loop system can
be written as

ẋ = (A+BK)x+BKe,
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where e(t) = x(t`) − x(t), t ∈ [t`, t`+1), is the state error. Then, the objective
is to determine the sequence of times {t`}`∈Z≥0

to guarantee some desired level of
performance for the resulting system. To make this concrete, define the function

V (t, x0) = x(t)TPx(t),

for a given initial condition x(0) = x0 (here, t 7→ x(t) denotes the evolution of
the closed-loop system using (5)). We define the performance of the system via a
function S : R≥0 × Rn → R≥0 that upper bounds the evolution of V . Then, the
sequence of times {t`} can be implicitly defined as the times at which

V (t, x0) ≤ S(t, x0) (6)

is not satisfied. More specifically, this is an event-triggered condition that updates
the actuator signal whenever V (t`, x0) = S(t`, x0). Assuming solutions are well
defined, it is not difficult to see that if the performance function satisfies S(t, x0) ≤
β(t, |x0|), for some β ∈ KL, then the closed-loop system is globally uniformly
asymptotically stable. Moreover, if β is an exponential function, the system is glob-
ally uniformly exponentially stable.
Therefore, one only needs to guarantee the lack of Zeno behavior. We do this by

choosing the performance function S so that the inter-event times t`+1−t` are lower
bounded by some constant positive quantity. This can be done in a number of ways.
For the linear system (4), it turns out that it is sufficient to selectS satisfying V̇ (t`) <
Ṡ(t`) at the event times t` (this fact is formally stated below in Theorem 0.2.1). To
do so, choose R ∈ Rn×n positive definite such thatQ−R is also positive definite.
Then, there exists a Hurwitz matrix As ∈ Rn×n such that the Lyapunov equation

ATs P + PAs = −R

holds. Consider the hybrid system,

ẋs = Asxs, t ∈ [t`, t`+1),

xs(t`) = x(t`),

whose trajectories we denote by t 7→ xs(t), and define the performance function S
by

S(t) = xTs (t)Pxs(t).

Letting y = [xT , eT ]T ∈ Rn × Rn, we write the continuous-time dynamics as

ẏ = Fy, t ∈ [t`, t`+1),

where

F =

[
A+BK BK
−A−BK −BK

]
.
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With a slight abuse of notation, we let y` = [xT (t`), 0
T ]T be the state y at time t`.

Note that e(t`) = 0, for all ` ∈ Z≥0, by definition of the update times. With this
notation, we can rewrite

S(t) = (CeFs(t−t`)y`)
TP (CeFs(t−t`)y`),

V (t) = (CeF (t−t`)y`)
TP (CeF (t−t`)y`),

where

Fs =

[
As 0
0 0

]
, C =

[
I 0

]
.

The condition (6) can then be rewritten as

f(t, y`) = yT` (eF
T (t−t`)CTPCeF (t−t`) − eF

T
s (t−t`)CTPCeFs(t−t`))y` ≤ 0.

Note that because we consider a deterministic system here, with the information
available at time t`, it is possible to determine the next time t`+1 at which (6) is
violated by computing t`+1 = h(x(t`)) as the time for which

f(h(x(t`)), y`) = 0. (7)

The following result from [24] provides a uniform lower bound tmin on the inter-event
times {t`+1 − t`}`∈Z≥0

.

Theorem 0.2.1 (Lower bound on inter-event times for event-triggered approach)
Given the system (4) with controller (5) and controller updates given by the event-
triggered policy (7), the inter-event times are lower bounded by

tmin = min{t ∈ R>0 | det(M(t)) = 0} > 0,

where

M(t) =
[
I 0

] (
eFtCTPCeFt − eFstCTPCeFst

) [I
0

]
.

Note that the above result can also be interpreted in the context of a periodic con-
troller implementation: any period less than or equal to tmin results in a closed-loop
system with asymptotic stability guarantees.

0.3
Problem statement

We let G denote the connected, undirected communication graph that describes the
communication topology in a network of N agents. In other words, agent j can
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communicate with agent i if j is a neighbor of i in G. We denote by xi ∈ R the state
of agent i ∈ {1, . . . , N} and consider single-integrator dynamics

ẋi(t) = ui(t). (8)

Then, the distributed controller

u∗i (x) = −
∑
j∈Ni

(xi − xj) (9)

is known to drive the states of all agents to the average of the initial conditions [25, 1].
This is formalized in Theorem 0.3.1.

Theorem 0.3.1 (Continuous controller) Given the dynamics (8), if all agents im-
plement the control law (9), then multi-agent average consensus is achieved; i.e.,

lim
t→∞

xi(t) =
1

N

N∑
j=1

xj(0) (10)

for all i ∈ {1, . . . , N}.

Unfortunately, implementing (9) in a digital setting is not possible since it requires
all agents to have continuous access to the state of their neighbors and the control
inputs ui(t) must also be updated continuously. This is especially troublesome in the
context of wireless network systems since this means agents must communicate with
each other continuously as well. Instead, this chapter is interested in event-triggered
communication and control strategies to relax these requirements.

0.4
Centralized event-triggered control

Consider the dynamics (8) and the ideal control law (9). Letting x = (x1, . . . , xN )T

and u = (u1, . . . , uN )T , the closed-loop dynamics of the ideal system is given by

ẋ(t) = −Lx(t). (11)

As stated before, implementing this requires all agents to continuously update their
control signals which is not realistic for digital controllers. Instead, following the
basic idea for event-triggered control presented in Section 0.2.1, let us consider a
digital implementation of this ideal controller

u(t) = −Lx(t`), t ∈ [t`, t`+1), (12)

where the event times {t`}`∈Z≥0
are to be determined such that the system still con-

verges to the desired state. Let e(t) = x(t`) − x(t) for t ∈ [t`, t`+1) be the state
measurement error. For simplicity, we denote by x̂(t) = x̂(t`) for t ∈ [t`, t`+1) as
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the state that was used in the last computation of the control signal. The closed-loop
dynamics of the controller (12) is then given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (13)

The problem can now be formalized as follows.

Problem 0.4.1 (Centralized event-triggered control) Given the closed-loop dy-
namics (13), find an event-trigger such that the sequence of times {t`}`∈Z≥0

ensures
multi-agent average consensus (10) is achieved.

Following [17], to solve this problem we consider the Lyapunov function

V (x) = xTLx.

Given the closed-loop dynamics (13), we have

V̇ = xTLẋ = −xTLL(x+ e) = −‖Lx‖2︸ ︷︷ ︸
"good"

−xTLLe︸ ︷︷ ︸
"bad"

.

For simplicity, we are not interested in characterizing any specific performance as
in Section 0.2.1. Instead, we are only interested in asymptotic stability. The main
idea of event-triggered control is then to determine when the controller should be
updated (i.e., when e should be set to 0) by balancing the “good” term against the
“bad” term. More specifically, we are interested in finding conditions on the error e
such that V̇ < 0 at all times. Using norms, we can bound

V̇ ≤ −‖Lx‖2 + ‖Lx‖‖L‖‖e‖.

Then, if we enforce the error e to satisfy

‖e‖ ≤ σ ‖Lx‖
‖L‖

,

with σ ∈ (0, 1) for all times, we have

V̇ ≤ (σ − 1)‖Lx‖2,

which is strictly negative for all Lx 6= 0. The following centralized event-trigger
ensures this is satisfied at all times.

Theorem 0.4.2 (Centralized event-triggered control) Given the closed-loop dy-
namics (13), if the update times are determined as the times when

f(x, e) , ‖e‖ − σ ‖Lx‖
‖L‖

= 0, (14)

then the system achieves multi-agent average consensus.
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At times t ∈ [t`, t`+1), system (continuously) performs:

1: set x̂(t) = x(t`)
2: set e(t) = x̂(t)− x(t)

3: if ‖e(t)‖ = σ ‖Lx(t)‖‖L‖ then
4: set t`+1 = t
5: set x̂(t) = xi(t`+1)
6: set ` = `+ 1
7: end if
8: set u(t) = −Lx̂(t)

Table 2 Centralized event-triggered control.

In other words, given a control update at time t`, the next time t`+1 is given by

t`+1 = min{t′ > t` | ‖e(t′)‖ = σ
‖Lx(t′)‖
‖L‖

}.

The algorithm is formalized in Table 2.
The proof of convergence to the desired state then follows directly from the proof

of Theorem 0.3.1 and the fact that the sum of all states is still an invariant quantity.
Furthermore, the authors in [17] are able to rule out the existence of Zeno behavior
(formally defined below) by showing there exists a positive time

τ =
σ

‖L‖(1 + σ)

bounding the inter-event times, i.e.,

t`+1 − t` ≥ τ

for all ` ∈ Z≥0.

Definition 0.4.3 (Zeno behavior) If there exists T > 0 such that t` ≤ T for all
` ∈ Z≥0, then the system is said to exhibit Zeno behavior.

The centralized event-triggered controller (12) with triggering law (14) relaxes
the requirement that agents need to continuously update their control signals, but
it still has many issues. One of them is that the event-trigger f(x, e) requires full
state information to implement. Next, we provide a distributed solution instead of a
centralized one.

0.5
Decentralized event-triggered control

In the previous section we presented a centralized event-triggered control law to solve
the multi-agent average consensus problem. Unfortunately, implementing this re-
quires a centralized decision maker and requires all agents in the network to update
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their control signals simultaneously. In this section we relax this requirement by
following [17].
Let us now consider a distributed digital implementation of the ideal controller (9).

In this case we assume each agent i has its own sequence of event times {ti`}`∈Z≥0
.

At any given time t, let x̂i(t) = xi(t
i
`) for t ∈ [ti`, t

i
`+1) be the state of agent i at its

last update time. The distributed event-triggered controller is then given by

ui(t) = −
∑
j∈Ni

(x̂i(t)− x̂j(t)). (15)

It is important to note here that the latest updated state x̂j(t) of agent j ∈ Ni ap-
pears in the control signal for agent i. This means that when an event is triggered
by a neighboring agent j, agent i also updates its control signal accordingly. As in
the centralized case, let ei(t) = xi(t

i
`) − xi(t) be the state measurement error for

agent i. Then, letting x̂ = (x̂1, . . . , x̂N )T and e = (e1, . . . , eN )T , the closed-loop
dynamics of the controller (15) is given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (16)

The problem can now be formalized as follows.

Problem 0.5.1 (Decentralized event-triggered control) Given the closed-loop dy-
namics (16), find an event-trigger for each agent i such that the sequence of times
{ti`}`∈Z≥0

ensures multi-agent average consensus (10) is achieved.

Following [17], to solve this problem we again consider the Lyapunov function

V (x) = xTLx.

Given the closed-loop dynamics (16), we have

V̇ = −‖Lx‖2 − xTLLe.

As before, we are interested in finding conditions on the error e such that V̇ < 0
at all times; however, we must now do this in a distributed way. For simplicity, let
Lx , z = (z1, . . . , zN )T . Then, expanding out V̇ yields

V̇ = −
N∑
i=1

z2i −
∑
j∈Ni

zi(ei − ej)

= −
N∑
i=1

z2i − |Ni|ziei +
∑
j∈Ni

ziej .

Using Young’s inequality (1) and the fact that G is symmetric, we can bound this by

V̇ ≤ −
N∑
i=1

(1− a|Ni|)z2i +
1

a
|Ni|e2i
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for all a > 0. Letting a ∈ (0, 1/|Ni|) for all i, if we can enforce the error of all
agents to satisfy

e2i ≤
σia(1− a|Ni|)

|Ni|
z2i

with σi ∈ (0, 1) for all times, we have

V̇ ≤
N∑
i=1

(σi − 1)(1− a|Ni|)z2i ,

which is strictly negative for all Lx 6= 0. The following decentralized event-trigger
ensures this is satisfied at all times.

Theorem 0.5.2 (Decentralized event-triggered control) Given the closed-loop
dynamics (16), if the updates times of each agent i are determined as the times when

fi(xi, ei, {xj}j∈Ni) , e
2
i −

σia(1− a|Ni|)
|Ni|

z2i = 0, (17)

with 0 < a < 1/|Ni|, then the system achieves multi-agent average consensus.

Note that the trigger (17) can be evaluated by agent i using only information about
its own and neighbors’ states. The algorithm is formalized in Table 3.

At times t ∈ [ti`, t
i
`+1), agent i (continuously) performs:

1: set zi(t) =
∑
j∈Ni

(xi(t)− xj(t))
2: set ei(t) = x̂i(t)− xi(t)
3: if ei(t)2 = σia(1−a|Ni|)

|Ni| zi(t)
2 then

4: set ti`+1 = t
5: broadcast x̂i(t) = xi(t

i
`+1) to neighbors j ∈ Ni

6: set ` = `+ 1
7: end if
8: set ui(t) = −

∑
j∈Ni

(x̂i(t)− x̂j(t))

Table 3 Decentralized event-triggered control.

The proof of convergence to the desired state then directly follows from the proof
of Theorem 0.3.1 and the fact that the sum of all states is still an invariant quantity.
Furthermore, the authors in [17] are able to show that at all times there exists one
agent i for which the inter-event times are strictly positive. Unfortunately, this is not
enough to rule out Zeno behavior which is quite problematic, both from a pragmatic
and theoretical viewpoint, as the trajectories of the system are no longer well-defined
beyond the accumulation point in time.
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Remark 0.5.3 (Convergence and Zeno behavior) It should be noted here that
when we refer to a “proof of convergence” for any closed-loop dynamics, it is on-
ly valid for trajectories do no exhibit Zeno behavior. Consequently, being able to
guarantee Zeno behaviors do not occur is extremely important in validating the cor-
rectness of a given algorithm. We formalize the definition of Zeno behavior next.
•

Remark 0.5.4 (Directed graphs) All the work from [17] has also been extended to
consider weight-balanced directed graphs in [18]. For brevity, we defer the discus-
sion on directed graphs to Section 0.6.1.

The decentralized event-triggered controller (15) with triggering law (17) relaxes
the requirement that agents need to continuously update their control signals; how-
ever, there are still some severe issues. Although each agent now has a local event-
triggering condition, it requires continuous information about all of its neighbors
to implement it. This is still troublesome in a wireless network setting where this
implies continuous communication among agents is still required. We address this
next.

0.6
Decentralized event-triggered communication and control

In the previous sections we presented event-triggered control laws to determine when
control signals should be updated; however, this relied on the continuous availability
of some state information. In particular, each agent i requires exact state informa-
tion about their neighbors j ∈ Ni to evaluate the trigger (17) and determine when
its control signal ui should be updated. Instead, we are now interested in developing
event-triggered communication and control laws such that each agent imust not only
determine when to update its control signal but also when to communicate with its
neighbors. For simplicity, we refer to communication and control together as ‘coor-
dination.’
As in the previous section, we assume each agent i has its own sequence of event

times {ti`}`∈Z≥0
. However, these update times now correspond to when messages

are broadcast in addition to when control signals are updated. At any given time t, let
x̂i(t) = xi(t

i
`) for t ∈ [ti`, t

i
`+1) be the last broadcast state of agent i. Then, at any

given time t, agent i only has access to the last broadcast state x̂j(t) of its neighbors
j ∈ Ni rather than exact states xj(t).
The distributed event-triggered controller is then still given by

ui(t) = −
∑
j∈Ni

(x̂i(t)− x̂j(t)). (18)

It is important to note here that the latest broadcast state x̂j(t) of agent j ∈ Ni
appears in the control signal for agent i. This means that when an event is triggered
by a neighboring agent j, agent i also updates its control signal accordingly. As
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before, let ei(t) = xi(t
i
`)− xi(t) be the state measurement error for agent i. Then,

letting x̂ = (x̂1, . . . , x̂N )T and e = (e1, . . . , eN )T , the closed-loop dynamics of
the controller (15) is given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (19)

The problem can now be formalized as follows. However, it should be noted that
we are now looking for a strictly local event-trigger for each agent i that doesn’t
require exact information about its neighbors. More specifically, we recall the result
of Theorem 0.5.2 and notice that the event-trigger for agent i depends on the exact
state xj(t) of all its neighbors j ∈ Ni. In this section we are interested in finding a
trigger that only depends on the last broadcast information x̂j(t) instead.

Problem 0.6.1 (Decentralized event-triggered coordination) Given the closed-
loop dynamics (16), find a local event-trigger for each agent i such that the sequence
of times {ti`}`∈Z≥0

ensures multi-agent average consensus (10) is achieved.

Here we present two classes of event-triggered coordination solutions to the prob-
lem above: time-dependent and state-dependent triggers. The time-dependent event-
trigger to solve this problem was first developed in [19] and is presented next. The
algorithm is formalized in Table 4.

Theorem 0.6.2 (Decentralized event-triggered coordination (time-dependent))
Given the closed-loop dynamics (16), if the updates times of each agent i are deter-
mined as the times when

fi(ei(t), t) , ‖ei(t)‖ − (c0 + c1e
−αt) = 0, (20)

with constants c0, c1 ≥ 0 and c0 + c1 > 0, then the system reaches a neighborhood
of multi-agent average consensus upper-bounded by

r = ‖L‖
√
Nc0/λ2(L).

Moreover, if c0 > 0 or 0 < α < λ2(L), then the closed-loop system does not exhibit
Zeno behavior.

The proof of convergence is shown in the appendix; however, we are now also
interested in guaranteeing Zeno behavior does not occur to verify the correctness of
the algorithm as mentioned earlier.
The main drawback of the event-triggered communication and control law pro-

posed in Theorem 0.6.2 is that although the parameters c0, c1, andα play very impor-
tant roles in the performance of the algorithm (e.g., convergence speed and amount
of triggers), there is no good way of choosing these parameters a priori, without any
global knowledge. Furthermore, the initial condition also plays an important role in
the performance of the algorithm.
In particular we focus our discussion here on the parameters c0 and α and their

effects on convergence and possible Zeno behaviors. We begin with the more desir-
able c0 = 0 case, as in this case the result of Theorem 0.6.2 states that the system
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At times t ∈ [ti`, t
i
`+1), agent i (continuously) performs:

1: set x̂i(t) = xi(t
i
`)

2: set ei(t) = x̂i(t)− xi(t)
3: if |ei(t)| = c0 + c1e

−αt then
4: set ti`+1 = t
5: broadcast x̂i(t) = xi(t

i
`+1) to neighbors j ∈ Ni

6: set ` = `+ 1
7: end if
8: set ui(t) = −

∑
j∈Ni

(x̂i(t)− x̂j(t))

Table 4 Decentralized event-triggered coordination (time-dependent).

will asymptotically achieve exact multi-agent average consensus as defined in (10).
However, in this case we require α < λ2(L) to guarantee Zeno behaviors can be
avoided and, unfortunately, λ2(L) is a global quantity that requires knowledge about
the entire communication topology to compute. There are indeed methods for esti-
mating this quantity in a distributed way (see e.g., [26, 27]), but we do not discuss
this here. On the other hand, when c0 > 0 we can guarantee that Zeno behaviors are
avoided regardless of our choice of α; however, we lose the asymptotic convergence
guarantee. That is, for c0 > 0 we can only guarantee convergence to a neighborhood
of the desired average consensus state.
As a result of the above discussion, we see that there is no way the agents can

choose the parameters c0, c1, and α to ensure asymptotic convergence to the average
consensus state while also guaranteeing Zeno executions are avoided. Consequently,
more recent works have proposed a local Lyapunov-based event-triggering condition
that only relies on currently available information and no exogenous signals (e.g.,
time). This also naturally aligns when events are triggered with the progression of
the task as encoded in the Lyapunov function. The state-dependent event-trigger to
solve this problem was first developed in [20] and improved upon in [23] (removed
global parameter a requirement); we present this next.
Following [23], to solve this problem we consider a different Lyapunov function,

V (x) =
1

2
(x− x̄1)T (x− x̄1),

where x̄ = 1
N

∑N
i=1 xi(0) is the average of all initial conditions. Then, given the

closed-loop dynamics (16), we have

V̇ = −xT ẋ− x̄1T ẋ = −xTLx̂− x̄1TLx̂ = −xTLx̂,

where we have used the fact that the graph is weight-balanced in the last equality. As
before, we are interested in finding conditions on the error e such that V̇ < 0 at all
times; however, we must now do it without access to neighboring state information.
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Recalling ei(t) = x̂i(t)− xi(t), we can expand this out to

V̇ = −x̂TLx̂+ eTLx̂

= −
N∑
i=1

∑
j∈Ni

(
1

2
(x̂i − x̂j)2 − ei(x̂i − x̂j)

)
.

Using Young’s inequality for each product (see [23] for why this choice)

ei(x̂i − x̂j) ≤ e2i +
1

4
(x̂i − x̂j)2

yields

V̇ ≤ −
N∑
i=1

∑
j∈Ni

(
1

2
(x̂i − x̂j)2 − e2i −

1

4
(x̂i − x̂j)2

)

= −
N∑
i=1

∑
j∈Ni

(
1

4
(x̂i − x̂j)2 − e2i

)

=
N∑
i=1

ei|Ni| −
∑
j∈Ni

(
1

4
(x̂i − x̂j)2

)
.

If we can enforce the error of all agents to satisfy

e2i ≤ σi
1

4|Ni|
∑
j∈Ni

(x̂i − x̂j)2

with σi ∈ (0, 1) for all times, we have

V̇ ≤
N∑
i=1

σi − 1

4

∑
j∈Ni

(x̂i − x̂j)2,

which is strictly negative for all Lx̂ 6= 0. The following decentralized event-trigger
ensures this is satisfied at all times.

Theorem 0.6.3 (Decentralized event-triggered coordination (state-dependent))
Given the closed-loop dynamics (16), if the updates times of each agent i are deter-
mined as the times when

fi(ei) , e
2
i − σi

1

4|Ni|
∑
j∈Ni

(x̂i − x̂j)2 ≥ 0, (21)

then the system achieves multi-agent average consensus.

It should be noted here that unlike all the other triggers presented so far, this trigger
is given by an inequality rather than an equality. This is a result of the state-dependent
triggering function that agents use to determine when to communicate. Since agents
are asynchronously sending each other messages, the information they have about
one another is also changing discontinuously.
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At times t ∈ [ti`, t
i
`+1), agent i (continuously) performs:

1: set x̂i(t) = xi(t
i
`)

2: set ei(t) = x̂i(t)− xi(t)
3: if ei(t)2 ≥ σi 1

4|Ni|
∑
j∈Ni

(x̂i(t)− x̂j(t))2 then
4: set ti`+1 = t
5: broadcast x̂i(t) = xi(t

i
`+1) to neighbors j ∈ Ni

6: set ` = `+ 1
7: end if
8: set ui(t) = −

∑
j∈Ni

(x̂i(t)− x̂j(t))

Table 5 Decentralized event-triggered coordination (state-dependent).

0.6.1
Directed graphs

Up until now we have assumed that the communication graph was always undirected.
Here we extend the previous results to cases where the communication graph G are
directed but strongly connected and weight-balanced.
More specifically, we say that agent i can only send messages to its out-neighbors

j ∈ N out
i . Similarly, it can only receive messages broadcast by its in-neighbors j ∈

N in
i . Conveniently, the closed-loop system dynamics is still given by (16) where the

only difference now is L is not symmetric. However, because it is weight-balanced
we still have that the sum of all states is an invariant quantity,

d

dt

(
1TNx(t)

)
= 1TN ẋ(t) = −1TNLx̂(t) = 0.

Remark 0.6.4 (Weight-balanced assumption) It should be noted that the weights
of the directed graph for any digital implementations are design parameters that can
be chosen to make a given directed communication topology weight-balanced. The
works [28, 29] present provably correct distributed strategies that, given a directed
communication topology, allow a network of agents to find such weight edge assign-
ments. •

Remarkably, the same analysis from the previous section almost directly follows
and admits a similar triggering law. More specifically, it can be shown that if we can
enforce the error of all agents to satisfy

e2i ≤ σi
1

4douti

∑
j∈N out

i

(x̂i − x̂j)2,

with σi ∈ (0, 1) for all times, we have

V̇ ≤
N∑
i=1

σi − 1

4

∑
j∈N out

i

wij(x̂i − x̂j)2, (22)
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which is strictly negative for all Lx̂ 6= 0. The following decentralized event-trigger
ensures this is satisfied at all times.

Theorem 0.6.5 (Decentralized event-triggered coordination on directed graphs)
Given the closed-loop dynamics (16), if the communication graph G is weight-
balanced and the updates times of each agent i are determined as the times when

fi(ei) , e
2
i − σi

1

4douti

∑
j∈Ni

wij(x̂i − x̂j)2 ≥ 0, (23)

then the system achieves multi-agent average consensus.

At times t ∈ [ti`, t
i
`+1), agent i (continuously) performs:

1: set x̂i(t) = xi(t
i
`)

2: set ei(t) = x̂i(t)− xi(t)
3: if ei(t)2 ≥ σi 1

4douti

∑
j∈N out

i
wij(x̂i(t)− x̂j(t))2 then

4: set ti`+1 = t
5: broadcast x̂i(t) = xi(t

i
`+1) to in-neighbors j ∈ N in

i

6: set ` = `+ 1
7: end if
8: set ui(t) = −

∑
j∈N out

i
wij(x̂i(t)− x̂j(t))

Table 6 Decentralized event-triggered coordination on directed graphs.

Unfortunately, most of the algorithms presented here are not guaranteed to avoid
Zeno behaviors making them risky to implement on real systems. Moreover, the one
algorithm that can in some cases guarantee no Zeno behavior requires some global
information. In some cases modifications can be made to theoretically ensure no
Zeno behavior occurs; however, there may still be an arbitrarily small amount of time
between any two events (see e.g., [23]) making it undesirable from an implementation
viewpoint. This is addressed in Remark 0.6.6 below and the following section.

Remark 0.6.6 (Implementation) We note here an important issue regarding the
connection between Zeno executions and implementation. In general, dedicated
hardware can only operate at some maximum frequency (e.g., a physical device can
only broadcast a message or evaluate a function a finite number of times in any finite
period of time). This means that ensuring a system does not exhibit Zeno behavior
may not be enough to guarantee the algorithm can be implemented on a physical
system if the physical hardware cannot match the speed of actions required by the
algorithm. More specifically, it is guaranteed that Zeno behavior does not exist if the
sequence of times ti` →∞ as `→∞; however, this is not as strong as ensuring that
there exists a minimum time in between triggers ti`+1 − ti` ≥ τmin > 0, which is a
more pragmatic constraint when considering physical hardware. •

In light of Remark 0.6.6, we consider enforcing a minimum time between events
in the following section.
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0.7
Periodic event-triggered coordination

Throughout this chapter we have assumed that all event-triggers can be evaluated
continuously. That is, the exact moment at which a triggering condition is met, an
action (e.g., state broadcast and control signal update) is carried out. However, this
may still be an unrealistic assumption when considering digital implementations.
More specifically, a physical device cannot continuously evaluate whether a trigger-
ing condition has occurred or not. This observation motivates the need for studying
sampled-data (or periodically checked) event-triggered coordination strategies.
Specifically, given a sampling period h ∈ R>0, we let {t`′}`′∈Z≥0

, where t`′+1 =
t′`+h, denote the sequence of times at which agents evaluate the decision of whether
to broadcast their state to their neighbors. This type of design is more in line with
the constraints imposed by real-time implementations, where individual components
work at some fixed frequency, rather than continuously. An inherent and convenient
feature of this strategy is the lack of Zeno behavior (since inter-event times are nat-
urally lower bounded by h).
Consequently, we begin by revisiting the result of Theorem 0.6.5. Intuitively, as

long as the sampling period h is small enough, the closed-loop system with a peri-
odically checked event-triggering condition will behave similarly to the system with
triggers being evaluated continuously. The proof of convergence for the triggering
law in Theorem 0.6.5 hinges on the fact that

e2i (t) ≤ σi
1

4douti

∑
j∈Ni

wij(x̂i(t)− x̂j(t))2

for all times t. Instead, since we now assume the triggering function 17 can only be
evaluated periodically, we have that

e2i (t`′) ≤ σi
1

4douti

∑
j∈Ni

wij(x̂i(t`′)− x̂j(t`′))2 (24)

is only guaranteed at the specific times {t`′}`′∈Z≥0
at which the triggering function

can be evaluated. The algorithm is formalized in Table 7.
It should be noted that this algorithm is identical to the one in Table 6 except it is

only executed periodically now rather than continuously. The following result then
provides a sufficient condition on how small the period h has to be to guarantee
convergence. The result is obtained by analyzing what happens to the Lyapunov
function V in between these times.

Theorem 0.7.1 (Periodic event-triggered coordination) Given the closed-loop
dynamics (16), if the communication graph G is weight-balanced and the update
times of each agent i are determined as the times t′ ∈ {0, h, 2h, . . . } when

fi(ei) , e
2
i − σi

1

4douti

∑
j∈Ni

wij(x̂i − x̂j)2 ≥ 0,
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and h ∈ R>0 satisfies

σmax + 4hwmax|N out
max| < 1, (25)

where wmax = maxi∈{1,...,N},j∈N out
i
wij and |N out

max| = maxi∈{1,...,N} |N out
i |,

then the system achieves multi-agent average consensus.

Note that checking the sufficient condition (25) requires knowledge of the global
quantities σmax, wmax, and N out

max. Ensuring that this condition is met can either
be enforced a priori by the designer or, alternatively, the network can execute a dis-
tributed initialization procedure, e.g., [30, 3], to compute these quantities in finite
time. Once known, agents can compute h by instantiating a specific formula to se-
lect it that is guaranteed to satisfy (25).

At times t ∈ {0, h, 2h, . . . }, agent i performs:

1: set x̂i(t) = xi(t
i
`)

2: set ei(t) = x̂i(t)− xi(t)
3: if ei(t)2 ≥ σi 1

4douti

∑
j∈N out

i
wij(x̂i(t)− x̂j(t))2 then

4: set ti`+1 = t
5: broadcast x̂i(t) = xi(t

i
`+1) to neighbors j ∈ N in

i

6: set ` = `+ 1
7: end if
8: set ui(t) = −

∑
j∈N out

i
wij(x̂i(t)− x̂j(t))

Table 7 Periodic event-triggered coordination on directed graphs.

A drawback of this algorithm is that the period h must be the same for all agents,
requiring synchronous action. It is not difficult to envision asynchronous versions of
this algorithm for which correctness guarantees have not currently been established.

0.8
Conclusions and future outlook

This chapter has presented a high-level overview of the ideas behind event-triggered
communication and control applied to multi-agent average consensus problems. Al-
though Table 1makes it look like there is a complete story concerning event-triggered
consensus problems, this is certainly not true as there still remain many issues to be
addressed regarding asynchronism, guarantees on non-Zeno behavior, and practi-
cal considerations. There are indeed still exciting new directions being explored at
the time of writing that would only serve to expand this table in the future. For in-
stance, all event-triggered protocols discussed in this chapter assume that all agents
are able to ‘listen’ for incoming messages at all times. In other words, when a mes-
sage is broadcast by an agent i, this message is immediately received by a neighboring
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agent j ∈ Ni who immediately (or within some reasonable time due to delays, etc.)
reacts to this event by updating its control signal. However, this may not be possible
in all scenarios which presents a whole new set of technical challenges. For exam-
ple, some recent preliminary results have been developed in this setup motivated by
the need for coordinating submarines [31, 32], where agents can only communicate
when they are at the surface of the water. While a submarine is submerged, any
message broadcast by another submarine cannot be received until it resurfaces.
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Appendix

Proof of Theorem 0.3.1
Consider the Lyapunov function

V (x) =
1

2
xTLx.

Then, given the dynamics (8) and the continuous control law (9),

V̇ (x) = xTLẋ = −xTLTLx = −‖Lx‖2,

where we have used the fact that L is symmetric. It is now clear that using the
continuous control law (9) we have V̇ (x) < 0 for all Lx 6= 0. Using LaSalle’s
Invariance Principle [33], it can then be shown that

x(t)→ {Lx = 0} = {xi = xj∀i, j ∈ {1, . . . , N}}

as t → ∞. Combining this with the fact that the sum of all states is an invariant
quantity concludes the proof,
d

dt

(
1TNx(t)

)
= 1TN ẋ(t) = −1TNLx(t) = 0.

�

Proof of Theorem 0.6.2
Let δ(t) = x(t)− x̄1, where x̄ = 1

N

∑N
i=1 xi(0) is the average of all initial condi-

tions. Then, δ̇(t) = −Lδ(t)− Le(t), yielding

δ(t) = e−Ltδ(0)−
∫ t

0
e−L(t−s)Le(s)ds.

Taking norms,

‖δ(t)‖ ≤ ‖δ(0)e−Lt‖+

∫ t

0
‖e−L(t−s)Le(s)‖ds

≤ e−λ2(L)t‖δ(0)‖+

∫ t

0
e−λ2(L)(t−s)‖Le(s)‖ds,

where the second inequality follows from [19, Lemma 2.1].
Using the condition

|ei(t)| ≤ c0 + c1e
−αt,

it follows that

‖δ(t)‖ ≤ e−λ2t‖δ(0)‖+ ‖L‖
√
N

∫ t

0
e−λ2(t−s)(c0 + c1e

−αs)ds

= e−λ2t

(
‖δ(0)‖ − ‖L‖

√
N

(
c0
λ2

+
c1

λ2 − α

))
+ e−αt

‖L‖
√
Nc1

λ2 − α
+
‖L‖
√
Nc0

λ2
.

The convergence result then follows by taking t→∞. �
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Proof of Theorem 0.7.1
Since (24) is only guaranteed at the sampling times under the periodic event-triggered
coordination algorithm presented in Table 7, we analyze what happens to the Lya-
punov function V in between them. For t ∈ [t`′ , t`′+1), note that

e(t) = e(t`′) + (t− t`′)Lx̂(t`′).

Substituting this expression into V̇ (t) = −x̂T (t)Lx̂(t) + eT (t)Lx̂(t), we obtain

V̇ (t) = −x̂T (t`′)Lx̂(t`′) + eT (t`′)Lx̂(t`′)

+ (t − t`′)x̂T (t`′)L
TLx̂(t`′),

for all t ∈ [t`′ , t`′+1). For a simpler exposition, we drop all arguments referring to
time t`′ in the sequel. Following a similar discussion to Section 0.6, it can be shown
that

V̇ (t) ≤
N∑
i=1

σi − 1

4

∑
j∈N out

i

wij(x̂i − x̂j)2 + (t− t`′)x̂TLTLx̂.

Note that the first term is exactly what we have when we are able to monitor the
triggers continuously (22).
Using the fact that (

∑p
k=1 yk)

2 ≤ p
∑p
k=1 y

2
k (which follows directly from the

Cauchy-Schwarz inequality), we bound

x̂TLTLx̂ =
N∑
i=1

 ∑
j∈N out

i

wij(x̂i − x̂j)

2

≤
N∑
i=1

|N out
i |wmax

i

∑
j∈N out

i

wij(x̂i − x̂j)2

= |N out
max|wmax

N∑
i=1

∑
j∈N out

i

wij(x̂i − x̂j)2, (26)

where wmax
i = maxj∈N out

i
wij . Hence, for t ∈ [t`′ , t`′+1),

V̇ (t) ≤
N∑
i=1

(σi − 1

4
+ hwmax|N out

max|
) ∑
j∈N out

i

wij(x̂i − x̂j)2

≤
(σmax − 1

2
+ 2hwmax|N out

max|
)
x̂TLx̂.

Then, by using (25), it can be shown that there exists B > 0 such that

V̇ (t) ≤ 1

2B

(
σmax + 4hwmax|N out

max| − 1
)
V (x(t)),

which implies the result. See [23] for details. �
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